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Abstract 

We present an application of the Linear Matrix In- 
equality approach of robust control to the design of 
multivariable L.Q.G. controllers verifying various sec- 
tor conditions that generalizes existing results con- 
cerning positive real systems. 
The main result is illustrated by considering robust 
low authority control of a multi-input multi-ouput 
flexible structure. 
The method proposed in this paper provides a con- 
troller obtained by solving a single linear matrix in- 
equality, since this a convex optimization problem 
it can been solved very efficiently using the current 
available software. 
Keywords: dissipativity, robustness, linear matrix 
inequalities, optimal control, flexible structures 

1 Introduction 

The contribution of this paper is to show how the 
framework of Linear Matrix Inequalities (L.M.I.) 
can be used in order to construct Linear Quadratic 
Gaussian (L.Q.G.) controllers satisfying specific ex- 
tended dissipativity conditions. Our first motivation 
stems from the problem of the robust attitude control 
of a satellite in presence of non conservative sloshing 
motions but our method appeared to be also able to 
perform robust non colocated control of flexible struc- 
tures. Accordingly our main result is here applied 
to a non collocated multi-input multi-ouput springs- 
masses structure. 

It is a well established fact that linear quadratic 
control design may fail to possess elementary robust- 
ness properties with respect to parametric uncertain- 
ties and that in the output feedback case the the 
phase and gain margins are no longer those obtained 
with a full-state feedback assumption. 
There exists many contributions trying to remedy to 
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this situation in order to secure both performance and 
robustness for uncertain systems. Among the more 
popular we can cite the Loop Tansfer Recovery ap- 
proach (L.T.R.), the ‘overbounding’ procedures used 
in guaranteed-cost design or the various works issued 
from Kharatonitov’s theorem for a more state space 
oriented and parametric approach. 
Concerning robust control of flexible structures a ma- 
jor trend rests on physical considerations by an ex- 
ploitation of the natural dissipation of these systems. 

In particular for passive or positive-real sytems 
Lozano-Leal-Joshi [l] and Bals-Goh-Grubel [5] have 
shown how an adequate choice of the weighting and 
covariance matrices permits the obtention of positive 
real L.Q.G. controllers. 

In this paper the method is extended to design of 
controllers verifying more general sector conditions in 
order to be able to consider systems exhibiting possi- 
ble lack of positivity. 
In view of applications to aerospace systems there 
is a real need for such a generalization. Indeed, for 
real systems , positive realness is never met exactly 
and even for very simple mechanical models non pos- 
itivity typically occurs with ‘non colocated systems’ 
or when sensor-actuator dynamics or sloshing motion 
are taken into account. 
We first briefly review some well-known facts concern- 
ing positive control. 

Positivity 

The notion of positivity is inherited from networks 
theory and is widely used in adaptative and non- 
linear control. Positive realness is moreover closely 
linked to the mechanical concepts of dissipativity and 
energy: in fact loosely speaking positive real systems 
can be described as systems that do not generate en- 

ergy. 
An important class of positive systems is given 
by flexible structures with dual colocated sensor- 
actuator pairs. 
For such systems positive control provides a powerful 
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and can garantee stability in presence of significant 
modeling uncertainties. 
The basic result linking robust and positive controls 
is given in the next theorem. 
In the context of Large Space Structures it has lead 
naturally to the so-called Low Authority Control- 
High Authority Control design which is based on the 
classical scheme of a two level controller cf. Ref. [5] 
for more details. 

Theorem 1.1 (Passivity theorem) If D strictly 
proper, strictly positive real controller is used in a 
negative feedback connection with a proper positive 
real plant then the closed-loop sytem is asymptotically 
stable. 

Such a result generally attributed to V. Popov and G. 
Zames has a unique robustness flavour since stability 
is guaranteed only by positivity assumptions and in 
particular it is not affected by the presence of any 
parametric errors. 

Figure 1: A general stability result 

2 Extended Dissipativity 

Supply Rates and Storage Functions 

A natural and important generalization of positiv- 
ity due to J.C. Willems [2], is now presented following 
the presentation of Gupta-Joshi [3] : 
A system with input u and output y will be said dis- 
sipative with respect to the supply rate : 

P(Y I u) = (Y" 4 

if there exists a storage function 
E : R” - R+ such that: 

I oTp(Y ,u) dt 1 E(x(Q) - E(xo) 

VT>O,VUEL$ 

The following examples show that despite its 
simplicity, the above fr&mework is in fact sufficiently 
general to encompass both positive and H, control. 

. Positive real systems : 

P(Y,u) = 2Ytu 

. H,-norm bound systems : 

P(Y,U) =-12utu -YtY 

. Sector-bounded systems : 
p(y,u) = -abu% + (a + b)y% - yty 

Notation : The above sector-bounded systems will 
be said to belong to Sect [a, b], in particular with 
this convention positive real and H, norm-bound 
systems belongs respectively to Sect [O,oo) and 

Sect i-7, ~1 

Characterization of Dissipative systems 

A very general criterion, whose main interest is 
however theorical, in order to determine if a dynami- 
cal system is dissipative for a given supply rate is the 
following variational test: 

Proposition 2.1 (Willems) A system C with 
input-output pair (u, y) E U x Y is dissipative w.r.t. 
supply rate p(u) y) if an only if along all trajectories 
starting from x, the function : 

J 
T 

$(x0) = sup - P(U 7 Y) dt 
u,T 0 

where, x(0) = x, is well defined that is : 
&(x0) < 00 9 vx* E x, 
the supremum being taken for all T > 0 and u E U. 

Sa(x) is called the available storage : it verifies the 
dissipation inequality and is in fact a lower boung 
among all possible storage functions. 
For a linear dynamical system (A, B, C, D), storage 
functions are naturally searched as quadratic func- 
tions of the state. 
The evaluation of the time derivative of E(x) = 
1 25 tPx along traje ctories of the system leads quite 
directly to the following LMI characterization : 

Proposition 2.2 (Willems) A general dynamical 
system (A, B , C , D) minimal is dissipative w.r.t. 

P(Y 7 u) = (Y" u") (jt RN) (3 i.f.f. : 
3 P = Pt > 0 sol&on of the jbilowing Linear Matrix 
Inequality : 

with : 
A = CtQC - (PA + AtP) 
B=@(QD+N)-PB 
C=R+NtD+DtN+DtQD 

Examples of supply rates 



This result which admits as special cases the well- 
known Positive and Bounded Real Lemmas has a 
frequential counterpart : 
if Q 5 0, it also equivalent to : 

(G*&) I) ($ E) (“(y’) 2 0 
A system will be said strictly dissipative if this last 
inequality is strictly verified. 
Note moreover that for SISO systems the preceding 
frequential inequality has an obvious interpretation 
in terms of Nyquist plot for each of the three exam- 
ples of supply rates given, this fact will be exploited 
in the last section of this paper. 
For example one can verify that a transfer function 
g(s) belongs to Sect (a, b) if and only if its frequency 
response lies inside a circle of diameter [a, b] centered 
on the real axis. 

A General Asymptotic Stability Result 

We are now able to state the following impor- 
tant result which generalizes theorem 1.1 and can be 
found in Gupta-Joshi [3]. 

Theorem 2.1 Consider again the feedback connec- 
tion of Fig.1 . 
If C1 is dissipative w.r.t. pi (u , y) and Cs strictly dis- 
sipative w.r.t. p-~(u) y). 
Where the supply rates pl ( , ) , p2 ( , ) verify : 

~Pl(U,Y) + PP2(-Y,U) 5 0 
for some real constants cr and 0. 

Then the closed-loop sytem is asymptotically stable. 

The small gain and passivity theorems can be seen as 
.special cases of theorem 2.1. 
Note that this general result does not require in fact 
any assumption of linearity. 

3 Main Result 

We will now consider a proper, minimal sys- 
tem (;4, B,C) belonging to Sect [-a,oo) with 
a > 0 this means that this non positive system 
is dissipative with respect to the supply rate: 
p(y,u) = 2ytu + 2autu 
or equivalently that (A, B, C, a1) is positive real. 
In both cases one can verify that the above 
LMI characterization insures that there exists 
P = Pt > 0 , L , W of appropriate dimension such 
that : 

PA + AtP = -LtL 
PB = CT - LtW 

2aI = WtW 

Before going further and in order to present 

our main result we have to recall briefly the basic 
elements of L.Q.G. control. 

Linear Quadratic Gaussian Design 

Let be given the following minimal system where v 
and w are two gaussian white noises. 

{ 

j.=Ax+Bu+v 
y=cx+w 

We are searching for a dynamic compensator : 

1 

ic = Acx, + B,y 
u = Ccx, + D,y 

such that the quadratic performance index is 
minimized : 

The solution of this problem is well known to 
be: 

A, = A - BK, - KfC 
B, = Kf 
C;l = K, 
D, = 0 

where : 

K, = R,‘(P,B + S# 

Kf = (PfCt + Sf)Ry’ 

P, and Pf being respectively the positive solution of 
the classical control and filtering ARE : 

PA + AtP - (PB + S,)R,‘(PB + SC), + Qc = 0 
PAt + AP - (PCt + Sf)Rfl(PCt + Sf )” + Qf = 0 

Where’ Qf , Rf , Sf are the three covariance ma- 
trices classically associated to v and w that is: 

Qfc5(t -7) = Ev(t)'v(~) 
Rf6(t - T) = &~(t)~w(~) 
Sf qt - 7) = Ev(qtW(T) 

The following theorem contains our main result 
whose proof is given in the last section of the paper. 

Theorem 3.1 Suppose that the minimal system 
(A, B, C) belongs to Sect [-a, 00) , a > 0. 

Let the weighting matrices be chosen as follows: 
R, = Rf > 2aI , Qc = LtL + ~YRT~C 

Qf = P-lQ,P-’ ) S,=LtW,Sf =o 
Then ( A,, B,, Cc), the corresponding L. Q. G. con- 

troller will belong to Sect [0, 4). 
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Remarks : 

l The variance matrices have no longer any sta- 
tistical meaning and must be considered here as 
mere design parameters. In this sense the term 
Hz control may be more appropriate than LQG 
control. 

l The introduction of fictitious input noises for de- 
sign purpose is a feature shared with the Loop 
Transer Recovery (L.T.R.) methodology. 

l For positive real systems that is if a = 0, we 
recover previous results contained in [l] and [5] 
where it is shownin particular, that the choices: 
R, = Rj > 0, Qc = LtL + CtR,‘C 
Qj = P-lQ,P-l , S, = S, = 0 
insure positivity of the LQG controller. 

l Lastly as it will apparent in the course of the 
proof proposed below, the choice of the ponder- 
ation matrices is not unique and more general 
choices of these design matrices can be envisaged. 

Illustration of theorem 3.1 

In order to precise the significance and the scope 
of our result, we are going to illustrate it on generic 
model of single-input single-output flexible structure. 
If the inequality R, 2 2~1 is clearly a limitation on 
the controller’s authority due to the lack of positivity 
of the initial plant. 
The presence of a cross-term matrix S, may seem 
more surprising, however its importance and role can 
be simply illustrated as follows. 
Consider a transfer function with the following 
residue-pole form: 

k;s 

S2 + 2(iWiS + W” 

Suppose that only part of the residues ki are posi- 
tive e.g. ki < 0 for i > nl. 
In the context of flexible structures equipped with 
rate sensors such a situation is frequently encountered 
for non collocated systems or in presence of non con- 
servative forces. 
If g(s) denotes the transfer between actuator and rate 
sensor signal, a negative residue indicates that the 
slope of the corresponding mode shape at sensor lo- 
cation has the opposite sign of the slope at actuator’s 
(c.f. [7]). 
As a result it is well known that a positive real con- 
trol (e.g. a positive rate feedback) can destabilize the 
system. 
A (modal) realization of g(s) is given by: 

1 
-2<iWi 

B = (lhl 0 lkzl 0.. . Ikn-11 0 Ik,J 0)” 

C=(l 0 1 o*..-1 0 -1 0) 

corresponding to a state : 

a:=(q141 . ..qn&Jt 

Now we know from general theory of observer- 
baaed design that the control input will be of the 
form : 

u = -K,2 
with: K, = R;l(BtP + Si) 

and 2 the reconstructed state 

Here since: 
f S,=LtW 

‘I PB=Ct-LtW’ 
we have: 

u = -R,% 
And thus, we obtain the following feedback law: 

ull-/$l& ...-K,,&l +*-. + &Bn 

Where for simplicity we have set: 

R, = diag(Ki-‘) 

The precise role of the matrix S, is thus to reverse 
the sign of the unstably interacting modes in order to 
prevent a positive (i.e. destabilizing) feedback. 

4 Effective Design and 
Simulation Results 

As indicated in Section 2 the examination of the 
Nyquist plot for SISO systems and/or the resolution 
of the associated LMI for the multivariable case 
provides a simple general methodology susceptible 
to be applied to systems presenting various defects 
of positivity. 
Indeed if the Nyquist plot of a scalar transfer 
function is included in a circle of diameter [-a,b], 
a > 0 centered on the real axis or if more generally 
we have : G(s) E Sect [-a, b]. 
Then by virtue of the general stability result 
contained in theorem 2.1 the choice of any: 
K(s) E Sect [-i, i] will ensure stability. 
Such an approach has obviously close connexions 
with the multivariable circle criterion. 
Note however that in the context of flexible structures 
the presence of a very high number of lightly damped 
structural modes leads naturally to consider systems 
G(s) E Sect [-a, co) that is systems described by the 
hypotheses of theorem 3.1. 

~ 
A = diug (Ai) 



4.1 Non Collocated Flexible System structures. 

We apply our method to the following multivariable 
system which is taken from [S] where the following 
data are given : 

1 

ml=2, m3=2, m2=1 
kl = kd = 5 , kz = kg = 2 

dl = 0.5,d2 = 0.2,d3 = 0.15,d4 = 0.45’ 

Input forces are applied at masses 1 and 3 while the 
velocities of masses 2 and 3 are measured. 

One can verify that the above system belongs to 

The extension of the above method to the design 
of generalized dissipative compensators subject to 
mixed Hz/H, constraints as in Haddad-Bernstein- 
Wang [9] is currently under investigation. 

Appendix 

We have to prove that if (A, B, C, al) is positive real 
the controller (A,, B,, Cc) in theorem 3.1 belongs to 
Sect [0, t). kl k2 w k4 

Figure 2: Springs-masses mechanical system 

Sect (-a, b) with a = 0.582 and b = 2.662. 
In order to take into account possible neglected 
higher frequency dynamics we will consider it as 
belonging to Sect (-a, 00) and apply litterally the 
analytic formulae given in Section 3. 
We take as in [6] the Hz-norm of the closed loop 
system as a performance measure. 
That is we are searching to minimize P the the 
root mean square values of the outputs when unit 
intensity white processes are applied in each of the 
two input channels. 
Using the program Semidefinite Programming SP 
of Vandenberghe and Boyd as implemented in the 
package LMITOOL [8]. 
We obtain : P = 0.8088 
This value of the performance index is a little 
greaterthan the one obtained in [S] with a LQG 
belonging to Sect (-l/b, -l/u) after a trial and error 
search. 
Note moreover that the above value of P remains 
slightly better than the one obtained in [6] by 
another LQG controller designed this time from a 
H,-norm characterization of the system. 

5 Conclusions 

We have shown how the notion of dissipativity can 
be used in order to provide controllers achieving both 
parametric and frequential robustness. This power- 
ful methodology, largely initiated by J.C. Willems, 
is here developped within the classical framework of 
L.Q.G. or HZ control. 
Our approach that uses a quantitative characteriza- 
tion of linear systems via the LMIs, sectoricity, and 
dissipativity concepts allows a systematic robust con- 
trol design for non positive systems. 
We have illustrated it on generic models of flexible 

Proof of theorem 3.1. 

Using the LMI characterization of Section 2 we are 
searching some P > 0 such that: 

A:P + PA, + 2uC,C, < 0 
PB, = C,t 

Under the hypothesis that there exists: 
P = Pt > 0 , L, such that: 

PA + AtP = -LtL 
PB = CT - L; 

Where we have set : Li = LtW, 2u I = WtW 
It is readily seen that : 

PB + L; = Ct 
implies : 

PB, = C,t 

that is: 
P(PjCt + Sj)R;’ = (P,B + S,)R,’ 

provided: Rj = R, S, = LL , Sj = 0 
and:P, = P;’ = P 

Now the equation : 
AtP + PA = -LtL 

can be obviously rewritten in the form of the usual 
control and filtering Riccati equations : 
PA + A’P - (PB + SC) R,’ (PB + SC)’ + Qe = 0 
PjA’+APj-(PjC’+Sj)Rjl(PjC’+Sj)‘+Qj =0 
with : 

and 

Qc = LtL + CtR,‘C 

Qj = P-lLtLP--l + P-lCtR;‘CP-’ 

Now we only have to verify that : 

P(A-BK,-KjC)+(A-BK,-KjC)tP+2uK,K, < 0 

in order to insure : (A,, B,, Cc) E Sect [0, i) 
Recalling that : 

AtP + PA = -LtL 
PBK, = PBR,‘(PB + S# , 

PKj = CtR,l 
We therefore have : 
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i) P(A - KjC) + (A - KjC)tP = -LtL - 2Ct~-1C 



ii). PBK, + KiBtP 
= PBR-‘(PB + SJ + (PB + SJR-‘BtP 
= (PB+S,)R-‘(PB+S,)+9,R-‘S;+PBR-‘BtP 
= CtR-‘C - S,R-?$ + PBR-‘BtP 

iii) 2 uKjKc = 2 uCtRb2C 

Adding these three terms, we obtain : 

PA, + A;P + 2 uC;Cc 
= -LtL - 3CtR-lC + S,R-‘S, 
- PBR-lBtP + 2 uC~R-~C 
using : S, = Li = Lt W 
it is also equal to: 
-Lt(I - WR-lWt)L - PBR-‘BtP 
- Ct(3R-1 - 2 uR-~)C 

It is clear that the above quantity will be neg- 
ative definite provided : 

1 

I - WR-‘Wt > 0 
3R” - ~uR-~ 2 0 

Since : Wt W = 2~1 it will verified if R 2 2 uI. 
Finally this last condition which exprimes a limita- 
tion of the controller authority is also sufficient to 
insure : 

20 * 
R, > 0 

Qc - S;R,‘S, 2 0 

since this equivalent to : 

R, > 0 
LtL + CtR-‘C - WR-lWt 2 0 

Again R 2 2uI suffices to insure that the L.Q.G. 
problem considered is well-posed. 

References 

[l] Lozano-Lea&Joshi M.S. 
“On the design of dissipative L.Q.G.-type con- 
trollers” IEEE Conf. Decision and Control, De- 
cember 1988 
also in: Dorato-Yedavalli (Eds), Recent Advances 
in Robust Control, IEEE Press, 1990 

[2] Willems, J.C. “Dissipative Dynamic Systems”, 
in Archive for Rational Mechanics and Analysis, 
Part I-II, vol. 45, pp. 321-351, pp. 352-353 (1972) 

[3] Gupta, G. -Joshi, M.S. 
“State space Characterization and Robust Stabi- 
lization” of Dissipative LTI Systems, 
American Control Conference 1995 

(41 Drai-Bordier-Mayer 
“Robust Attitude Control of a Telecommunication 
Satellite: a L.M.I. approach” 

Third International Conference on GNC, Noord- 
wijk, November 1996 

[5] Bals-Goh-Grubel 
‘Tuning Analytical Synthesis Techniques via Mul- 
tiobjective Optimization for a Two-feedback-loop 
Control of Flexible Space Structures” 
Second International Conference on GNC, Noord- 
wijk, April 1994 

[6] Gupta, S. 
“Robust Stability Analysis using LMIs: Beyond 
Small Gain and Passivity” 
Int. Journal of Robust and Non-Linear Control 
pp.953-957, November 1996 

[7] Bryson, A.E. 
“Control of Spacecraft and Aircraft” 
Princeton University Press, 1994 

[8] Nikoukhah-Delebecque-El Ghaoui 
“LMITOOL: a Package for LMI Optimization ‘in 
Scilab” 
INRIA, 1994 

[9] Haddad-Bernstein-Wang 
“Dissipative Hz/H, Controller Synthesis” 
IEEE Trans. Autom. Control., vol. 39, pp. 1513- 
1517, 1994 


