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Abstract : 

The dynamical model of manipulator robot is represented by equations system which are nonlinear and strongly coupled. 

Furthermore, the inertial parameters of the manipulator depend on the payload which is often unknown and variable. So, to 
avoid these problems we studied variable structure system which is well suited for robotics arms. 
To this end, an application of the sliding mode control based on variable structure system for a four degrees of freedom 
robot is described in this paper. This technique suppresses the uncertainties due to parametric variations, external 
disturbances and variable payloads. 
To prove these advantages, this technique is applied to the regulation (point to point) control of the SCARA robot. So the 
aim of this work is to show the practical realization and to demonstrate the robustness and the validity of this control law on 
the robot manipulator via experimental results obtained and discussed in the end. 
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1. Introduction 

The dynamic of the robots is described by coupled 
second nonlinear differential equations and the inertial 
parameters depends on the payload which is often 
unknown and changes during the task. Usually, in a 
classical control we must have an accurate model, so to 
avoid this constraint we decide to implement a robust 
controller based on variable structure systems (VSS). 

The theory of VSS has been developed firstly in Soviet 
Union by Emelyanov [2], introduced after by Utkin [9] 
and more recently studied by several authors [5], [8], 
[4]. In the last years, many applications of VSS were 
proposed : in motion control, DC-servo-motor and 
robotics manipulator [6], [7], [12]. From these 
applications, the conclusion is that the robust nature of 
VSS is proved by the sliding mode. When the sliding 
mode occurs, the system will be forced to slide along or 
near the vicinity of the switching surface. The system 
became then robust and insensitive to the interactions, 
disturbances and variations. In addition, this does not 
require an accurate model of the robot (plant) : it is only 
necessary to know the boundaries of the parameter 
variations and load disturbances. The dynamics of the 
system is submerged in the dynamics of the reduced 

linear and free system [lo]. The sliding mode control 
technique has already been used for robot control [4], 
either without decoupling of the robot equations or 
combined with a model of the robot used to estimate the 
torques necessary at the joints. 

The proposed sliding mode controller is realized by 
linearizing the equations system by the MATLAB 
software; and the objective of the controller is to avoid 
using velocity signal. So, only measured position signal 
of the joints is used to control the robot arm. Like this, 
shaft encoder is used to sense the output position a 12 
bit A/D converter provides the required signal. 
To illustrate the application of the sliding mode on 
robotics manipulator, we implement the controller on a 
SCARA robot which has four degrees of freedom. But, 
this work is concerned with the three degrees of freedom 
because the fourth degree is the translation in only two 
positions of the end effector. 
So, in this paper, the practical realization of a sliding 
mode controller is described. After introducing the VSS 
theory, we show the experimental robot with its model 
identification and the linear system obtained; so after 
we develop the calculation of the control method. In the 
last, we discuss the experimental results obtained and 
confirm the validity of the approach. 
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2. Control methodology 

Variable structure systems are referred to systems 
which their structure changes. This kind of systems has 
an attractive feature for control applications, which 
consists in a sliding mode [ 111: This mode occurs on 
switching surface, and the system remains insensitive to 
parameter variations and disturbance. So, this mode 
allows also elimination of interactions among the joints 
of the manipulator. The aim of this paper is the 
implementation of, the sliding mode control on the 
linkage manipulator. 
A general type of the motion equation is represented in 
the space state by : 

x = f-(x, t) + g(x, t). u (1) 

Where u is the control input, x is the output, and the 

functions f(X, t) and g(x, t) are nonlinear and not 

known exactly. 

The control input is : 

ui (x, t) = 
1 

zq(x,t) if Si(X,f)>O 
uz: (x, t) if si (x, t) < 0 (2) 

Where ui is the ith component of u 

Si (x, t) = 0 is the zth component of the m switching 

hypersurfaces S(X, t) = 0 S E R” . 

This system with discontinuous control is called variable 
structure system, since the control structure switches 
alternatively according to the state of the system. The 

sliding mode occurs on a switching surface S(X) = 0, 

which forces the original system to behave as linear time 
invariant system, which can be considered to be stable. 
In our study the surfaces are taken to be linear and 

n 

written as : Si(x)=xn +~li.xi 
i=l 

The condition for the sliding mode to exist on the ti 
surface is given by the equation : 

Limii ~0 and /iy~SsO 
s, +o+ , 

Which is equivalent to Si Si < 0 in the neighborhood 

of Si (x) = 0, when all the trajectories move towards 

the switching surface. 

hr the ideal sliding mode on Si , the corresponding 

control is the equivalent control issued Tom the 

equation (1) and given by the equation for s = 0 : 

u eq = g-Yx,o 4u - f(w) 
[ 1 (3) 

So, the discontinuous control input given in (2) is 
written : 

ui = 
u,, + Au+ si > 0 

uieq + Au; si < 0 (4) 

Where U, is the equivalent control (low frequency) and 

Aui the discontinuous term (high frequency). 

As we are in the practical case, the equivalent control is 
known by estimated value due to error modelisation and 
variation of the parameters. So, this yields to : 

U* eq = u,, + Aueq (5) 

As we explain the formula of discontinuous control 
input in (4), the term of high frequency can be expressed 
in different manners [l] [4]; and for our experiments we 
choose the equation proposed by Harashima [4] : 

3. Design procedure 

As in our experiments, we use the manipulator model 
issued horn testing the system to identify its parameters, 
we present in this section the identification of the 
manipulator model and the different steps of the 
controller calculation. 

3.1 Manipulator model 

Usually the manipulator dynamics are obtained from the 
Lagrangian equation, they have the following form : 

w4+ C(a d+ m = I- (6) 

Where : 

I is an inertial matrix, 
C represents coriolis and centrifugal forces, 
g is the torque due to the gravity, 

I? is the torque input vector, 

(q,q, 4) represent the generalized position, velocity 

and acceleration vector. 
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These equations are coupled and nonlinear; since the 
manipulator is controlled via a computer as PC, so we 
can approximate the dynamic model by an identified 
model which is linear. This identification is done using 
test input signals which excite the system and the least 
square method is used with the measured input and 
output signals to estimate system parameters. 
The equation (6) can be written in the following form : 

q+ Z-‘(q).H(q,i)i+ I-‘(qhG(q1.q = I-‘(q1.r (7) 

Where H(q,q).q = C(q,q) and G(q1.q = g(q) 

This work proposes an experimental study of the three 
degrees of freedom of the SCARA robot and its 
identification is achieved using the MATLAB software. 
By the end, we obtain a linear approximated and 
decoupled model dynamics which is represented by the 
following system : 

4+ A,.q+ A,.q = B.U (8) 

Where A, = I-‘(q).H(q,q) = Diag[ail] 

A, = I-‘(q).G(q) = Diag[a,;!] 

B = Diag[b,] 

q=[q,,q2,q31Ttheangularrotationvector, 

The results obtained for the parameters to be 

identified : ai, , ai, , bi ; in the prediction error method 

from ARX method on the MATLAB software are shown 
in the table 1. 

i ail ai bi 

1 201.0 -2.4 0.64 

2 560.0 -5.4 0.50 

3 413.5 -117.5 20.00 

Table 1 : Identified parameters 

3.2 Control calculation 

As showed in the previous section, the equation of the 
identified model yields to : 

~i+ai,4i+ai2qi =biui 11i13 (9) 

For each joint i, the input control is noted as : 

ui = uliq + Aui ; where u,:, = uieq + Auieq 

and Aui =[ai/ei/ +piiiil + yi].sgn(Si) 

The (*) is related to the estimated term because of the 
modelisation error and variation of the parameters. 
We must control the system by holding it in the sliding 
surface. The surface has the equation : 

Si = A,.e, + ii 

where : R, is a positive parameter 

ei , ii and ii are the position, velocity 

and acceleration errors 

The sliding mode is for Si = 0 and Si = 0 , Corn 

where we extract the equivalent control input equation : 

‘ieq =~[~id+ai,.qi+ai2.qi -lj.ei] (10) 
I 

The estimated equivalent control is : 

u:e, =ijt;[4,d+U~l.qi+U~2.qi -&-ii] (11) 

The calculaiion yields to : 

Meq = di,. ei+ diz. ei + di3.qid+ di4.qid+ dis.qid 

with: di, = di3 - /Z,.d,, 

The control gains are obtained from the sliding 

condition Si S i < 0. So, after calculation, we obtain : 

Si Si = bi(SiAUieq + S~AU~) 

Which can be written : 

Si Si = bi(SiA~ieq + (ailgil + pi pi + yi)Sgn(Si)Si) I I 
Si Si = bi(SiAUieq + (CtileiI + pi ei + ~i)l~iI) I I 

Then : 

Si Si I IbiIISil(l Au,ql+ (aileil+ Pi ei + Yi) 
I I 

And we substitute A u e 4 by its expression, we obtain : 

I~i~14id+ldi41~id+ldis14id +Yi> 

To satisfy the sliding condition SS < 0 , it is sticient 
to take : 

Id,,l~i~+ Id,4IGid+ ldislqtd + Yi <O 

ai + Idi < 0 

Pi +Idill<O 
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From where we deduce : 

I 

“i = -SuP(ldizI); 
Pi = -SuP(ldill); 

j’i = -SUP( dij.qid + did*iid + dis*qid > 

4. Experimental results 

This section describes experimental results of 
applying sliding mode on the robot in point to point 
motion (regulation). The three degrees of freedom move 
respectively from the initial position 
qi&2.78,1.05,0.51)rd to the desired final position 
q&l .05,2.78,5.23)rd with the following parameters of 
the surfaces 70,140 and 110 for each joint. 

In the figures 1, 2 and 3 the controller is tested without 
payload in the figures 4, 5 and 6 show the case where 
the robot is disturbed which consist to fight the arm of 
the robot with a force and to see if it doesn’t make the 
robot disable to go the desired position. 

The first figures (1, 2 and 3) give the error position for 
each joint, the velocity and the corresponding control 
input evolution. These results show the good behavior of 
the control algorithm. The steady states are reached after 
2.5 seconds for the first joint, 2 seconds for the second 
and 1 second for the third joint. The position errors are 
around 0.02 rd. 
In the figures 4, 5 and 6, we see when the robot is 
disturbed by an external force, that it will come back to 
the desired position with an error equal to 0.02 rd. This 
demonstrate the robustness of sliding mode controller 
against the disturbance. The steady states are reached 
after 6 seconds for the first joint, 6 seconds for the 
second and 4 seconds for the third joint. 

5. Conclusion 

A practical realization of robust controller using 
sliding mode is proposed in this paper. It was applied to 
the three degrees of freedom of the SCARA robot which 
has three degrees of freedom, and shows that nonlinear 
dynamic interactions of the manipulator joints are 
suppressed and the system is insensitive to the 
parameters variations. The experimental results shows 

also its performances against the payloads variations. 

generalized variable structure system to avoid 
chattering, which appears in the sliding mode, by the 
switching on the highest derivative of the input [3]. 
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In our future study, it is interested to test our 
algorithm in the case of trajectory tracking. Further, it 
will be more interested to develop an algorithm based on 
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Figure 1: VSS without disturbance 
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Figure 2 : VSS Without disturbance , 
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Figure 3 : VSS without disturbance 
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Figure 1 : VSS with disturbance 
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