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Abstract 

This paper addresses the problem of the global sta- 
bilization of a linear system with saturating controls 
by means of a dynamic output feedback using a sat- 
urated linear controller built from an observer. It is 
shown that a simple linear control law of an optimal- 
like type always globally stabilizes the closed-loop 
system when the linear system to be controlled is 
asymptotically or critically stable. 
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1 Introduction 

This paper deals with the problem of the global 
stabilization of a linear systems with saturable con- 
trols by means of a dynamic output feedback us- 
ing a full observer. It is well-known that this prob- 
lem is closely related to that of the determination 
of a state feedback globally stabilizing a linear sys- 
tem (here original system + observer) with saturating 
controls. Feedback control of a linear system subject 
to magnitude constraints on the input has often been 
formulated in terms of an optimal control problem. 
Obtaining these control law is cumbersome and it is 
well-known that their subsequent implementation is 
difficult [6]. By using Lyapunov’s functions [lo] and 
frequency domain technics [12] some sufficient con- 
ditions have been established to acheive global sta- 
bility, i.e., Popov’s stability criteria. Those latter 
results were obtained for any nonlinearity contained 
in a conic sector where saturation was included. By 
addressing directly the saturation issue, one should 
expect to obtain less restrictive stability conditions 

P51. 

An important theoritical result has been estab- 
lished in [13], [18]. It is shown that : an (A, B)- 
stabilizable system with constrained controls can be 
globally stabilized by means of a nonlinear state feed- 
back if the open-loop system is not strictly unstable 
(see definition below). Unfortunately this existence 

result is not constructive in the sense that its proof 
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do not furnish any methodology allowing the deter- 
mination of this feedback. But this result has the 
advantage to confirm the intuitive result which states 
that a strictly unstable open-loop system with con- 
strained control can not be globally stabilized by any 
nonlinear state feedback and consequently a priori by 
any linear static state feedback. 

Clearly this result do not bring an answer to the 
problem to know if there exists a static state feed- 

back which allows the global stabilization when the 
open-loop system is asymptotically stable, critically 
stable or critically unstable. In the latter case (crit- 
ically unstable case) a counterexample furnished by 
[3] and next by [14] brings a negative answer. For the 
two remaining cases (asymptotically or critically sta- 
ble open-loop system) it has been shown the following 
important result [2], [IS] : if the open-loop system is 
(A, @-stabilizable, there exist a static state feedback 

matrix of the optimal-like form globally stabilizing 
the closed-loop system. Furthermore, this matrix is 
obtained from any solution of the Lyapunov equation 
of the open-loop system and can be easily computed. 
This is an important practical result. 

The problem of the global stabilization by using 
a static saturable feedback has been considered in [S]. 
This problem conserves, at least, the difficulties en- 
countred in the determination of a static output feed- 
back for the unsaturated case. 

The global stabilization by means of a saturable 
dynamic output feedback using a full-order observer 
has been also considered. Under the stabilizability 
and detectability assumptions, and like in the previ- 
ous discussion, the existence of a nonlinear feedback 

globally stabilizing the composite system, provided 
that the open-loop system is not strictly unstable, 
is proven in [13], [18]. This result suffers the same 
drawbacks as above mentionned and cannot be used 
to answer the question of the global stabilization by 
using a static linear feedback law. 

Thus, the objective of this paper is to show that a 
linear static state feedback of the optimal-like type can 
globally stabilize the composite system (original sys- 
tem + observer or compensator) when the open-loop 
system is asymptotically or critically stable. This 
feedback law is simply derived from any solution of 
the Lyapunov equation of the open-loop system, and 



then can be easily computed. 
Throughout this paper the following notations 

are used. If 2 is a vector of W, xt denotes its trans- 

pose, and II II t x i s norm ; matrix At denotes the trans- 
pose of matrix A, [/All, Xi(A) are the induced norm 
and the ith eigenvalue, respectively. Further, a sym- 
metric and positive definite (resp. semi-definite) ma- 
trix M is denoted by M > 0 (resp. M 2 0). For a 
system h(t) = AZ(t), t 2 0, a set D c %Y is said to 
be positively invariant if exp(tA)D E D. The equi- 
librium x = 0 of linear autonomous system i = Ax is 
said to be asymptotically stable if Re(&(A)) < 0, Vi. 

If Re(Xd(A)) 5 0, with for some index i, Re(&(A)) = 

0, then it is said to be critically stable if the alge- 
braic multiplicity of each critical eigenvalue is equal 
to its geometrical multiplicity ; else it is said to be 
critically unstable. If there exists at least an index 
i for which Re(Xi(A)) > 0, the equilibrium c = 0 is 
strictly unstable (or exponentially unstable). 

2 Preliminaries 

Let us consider the following continuous-time sys- 
tem described by: 

{ 

i(t) = Ax(t) + Bu(t) 

y(t) = CM 
(1) 

where matrices A E %Yx”, B E ?JYx”, C E %lxn, 

and controls u(t) can saturate, that is, u(t) belongs 
to a compact set fi c !J? defined by 

cl = {y(t) 5 ?JPl - uk 5 d(t) 5 ?& ; 
uk, ut, vi = 1, . ..) m} (2) 

It is assumed that system (1) is (A, B)-stabilizable 
and (A, C)-detectable in Lasalle’s sense [9]. As in the 
classical case of stabilization we introduce the follow- 
ing observer described by 

g(t) = (A + KC)z(t) + Bsat(Fz(t)) - KCx(t) (3) 

in which matrices F E WXn, K E Pxl, and the 
term sat(F%(t)) is defined, for i = 1,2, . . . . m, by 

{ 

i 

sat(F$t))i = 
if (FE(t))’ > ZL~ 

T;!(t))’ if -u& 5 (FE(t))’ 5 ui 
-u:, if (Fz(t))’ < -u& 

(4 
Finally the problem to be solved consists in finding 
the suitable feedback matrix F which globally stabi- 
lizes (in the classical sense used by [2], [8], [13]) the 
following composite system given by 

i(t) = Ax(t) + Bsat(Fz(t)) 

Z(t) = (A + KC)Z(t) + Bsat(Fi(t)) - KCx(t) 

(5) 

for which the error e(t) = z(t) - x(t) satisfies 

i(t) = (A + KC)e(t) (6) 

Clearly, since (A, C) is assumed to be detectable, ma- 
trix K can be picked so that matrix (A + KC) is 
Hurwitz, that is, Re(&(A + KC)) < 0,Vi. 

Note that in the case of the global stability, x = 0 is 
then the only equilibrium point in %” and the domain 
of attraction of origin is ?I?“. 
At the opposite x = 0 being the only equilibrium 
point for (5) does not imply the global asymptotic sta- 
bility of (5) ; concerning the difficult problem of equi- 
librium points and domain of attraction, also called 
stability region, see for instance [I], [15], and refer- 
ences of this paper. 

In order to develop our results the term sat(FZ(t)) 

is written as 

sut(FZ(t)) = D(c+(t)))Fz(t) (7) 

whose entries d(Z(t)) of the diagonal matrix D are 
defined for i = 1,2, . . . . m, by 

{ 

$2$$ if (FZ(t))” > uL;M 
2(e(t)) = 1 if -ui < (Fqt))i 5 ?& 

-&$$ if (F%(t))” < -2~; 

(8) 
and satisfy 

0 < c+(t)) 5 1 (9) 

Note also that, since matrix (A + KC) is Hurwitz 
and by using a well-known Kalman’s result [4], there 
always exists a matrix PO > 0 solution of 

(A + KC)?=0 + PO@ + KC) = -Qo (10) 

where QO > 0. Analogously the Lyapunov’s equation 
of the autonomous system i(t) = Ax(t), given by 

A?+PA=-Q (11) 

admits also a solution P > 0 corresponding either 
to any matrix Q > 0, if matrix A is asymptotically 
stable (A.S), or to a suitable Q 2 0 if matrix A is 
critically stable (C.S). 

3 Main results 

The main result of this paper is given by the fol- 
lowing theorem. 

Theorem 3.1 : Under the assumptions of (A,B)- 
stabdizability and (A,C)-detectability of system (l), 

and provided that matrix A is stable (asymptotically 
or critically), the composite system (5), is globally 



asymptotically stabilizable by means of the feedback 

matrix F given by 

this function along the trajectories of (5) ; using (15) 
and (16) we get: 

F = -A(y)BtP (12) V(x, e) = -xtQx-etQoe+2xtPBD(c)F(x+e) (17) 

where A(y) is any diagonal matrix with positive ele- 

ments rj, i = 1, . . . . m, and matrix P > 0 is a solution 

of the Lyapunov equation (11). 

This result follows from the next Lemma which con- 
sider separately the cases, when matrix A is asymp- 
totically stable and critically stable. 

Lemma 3.1 : Assume system (1) is (A,B)- stabiliz- 

able and (A,C)-detectable, then the feedback matrix 

(l!?), globally stabilizes the composite system (5) pro- 

vided that matrix P > 0 is a solution of (11) and y 

satisfies: 

i) 0 < -yj < 
-\/h4~)~42~) , vi = 1 

llW12 
, . . . . m, 

(13) 
in the case when matrix A is asymptotically stable, 

and 

a’,‘, , vi = 1 
llPBll2 ' ""m, 

(14) . , 
if matrix A is critically stable, where yrnaI = x,,,(h(y)) 

and 7,,cn = h,(A(y)) . 

The Proof of this Lemma, when matrix A is criti- 
cally stable, needs the use of the following result. 

Proposition 3.1 : [16] The subspace 

Wer(Q) n Ker(BtP)l\{O) # 0 

or one of its subspaces, is not positively invariant with 

respect to system x(t) = Ax(t) if and only if system 

(1) is (A, B)-stabilizable. 

Proof of Lemma 3.1 : Since matrix (A + KC) is 

Hurwitz, then from (6) e(t) ---) 0 as t + 00, Vet E ?F. 
With Z(t) = Z(t) + e(t) and using (7), system (5) 
becomes 

x(t) = Ax(t) + BD(a)F(x(t) + e(t)) 

i(t) = (A + KC)e(t) (15) 

Consider the following Lyapunov function, candidate 
for system (15): 

V(x, e) = xtPx + etPoe (16) 

where P > 0 and PO > 0 are solution of (11) and 
(lo), respectively. Compute the time derivative of 

Substituting F, given by (12), into (17) yields: 

p(z, e) = -ztQx - e”Qoe - 22tPBD(a)h(y)BtPz- 
2rtPBD(ct)A(y)BtPe 

(18) 

Part (i): Taking into acount that ~]D(cY)]] 5 1, 

IIWII = 7maz = max(ri) and A is asymptotically 

stable, it follows from (18): 

Q(x,e) I -~~~n(Q)ll~l12 - kn(Qo> Ilel12+ 
2-h~~llP~l12 II41 II4 

c1gj 

or 
ti(x, e) 5 -zt(t)Mz(t) (20) 

where z”(t) = []]x]] ]]e]]] and 

M= 
i 

Anin (Q) -~maz llPB112 

-^lnaarllPB112 hn(Qo) I 

Clearly ‘Ei(x, e) < 0, ‘v’x, e # 0 if the above matrix 
in (20) is positive definite, that is, since &i,(Q) > 0 
and Xrrain(Qc) > 0, if condition (i) of Lemma 3.1 
holds.. Indeed since e(t) + 0, as t --) 00, then from 
(20), V(x, e) < 0 implies that x(t) + 0 as t -+ co. 

Part (ii): Write D(a) as i?(cr)H(a) with H(a) a 
diagonal matrix which obviously satisfies (1 H( CV) I I 5 1. 

Prom (18) we get 

e(x, e> I -xtQx - ~m~n(Qo>lle~~2- 
2xtPBH(a)Ht(a)A(y)BtPx- (21) 

2xtPBH(a)Ht(a)A(y)BtPe 

which becomes, with 5 = Ht(a)BtPx, 

e(x:, e> I -xtQx - ~m~n(Qo)llel12 - 2ym;,~~5~~2+ 

27~azllJll IWII IHI 
(22) 

or 
c(x, e) _< -xtQx - wtAw 

where wt = []]e]] ]][l]] and 

(23) 

A= Lnin(Qo> -~marllPBll 
-~mazllPBll 2Yrnin 1 

Hence, if condition (ii) of Lemma 3.1 holds, then the 
term wtAw is positive definite and ?(x, e) < 0 except 
perhaps for z = 0, that is, e = 0, [ = 0 or equivalently 
for e = 0 and x E Ker(BtP). 

Clearly in this case, since -xtQx 5 0 we may ob- 
tain V(x,O) = 0 if x E (Ker(Q) n ICer(BtP)). If 
[Ker(Q) f~ Ker(BtP)]\{O} = 0 then V(x,e) < 0, 



Vx E ZRn\{O} and e E 3?\(O). Nevertheless when 
[Ker(Q) II Ker(BtP)]\{O} # 8, under the (A, B)- 

stabilizability property and from Proposition 3.1, us- 
ing Lasalle’s invariance principle, it must be proven 
that for e = 0 and an initial value x(-to) E (Ker(Q) n 
Ker(BtP)) it is impossible to get: 

V(x(t; x(to), 0) = 0, vt 1 to 

For e = 0, system (14) is reduced to system 

a: = Ax(t) + BD(a)Fx(t) 

In this case, Proposition 3.1 implies that if there ex- 
ists for to, x(to) E (Ker(Q) n Ker(BtP)) then, there 
exist an instant tl > to such that: 

x(t; x(to)) 6 (Ker(Q) n Ker(BtP)),Vt 2 tl 

Then for t > tl we get V(x(t,x(to)), 0) < 0. From 
Lasalle’s result follows the same conclusion as in the 
above part (i). n 

Remark 3.1 : If matrix A of (1) is asymptotically 

stable, a mathematical solution stabilizing (5) consists 

to take F = 0 ( even K = 0). Nevertheless in practice 

such a solution is not wished, since taking F # 0, 
K # 0 may be offers the possibility to improve the 

decay rate of the solutions. This can be showed, by 

using the results developed in [.], [7], that display in 
what conditions such control law gives a dynamically 

faster regulator than the open-loop system in term of 

decrease of the Lyapunov function V(x, e). 

Proof of Theorem 3.1 : Conditions (i) and (ii) 

of Lemma 3.1 clearly depend only on the choice of 
X,i,(Qc) which can be arbitrary for any choice of 
a suitable matrix K. Consequently these conditions 
can be satisfied for any choice of the diagonal matrix 
A(y) and any matrix P solution of (11). w 

Remark 3.2 : When matrix A is stable (asymptot- 

ically or critically) the previous results show that the 

global stabilization of the composite system (5) is pos- 

sible by using the static linear state feedback given by 

(12). From [/ and [ll] it is obvious that the case 

corresponding to a matrix A strictly unstable cannot 

be globally stabilized by feedback. But when matrix A 

is critically unstable it is possible that the semi-global 

stabilization of system (5) can be acheived by using 

a static linear state feedback. For the moment, when 

matrix A is unstable (strictly or critically) a positively 

invariant and asymptotically stable local domain can 

always be determined [Z], [17]. 

Dynamic output compensator 

Consider the dynamic state feedback compensator 
of the form: 

G(t) = A, w(t) + B, y(t) 
v(t) = Mr w(t) + N, y(t) (24 

where w(t) E ?l? and A,., B,. , M,., N,. are constant 
matrices of appropriate dimensions. The order “r” is 
chosen such that (m + r) (I+ r) 2 (n + r) or (m + 1 + 

2r) > (n+r). 

The objective consists in finding matrices A,., B,, 

M,., N,. such that the following composite system: 

k(t) = A x(t) + B sat(v(t)) 

G(t) = A, w(t) + B, y(t) (25) 

will be globally asymptotically stable. 

Letting zt = [xt, w”] and y: = [y”, wt], system (25) 
can be expressed by: 

i(t) = A, z(t) + B,U(t) 

Y&> = cc z(t) 
(26) 

where 

Ac= [ t irxr ] >&= [ : Yr,, 1) 
cc = [ ; yr,, ] ) u(t) = [ s”$$JJ ] 

By using the equivalent form of the saturation term 
the new control vector U(t) can be written as: 

U(t) = @,(a> Kc Cc z(t) 

where 

@c(a) = fca) trxT ] > Kc = [ 2 y; ] 

Similarly, system (25) can be described by: 

i(t) = A, z(t) + B, sat(K, ye(t)) (27) 

where 

A.=[ & g,B.= [ fJ. lTc=[N, MT] 
This shows that the design of dynamical compen- 

sator always returns to a problem of static output 
feedback of high order. Thus, a possible solution for 
the global stabilization problem, via dynamic com- 
pensator, is to use the approach developed in [7] and 

PI. 



4 Application 

Consider the linearized model of the plane “GEF 
404”, chosen in 35ft altitude condition, described by 

[51: 
-1.46 2.35 

ti(t) = [ 0.321 -2.23 
0 
0 1 z(t)+ 

0.175 -0.39 0 

0.476 4.9 

0.708 0.027 

y(t) = I 1 0 0 1 +) 

u(t) (28) 
0.471 -1.24 1 
0 0 1 

The control vector is constrained by the following 
limits: 

5 Conclusion 

[ I;] Lu(t)S [ ;] (29) 

Indeed system (1) is (A, B)-controllable and (A, C)- 

observable whereas matrix A is critically stable, since 
B(A) = (0; -2.8; -0.9). 

The aim of the design is to determine a dynamic 
saturated control law so that the closed-loop system 
is globally asymptotically stable. 

To determine a suitable dynamic stabilizer, we must 
compute the state feedback matrix FO given in (12). 
Thus for the following choice of matrix Q: 

Q= 

C 

1.6059 -1.1028 0 
-1.1028 14.4015 0 1 (30) 

0 0 0 
we obtain as solution of equation (11) the following 
matrix : 

[ 

0.6563 0.4258 0.1060 
P = 0.4258 3.6888 -0.0632 1 (31) 

0.106 -0.0632 1 

For the choice y = 1 matrix FO in (12) is given by: 

F. = 
[ 

-0.6638 -2.7846 -0.4767 
-3.0959 -2.2644 0.7223 1 (32) 

Then it remains to determine matrix K so that 
matrix (A + KC) is Hurwitz ; this can be done for 
example, with: 

[ 

-7.31 -0.175 
K = -34.88 0.39 1 (33) 

0 -7 

From matrices FO and K previously computed, the 
composite system (5) has been simulated and its con- 
trols behaviors and transient responses are respec- 
tively presented in Figure 1 and Figure 2 for the ini- 
tial conditions z(0) = [150 200 701t and $0) = 
[O 0 - loIt. 

In this paper it has been shown that a stable 
(asymptotically, critically) linear system with satu- 
rating controls can always be globally stabilized by 
using a dynamic output feedback which is a satu- 
rated linear controller, built from an n-dimensional 
observer. The suitable control law is derived easily 
from a Lyapunov function of the open-loop system 
and it is of the optimal-like type. The case when the 
linear system is unstable (critically or not) has been 
evoked in the remark 3.2. The case of dynamic output 
compensator has been briefly described. 
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Figure 1: Controls behaviors. 
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Figure 2: Behavior of: states and its estimates. 


