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Abstract 

The problem of finding a linear stabilizing state- 
feedback control for uncertain continuous-time lin- 
ear systems with state and control constraints is ad- 
dressed. Both convex-bounded parametric uncertain- 
ties and additive bounded disturbances are consid- 
ered. Based on the theory of ellipsoidal positively 
invariant sets, a programming approach is proposed 
which solves at each step a convex optimization prob- 
lem involving linear matrix inequalities (LMI’s). 

Key Words: Uncertain systems, state and control 
constraints, positive invariance, additive disturbance. 

1 Introduction 

Many important control problems can be reduced 
to the problem of finding a stabilizing controller capa- 
ble of achieving acceptable performances under sys- 
tem uncertainty and design constraints. In the last 
two decades, several approaches have been proposed 
for designing robust controllers for the systems sub- 
ject to structured and/or unstructured uncertainties. 
A survey of these approaches can be found in [l]. Re- 
cently, a large amount of effort has been devoted to 
the constrained control problem solved by means of 
the theory of positively invariant sets. The polyhe- 
dral positively invariant sets have been studied in [2], 
[15] and [16]. The ellipsoidal positively invariant sets 
have been analysed in [7] and [S]. 

Most of realistic control problems involve both so- 
me type of time-domain constraints and model uncer- 
tainty [14]. However, in the current literature only a 
few results are available for the robust constrained 
control problem. Previous researches into this prob- 
lem include [4], [9], [13] and [14]. Taking as base the 
concept of robustness and adopting as performance 
specification an ?&,-norm bound, the control synthe- 
sis problem has been addressed in [13] for discrete- 
time systems via the solution of a convex optimization 
problem. They have considered unstructured uncer- 
tainties and only state constraints. Using the same 
robustness measure, a convex programming approach 
has been proposed in [14] to solve the control synthe- 
sis problem, handling structured model uncertainties 
and both state and control constraints. The model 
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uncertainties were restricted to the dynamic matrix 
A and the state constraints involved ellipsoidal and 
polyhedral sets. 

The theory of polyhedral positively invariant sets 
has been used in [4] to determine a state-feedback 
control for discrete-time systems subject to structured 
parametric model uncertainties and polyhedral con- 
straints on both state and control vectors. The results 
of this theory can be applied to the case of interval 
matrix uncertainties acting only in the dynamic ma- 
trix A of the system. An extension of their results to 
accommodate convex-bounded uncertainties, includ- 
ing parametric uncertainties in the input matrix B, 
can be found in [9]. In these two references the ro- 
bust constrained control problem is reduced to a lin- 
ear programming problem. 

In [5] the state-feedback control design problem for 
linear systems subject to polyhedral state and control 
constraints and additive disturbances has been con- 
sidered. In this work, the important concept of pos- 
itive D-invariance has been introduced and a linear 
programming approach has been proposed for both 
discrete and continuous-time systems with disturban- 
ces bounded in a polyhedral set. However, this ap- 
proach does not take into account parametric uncer- 
tainties. 

The present paper deals with the linear robust con- 
strained control synthesis problem for continuous-ti- 
me systems with state and control constraints us- 
ing the theory of ellipsoidal positively invariant sets. 
Both the convex-bounded parametric uncertainties 
and the additive bounded disturbances are studied. 

The structure of the paper is as follows. Section 
2 presents the preliminary assumptions with respect 
to the description of the system and the formula- 
tion of the linear robust constrained control synthesis 
problem. In section 3, a sufficient condition for the 
existence of solutions to this problem is given. A 
programming procedure for determining a solution is 
then proposed in section 4. An illustrative example 
is presented in section 5. 

2 Problem Statement 

Consider an uncertain continuous-time linear sys- 
tem described by the following state-space equation: 

k(t) = AZ(~) + Blw(t) + Bzu(t), (1) 



where z(t) E ?Rn is the state vector, u(t) E W is 
the control vector and w(t) E X21 is the disturbance 
vector. A, Br, and BZ are real matrices of appropri- 
ate dimensions. Assume that the matrices A and BZ 
belong to the convex domains defined as 

DA = A E WnXn; A=-&A&=1,ai>O , 
id i=l 1 

(2) 

B2=&&,5& =l,Pj 20 
j=l j=l 

(3) 
All pairs (A, Bz) are assumed to be stabilizable. 

Furthermore, suppose that the state and control 
vectors are subject to physical constraints. The set of 
admissible states is given by the bounded polyhedron 

D(g, p) = { 2 E En; gi Tz~pi,Pi>0,i=1,2,...,r}, 

(4) 
where gi E ?I?, gi # 0, i = 1,2, . . . , T. By definition, 
the set D(g, p) contains the origin in its interior. 

The control vector u(t) is constrained to belong to 
a polyhedral set defined by: 

D(h,p) = {u E 8”; hiTU < pi, pi > 0, i = 1,2, * * * ,p} , 

(5) 
where hi E !I?“, hi # 0, i = 1,2,...,p. 

Let us also consider a bounded polyhedral set of 
admissible initial states 10 = z(ts): 

D(go,po) = (20 E sn;goiTzo I POi,i = 1,2,-,S}) 
(6) 

where gsi E g2”, gei # 0, pei > 0, i = 1,2,. . . , s. 
Finally, suppose that the disturbance vector be- 

longs to the following set: 

D = {w E @; b-4 I r} , (7) 

where ]].]I denotes the Euclidean norm. Thus, the 
disturbance w(t) is constrained in a hypersphere of 
radius y. 

The investigated state-feedback control law is given 

by 
u(t) = Ice(t), (8) 

where K E Rmx”. From (5), the set D(K, h, p-I> de- 
fined by 

D(K, h, p) = {x E P; hiTKX 5 pi, i = 1,2, * * * ,p} (9) 

is the region in which control saturation does not oc- 
cur. Hence, from (4) and (9), it is worth noticing that 
the resulting linear closed-loop system described by 

5(t) = Afx(t) +&w(t), (10) 

where Af = A+ BzK,VA E D~,tlBs E DE, is valid 
only for the states belonging to D(g, p) fl D(K, h, p). 

Now we can define the linear robust constrained 
control synthesis problem. 

Problem 1 Determine a linear state-feedback con- 
trol K E !Rmx” so that for all initial conditions x0 E 
D(ge,po) the resulting closed-loop system defined in 
(10) satisfies the following specifications: 

i) the constraints (4) and (9) are respected for any 
admissible disturbance w E D; 

ii) for w = 0, the system is asymptotically stable, 
i.e., every admissible initial state x0 is trans- 
ferred to the origin asymptotically. 

Note that the state-feedback gain K is a solution 
to Problem 1 if and only if the closed-loop system 
defined in (10) is asymptotically stable without dis- 
turbances (w = 0) and if no trajectory x(t;xo) em- 
anating from the region D(go,po) leaves the regions 
D(g, p) and D(K, h, ,u) for any w E D and t 1 to. 

3 Main Results 

The following definition [5] will be useful for estab- 
lishing some of the results in this paper. 
Definition 3.1 Let D be a compact and convex set 
containing the origin and let 0 be a non-empty set. Sl 
is said to be a positively D-invariant set with respect 
to the system (10) if for every initial state x(to) E R 
and every disturbance sequence w(t) E D, t 2 to, 
x(t) E R for all t 2 to. 

The next proposition follows from Definition 3.1. 

Proposition 3.1 The state-feedback gain K is a so- 
l&ion to Problem 1 if and only if (A+BzK) is asymp- 
totically stable, VA E ‘DA and VBs E DB, and there 
exists a positively D-invariant set Cl E !Rn with respect 
to the closed-loop system (IO) such that 

wlo, PO) c f-l c a, P)r (11) 

i-2 E D(Kh,/J). (12) 

Proof: Necessity. Let K be a solution to Problem 1. 
Define R as the set of reachable states x(t; x0; w) for 
the uncertain closed-loop system (lo), xo E D(ge, pe) 
and ‘w E D. First, let us prove that R is a positively 
D-invariant set with respect to the system (10). For 
any Z E R, there exist a x0 E D(g0, pe) and a se- 
quence w(t) E D, t > to, such that Z = x(t;xo; w). 
Thus, for every initial state B E R and every sequence 
w(t) E D, t 2 5, x = x(t;Z; w) E Sl for all t 2 3. 
Consequently, a is a positively D-invariant set with 
respect to the system (10). By definition, D(go,po) 
is contained in s2. Furthermore, if there exist a pair 
(xo,w), xo E D(go,po), w E D, and a t 2 to such 
that x(t; x0; w) does not satisfy the constraint (4) or 
(9), then K is not a solution to Problem 1, because 
the condition i) is violated. Hence, the hypothesis 



R C D(g, p) and R C D(K, h, p) is a necessary con- 
dition as well. Finally, to satisfy the condition ii) of 
Theorem 1, it is also necessary that (A + BaK) is 
asymptotically stable, VA E DA and VBa E Z)B. 

Suficiency. The proof of sufficiency is obvious and 
may be omitted here. 

It is well-known that the Lyapunov functions gen- 
erate positively invariant sets for asymptotically sta- 
ble systems. In this paper, we are interested in ellip- 
soidal positively invariant sets generated by quadratic 
Lyapunov functions of the type v(x) = xTPx, where 
P = PT > 0 (symmetric positive definite). Thus, 
consider the ellipsoidal set R defined as follows: 

R= (xERn; xTPz~l,P=PT>O}, (13) 

where P E SYx”. 
In order to find a state-feedback gain K, solution 

to Problem 1, we shall establish the conditions that 
guarantee the asymptotic stability of the system (lo), 
with w = 0, and positive D-invariance of the set R 
defined in (13), with respect to the system (10). 

Lemma 3.1 If there exist WI = WIT > 0 and IV2 E 
iI3 mxn satisfying the following inequalities: 

AiWl + WIAiT + Bzj WZ + WzTB2jT < 0 ,Wi,B2j), 
(14) 

where Wr = P-l, then the ellipsoid 0 defined in (13) 
is an asymptotic stability region for the system (10) 
with w = 0. The state-feedback gain K is recovered 
as 

K = WzWl-l. (15) 

Proof: See [3] and also [6]. 
Before studying the positive D-invariance of the el- 

lipsoidal set s2 defined in (13)) we will present some 
preliminary results concerning the conditions (11) and 
(12). First rewrite the set R as: 

Cl = {x E W”; xTW~-‘a: < 1, WI = WIT > O}, (16) 

where WI = P-l. 

Lemma 3.2 Consider the ellipsoid 0 and the convex 
polytope D(g,p) defined in (16) and (4) respectively. 
The ellipsoid 0 is contained in the polytope D(g, p) if 
and only if 

gw1gi I pi2, ) i = 1,2,.**,r. (17) 

Proof: The proof of this result is based on geometric 
considerations [lo] and will be omitted here. 

Lemma 3.3 Consider the ellipsoid s2 defined in (16). 
Let vi E W”, i = 1,2,... , s, denote the vertices of the 
convex polytope D(ga,po) defined in (6). The ellip- 
soid R contains the polytope D(go,po) if and only if 

WiTWl%i I 1, ,i=l,2,..*,s. (18) 

Proof: The proof of this result is also based on geo- 
metric considerations and will be omitted as well. 

Observe that the inequalities (18) can be expressed 
as LMI’s in WI [S] 

[ 1 1 GT >o wui w1 - 7 , i=l,%***,5. (19) 

Hence, if the conditions (17) and (19) hold, the state- 
feedback gain K = W~WI-~ satisfies the state con- 
straints, i.e., D(go,po) G fl E D(g,p). 

The following lemma provides a necessary and suf- 
ficient condition that guarantees the linear behavior 
of the control law u = Kx. 

Lemma 3.4 Consider the ellipsoidal set 0 and the 
region D(K, h, p), defined in (16) and (9) respectively. 
The state-feedback gain K = WaWl-1 satisfies the 
control constraints, i.e., R G D(K, h, /I) if and only if 

.2 hiTWz 
w!h; wl 1 2 o I i= I,&--*,p, (20) 

which are LMI’s in WI and Wa. 

Proof: From Lemma 3.2, the ellipsoid s2 is con- 
tained in the region D(K, h, p) if and only if 

(KThi)TWIKThi 5 ,ui2 ,i = 1,2,e..,p. (21) 

Substituting K = WaWl-1 for (21) yields 

Pi 2-hhTW2Wi-1W2Thi>0 ,i=l,2,+..,p. (22) 

Using Schur complements, we conclude that the in- 
equalities (22) are equivalent to the following LMI’s: 

.2 hiTW2 
w!Thi wl 1 > o > i= 1,2,***,P* (23) 

The next result presents a sufficient condition con- 
cerning the positive D-invariance. 

Lemma 3.5 Consider the sets Sl and D defined re- 
spectively in (16) and (7). Let y > 0 be given. If 

there exist (Y 2 0, WI = WIT and Wa satisfying 

&WI+ WIAiT + BzjWz + WZTBZjT + t~W1 
7BlT 

yB1 <o 
1 --aI -’ - 

(24) 

i = 1,2,*** ,N and j = 1,2,.-e,M, then for K = 
Wa WI-‘, fl is a positively D-invariant set with re- 
spect to the closed-loop system (10). 

Proof: Let u(x) = xTW~‘x be the Lyapunov 
function associated with the closed-loop system (10). 
The time derivative of v(x) along any trajectory of 
the system (10) is given by 

To prove that R is a positively D-invariant set with 
respect to system (lo), it suffices to prove that G(x) 5 



0 for all x belonging to the boundary of a, that is, 
satisfying xTWIB1x = 1, and for all admissible w. 
Note that we suppose all admissible initial states are 
contained in the ellipsoid R. Thus, it can be shown 
that if G(x) 5 0 for all x and w such that V(X) 2 1 
and w E D, then R is a positively D-invariant set 
with respect to the system (10). 

Hence, if for any pair (x, w) satisfying xTWclx 2 
1 and wTw 5 y2 the inequality 

xT (A%WF1 + W;lAf) z +z~W~~B~W +wTB~kQ-% 5 0 

(26) 
holds, then R is a positively D-invariant set. 

Using the S-procedure [17], this condition can be 
replaced by another one without constraints: if there 
exist scalars Q 2 0 and /3 2 0, for all pair (x, w), such 
that 

zT (A;W;l + W;lA,) z + z~W;~B~W + wTB;Wl-‘z+ 

+a(zTWl% - 1) + fl(7’ - wTw) < 0, (27) 

then 0 is a positively D-invariant set. Considering 
the transformation z = Wclx, the inequality (27) is 
equivalent to 

T 2 [ I[ AfW +WIAT+CW BI w BT -PI I[ 1 : + 
+p72-a50. (28) 

If we consider Pr2 = Q, the following inequality can 
be obtained from (28): 

AjWl + WI& + awl 91 7% 1 < o. 
-aI - (29) 

Using the change of variables WZ = KWl, and 
taking into account the convexity properties of the 
uncertainties of the system (lo), the inequality (29) 
is equivalent to 

AiWl + WIAiT + BzjWz + WZTBZjT + CYW~ 
7hT 

TB1 <o 1 -cd - 9 

(30) 

i = 1,2,. . . ,N and j = 1,2,...,M. 
Thus, if there exists o 2 0 satisfying the inequali- 

ties (30), then the state-feedback gain K = W2Wl-1 
guarantees the positive D-invariance of the set R with 
respect to the closed-loop system (10). 

Remark 3.1 Consider the inequalities in (24). Note 
that for Q > 0 these inequalities contain the stability 
condition defined in (14). 

The next theorem establishes a sufficient condition 
for the existence of solutions to Problem 1. 

Theorem 3.1 Consider the set D and the uncer- 
tain closed-loop system defined respectively in (7) and 
(10). Let y > 0 be given. If there exist (Y > 0, 
WI = WF > 0 and W, such that 

giTWlgi I p: ,i=l,2,***,r, (31) 

[ 1 1 vUiT >. 
‘ui Wl - 

,i= 1,2,--.,s, (32) 

2 hiTW2 
W!hi Wl >O ,i=1,2,“‘,p, 1 (33) 

AiWl + WIAiT + B2jWZ + WZTB2jT + CXW~ 
7RT 

TB1 < 0 
I --al - ) 

(34) 

i = 1,2, * * * ,N and j = 1,2,.+.,M, then the state- 
feedback gain K = W2Wle1 is a solution to Problem 
1 and the suitable set 0 is obtained by the matrix WI 
as defined in (16). 

Proof: This result follows directly from Lemmas 3.2, 
3.3, 3.4 and 3.5. 

4 Synthesis Algorithm 

Now, a programming approach is proposed for solv- 
ing Problem 1. More specifically, given the uncertain 
closed-loop system defined in (10) and an initial dis- 
turbance region defined as 

Do = {w E R’; llwll 5 70}, (35) 

a stabilizing state-feedback gain K and a scalar (Y > 0 
are determined in such a way that the state and con- 
trol constraints are respected for all admissible initial 
states 2s. 

A state-feedback gain K solution to Problem 1 can 
be found quite simply by testing the feasibility of the 
set of LMI’s given in Theorem 3.1, for different o’s. 
In case several solutions are possible, a synthesis al- 
gorithm is proposed to find a gain K, based on the 
D-K iteration procedure [12]. Before presenting this 
algorithm, two programming problems shall be an- 
nounced. 

From Theorem 3.1, for a feasible initial Q, we can 
determine a gain K solving the following convex pro- 
gramming problem: 

minimize -7 
Wl >o,wz,y>o 

(36) 

subject to constraints (31)-(34). The gain K that 
maximizes the disturbance region is recovered as K = 
W2 WI -’ and the ellipsoidal positively D-invariant set 
R is obtained by the matrix WI. 

Observe that for fixed matrices WI and W2, the 
inequalities (34) are LMI’s in o and y. Hence, for a 
stabilizing pair (K, WI) which satisfies the state and 
control constraints, y can be determined by solving 
the convex programming problem: 

minimize -y 
a>o,7>0 (37) 

subject to constraints (34). 
Finally, the algorithm proposed for solving Prob- 

lem 1, with a maximization of the disturbance region, 
can be stated as follows: 



Algorithm 

S 1: Choose a feasible initial a for the problem (36); 

S 2: For previous a, find Wl, W2 and y solving the 
minimization problem (36); 

S 3: For previous Wl and W2, find & and y solving 
the minimization problem (37); 

S 4: If y and 9 are close, stop; Otherwise, replace Q 
with 8 and go to step 2. 

Several remarks should be made here. First of all, 
this sequence of minimizations is not guaranteed to 
converge to the minimum. Nevertheless, this proce- 
dure offers a reliable approach for solving Problem 
1, since both of the individual problems are handled 
with efficiency. Moreover, note that to solve Problem 
1 it is sufficient to find a scalar y such that y 2 70. 

Secondly, from the inequalities (34) we can con- 
clude that the closed-loop poles of the uncertain sys- 
tem (10) are placed on the left of the vertical line 
-Lx 

2’ 

5 Numerical Example 

Consider the following uncertain continuous-time 
system [ll] 

w = A+) + &w(t) + &u(t), 

where the matrices A and B2 belong to the convex 
polytopes DA and Dg whose vertices are given by 

A1 = 1 
-0.9896 17.4100 96.1500 
0.2648 -0.8512 -11.3900 1 ; 

0 0 -250.0000 

-0.9896 17.4100 96.1500 
Aa = [ 0.0820 -0.6586 -10.8100 1 ; 

0 0 -250.0000 

-0.6606 18.1100 84.3400 
A3 = [ 0.2648 -0.8512 -11.3900 1 ; 

0 0 -250.0000 

-0.6606 18.1100 84.3400 
A.q = [ 0.0820 -0.6586 -10.8100 1 ; 

&= [ ;;;:;!J; &:=-[f~~] 
and 

100 
B1= [ 0 1 0 1 . 

0 01 

The set of admissible states is described by the 
bounded polyhedron D(G,p) = (5 E X3; Gx 5 p} 

with 

G= 0 0.1 0 1 
0 -0.1 0 ; p= 1' 
0 0 0.1 1 
0 0 -0.1 1 

The set of initial states x0 is given by the convex 
hull of the following vertices: 

1' 
1 

‘VI= [ ‘%I; ?Jz= [ -2’$ Us= [ d]; 

+2.+ v5=[2e;]; v6=[-2.J. 

The control u(t) is subject to the constraints -1 5 
u(t) 5 1, and the disturbance w(t) is contained in a 
sphere of radius 7s = 1. 

The optimal radius yopt = 2.411, corresponding to 
(Y = 0.760, was achieved after just eight iterations, 
for the initial (~0 = 0.1. Figure 1 shows the feasibil- 
ity interval for the parameter (Y and the maximum 
associated y. 

0.2 0.4 0.8 0.8 1.2 1.4 1.8 
alpha 

The state-feedback gain K associated with Topt is 
given by: 

K = [ 0.0948 0.3083 0.0224 1. 

The positively D-invariant set R is determined by: 

0.0120 0.0176 -0.0017 
w,-' = 0.0176 0.1600 -0.0034 . 

-0.0017 -0.0034 0.0373 
I 

6 Conclusion 

The linear robust constrained control synthesis pro- 
blem for convex-bounded uncertain systems with ad- 
ditive bounded disturbances and both state and con- 
trol constraints has been studied. The approach pro- 
posed is based on the concept of ellipsoidal positively 



D-invariant sets. In other words, the positive invari- 
ance of an ellipsoidal set is guaranteed in spite of 
the additive disturbances acting on the system. The 
disturbances are supposed to be contained in a hy- 
persphere. 

Firstly, a sufficient condition for the existence of 
solutions to this synthesis problem has been estab- 
lished. This sufficient condition has been obtained in 
terms of the feasibility of a non-linear problem. Then, 
based on this result, an algorithm has been proposed 
to find a linear stabilizing state-feedback gain via the 
determination of an ellipsoidal positively D-invariant 
region satisfying the state and control constraints. 

At each step of this algorithm a convex program- 
ming problem is solved. An optimal solution is not 
assured by this two-step procedure, however to ob- 
tain a solution to our problem it is sufficient to find a 
disturbance region that contains the initial one. The 
convex problems can be solved by various effective 
methods available in the literature, for instance, the 
interior-point methods. 

Finally, due to the convexity properties of this ap- 
proach, additional performance constraints could be 
incorporated to the problem, for example, the per- 
formance requirements which can be reached by the 
pole placement. The results of this paper can also be 
readily extended to the discrete-time case. 
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