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Abstract 

Considerable safety benefits are achieved by robustly de- 
coupling the lateral and yaw motions of a car with active 
steering. Robust unilateral decoupling requires an actuator 
to generate an additional front wheel steering angle. How- 
ever, introducing actuators to closed loop systems may 
cause limit cycles due to actuator saturation and rate li- 
mits. Such limit cycles are intolerable w.r.t. safety and 
comfort. By introducing a simple nonlinear modification 
of the control law, this paper proposes a remedy to signifi- 
cantly reduce the susceptibility to limit cycles for robustly 
decoupled car steering dynamics. The robustness of the 
resulting system w.r.t. the avoidance of limit cycles is in- 
vestigated for varying operating conditions by combining 
the parameter space approach and the theory of describing 
functions. 

1 Introduction 

Practical driving tests have shown essential safety advan- 
tages for a robust steering control law which is based on 
feedback of the yaw rate into active front wheel steering 
[ 11. By the control law, robust unilateral decoupling of the 
lateral and yaw motions of the car is achieved. The task 
of driving a car then simplifies to keeping a point mass 
on the track by commanding its lateral acceleration. Yaw 
disturbances e.g. from crosswind, flat tire, or asymmet- 
ric braking forces are attenuated by the robust decoupling 
control law for low frequencies. It requires an actuator to 
generate an additional front wheel steering angle. The ac- 
tuator needs to be equipped with a rate limiter for overload 
protection. However, the introduction of nonlinear ele- 
ments makes the closed loop susceptible to limit cycles. 
One means to investigate limit cycles is the approxima- 
tion of the nonlinear part by a sinusoidal-input describing 
function (DF) [2]. On the other hand, for linear robust 
controller design and robust stability analysis of control- 
led plants, the parameter space approach [3] is a suitable 
method. This paper is concerned with proving the robust 
prevention of limit cycles for robustly decoupled steering 
dynamics by combining the DF theory with the parameter 
space approach. Particularly; the benefit from introducing 
a saturation into the controller is studied. 
Section 2 and appendix A introduce a simple linear car 

model which is sufficient for the subsequent analysis. Va- 
rious aspects of the robustly decoupling control law and 
of one of its modifications [4] are recapitulated in section 
3. A generic feedback system is defined to allow an inves- 
tigation of different controller versions by simply setting 
respective parameters. Section 4 offers a brief summary 
of the DF theory, because it will be used in the sequel. The 
insertion of a saturation into the controller is proposed in 
section 5 and it is illustrated how thereby the susceptibility 
to limit cycles can be reduced. Section 6 is dedicated to 
the robustness analysis w.r.t. the prevention of limit cycles. 
For various controller versions, an actuator bandwidth is 
specified. The application of the parameter space method 
then allows to verify the robust prevention of limit cycles 
for an entire operating domain. 

2 Car model 

The employed linear second order car model is described 
in appendix A. Input to the model is the front wheel steer- 
ing angle 6, and the outputs are yaw rate r and lateral 
acceleration at the front axle cf. Introducing a gain para- 
meter K and a gain scheduling by the car velocity 21, let h 
be an auxiliary output variable defined by 

h=r+$q (1) 

Equations (1 l)-( 14) and (1) yield the vehicle transfer func- 
tion from 6f to h: 

h(s) 
G,(s) = bfo = 

e0+els+e2s2 
pcfov fo + f, s + f*s2 

(2) 

e0 = pc,o@, + G>(l + Ku) 

el = /x,OK(Cj + e,)* + Cjrfw 

f-2 = Kej(ej + C,)mv 

fo = P2CjoGo& + c>* 

+p(cro4 - qoQ)mv2 

fi = p(cjoe, + Go&)& + kh=J 

f2 = ejerm2v2 

3 Closed loop structure 

Fig. 1 shows the structure of the closed loop system 
upon which the analysis in the following sections is ba- 



sea. II mcmaes some previously puntrsneo cnaractens- 
tics [3, 41: Basically it consists of unity feedback of 
the yaw rate r via an integrator into front wheel steer- 

ing(K = 0, Gf = 0, G, = 1, rS -+ co, R + 00). 
This yields robust unilateral decoupling such that the yaw 
rate T is no longer observable from lateral dynamics at the 
front axle, in particular from aj [3]. A faster response 
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Figure 1: Closed loop system structure 

to a steering wheel angle (6~) input can be achieved by 
additional feedback of the lateral acceleration at the front 
axle aj with K > 0 [3]. 
By optional controller-internal feedback of the integrator’s 
output to its input by 

Gf(S) = 
2Diwis + wf 

S 

with wi = l/set, Di = 1.5, the integral action is faded 
out after x O.Ssec. This modification has been introduced 
in [4] as fading integrator in order to provide disturbance 

rejection only for about half a second. It helps the driver 
within his reaction time but returns to the steady-state 
behaviour of the conventional car afterwards. Neglecting 
the saturation (r, + oo), the transfer function of the fading 
integrator between Ah and u in Fig. 1 is 

Gi(s) = “’ 
s 

1 + Gj(s)/s = S2 + 2DiwiS + Wf 
(4) 

For short time (s -+ oo), the dynamics is equal to an 
integrator, however the stationary output (s + 0) is zero 
and the controlled car has the same steady-state response 
as the conventional car. 

The internal feedback structure allows the limitation of the 
integrator’s input by the saturation element. This further 
modification will be used in section 5. 

Feedback to the front wheel steering angle is accomplished 
by an additional steering angle actuator with a linear dy- 
namic part which is modelled as 

Ga(s) = f-4 
s2 + 2D,w,s i- wf 

The input to the actuator is filtered by a rate limiter (see 
section 4.2) with maximum slope R in order to prevent 
damage due to overload. 

The feedforward path in Fig. 1 is marked with thin li- 
nes. There is a direct throughput from the steering wheel 

angle 6~ to the front steering angle Sj which results in the 
same initial response to steering wheel inputs as for the 
conventional (6j = 6,) car. The set point generation by 
the dynamic nonlinear filter Fh is of no interest for the 
investigation in this paper. 

4 Sinusoidal-input describing 
functions (DFs) 

4.1 DF theory 

The DF theory [2] is a means to investigate the existence 
and properties of limit cycles in closed loop systems inclu- 
ding linear dynamics G(s) and a, stationary nonlinearity 
n, which are here assumed in a single loop series connec- 
tion with negative feedback. One further assumption are 
distinct low pass properties of the linear dynamics G(s). 
The DF N(jw, ue) of the nonlinear element n may be 
considered as the quasi-linear frequency response w.r.t. to 
the first harmonic of the output for sinusoidal inputs with 
amplitude ue. 

According to this approximation method a limit cycle with 
frequency w is possible for the loop-closing condition (har- 
monic balance) 

N(jw, uo) G(jw) = -1 or G(jw) = 
-1 

ww, uo) 
(6) 

The latter equation reveals a grapical method to check for 
limit cycles: Limit cycles are possible, if there are inter- 

section points of the linear part Nyquist plot G(jw) and 
the nonlinear element negative inverse describing function 

(NIDF) - 1 /N(jw, ~0) in a complex z-plane. 

Note that in this paper we are neither concerned with the 
stability of limit cycles in the sense of their sustentation nor 
with the state conditions for their appearance nor with their 
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ing the robust avoidance of their possibility in principle. 
For the investigations in sections 5 and 6 the system of 
Fig. 1, including a saturation and a rate limiter, will be 
used. Therefore, the DFs of these two nonlinear elements 
are introduced. 

4.2 DF of a rate limiter 

A rate limiter can be realized by the feedback connection of 
an integrator and a two-point switching element according 
to Fig. 1 between u and y. The absolute value of the slope 
of the output y is limited to R. 
Fig. 2 shows some steady-state time domain reponses of 
a rate limiter to sinusoidal inputs. The shape of the out- 

Figure 2: Rate limiter outputs at various ratios wuo/R for 
sinusoidal inputs 

put depends on the ratio wm/R where w and ua are the 
frequency and amplitude of the input signal respectively. 
Note that when the rate limiter is activated, the output is 
reduced in amplitude (down to zero) and delayed in phase 
(up to -n/2). The DF of a rate limiter N, was derived in 
[5]. Only the result is given here in form of the graphical 
representation of the NIDF. It is plotted in the complex 
plane in Fig. 3 using gridding along wuo/R using dash- 
dotted line style. 
It starts at t = -1 for wuo/R 5 1 and changes over 
into a straight line (Re(z) = -n*/8, Im(z) < -n/4) for 
wuo/R > ,/m-=1.862. 

4.3 DF of a saturation 

The DF of a saturation N, [2] does not depend on the 
frequency w, but only on the input amplitude ud. If the 
saturation value is reached, there is no phase delay in the 
output, only a reduction of the amplitude. The NIDF 
- l/NS is - 1 if the input amplitude U,O is less or equal to 
the saturation value r, and tends to -co along the real axis 
for increasing input amplitudes (uSo/r, > 1). see Fig. 3 
(dashed line). 

5 Limit cycles due to actuator rate 
limiter for robustly decoupled car 

steering dynamics 

This section shows, why and under which conditions limit 
cycles in the closed loop system of section 3 can occur and 
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susceptibility to limit cycles. 
Consider the system of Fig. 1 without saturation (r, -+ 00) 
and cut the loop at A. Then, regarding (2) and (4); the 
linear part of the open loop transfer function is 

GI(s) = G,(s) G,(s) G(s) (7) 

According to section 4.1, limit cycles can occur, if there are 
intersection points of the linear part Nyquist plot Gt (jw) 
and the NIDF of the rate limiter - 1 /N,. The low pass 
property assumption holds for the considered system Gt 
with relative degree three (one from Gi and two from G,) 
or four (if K=O, then the relative degree of G, is one, else 
zero, see (2)). 
Generally, the following data are used in this paper: 

m=l830kg 
c~c=5OOOON/rad Cf=lSlm Diz1.5 
c,a=lOOOOON/rad &=1.32m Da=m 

The controller parameters K, Wi and the actuator band- 
width wa are not yet determined to allow the analysis of 
their influence. The uncertain plant parameters w, p may 
vary within the bounds of an operating domain (see section 

6). 

. 
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Figure 3: NIDFs and Nyquist plot for v = 7Om/sec, p = 1 
(dry road), K = 0, wi = 0 and w,, = 27r . 1OHz 

Fig. 3 shows a reasonable configuration of controller, ac- 
tuator, and operating point for which there are intersection 
points of the Nyquist curve Gt (s) with the NIDF of the 
actuator rate limiter - l/N,, i.e. limit cycles may occur. 
Fig. 3 also shows, that the NIDF of a saturation - 1 /iV, is 
much less critical for the present case than the rate limiter, 
because it does not introduce phase delay into the loop. 
This leads to the idea suggested in this paper for prevention 
of limit cycles: It is is the introduction of a saturation in 
front of the integrator as indicated in Fig. 1. It can be 
reliably avoided that the actuator rate limiter reaches its 
threshold if the derivative of the input to the rate limiter is 
bounded to a corresponding value. This is achieved by the 
saturation in front of the integrator (Fig. 1) with r, 5 R. 
Hence, the actuator rate limiter can be neglected, but the 
saturation introduced in the controller must be considered. 
Therefore, cut the loop in Fig. 1 at 23. The respective open 



loop uansrer runcuon or me linear part is 

G2(s) = f [G(s) G,(d) + Gf(s)] 

For w; = 0, Go = Gt(s) holds. Thus the Nyquist 
curve in Fig. 3 can be directly compared for both cases. 
As already mentioned, the saturation is less dangerous 
w,r.t. limit cycles since its NIDF is farer away from the 

Nyquist curve of the linear system. 

It is remarkable, that the existence of limit cycles does 
not depend on the location of the respective nonlinear ele- 
ment in the (single) loop structure. Thus, for the perfectly 
integrating control law (wi = 0), it does not make any 

difference, whether the saturation occurs in front of the 
integrator or behind the actuator. For that reason, also a 
saturation behind the actuator (not modeled in Fig. 1) is 
covered by the analysis. The analysis becomes more so- 

phisticated, however, for the fading integrator. In this case 
there are two nonlinear elements to be considered in two 
loops (not covered by this paper). 

6 Verification of robust limit cycle 
avoidance in parameter space 

Now, since the NIDF of the rate limiter - l/Na in Fig. 3 
is no more relevant, the respective system belonging to the 
plotted Nyquist curve is not able to perform limit cycles. 
There are no intersection points with the NIDF of the 

saturation - 1 /N,. But how about changed parameters 
w, p, K, wi, w,? Of course, the avoidance of limit cycles 

must be robust w.r.t. the uncertain or varying parameters 
of the plant. 

The approach which is used in this paper to verify robust 
prevention of limit cycles combines the theory of DFs with 

the parameter space approach. The idea is the following: 

The parameters K, w; and wa are considered as fi- 

xed parameters. We assume there is an operating point 

P = (r+,,j+) where there is no intersection between 
Gz(jw) and -l/N=, i.e. P is limit-cycle-free. Then we 
determine the neighborhood of P in the (w, CL)-parameter 

plane which is also limit-cycle-free. If this region inclu- 
des the operating domain of the plant, then we call the 
controlled system robustly limit-cycle-free. 

Figure 4: w, = 2n .2Hz, K = 19, w; = 0, (Nyquist plot: 
w = 38.75m/sec, p = 0.685 (wet road)) 

The limit-cycle-free region is separated from the neighbor- 
ing limit-cycle-tainted regions by borders. These borders 
are generated by mapping respective conditions formula- 
ted in terms of the Nyquist plot into the (v, p)-parameter 
plane. 

The Nyquist plot in Fig. 4 illustrates two different con- 
ditions at the same time, under which the closed loop 
system may evolve from “limit-cycle-free” to “limit-cycle- 
tainted”. The NIDF of the saturation - 1 /N, (plotted with 
dashed line style) starts at the critical point - 1. Thus 
the Hurwitz stability border (Gz(jw) = -1) at the same 
time is a border for the system to turn from “limit-cycle- 
free” into ‘limit-cycle-tainted”, hence denoted as Hun&z 
condition. Mathematically this may be expressed by 

Re Gz(jw) = -1 and Im Gz(jw) = 0 (9) 

Theoretically, there is also a real root condition for G2(0). 

In the case of the present system, however, this condition 
is not active because Im G2(0) = --oo. 
For the second possible condition, the tangent condition, 
the Nyquist curve touches - l/NS horizontally, i.e. 

Im Gz(jw) = 0 and tan G2b-4 = o 
aw 

(10) 
observing Re GZ(jw) _< - 1 

The resultant of (9) can be used, to map the Hurwitz- 
stability boundaries into the (v,P)-parameter plane [3]. 
The symbolic and numeric computations may be accom- 
plished by the Matlab-based toolbox PARADISE[~]. In the 
parameter plane, a finite number of regions is generated 
which are separated by the mapped boundaries. One or 

more of these regions may turn out to be Hurwitz-stable. 

The same kind of mapping may be applied to the tangent 
condition. The boundaries in parameter space are genera- 
ted by solving the resultant of the two equations in (10). 
The inequality must be taken into account when determi- 
ning limit-cycle-free solutions. Again, a finite number of 
regions are generated in the parameter plane (see Fig. 4, 
left plot). The scope of the analysis in parameter space is, 
to find out, whether the system is limit-cycle-free in the 
entire operating domain or not. If there are no boundaries 

(coming from any of the two conditions) intersecting the 
operating domain and an arbitrary operating point in the 

operating domain turns out to be limit-cycle-free, then the 
system is robustly limit-cycle-free. Otherwise, the test for 
robust limit cycle avoidance fails. 

Consider Fig. 4 as example. The left plot shows the bound- 
aries between limit-cycle-free and limit-cycle-tainted regi- 
ons in the (v, p&parameter plane for a low bandwidth ac- 
tuator (w; = 2n * 2Hz) and high controller gain (K = 19) 
with genuine integral action (Wi = 0). The Hurwitz con- 
dition boundaries are plotted with dashed line style, solid 
line style is used for tangent condition boundaries. The 
operating domain of the car is plotted as a polygon. The 
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tion which corresponds to the intersection point of the two 

different type boundaries in the middle of the operating 
domain. Here both conditions for passing over a border 
can be simultaneously seen. Only the lower left part of 
the operating domain turns out to be limit-cycle-free, all 
other regions are limit-cycle-tainted. Since the operating 
domain is not completely included in the limit-cycle-free 

region, this system is not robustly limit-cycle-free. 
Figs. 5 and 6 show two more interesting cases which an- 
ticipate the actuator bandwidth specification in the next 
section. In Fig. 5 the genuine decoupling controller with 
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Figure 5: W, = 21r * 3.3Hz, K = 4, Wi = 0, (Nyquist plot: 
v = 7Om/sec, p = 1 (dry road)) 

af-feedback (Wi = 0, K = 4) and an actuator bandwidth 
w, = 2n .3.3Hz is investigated. Two boundaries are very 

close to the operating domain at high speed on dry road. 
This example exhibits an almost-simultaneous fulfillment 
of both the Hurwitz and the tangent condition at one opera- 
ting point (v=7Om/sec, ~=l). As can be seen from the right 

plot in Fig. 5, the Nyquist curve almost touches the real 
axis very close to - 1. The boundaries which correspond to 
the two different conditions are very close to each other, 
so that they can hardly be distinguished in the parameter 

plane. 
For the example in Fig. 6 the gain for of-feedback is 

increased (wi = 0, K = 9) and a high bandwidth actuator 
is used (w, = 2n . 10Hz). Now, low speed on dry road is 
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Figure 6: wa = 27~ * lOHz, K = 9, wi = 0, (Nyquist plot: 
w = Sm/sec, p = 1 (dry road)) 

the most critical operating condition. If a slower actuator 

is used, the system violates Hurwitz stability and is limit- 
cycle-tainted at least at this operating point. 

6.1 Application example: Actuatqr 
bandwidth specification 

Now, the described approach is used to validate robust pre- 
vention of limit cycles for various controller versions. For 
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found in a preliminary iteration, such that the system is 
robustly limit-cycle-free, but at least one boundary is very 
close to the operating domain (as in the examples of Figs. 5 
and 6). Thus a minimum required actuator bandwidth is 
specified. The specification and the validation of robust- 

ness is repeated for each controller. The first controllers 

K=O K=4 K=9 

Wi = 0 3.15 3.3 (Fig. 5) 10 (Fig. 6) 

Wi = l/set 1.3 1.66 8.5 

Table 1: Minimum required actuator bandwidth 

Wa,mi,/(2n. HZ) 

do not make use of fading out the integral action (Wi = 0), 
but the feedback gain for lateral acceleration af at the front 
axle is varied in’three steps. The same variation is repeated 
for a controller with the fading integrator (wi = l/set). 

Table 1 shows the results. 
Generally, it can be stated, that the employment of the 
fading integrator reduces the susceptibility to limit cycles, 

if compared to the perfect integrator. Or, in other words, 
only a slower actuator is necessary to robustly avoid limit 

cycles. This is quite evident, since the fading activity 
reduces the low frequency demand on the actuator. 
Increasing the closed loop gain by augmentation of K, 
on the other hand, requires a higher minimum actuator 
bandwidth, if limit cycles shall be robustly avoided. 

7 Conclusions 

In this paper a combination of the parameter space me- 

thod and the theory of describing functions has been used 
to investigate the robust prevention of limit cycles of a 

single loop system containing a nonlinear element. The 
described method has been succesfully applied to the ex- 
ample of an actively steered car. The susceptibility of the 
controlled car to limit cycles has been reduced by adapted 
replacement of nonlinearity characteristics. For the resul- 

ting plant and different controller versions, the approach 
has been used to specify the minimum required bandwidth 
of the steering actuator. It turns out, that the assignment 

of fading activity to the decoupling integrator in the con- 
troller reduces the actuator bandwidth requirements. On 
the other hand, increasing the closed loop gain makes the 

expenditure of a faster actuator necessary to robustly avoid 
the risk of limit cycles. Note, however, that the actuator 

specification here only examines the question of limit cycle 
avoidance. No other closed loop requirements (e.g. dam- 
ping of system eigenvalues etc.) are considered. 
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The car model which is used for the investigations in this 
paper is the classical linearized single track model [7] as 
illustrated in Fig. 7. 
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Figure 7: Single-track model 

Its major quantities are 
Ff (F,.) lateral wheel force at front (rear) 

wheel 

;; 

yaw rate (measured by a gyro) 
chassis side slip angle at center 
of gravity (CG) 

77 velocity vector at CG 
0 magnitude of v’(w > 0, i, = 0) 

af lateral acceleration at the front 
axle 

ef w distance from front (rear) axle to 
CG 

Jf front wheel steering angle 

The mass of the vehicle is m and J is the moment of 
inertia w.r.t. a vertical axis through the CG. Here socalled 
ideal mass distribution [ 1,3] is assumed, i.e. J = mCf C,, 
which as an approximation holds for most passenger cars. 
For small steering angle 6f and small side slip angle p, the 
equations of motion are [8,3] 

[ m:$+? ] = [ gy& ] 

The tire force characteristics are linearized as 

(11) 

W&f) = wfoaf, FAw) = PGOQI~ (12) 

with the tire cornering stiffnesses cfa, ~,.a, the road adhe- 
sion factor p, and the tire side slip angles 

ef 
"f =6f -(P+ -y), (YT = -@- +r) (13) 

The lateral acceleration at the front axle is 

af =7@+7g +e,l: (14) 


