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ABSTRACT 
One of the major applications for which neural 

network-based methods are being successllly employed 
is in the design of intelligent integrated processing 
architectures that efficiently implement sensor fusion 
operations. In this paper we shall present a novel 
scheme for developing fused decisions for surveillance 
and tracking in typical multi-sensor environments 
characterized by the disparity in the data streams 
arriving from various sensors. This scheme employs an 
integration of a multilayer neural network trained with 
features extracted from the multi-sensor data and a 
Kalman filter in order to permit reliable tracking of 
maneuvering targets, and provides an intelligent way of 
implementing an overall nonlinear tracking filter without 
any attendant increases in computational complexity. A 
particular focus is given to optimizing the neural 
network architecture and the learning strategy which are 
particularly critical to develop the capabilities required 
for tracking of target maneuvers. Towards these goals, a 
network growing scheme and a simplex algorithm that 
seeks the global minimum of the training error are 
presented. Validation of these methods comes from 
several tracking experiments involving targets executing 
complex maneuvers in noisy and clutter environments. 
Results tiom one such experiment is included here for 
illustration. 

INTRODUCTION 
A variety of sensing devices ranging from radar 

systems to lasers and optical imaging systems are 
presently being developed for surveillance and tracking 
operations. The limitations of using a single sensor in 
these operations, such as limited accuracy and lack of 
robustness, have motivated the trend towards designing 
surveillance and tracking systems with multiple sensors 
deployed on the same platform (an airborne or 
spaceborne reconnaissance platform or a tactical missile 
seeker, for instance) which can provide large amounts of 
useful data to detect, track, and identify targets of 
interest. However, current surveillance and tracking 
algorithms usually use information from only one sensor 
(such as Track-While-Scan (TWS) radar) or attempt to 
combine information from different sensors in an ad hoc 
manner. While it is intuitive that using additional data 
available can result in improved detection, classification 
and track maintenance performance, attempting to 

include this data efficiently will require novel processing 
methods which need to be carefully tailored due to the 
disparate forms of data collected. Development of such 
processing methods aimed at enhancing the tracking 
performance even in scenarios where a typically 
noncooperative target is executing complex maneuvers 
is a particularly challenging task. 

A major limitation precluding the integration of 
additional data, perhaps of a disparate form from the 
main data form being used, is the resulting complexity of 
the needed processing. For the particular case of target 
tracking, it is rather well known that while simple linear 
processing algorithms employing a Kalman filter for 
target state estimation can be synthesized for processing 
radar data, inclusion of a different form of data (image or 
image-format data, for instance) will require a nonlinear 
processing method (such as an Extended Kalman 
filtering algorithm) [ 11. The enormous processing 
complexity could render the implementation impractical 
due to the real-time processing requirements underlying 
the tracking function and the need to keep up with the 
rapid target motions during the maneuvers. 
Consequently, an intelligent architecture that facilitates 
successful fusion of the diverse data forms to result in 
improved tracking performance in the face of complex 
target maneuvers is highly desirable. 

Our interest in this work centers on the 
development of feature level fusion architectures that 
can assist in efficiently performing target surveillance 
and tracking, since such architectures will not only 
permit fusion of data from sensors which could have 
diverse characteristics (such as integration of radar data 
and image - format data, for instance) but also will 
present interesting and nontrivial questions to be 
investigated. The two major steps in the design of such 
architectures are, (i) feature extraction and (ii) feature 
integration. In particular, an architecture (as depicted in 
Fig. 1) that subjects the data stream coming from each 
sensor to a feature extraction operation (perhaps after 
some preprocessing to align, order and/or reformat the 
data as desired), which in turn followed by a feature 
integration operation to arrive at a fused decision for 
surveillance and tracking, constitutes the backbone for 
intelligent integrated processing of multisensor data in 
these applications. 

Some of our recent studies 12-41 have helped 
obtaining an understanding of the ability of neural 



networks to fuse information from different sensors to 
assist in simple implementations of target detection and 
tracking algorithms. The primary focus in this paper is 
on developing an optimized neural network architecture 
and an efficient training scheme that endows the neural 
network the capability to perform fusion of target 
measurements in order to reliably track target maneuvers 
executed in severe clutter and noise environments. 
Towards these goals, we shall introduce a network 
growing scheme and implementation of a simplex 
optimization algorithm for training a multilayer neural 
network. Unlike the more commonly used approach of 
error backpropagation [5], the simplex optimization 
approach enables one to more efficiently seek the global 
optimum in the training task, and consequently, permits 
the trained network to process a set of features extracted 
from the sensor measurements in order to rapidly make 
the necessary association with certain critical parameters 
representative of the target maneuver. A target tracking 
system architecture is developed by integrating the 
trained neural network with a Kalman filter that 
performs the target state estimation function. 

NEURAL NETWORK-BASED ARCHITECTURE 
FOR SENSOR FUSION AND TARGET 
TRACKING 

The basic building blocks of the tracking 
scheme shown in Fig. 2 are the neural network and the 
Kalman filter. The neural network accepts as inputs a 
set of features extracted from the sensor data and is 
trained to output estimates of a set of maneuver 
parameters characterizing the target maneuver that is 
represented in the feature set. Since features abstracted 
from the measurements obtained from dissimilar sensors 
are typically used as inputs to the neural network, the 
processing of data by the network implements a feature 
integration process and thus performs sensor fusion. The 
neural network outputs are fed to a Kalman filter which 
implements a recursive state estimation algorithm based 
on a linear model of the target dynamics. For the sake of 
illustration of specific details regarding the features 
extracted and the training conducted with these features, 
Fig. 2 depicts a msion environment comprising of a 
range radar and a Doppler radar. It is to be emphasized 
that this is only for simplicity in discussing the details 
and will not limit the type of sensor that may be brought 
in to provide target measurements. 

Training of the neural network for providing 
maneuver estimates is implemented with three features 
extracted from the measured data. Two of these features 
ui(k) and up(k) are obtained from the measurements of 
the range radar (a TWS radar, for illustration) and the 
other feature ug(k) is obtained from the measurements 
from the Doppler radar (as shown in Fig. 2). More 
specifically, the signal vi(k) is constructed by 
normalizing the two components of the innovation data 
with respect to the covariance as 
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where F(k) = [‘Z,.(k) Yy(k)]’ = z(k) - IE(k lk - I), z(k) being 

the measurement and i(klk-1) being the state estimate 
generated by the Kalman filter. S,(k) and S’@) are the 
diagonal elements of the covariance matrix which is 
used for Kalman gain computation. Signal u2(k) is the 
change in the heading estimate computed as 

u2#)=aLT @)-aLT &-l) 

where o&k) and &k-l) are the heading estimates 
computed by the method of least triangles from using 
three past data points. Finally, the third input feature 
ug(k) is extracted Corn Doppler radar and is computed as 
the change in Doppler shiR normalized by its variance, 
i.e., 

03(k)=- aid Lfd (k) - fi (k - 01 where fd (9 = $ @iI 

provides a measure of the radial velocity, d(i) , at instant 

i (h denotes the wavelength of the transmitted wave) and 
ozfd, variance of the Doppler shift. 

Performance evaluation studies conducted 
earlier [2,3] provide ample evidence that the three 
features contain adequate information to train the 
network to provide reasonably accurate maneuver 
estimates when the target maneuvers involve 
longitudinal accelerations of arbitrary magnitudes. This 
performance has been tested in several tracking 
scenarios comprising of various degrees of clutter and 
noise. Furthermore, the resulting performance levels 
have been shown to compare favorably with some 
classical maneuver tracking schemes [3]. 

OPTIMIZATION OF NEURAL NETWORK 
ARCHITECTURE AND TRAINING 
Neural Network Training By Simplex Algorithm 

Perhaps the most significant characteristic that 
enables a neural network to serve as a useful 
computational device is its learning capability. 
Implementation of an appropriately tailored learning 
algorithm, i.e. a rule for adjustment of the network 
parameters (specifically the interconnection weights) can 
endow the network the ability to develop the needed 
structure to result in a corresponding desired 
computation. The knowledge acquired by the network 
during this learning is stored in the set of weights. 

A number of alternate procedures exist for 
training a neural network with the available data and 
different training algorithms usually yield different sets 
of interconnection weights. While the error 
backpropagation approach is perhaps the most popular 
approach [5] for training multilayer neural networks, it 
has a few shortcomings as well. The backpropagation 



approach, being a gradient-based search algorithm, is 
sensitive to the initial starting point (i.e. preliminary 
selection of weights to start the algorithm). Also 
because of the gradient-based search property, it is 
normally trapped by the first optimal point reached and 
has the tendency to converge to a local minimum. This 
is generally undesirable since it implies that the 
knowledge acquired by the network is not optimal. To 
counter this problem, modified backpropagation 
algorithms have been developed which include a 
momentum term that can kick the parameters out of sub- 
optimal solutions. However, with these algorithms one 
has to fiddle around with the momentum term and hope 
that, with the selected starting point, a globally optimal 
solution can be reached. In general, there is no 
guarantee of achieving a global optimum. 

In our quest to improve the efficiency of the 
neural network learning, which we believe is critical in 
equipping the network with the knowledge required for 
reliably recognizing complex target maneuvers, we have 
implemented the Linear least Squares Simplex (LSSIM) 
algorithm developed by Hsu et. al. [6]. This algorithm 
employs concepts from simplex optimization and is 
conducted by splitting the 3-layer neural network into 
two portions - a linear portion and a nonlinear portion. 
The connections between the input layer and the hidden 
layer form the nonlinear portion, while the connections 
between the hidden layer and the output layer constitute 
the linear portion. The simplex optimization method is 
used to find the optimal weights in the nonlinear portion, 
while a linear least squares minimization is used to 
determine the optimal weights in the linear portion of the 
network [6]. For implementation in the present context, 
the algorithm can be designed with two distinct stopping 
criteria. The search for the weights in a specified 
network structure can be terminated either when the size 
of the simplex is smaller than a prespecified threshold or 
the number of iterations performed exceeds a preset 
threshold. 

As described by Hsu et. al. , implementing the 
simplex algorithm described above with multiple restart 
operation (i.e. reinitializing the simplex and executing 
the algorithm on the new simplex points) has global 
search property and hence prevents the training 
procedure to be trapped by local minima of the error 
function. Furthermore, as discussed in [7], multiple 
restarts of the simplex search each time a convergence to 
a small cluster is attained, guarantees that the procedure 
will find a globally optimal solution with probability 
approaching 1 .O. 

Network Growing for Optimal Size 
The accuracy with which a neural network 

models a certain process characterized by an input- 
output mapping or recognizes a set of input patterns 
depends on a number factors, the principal one being the 
size of the hidden layer (or layers in a network which is 
configured with more than three layers). Only general 

guidelines however exist for arriving at the optimal 
architecture to be used in a given application. The more 
complex the input-output mapping to be approximated, 
the larger is the hidden nodes required, which determines 
the network size. Employing a larger sized network than 
necessary has its own drawbacks in that while such a 
network can learn the input-output mapping presented in 
the training data, it will attempt to memorize the training 
patterns used and has poor generalization abilities, i.e. 
provide the correct functional representation for input- 
output data not included in the training pattern set [5]. 

In arriving at a network architecture of optimal 
size for a given application, two approaches are 
generally possible. One is to start with a larger number 
of hidden nodes than necessary and later prune the 
network by removing redundant nodes. The other is to 
start with a small sized network initially (with the least 
number of hidden nodes, for instance) and to 
progressively grow until a desired degree of accuracy in 
modeling is achieved. Both of these approaches have 
been used by various groups of researchers in tailoring 
an optimal sized network for the specific application at 
hand. 

In our present application in training the 
network to recognize target maneuvers, we have chosen 
to use the latter approach for a number of reasons, the 
principal ones being the following. First of all, the task 
of training here is a significant one due to the number of 
feature vectors that may be used for obtaining an 
adequate representation of complex maneuvers. 
Consequently, the former approach of starting with a 
network size larger than required can result in 
unnecessary increased training complexity, with 
increased learning times and cost particularly at the 
initial stages. Secondly, and more importantly, a 
systematic network growing approach can be built into 
the overall training algorithm with a convergence 
condition (stopping rule) being declared when the 
optimal values of the weights in the correct sized 
network are obtained. 

Such a network growing approach can be 
integrated with the simplex algorithm described in the 
last section resulting in an overall training scheme 
depicted by the flow-chart shown in Fig. 3. For 
implementation in estimation of maneuver parameters, 
one starts with the simplest network architecture with 
one node in the hidden layer, while the input layer 
comprises of a number of nodes equal to the number of 
features used for training and the output layer comprises 
of a number of nodes equal to the number of maneuver 
parameters to be estimated (which are in turn input to the 
Kalman filter algorithm). The simplex algorithm is then 
executed to find the best weights for this structure. Once 
the weights are found, the mean square error (MSE) 
associated with this structure is computed and stored 
together with its weights. The network is then allowed 
to grow its hidden layer by adding one node and the 
simplex algorithm is executed once again with the same 



training data as before. Once the weights for the new 
structure are found, the MSE for this structure is 
computed and compared to the stored MSE for the 
previous structure. If the new MS is smaller than the 
previously stored MSE by a preset value, the new 
structure together with its weights and MSE are stored 
replacing the previous values. The network is than 
grown by an additional hidden node and the entire 
process is repeated. If at any stage of this process, the 
new MSE is worse than the previously stored MSE or is 
not better by a preset value, then an optimal structure is 
claimed to have been found and the training is 
terminated. 

A multiple restart of the simplex search can be 
executed as a part of the overall training process in order 
to ensure attaining a global minimum of the objective 
function and hence optimize the training efficiently. The 
various steps underlying the training process are 
depicted in the flow-chart given in Fig. 3. 

TRACKING PERFORMANCE OF NEURAL 
NETWORK-BASED SCHEME 

To perform validation studies that confirm the 
efficiency of the training scheme used, several tracking 
experiments were conducted. The following parameter 
values were employed for the simulations: 

(i) Radar scan period = 10 seconds 
(ii) Standard deviation of range = 100 meters 
(iii) Standard deviation of angle = 0.0003 radian 
(iv) Doppler radar wavelength = 8.57~10~~ meter 

In order to evaluate any possible degradation in tracking 
performance due to clutter, simulations of both 
clutterless and clutter environments were made. The 
primary difference between the two cases is the use of a 
standard Kalman filter for the clutterless environment, 
whereas a Probabilistic Data Association Filter (PDAF) 
is used to replace this in scenarios that include clutter 
[8]. For simulations of tracking experiments in clutter 
environments, the following parameter values were used: 

(i) Spatial clutter density = 0.0009 
(ii) Validation gate size = 16 (&-square distribution) 
(iii) Probability of detection = 0.9 
(iv) Probability of target inside gate = 0.9997 

It may be noted that the choice of the validation gate 
corresponds to a rather heavy clutter environment. In 
the following we shall briefly present results from only 
one experiment due to page restrictions. 

In this experiment, the target is initially 
detected at the location (1.5x103m, 1.5x103m) in 
Cartesian coordinates and its flight path is at an angle 45” 
with respect to the x-axis. The target travels at a 
constant velocity of 25Om/sec during the first three scans 
and is radially moving away from the radar. The 
maneuver consists of a sharp acceleration of 5m/sec2 
performed at the 4* scan (i.e. t=40sec) and lasting for 1 
scan period (i.e. 10 set), after which the constant 
velocity flight is resumed until the 20* scan. 

The tracking performance under these 
conditions is shown in Figs. 4a-c. The plots of the 
position errors in the x- and y- directions shown in Fig. 
4a indicate that the corrected state estimates are fairly 
accurate and the rather large error at the onset of the 
maneuver (at the 4’ scan) is well corrected. Althougb 
the position error plots show a trend for increasing error, 
it must be noted that the target is moving away form the 
radar. Thus, although the absolute value of the error 
appears to increase, the relative error is quite small. For 
instance, at the end of the trajectory (20” scan) the target 
is at the location (2.18x103m, 2.18x103m) and the 
relative error at this instant is only 0.01%. The apparent 
divergence in the position is also partly due to the 
occurrence of a false alarm as can be seen from the 
acceleration plots in Fig. 4c. The true prediction of the 
target acceleration during the maneuver by the neural 
network deserves a particular note. 
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Fig. 1. Backbone processing architecture for intelligent integrated pro&sing 
of multisensor data in surveillance and tracking 
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Fig. 3. Flow-chart depicting the training scheme 
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