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Abstract 

In adaptive control design for discrete-time output- 
feedback nonlinear plants, the main obstacle is the 
lack of effective ways to design estimators for the un- 
measured states and the unknown parameters. Since 
these quantities appear as arguments of arbitrary non- 
linear functions, traditional estimation methods can 
not be used. To resolve this problem, we propose a 
new systematic methodology by which one can re- 
cover all the necessary information about the un- 
known part of the system in finite time, so that con- 
trol schemes for global stabilization and tracking can 
be designed for such plants. 

1 Introduction 

In recent years, a great deal of progress has been 
made in the area of adaptive control of continuous- 
time nonlinear systems [l, 21. For their discrete-time 
counterparts, on the other hand, very few results ex- 
ist. With the exception of our recent solution [S] 
for the strict-feedback problem, the other existing 
results [3, 4, 5, 71 either require restrictive growth 
conditions on the nonlinearities or only deal with a 
scalar nonlinear system which contains a single un- 
known parameter. 

In discrete-time, backstepping amounts to simply 
“looking ahead” and choosing the control law which 
forces the states to acquire their desired values after 
a finite number of time steps. In the presence of un- 
known parameters, however, it is impossible to calcu- 
late these “look-ahead” values of the states. Further- 
more, since these calculations involve the unknown 
parameters as arguments of arbitrary nonlinear func- 
tions, no known parameter estimation method is ap- 
plicable, as all of them require a linear parameteriza- 
tion to guarantee global results. The main contribu- 
tion of [8] is the introduction of a novel uncertainty 
identification scheme which, in a finite number of time 
steps, computes the projections of the unknown vec- 
tor parameter along the basis of a subspace gener- 
ated by the nonlinear vector fields of the plant. Once 
these projections are known, the control law becomes 
a straightforward “look-ahead” design. However, the 
computation of these projections relies on the mea- 
surement of all the state variables. If some of these 

variables are not measured, the corresponding projec- 
tion information is lost. 

In this paper we introduce a new systematic method 
for recovering the lost projection information. The 
available projections are computed through simple 
linear operations from a set of measured vectors which 
are first decomposed into orthogonal subspaces. To 
ensure that all the necessary information is obtained, 
we use the control input to drive the measured output 
to values which provide measurements of the projec- 
tion of 8 along linearly independent directions. 

In Section 2 we first examine the difficulties raised 
from the design of a “look-ahead” controller for discrete- 
time output-feedback nonlinear systems. To resolve 
these difficulties, we then introduce the projection re- 
covery technique in Section 3. 

2 Problem Formulation 

In this section, we will first describe the problem in 
detail and then analyze the obstacles that must be 
overcome in order to solve it. 

Let us consider the following second-order discrete- 
time nonlinear system 

xt+1 = yt + eTdxd (2.1) 

Yt+1 = ut + eVw, (2.2) 

where 6 E IFP is the vector of unknown constant pa- 
rameters and only the state xt is available for mea- 
surement. We denote pt = p(xt) and $,t = $(xt), 
with cp(.) : IR + IRP and $(.) : IR + IRP known 
functions. This system is in output-feedback form, 
because its nonlinearities depend only on the mea- 
sured output xt. 

At each time t, our objective is to pre-compute the 
following projections of system (2.1)-(2.2): 

eT’pb4 eTdxt+d 
Cc4 

(2.3) 

As we stated in [8], one of the applications of these 
pre-computed projections is to implement a “look- 
ahead” controller which stabilizes the system and reg- 
ulates xt to zero. This is because if all the terms of 
(2.3) were known, then we could choose: 

Ut = -@$b 1 - e%(xt+l 1 
= -eT [~w + dYt + eY44)l , (2.4) 



from which we obtain 

Q-f-2 = Yt+1 + ~Tv(Q+l) 

= ut + eT [$(xt, + P(Yt + eTvcxt,>] 

= 0. (2.5) 

Let us now review the method proposed in [8] for 
pre-computing the projections of (2.3) at time t, and 
examine the difficulties in achieving this goal. 

The main idea of [8] can be summarized as follows: 

l First, using the fact that ‘p and 1c, are known, 
we compute off-line a basis for the span of these 
vector fields over all values of x and y. The 
dimension of this basis is at most p, where p is 
the number of unknown parameters. In order to 
pre-compute the projections given in (2.3), we 
use the control input to drive the state vector 
to points which correspond to the basis vectors. 
Since we can measure the states xt , yt, we can 
compute the terms xt - yt-1 = 8Tvt-i and yt - 
ut-1 = BT&i at various times t; by driving the 
state to values which render pi-1 and $,t-i basis 
vectors, we obtain the projections of 19 along 
the corresponding basis. This phase is finite in 
duration for any finite-dimensional system with 
a finite number of unknown parameters. 

l Once all the projections of B along the above 
basis vectors are collected, we use them to pre- 
compute all the terms appearing in (2.3) by 
expressing (p(x) and $(x, y) as linear combi- 
nations of these basis vectors and then using 
the same coefficients to compute eT+(x) and 
BT’p(x, y) as linear combinations of the projec- 
tions. 

This two-stage process depends critically on the fol- 
lowing fact: 

Contrary to their continuous-time coun- 
terparts, discrete-time nonlinear sys- 

tems can not exhibit the finite es- 

cape time phenomenon. This implies 
that we can afford to postpone closing the 
loop with a controller for a finite time pe- 
riod. 

This approach is very different from traditional cer- 
tainty equivalence approaches, which replace the un- 
known B with an estimate 8. Equation (2.4) shows 
that any such attempt would be stifled by the fact 
that 8 appears inside the nonlinear function ‘p; this 
becomes a nonlinear state and parameter estimation 
problem, for which no global methods are available. 

Returning to the output-feedback case where yt is 
no longer measurable, we have the additional diili- 
culty that neither eTvt-i = xt - yt-l nor BT$+-i = 

yt - ut-1 can be computed individually. Instead, at 
time t we can only obtain 

xt - ut-2 = eT(vtml + +t-2). (2.6) 

To pre-compute each term in (2.3), however, we still 
need to be able to compute the projections of B along 
cp and $ individually. Hence, if it so happens that the 
subspace spanned by cp(x)+$(Z) is of lower dimension 
than the subspace spanned by ‘p and +, then measur- 
ing xt - ut-2 can only give us all the projections of 0 
along a basis of the subspace spanned by p(x) +$(Z). 
But to pre-compute each term in (2.3), we need all the 
projections of 0 along a basis of the subspace spanned 
by cp and I+/J. To recover those missing projections, one 
might try reconstructing the unmeasurable state yt. 
However, equation (2.4) shows that replacing yt with 
an estimate $t would again raise the nonlinear esti- 
mation problem which we discussed in the context of 
replacing f3 by an estimate 6. 

To overcome this seemingly insurmountable prob- 
lem, during the identification phase we will select u in 
such a way that if +t is linearly dependent on a set of 
(known) linearly independent vectors from the set of 
past values of $J, i.e., from the set {$~s,&, . . . ,+r}, 
then its decomposition along those vectors does not 
coincide (i.e., does not have the same coefficients) 
with the decomposition of pt+i along the correspond- 
ing vectors from the set {cpl , 92, . . . , cpt}. Achieving 
this “independence” will allow us to recover BTpt+i 
and 8T$t from BT (pt+i + $t) by simple linear opera- 
tions. 

3 Projection Recovery 

As we have seen in the above discussion, pre-computing 
each term in (2.3) requires knowledge of the projec- 
tions of 0 along the vectors which constitute a basis 
of the subspace spanned by cp and $J. On the other 
hand, (2.6) shows that measuring xt can only pro- 
vide us with the projections of 0 along the vectors 
which constitute a basis of the subspace spanned by 
p(x) + +(a). Therefore, in this section we develop a 
systematic method to recover those missing projec- 
tions. 

Notations: For brevity, we define 

s 9P,* = tyg~p(x)~ ni.px)h 

(3-I) 

which implies that we have the direct sum decompo- 
sitions 

yp”H = s, @s9,+ (3.2) 

W~hw~ = $6 @ s$7,+ , (3.3) 



where S, and S+ are the corresponding orthogonal 
complements of S9,+ with respect to the subspaces 

w~n,,dcp(4~ and ~P~QIF&(x)~. 
Using these direct sum decompositions, we then 

decompose 

(3.4) 

As explained in the above section, the pre-computation 
of each term in (2.3) requires all the projections of 
0 along the directions which constitute a basis for 
S = spar~,,~,,~{cp(x), $I(%)}. For clarity and without 
loss of generality, we assume S,,,,$ = (0). The gen- 
eral case of S9,$ # (0) requires some straightforward 
but tedious modifications of the following procedure, 
which would further complicate the task of introduc- 
ing it to the reader. 

3.1 Decomposition procedure 

We start by describing the decomposition procedure, 
which is to be implemented at every step of the iden- 
tification phase. 

Measure the state xt and then evaluate qt,$t at 
each step. Using (2.1)-(2.2), all the measurements 
can be expressed as follows (here we assume for sim- 
plicity that ug = ... = ut-2 = 0): 

[ eT~Y~‘:111,, ] = 

x2 

[! xt 1 . (3.5) 

The objective now is to rewrite these measurements 
in a way that can be used for choosing u(Lt. To this 
end, we employ the following procedure: 

1. l Findabasisfor&,-, =span{cpr ,... ,pt-1). 
This basis should consist of linearly in- 
dependent vectors from the set @t-r = 

{cpl,... , pt-r}, and its dimension is de- 
noted by Icp + 1 with Jc2 5 t - 2. 

l Express each of the remaining t - JEz - 2 
vectors from the set @t-r as linear com- 
binations of this basis, say ‘pj = cj,lcpl + 
... + cj,~~+r(~k~+r. Here, without loss of 
generality, we assume that (PI,. . . , pkz+l 
form a basis for S+,-, . 

l For each of these t - kz - 2 vectors, subtract 
from the corresponding measured projec- 
tion 6JT(cpj + I&~) with 1 5 j 5 Ic2 + 1 
the same linear combination of the projec- 
tions corresponding to the basis vectors of 

SG,-,, to obtain a new computed projec- 
tion: 

A 
eT+j-l= eT[$j-l-Cj,l+O -...- Cj,kz+l?+bkz] 

= +@h + ++d - [Cj,leT((P1 + ?+bo) 

+ ’ ’ ’ + %kz+leT(Pk2+1 + +kz)] 

= “j+l - [cj,1”2 + . * * + cj,kz+1Xk2+2] 

A 
= f&l* (3.6) 

l These operations transform (3.5) into the 
following set of projections: 

Q% + qo) - x2 

@iL2 _ Et 

. (3.7) 

0 From the set {$&+I,. . . , &-2) we _select 
a bas$ for the subspace spanned by ?+!&+I , 
. . . , $t-2. Without loss of generality, we 
assume that {+kzfl,. . . , ?+!&} with k3 5 
t - 2 is such a basis. 

2. Repeat the operations of Step 1 with respect to 

*ks+l = {$O,... ,$‘kz,$k~+l,.-. ,‘$ka}. First, 

find a basis of dimension lcs + 1 - Icr. Here, 
we require this basis to include all the vectors 

of Gkz+l,.. . ,‘$k3. Without 10s: of generality, 

we assume that {+kl,..- ,$kZ, $kz+l,... ,$ks) 

constitute this basis. Then, following 1, express 
the remaining ICI vectors as linear combinations 
of these basis vectors, and subtract the corre- 
sponding projections. 

3. The assumption S,,,,$ = (0) and the linear in- 
dependence of {cpr , . . . , pkz+r} guarantee that 
any nonzero vector formed by arbitrary linear 
combinations of (91,. . . , cpkZ+r} does not be- 
long to S,. Hence, we can arrange the result- 
ing new projections, along with the remaining 
Ic2 - ICI of the original projections which were 
not affected by Steps 1 or 2 in the following way: 

532 

eT@kI 

eTbf’kl+l + $kI) 

zkl+l 

xh +2 
= 

eTbk2+1 + +kz) 

eT4k,+l 

eT$ks zk3+2 

. (3.8) 



From the above procedure, it should be clear that the 
following properties are true: 

rank{@kIT... ,$kz,6kz+l,... ,$kg} 

= rank{&, . . . , h-2) (3-9) 

rmk{@l,. . . ,$kI ,(Pkl+l,. . . , ‘Pka+l} 

= rmk{w,. . . ,vt-1). (3.10) 

Furthermore, {+kl, . . . , $kz, '$kz+17 . . . , Gkg } and {@l, 

.**I (Pkl,(Pkl+l, ... , (P&+1} are both sets of linearly 
independent vectors. This completes the decomposi- 
tion procedure. 

3.2 Basis identification 

From the above procedure we see that, at each time t, 
$j E Sat-, C S, and & E SQ,-, c S,. Hence, (3.8) 
shows that in order to complete the task of computing 
the projections of 8 along the vectors which constitute 
bases for the subspaces SQ,-, and S+,-, , we still need 
to find a way to compute the projections eTP]cI+l, 

. . . 7 oTVkz+l, eT$kI, . . . . eT?+!%,. This is because all 
the other projections in (3.8) are already either in S, 
or in S+. To obtain these remaining projections, we 
note that the subspaces S, and S$ are invariant with 
respect to time and are finite dimensional. Hence, if 
we keep ut = 0 for each t, measure the state xt+2 
and evaluate $,t+z and qt+2, then there must exist 
tl > 0 such that $tl+l E SCP,~-, ; in fact, we will have 
O<tr<dimS+. 

At this time (t = tr + l), we perform decomposi- 
tion procedure of the previous subsection and obtain 
equation (3.8). Since +tIfl E Sq,l-,, we can find 

con&Ih %+l,kl,... ,%+l,k3 to express &+l as 

&I+1 = ‘&+l,kl+kl + . ” + Ctl+l,kz$kz 

%+l,kz+l$kz+l + .‘. + Ctl+l,ks7J;k3 . (3.11) 

From the equation (3.8) the projections of 0 along the 
vectors 4kz+l, . . . , qk3 are already known. Therefore, 
at time t = tl + 1 we can select the control input 

%+l = -%+l,kz+leT$kz+l - . . . - CtI+l,kSeT?jlkg 

= -Ctl+l,kz+l~k2+3 - ‘. . - %+l,k~~k~+2 (3.12) 

to eliminate the projections of 0 along those known 
directions at the next step. Then, at time t = tl + 
2 we measure xt1+2 and use it to evaluate tiCItIf2 = 

$(xt,+z) and ptl+2 = cP(xt,+z). Now we have to 
distinguish between the following two cases: 

C=e 1 1CIt1+2 @ s~,l-, or a+2 6 Sa+, : Then, 

at least one of the following equalities must be valid: 

rank{%hI+2~~kI~~.. ~+k~~?lkz+l~~~~ ,483) 

= rank{$kI,. . . ,$kz,$kz+l,. . . ,GkS} + 1 (3.13) 

r~k{nI+2,Pl,... , @kl, (Pkl+1,. . . ,Y'kz+l} 

= rank{&, . . . r$kl, (Pkl+l,... ,(Pkz+l} + 1. (3.14) 

In this case we just apply the decomposition proc+ 

dure again. Recall that the subspaces S,,, and S,,, are 
invariant with respect to time and finite dimensional. 
Therefore, after a finite number of steps (at most p) 
both tit+2 E SQ* and vt+2 E &, must be valid. 

Case 2 ‘G&+2 E SQ,~-, and pt1+2 E S*,,-I : Then, 

we can find constants ctI+2,kI,. . . > Ct1+2,ks, dt1+2,1, 

... 7 dtl+-2,k2+l to express 

&+2 = Ct1+2,kl+kl + . ‘. + CtI+2,kz+kz 

+%+2,kz+l$kz+l + . ’ ’ + Ct1+2,k3gk3 (3.15) 

%+2 = 4+2,1@1 + *. . + dt,+2,kl(Pkl 

+dtl+2,kl+l(Pkl+l 

+. . . + dtl+2,kz+l(Pk2+1 . (3.16) 

Therefore, at t = tl + 2 we can compute the value of 

etl+2 = 1&+2,kl+l - Ctl+l,kI 1 

f... 
+ h+2,kz+l - %+l,kz 1, (3.17) 

which indicates whether the decompositions of $tI+l 

a1ong ($kl, . . .7 +d and of Pt1+2 along {(Pkl+l, . . . , 

v%.+l} have the same coefficients. Depending on the 
value of et1+2, we further divide the procedure into 
the following two subcases: 

Subcase 2.1 et +2 # 0 I: In this subcase, using (3.11), 

(3.12) and (3.16), at t = tl + 3 we C~I-I measure 

xt1+3 = utl+l + @l~t1+2 + tit,+l) 

= -Ctl+l,kz+l~kz+3 - * ’ * - ctI+l,kszks+2 

+eT(Pt1+2 + T&+1> 

= 
-CtI+l,k2+l~T~k~+1 - . . . - CtI+l,k80T$ka 

+dtI+2,1~Tp1 + . . . i- dtl+2,kleT@k, 

+dtI+2,kI+l~TVkI+l i- .. . + dt1+2,kz+loTPkz+l 

+%fl,kIeT+kI + '.. + CtI+l,kzeT$kz 

+CtI+l,kz+l~T~k~+l + '.. + Ctl+1,k:3eT$k3 

= (&+2,k:,+l - %+l,kI )eTpkI+l 

+... 
+ (dt1+2,kz+l - %+l,kz)oTpkz+l 

+%+l,kIeT(tikx + ‘PkI+1) 

+... 
+ CtI+l,kzeT(+kz + cPkz+l) 

+dt1+2,1eTpl + ... + dt1+2,k1eT@kl . (3.18) 

Hence, we have 

(dtI+2,kI+l - %+l,kI)eTpkl+l 

+... 
+ (dt1+2,kz+l - %+l,ks)oTpk,+l 

= xt1+3 - Ctx+l,kI~T(tikI + 'PkI+l) 

- . . . _ 
CtI+l,kzeT(+kz +'Pkz+l) 

-dtI+2,1dT+l - . . . - dtl+2,kloT& 

= lCtI+3 - Ctl+l,klxkl+2 - . . . - CtI+l,kzxk:,+2 

-&+2,1& - . . . - dtl+2,k1&l+l . (3.19) 



Therefore, we obtain a projection of 0 along the vector 

v ’ (dt,+2,kl+l - Ctl+l,k&kl+l + . . . 

+(dt1+2,kz+l - %+l,kz)‘Pkz+l E s, (3.20) 

which is linearly independent of ($51, . . . , & } since 
?I,... - ,(Pkl,(Pkl+l,*** , q&+1 are linearly independent. 

Using the fact that et1+2 # 0 implies that Idt,+2,j - 

ctl+l,jl # 0 for some ki + 1 5 j 2 kz, we define the 
vector 

w = tij-l + (d$Gk,+l - %+l,,;l) gk, 
t1+2,j - %+1,3 

+ 
. . . + (&+2,+1 - %+l,j-2)Ilj-2 

(4+2,j - %+1,j) 

+ @t1+2,j+1 - %+1,j) ,$. 

(41+2,j - %+1,j) 3 

+. ..+ Cd t1+2,kz+l - %+l,kz 

&+2,j - %+1,j) 
bkz (3.21) 

which is lineariy independent of {?,!&+i , . . . , ?,& } since 

+k I>*** ,+kz,+kz+l,..* , ?+!& are linearly independent, 
and rewrite (3.20) as 

” = (dtl+z,j !! Ctl+l,j)’ - 

(dtl+a,kl+l - %+l,kl) 

Cdtl+2,j - %+l,j) 
(Ph+l 

(dtl+2,j-l - ct,+l,j-2) -...- 

(dtl+a,j - ctl+l,j) ‘j-l 

_ Cdh+2,j+l - ctl+l,j) cp ,+1 

Cdh+2,j - %+l,j) ’ 

&+2,kz+l - %+l,kz) -...- 

(dtl+z,j - ctl+l,j) (Pkz+l ’ 
(3.22) 

Combining (3.19), (3.21), (3.20) and (3.22) we com- 
pute 

eTw ’ eT ‘j-l + 

(dtl+Z,kl+l - Ctl+l,kl) 

(dtl+2,j - ctl+l,j) @h 

+-.*f 
(dtl+2,j-l - ctl+l,j-2) 

Cdh+2,j - %+l,j) 
+j-2 

+ Cdtl+2,j+l - ctl+l,j) +. 

(dtl+z,j - ctl+l,j) ’ 

+ 
. . . + (dt1+2,kz+1 - %+l,kz) 

Cdtl+2,j - Ctl+l,j) 

+kz] 

= eT($j-l + Cpj) - 

1 

Cdtl+2,j - ctl+l,j) 

eTV 

+ (dtl+2,kl+l - Ct*fl,kl)eT(g,k + (PkI+l) 

Cdtl+2,j - ctl+l,j) 
1 

+. ..+ (d t1+2,j-1 - Ctl+l,j-2 > 

Cdtl+2,j - ctl+l,j) 
eT($j-2 + ‘pj-1) 

+ (dtl+2,j+l - %+l,j) eT(,g,, + cp ,+1) 

Cdh+2,j - ctl+l,j) 
3 3 

+ . ..+ (A 1+2,kz+l - %+l,kz) T 

(dtl+z,j - Ctl+l,j) e ($kz + Pkz+l) 

-...- 
Ctl+l,k2xkz+2 - &+2,122 

-...- 
dtl+2&1%+1) 

+ (dtl+2,kl+l - %+l,kI) xk +2 

(dtl+a,j - Ctl+l,j) 1 

+..a+ 
(dtl+z,j-1 - ctl+l,j-2) x, 

(dtl+z,j - ctl+l,j) ’ 

+ Cdtl+2,j+l - Ctl+l,j)x ,+2 

(dtl+a,j - ctl+l,j) ’ 

+*.-+ 
&+2,kz+l - %+l,kz) 

Cdtl+2f - ctl+l,j) 
xk2+2. (3.23) 

is linearly jndependem of {$&+i, . . . , $ks} since ?+!&, 

-.*, $‘kz, +kz+l, . . . , +kg are linearly independent. 
Therefore, we have recovered the projections of 0 

along v E S+ and w E S,. Hence, we have reduced 
the number of the projections needed to be recovered 
in both subspaces S, and S+. 

Subcase 2.2 et +2 = 0 III: If we have already col- 

lected all the projections of 8 along the vectors which 
constitute a basis for the subspace S, then we have 
obtained enough information for pre-computing the 

terms in (2.3). Otherwise, since et1+2 = 0, at t = 
ti + 2 we can pre-compute the state xt1+3 as (com- 
pare to (3.18) with et1+2 = 0) 

xt1+3 = CtI+l,kI~T(~kI + PkI+l) 

+... 
+ CtI+l,kzeT(tikz i- ‘Pkz+l) 

+dt1+2,1~Tpl -i- . . . + dtI+2,kleT+kl 

= %+l,klxkl+2 + * * * + %+l,kzxkz+2 

+dt,+2,1& + 3 * . + dtl+z,klik,+l , (3.24) 

and hence we can pre-compute the values of @t1+3 

and (Ptl+3- If $tt+3 # Sqt, or wl+3 $ Sat,, then we 
=e back to Case 1. If +t1+3 E Sqt, and ptl+3 E Sat,, 
then at t = tl + 2 we can find constants otl+s,kl,. . . , 

%+3,k3, &+3,1,. . . , dt1+3,kz+l such that 

d-%+3 = %+3,kl$kl + * ’ * + CtI+3,kz$kz 

+‘%+3,kz+l6kz+l + *. . + Ctl+3,ks$k3 (3.25) 

(Ptl+s = dtl+w@l + * * . + dtl+3,kl &cl 

+dtl+wl+l(Pkl+l 

+ ‘. * + dt1+3,kz+l(Pkz+l , 

from which at t = tl + 2 we pre-compute 

(3.26) 

%+3 = Idtl+3,kr+l - %+2,klI 

+... 
+ kh+wz+l - %+2,kz 1 . (3.27) 

If %+3 # 0, then we are back in Subcase 2.1. Oth- 



erwise, at t = tl + 2 we choose 

'llt1+2 = CY - %+2,klxkI+2 - ’ ‘. - Ct1+2,kzxk2+2 

-dt1+3,1& - . . * - dtl+3,kl&l+l 

-%+2,kz+leT6kz+l - ... - Ct1+2,k30T~k3 

= a - %+2,klxk,+2 - * ’ ’ - Ctl+2,kzxk2+2 

-4 1+3,1x2 - '** - - dtl+3rkl&l+l 

-%+2,k2+1~k2+3 - . . * - %+2,k3zk3+2 (3.28) 

with o to be determined next. Therefore, at t = tl +2 
using (3.15) and (3.26) we can pre-compute 

xtl+4 = ut1+2 + eT(‘Pt1+3 + +bt,+2) 

= a - %+2,klxk1+2 - . *. - CtI+2,kzxkz+2 

-dt1+3,1& - . . . - dt1+3,k1~:kl+1 

-%+2,kz+l~kz+3 - . ’ ’ - Ct1+2,k3gk3+2 

+dtI+3,1eT$% + . . . + dt,+3,k16T$kl 

+dtI+3,kI+leTPkI+1 +. .. i- dt1+3,kz+leTVkz+l 

+CtI+2,kI@T$kI + ” ’ + Ct1+2,kzoT$kz 

+CtI+2,kz+l~T~k~+l + ". + Ctl+2,k30T?jks 

= a - %+2,klxk1+2 - . . * - Ct1+2,k2xkz+2 

-dtl+3,1& - . * * - dt1+3,k1&+l 

-%+2,kz+lzk2+3 - . ’ * - Ct1+2,k3zk3+2 

+dtl+3,1G + . . . + dtl+3,kl~kl+l 

+(dtI+3,kI+l - %+2,k1)~T~kl+l 

+... 
+ &+3,kz+l - %+2,kz)eTpkz+l 

+CtI+2,kI~T(PkI+l + $kl) 

+. ” + %+2,kzeT(cPkz+l + $kz) 

+Ct1+2,kz+lzkz+3 + . ‘. + Ct1+2,k3zk3+2 

= Q - %+2,kz+lzk2+3 - . ’ ’ - Ctl+2,k3i?ka+2 

+%+2,kz+lzkz+3 + * ” + Ct1+2,k3zk3+2 

= a. (3.29) 

This means that a! can be chosen to yield 

Idtl+4,kl+l - ‘%+3,kll 

+... 
+ ldt1+4,kz+1 - %+3,kz 1 # 0, (3.30) 

with &+4,kl+lj.. . , dtl+4,kz+l being determined by 

%%+4 = 4+4,1@1 + . . . + dt,+4,k1(Pkl 

+dtl+&h+1%1+1 
+... 

+ dt,+4,kz+l(Pkz+l. (3.31) 

It is always possible to satisfy (3.30), because we can 
drive Xt1+4 to any value. This brings US back to Sub- 

case 2.1. 

and S$ are recovered. Once we have this informa- 
tion, we can implement any controller which requires 
the computation of BTp and eT+. One particular 
example is the “look-ahead” controller described in 
Section 2, but the same projection information can 
be used with any other control design. 

The procedure we presented here for the second- 
order nonlinear system (2.1)-(2.2) can be generalized 
to output-feedback systems (i.e., systems in which the 
nonlinearities depend only on the measured output) 
of arbitrary order. Obviously, the expressions for the 
general case are quite complicated, but the basic idea 
remains the same: the subspace decomposition must 
be applied at each step, and the control input must 
be chosen so that new directions are added until all 
the necessary projections are collected. 
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4 Concluding Remarks 

The procedure given in the previous section will con- 
tinue until all the projections of 0 along a basis of S, 


