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Abstract 

This paper addresses the problem of determining a feed- 
back control law, robust with respect to localization errors, 
allowing a mobile robot to follow a prescribed path. The 
model we consider is a dynamicextension of theusual kine- 
matic model of a car, in the sense that we define the path 
curvatureas anew statevariable. The controlvariables are 
respectively the linear velocity and the derivative of the 
curvature. By deG.u.i.ng a sliding manifold we determine 
a stabilizing controller for the nominal system i.e. when 
the exact contiguration is supposed to be known. Then, us- 
ing Lyapunov analysis, we prove that the system remains 
stable when the estimated values are used for feedback in- 
stead of the exact ones, and we characterize the robustness 
with respect to localization and curvature estimation errors. 
The result is expressed by determining a bounded attrac- 
tive domain where the vehicle’s comiguration could pos- 
sibly lie when the closed-loop control is performed with 
the estimated statevalues. This domain allows to compute 
easily a security margin for obstacle avoidance during the 
path-following phase. Experimental results are presented 
at the end of the paper. 

Key Words: Mobile Robots, Robustness, Path-following 
control, Lyapunov analysis, sliding surfaces. 

1 Introduction 

One difficult questioninherently linked to mobilerobots’ 
autonomy is the design of feedback control laws allowing 
to stabilize the motion of wheeled robots. Indeed, on ao 
cotmt of the nonholonomic nature of those systems, most 
part of classical control techniques turn out to be ineffi- 
cient to solve this problem. The question has motivated 
a large number of research works for the past ten years. 
In the literature, this problem called navigation problem is 
commonly divided into three subproblems which are: path 
following, trajectory tracking, and point stabilization (see 
Dl). 

As the central problem is stated in terms of designing 
closed-loop controllers taking into account the kinematic 
nonholonomic rolling without slipping constraint, very few 
research works have tried to integrate the vehicle’s dynam- 
ics in their model. The works by [2] and [3]constitute an 
interesting effort in this direction. 

Commonly, the other works devoted to this problem only 
have considered kinematic models. Nonlinear feedback con- 

trollers have been proposed (See 141 and [5]. The main 
idea, behind these algorithms, is to def?ne velocity control 
inputs stabilizing the closed-loop system. However neglect- 
ing the robot’s dynamics induces strong limitation in prac- 
tice. Considering a kinematic model, it can be very sat- 
isfactory, from a theoretical point of view, to use a static 
controller assuming that the reference path has a contin- 
uous curvature. However, most part of the existing path 
planners propose path along which the curvature is only 
almost everywhere continuous. See for instance the non- 
holonomicplanner by 161 which is based on Reeds and She- 
pp’s curves made up with arc of circle and line segments. 
Thecurvaturediscontinuity occuring between an arc of cir- 
cle and a line segment (or two arcs) obliges the vehicle to 
move away from the reference path. This phenomenon can 
be strongly reduced if the robot’s acceleration is controlled 
instead of its velocity. 

Another important hypothesis, implicitly made in those 
works, is that the robot’s umhguration is assumed to be 
perfectly known at each time. This last assumption is kno- 
wn by robotic&us to be very unrealistic. Contrary to ma- 
nipulators whose basis remains tixed with respect to the 
reference frame, and for which the position of end effec- 
tor may be directly deduced from the measure of the angles 
between successive liuks, mobile robots may drift during 
their motion and their exact position cannot be known us- 
ing dead reckononing techniques only. For this reason ex- 
teroceptive measurements must be processed to update the 
vehicle localization in order to limit the estimation error. 
Estimation of robot localization has received much inter- 
est [71,[81 and [91. But the fact is that, even by merging the 
information provided by several sensors, the robot’s con- 
figuration is obtained with some errors which cannot be 
neglected. 

This paper addresses theproblemof determining a feed- 
back control law, robust with respect to localization and 
curvature estimation errors, allowing a mobilerobot to fol- 
low apresuibedpath. Themodel weconsideris a dynamic 
extension of the usual kinematic model of a car-like robot 
in the sense that we def%re the curvature as a new state vari- 
able. The control variable are respectively the linear ve 
locity and the derivative of the curvature. 

By means of sliding mode techniques combined with 
Lyapunov analysis we determine a stabilizing controller for 
the system when the state is supposed to be perfectly known. 
Then, we prove that the system remains stable when the 
estimated state values are considered instead of the exact 
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Figure 1: Vehicle cotiguration 

ones. The robustness property is then expressed by deter- 
mining, around each point of thenominal trajectory, a botm- 
ded attractive domain where the vehicle’s configuration cou- 
ld possibly he, as the feedback control is performed a0 
cording to estimation errors. 

These techniques have been successfully applied to de- 
sign a robust path following controller for a mobile plat- 
formROBUTERTM ; experimental results arepresented at 
the end of the paper. 

The paper is organized as follows: The problem is stated 
in section 2. First, we describe the vehicle’s kinematics, 
and we state the path following control problem for our 
model (5 2.1 and $2.2). Then we introduce the robustness 
problem and we modelize the localization and orientation 
error (5 2.3). Section 3 describes the controller. The sta- 
bility is first analyzed for the nominal case (5 3.1). Then 
the robustness is described by computing the attractive do- 
main (5 3.2) when estimated values are considered. Emally, 
an account of experimental results is given in the last sec- 
tion (5 4). 

2 Problem statement 

The definition of robustness for tracking control naturally 
stems from both the statement of the tracking control (sec. 
5 2.2) and the description of the vehicle kinematics (sec. 3 
2.3). 

2.1 Vehicle’s kinematics 

The model of a car-like robot is represented by figure 1. 
A configuration of the car is described by a vector PC = 
(x,,~,,O,)~ where(x,,y,) arethecoordinatesofarefer- 
ence point c with respect to the world frame W and the an- 
gle 0, E S1 represents the direction of the car with respect 
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Figure 2: Path following 

to the x-axis. 
The robot’s kinematic is described by (1) 

I. 

= 
PC(t) = ;I = 

21, cos ee 
21, sin 8, 

4, = 
(1) 

WC = vex, 

The control inputs (II&), w, (t))T respectively stand for 
the linear and angular velocities of the car. In the sequel 
we consider a dynamic extension of this system. 

2.2 Path following control 

Several studies on modeling and control of wheeled robots 
have been realized and experimented (See [101,[111 and 
[51). The approach we have chosen to follow here, is the 
one described in 151, presented in this section as a particu- 
lar case of the tracking control problem [121. The parame- 
terization described in 151 is de&d by means of a Frenet 
frame M’ whose origin “T” is the projection of the robot’s 
reference point “c” on the path at each time, see figure 2. 

The path following problem consists of Cling a con- 
trol law insuring a geometrical convergence towards the 
path to be followed regardless to the translational veloc- 
ity v, of the robot. Assuming that M’ is the frame of a 
kinematically equivalent fictitious robot, the error config- 
uration vector P, with respect to M’ is then: 

P, = P,“’ = TPew = T(P, - P,); 

cos 6, sin Br 0 (2) 
T= 

( 

- sin 0, case, 0 
0 0 1 ) 

The time derivative of the configuration error is defined 
by (3): 

2, 
(9 ( 

%XrYe - 21, + UC cos 0, 
Ye = 

& 
-v,xrx, + v, sin 8, 

1 

(3) 
%Xc - WXT 



In this expression, xr = w,/v, and xc = w,/v, detkere- 
spectively the curvature of the reference path and the cur- 
vature of the path realized by the robot; v, and v, represent 
respectively the linear velocity of the reference vehicle and 
the linear velocity of the robot. 

As the fictitious robot is de&d by the orthogonal pro- 
jection of the robot on the reference path, the first error co- 
ordinate 2, and its derivative k:, remain equal to zero as the 
robot moves. Therefore, from the first equation of (3) we 
have: 

21, cos 8, 
vr= l-x y undertheconstraintl(l-x,y,)>o 

T e 
(4) 

Introducing the arclength abscissa s, along the reference 
path as a new state variable, kinematic equations of system 
(3) can be rewritten as: 

s, = 

1: 

v, cos 8% 
l-XrYe 

Ye = 21, sin 8, (5) 
Be = %X.5? 

where xe = xc - x; and x: = xr IElF; . 
Now, in order to take into accotmt th6inertia of actua- 

tors we propose to consider a dynamic extension of (5). As 
explained in the introduction this extension will allow the 
robot to remain close to the trajectory when the reference 
path’s curvature is discontinuous. 

The dynamic extension is dehned as follows: 

s, = 

I: 

21, co.5 e, 
l--Xv-Ye 

= 21, sin 0, 
: = v,x, 

t Xe = %-x: 
(6) 

where xe is now viewed as state variable and (v, , UJ con- 
stitute the new vehicle’s control inputs for the path follow- 
ing process. 

2.3 Robustness problem 

As stated in the introduction, the current configuration on 
the robot as well as the instantaneous curvature are not di- 
rectly measurable. Therefore, the real inputs of the feed- 
back control are the estimated values ($7, J&) instead of 
the true ones: 

Taking into account these new inaccuracys, under the as- 
sumptionthat (l-gT& >> 0) andSx, E X = [-6xma3:, 
Sx,,,] and following (2) we get: 

{ 

k = ?pc - PT) = P, + SP, 
,. 

Xe = & - k; = Jye - 6x, (9) 

where, from (9) and (2): 

G = %(&F, Re) (7) 

Estimates p, of P, (2) and & of xe (3) are obtained f+om 
the estimates <PC = PC + SP,, kc = xe + &xc) of both the 
conliguration and the curvature, continuously updated by 
combining deadrekoning and exteroceptive measurements 
(See 181 and 1131. These estimat~es lie in a compact co@- 
dencedomaincenteredaround(P,, zje) (seeFigure3) (PC = 
PC SSP,; SPC E i-2). 

I 

6x, = COS 8, (Sx, - dxp) + sin L$. (6y, 

-by?-) -m-Y, 
fsP, = sy, = - sin & (SZ, - Sx,) + cos 4, (6y, 

-6Yr) 
so, = se, - se, 

(10) 
In the sequel, the value of Sx, will be of no importance 
as the path following problem only involves the variation 

’ This condition, meansthat the orthogonalprojection of the point c on 
the reference path exists and it is unique (see Samson, 1992 for details). 

’ for simplicity, the feasible domain C2 is regarded as a truncated cylin- 
der with flat circular ends containing the domain updated by EKF 
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Figure 3: Path following 

By virtue of EKF formalism [141 or merely for compu- 
tational ease 191, the feasible domain fi is described as an 
ellipsoid, a tnmcated cylinder or a bounding box. 

In contrast to the tracking control problem where errors 
on the vehicle localization do not modify de target vehi- 
cle’s configuration, it is clear from figure 3 that inaccuracy 
on the vehicle’s localization induces an error on the Frenet 
frame localization iu which the variations are de&d. In- 
deed, this frame is obtained by projecting on the nominal 
curve the set of uncertain2 localization of the characteristic 
pointPC. Ifwesupposethatl-&& > O,thenQdP, E iI, 
an approximated value of dP,. can be deduced geometri- 
cally (see figure 3) 

SB, = asin Jxc hi7L-Y~ 
sx, = bin sin(&-) (8) 
JYT = Sx, sin 619, 



of ye and ee. It is worth noting that 6y, is just the second 
element of a rotation of (SP, - SPp). 

From the control point of view, the investigated robust- 
ness problem can be stated as follows: 

Consider the feedback control law (7) with the estimate 
(Py , gc) as input instead of the true value (PF , xc). Is the 
equilibriumpoint of system (3) with the uncertain control 
law (7) still stable under the assumption that the estima- 
tion error (SPT, 6~~) lies in an a priori known bounded 
domain (a, X)? 

Moreover, if the stability is proven, what is theprecision 
of the regulation i.e. what is the size of the attractive do- 
main containing ( Pjr, xe) = O? 

We answer this question in the next section via stability 
analysis by combining sliding surface with the use of an 
appropriate Lyapunovfunction. 

3 Robust dynamic state feedback 
controller 

In this section we design the path following control by de- 
termining an appropriate sliding surface (z, = 0), defined 
by: 

2, = ye + %p(v,)& + pxe, x,/J> 0 (11) 

We are going to prove, in the sequel, that the convergence 
of ye, ~9~ and xe to zero can be insured once the state space 
is reduced to the surface Z, = 0. First, to guarantee the 
convergence of z, to zero we impose the followingdynam- 
its on the variable z, : 

k 
i, = -Iv&p k > 0 (12) 

the control law u, becomes: 

UC = Zk?F - y [sign(v,) sin ee + Xxe + ~.zJ (13) 

3.1 Stability 

Now, in the aim of proving the stability of system (3) under 
control (13), we introduce the following Lyapunov fknc- 
tion: 

V(PT,xe) = i[kzz + X2uxz + 4X2 sin2($)] (14) 

Using(3)and(13)thetimederivativeofVcanbeexpressed 
as follows: 

ti(P,T, xe) = - I vc 1 [k2z,2 + X2kxez, + X4x:] (15) 

As V( PT, xe) is a semi-definite negative function, and as 
thesetofpoints(2, = xe = 0, ye = -k&n(v,)6,}over 
which V vanishes (under the hypothesis that 21, doea not 

figure 4: Domain of stability 

converges to zero) constitutes an invariant set for system 
(6), we know from La Salle’s theorem that any trajectory 
starting from a well defined bounded region will converge 
to this set: 

Furthermore, as ye = -Xsign(v,) once Z, = 0, the dy- 
namics of ye given by (6) becomes: 

& = -]v,]sin y 

Therefore, paths starting from the region where ze = 
xe = 0 and Iye I < XT, will converge to the origin point 
2, = ye = e, = xe = 0. 

Now, the remainin g question weneed to answer is: how 
to ensure that the representative point controlled by (23) 
will reach the manifold z, = xe = 0 within the region 
where Iye] < XT? 

This question can simply be answered by considering 
the Lyapunov function (14). prom figure(4), where sev- 
eral contour surfaces of V are represented. It appears that 
thae exists a value V” (one can verify easily that V” = 
V/(0,0, (ant-1)~) = 2X3)suchthatthesetofpoint(P,, xe) 
verifying V(P,, xe) 5 V” is the infinite union of com- 
pacts sets uxmected to one another by a unique point on 
the @-axis. Therefore, the domain S = {(P,, xJ/V(P,, 
xe) < V”, 0, E] - x, K[, 1 - xrye > 0) defines an open 
neighborhood of the origin point (P, = 0, xe = 0). Now, 
as V is a decreasing function of the state, if a trajectory 
starts inside the domain S, the representative point con- 
verges to the unique equilibrium point, (P, = 0, xe = 0). 
Note that, depending on the initial conditions, the gains 
X, p and k can be chosen so that the initial point belongs 
to S, insuring the convergence of the corresponding trajec- 
tory to zero. A practical computation of the set S can be 



obtained following the same method as the one developed 
in [ 121 this is done in Appendix. 

Using the estimated values, the dynamics of z, (given 
by (12) in the nominal case) turns out to be: 

3.2 Robustness 

In this section, we state in a more precise way the robust- 
ness problem in the state space of points (P, , xe). We will 
say that the closed-loop controller is robust (with respect 
to localization errors and curvature estimation) if the path 
following can still be achieved when the estimated values 
are considered instead of the exact ones. More precisely, 
suppose that we have determined a Lyapunov function V (P, , 
~e),andaregionSofthe(P,,~,)-space,suchthat: 
‘v’(Pe,xe) E StheLyapunovftmctiondecreasesinthenom- 
inal case (i.e. when exact statevalues are considered). Now, 
is it possible to determine a compact domain d(Q, X) c 
S such that: 3 y(Q, X) > 0 I ‘v’(dP,, 6~~) E Cl x X, and 

VP. > xe) E S \ 44 4, 

V(Pe, xe) 2 Y(Q, X) * m?, rie) < 0 (16) 

In other terms d(Q, X) is defined as a contour surface of 
V outside which the Lyapunov function decreases. In the 
case that such a set d(Q) X) is determined, the path fol- 
lowing control law is said to be robust against con&ura- 
tion inaccuracy (PC = PC + S PC) and curvature estimation 
(&ti;n?3+ 6kc), according to the notation introduced at 

. . 

Now, let us go back to system (6) and consider the closed- 
loop control (7) with the estimated state values instead of 
the exact ones. We get: 

(17) 

with 4, = iT-u[sign(v )sinB +X2 +ii ] r e e (18) e \e 

and& = e,+se,,ie = xe+Jxe,z, = 2,+62, 

and &. = Xi + SX;. Under the hypothesis that the error 
&9, is small enough, we consider the following first order 
approximation: sin ee = sin ee + de, cos 8,. 

Using this expression in (18) we get: 

Xe = -“([sign(v,) sine, + Xxe + ~.zJ - E) (19) 
P A 

where E represents the error term: 

E = &3+M% ~0s 6s + XGxe + $(&I, + Xsign(V,)Ge, 
+PJxe) - fiax: 

(20) 

.k = -lvcl(fze + E) (21) 

Now, in order to prove that the representative point con- 
verges towards an attractive domain let us consider thelya- 
punov function (14) anew, and compute its time derivative 
with respect to the dynamics of system (17): 

I; = +(k2z,2 + kXz,c + X4x; + X2kz,xe + X3xer) 
= +(x%x -H) 

whereX = (ze + g, Xxe + ;), c = 

a&=J=xa,a 
3 

3.2.1 Computation of the attractive domain d( a, X) 

prom this last expression, the set of point verifying V = 0 
may be viewed as the contour curve corresponding to the 
value H for the Riemannian distance defined by the de& 
nite positive matrix C iu the (.z~, xe) -plane, with respect 
to the new frame centered at (- g , - 5) and whose basis 
is obtained by keeping the same unit vector along the ze - 
axis andbymultiplyingby l/Xtheunitvector alongthex, 
axis., Depending on the sign of E, the set of points verify- 
ing V = 0 defines two symmetric ellipses with respect to 
the origin, see figure 5. From this representation we know 
that V < 0 for XT CX > H, i.e. outside the contour 
cnrveP=O 

Using Lagrange multipliers we can simply compute the 
extremal values of z, and xe along the contour curve V = 
0. 

Considering the augmented function GZ, = z, + mV, 
m E R&writigt,&t+ = % = 0, we de- 
duce that extremal values 08.~ are obt&ned for: xe = 
- w . Replacing this last expression in equation V = 
0 we obtain 

l -k<z <kwhenc>O 
k - e-3k 9 

l k<z <-kwhenc<O 3k- e- k 

Notethatx, = 0 whenz, = -2, andx, = -g when 
XE z, = z. 

Using a same reasoning with the augmented function 
G,, =xe+mV,mE Rweget: 

l -;<xe<&whenc<O, 

. &j,zz,<-fwhenc>O 

z,=Owhenx,=-~,andz,=-~wh~xe=~. 

This construction achieves to characterize the projec- 
tionoftheequipotentialcurveV = Ointhe(z,,x,)-plane. 
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Figure 5: The attractive domain in the ( ze, xe) - plane Figure 6: The attractive domain in Ai (0, X) 

Now, in order to compute the attractive set we need to bou- 
nd the two other state variables, ye and 8,. To compute 
these bounds easier we are going to consider a convex hull 
of the two ellipsoids obtained for E > 0, and E < 0. Let us 
consider the ellipse centered at the origin (ze = 0, xe = 
0) , whose equation is given by: 

1 x2 E2 
-g+-x2=- 
x2 e ]c2 e k2 (22) 

This ellipse is tangent to the previous two ellipses (E > 
0 or E < 0): vertically at the points (ze = g, xe = 0) 
and horizontally at the points (ze = 0, xe = -5). It is 
the smallest ellipse centered at the origin, with vertical and 
horizontal axis and containing the two ellipsoids. There 
fore, it constitutes a good approximation of their union (see 
figure 5). 

Using this approximation, we can now easily determine 
bounds on there maining two statevariables as follows. As 
2, = ye + ~e,sidv,) + PX~. 

0, = _ Y= - [Ze - PXe] 
x > 

M-+c) (23) 

Therefore the dynamics of ye given by (17) becomes: 

tie = --Iv,1 sin ( Ye - be - PXel 
x > 

(24) 

dtkn solongas lyeI -c 12, - ,uxeI. lyeI decreases. To 
compute a bound for ye let us look for the maximum value 
Of 2, - pXe Over the ellipse (22). On133 more we use La- 
grange multipliers: 

Consider the augmented function: 

G(z.-P,.) = z= --pxe+m($+$$-$) 
writing bat aG(-v;~xe~ = Wz;Xm.) = o. 

&=0.7; b5; p2; k=lO 

&. wegetxe = - x4 , replacing this expression in equa- 
tion (22) it comes: 

X36 
” = ‘kdm’ x=f 4 

xdPTj% (2% 

~emaximumvalueof Iz, -,qe I is thenobtainedwhen 
the signs of Z, and x are opposite: 

Max Ize - pxel = 14(X4 + pk2) 
k&,/m 

=Y (26) 

Therefore, so long as I ye I > Y, I ye I decreases. 
Now, as 8, = “e-pfe-yc the bound on Be can be de- 

duced as follows: 

(27) 

This last bound achieves the characterization of the do- 
main of attraction as the set of points (xe, ye, S,) in R3 de- 
bed by: 

-4F4X) = {(ye,ee,xe) E [-Y,Y] x [-@,@I x R, 
such that 

(28) 
If we want to determine it by means of the deSnition 

stated at the beginning of section3.2, the attractive domain 
d(Q, X) is given by the smallest equipotential of V sur- 
rounding di (R, X) . It must be noticed that this latter def- 
initionof A(& X) provides avery pessimisticrepresenta- 
tion of the actual attractive domain (see figure 6). 



3.2.2 Utility of d(Q, X) 

The precision specification is of great utility to design safe 
path following process. Indeed, it can be used to de6ne 
practical collision-fieepath when they arerealized mclosed 
loop form, i.e ifwe assume the inaccuracy domains Cl and 
X to be a priori known, the path is said to be achievable 
ift for any configuration taken on the perturbed path with 
control unprecsion A1 (Cl, X), the vehicle does not inter- 
sect obstacles. Figure7-a, presents areal situation (avehi- 
cle in a corridor). The uncertain localization set Q consid- 
ered here is a truncated cylinder (half-height 60, = 0.05- 
rd and radius Sxc(6y,) = 0.15m) centered around the es- 
timated configuration (we have fixed X = [-O.O1mT1, 
O.Olm-l]). One notices that, along the line segment, the 
vehicle may collide with obstacles because the projection 
ofd1(QX)onthe(y,,B,)-planeisgivenby 
ye = 0.9m and ee = 0.36rd (see figure 7-b). In this case, 
the planned path through the corridor appears to be no safe. 
Changing the values of the controller’s gains (see figure 
7-c) the robot’s trajectory does not collide with obstacles 
anymore(theprojectionofd1 (D, X) on ye, 0,-planeis given 
by ye = 0.27m and ee = 0.0&d). 

In conclusion, if one wants thevehicle to achieve safely 
a mission, the size of the attractive domain d1 (Q, X) (or 
d(st, X)) has to be minimized under the constraint that a 
judicious balance between response time, no output oscil- 
lation, robustness and the size of the stability domain S has 
to be found. 

4 Experimental results 

The proposed controllerhas been implemented on a ROBU- 
lERTM (Figure 8) using the VxWorks Real-time kernel. 

Three classes of experiments are shown in the sequel. Rach 
class contains two experiments and corresponds to a spe- 
cific choice of the controller gain k (we have set X = 5, 
p = 2 for all the experiments). In each case, the vehicle 
has to follow a 9 meters-long path successively made up 
with a line segment, three arcs of circle and a final line seg- 
ment as shown on figure 9. This trajectory represents the 
output of a typical path planner Initial com&uration and 
curvatureerrors are (p:(O), R=(O)) 1~ (0,2cm, zrd, 0). 

During these experiments, a constant speed of 20cms-l 
was maintained for the vehicle along the path. The sam- 
pling time (‘I’=) of the controller was fixed equal to 0.6s. 
During T, the mobile robot’s localization is continuously 
updated by integrating the wheels rotation angle (odome- 
try) and, when available, by exteroceptive (telemetric) mea- 
surements. Computations are processed with Extended Kal- 
man Filtering and yield a con6guration estimation PC(t) 
with tmcertainty characterization 1;2 (t) . The curvature es- 
timation is updated at each period by using the orientation 
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Figure 8: The ROM0 Sapiens robot 

estimates produced by the localization procedure: 

%“,‘=W where (t’ = t + T’) 
c e 

Results are shown on figure 10 where the boxes repre- 
sent the con@uration estimation of the vehicle, the ellipses 
represent the confidence domain of the position estimations, 
obstacles are represented by broken-lines. 

WeremarkthatwhenthegainIc = 1,therobotrunsinto 
the obstacles. This experiment corroborates what aheady 
we said in section concerning the choice of the gain and 
the size of the attractive domain. Jn the case where k = 3, 
the robot achieves his mission but with a great inaccuracy. 
Finallyforle = 10,inthelastexperiment,thetaskhasbeen 
performed in a very satisfactory way: the path performed 
by the robot merges practically with the planned one. 

5 Conclusion 

The precise determination of au attractive domain arotmd 
eachpointof thereference path, where therobotcouldpos- 
sibly lie during the closed-loop path following process, con- 
stitutes a new useful result for planning safe trajectories. 

Indeed, whereas previous works have considered thepro- 
pagation of estimation errors to design safe open-loop tra- 
jectories (see the work in [151 such an approach did not al- 
low to analyze the robustness of feedback controller with 
respect to localization errors. However, as wheeled robots 
may drift during their motion the question of designing ro- 
bust control laws to achieve stabilization process appears 
to be essential. 

In the anterior work in [121 such an attractive domain 
was characterized by means of a Lyaptmov function. This 
set was delimited by an equipotential surface, and its com- 
putation required a time-consuming optimization process. 

Here, by det ermining an explicit formulation of .A1 (a, 
X) we get a very simple tool to compute the attractive re 

Figure 9: “Eperimental result” The planned path for the 
ROBUTERTM 

gion along the path. Furthermore, the two-steps reasoning 
analyzing first the convergence to the surface 2, = 0 al- 
lows to specify smaller bounds on the state variables mak- 
ing the result more precise. 

Our theoretical robustness result has been confirmed by 
several experiments made on a mobile platform ROBU- 
TEEtTM . Tuning up the gains to minimize the size of the 
attracive domaiu under the constraint to balance between 
short response time, low output oscillation, robustness and 
large stability domain, appears to be the central question. 
We think that the design of a Variable Structure Control 
upon the sliding surface Z, = 0 could make this latter point 
easier; we are actually working on it. 
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Appendix 

Computation of the stability domain S 

Reconsidering the definition of S given in section 3.1, it 
must be noted that, in practice, the computation of the con- 
vergence domain S, as defined, is not an easy task. HOW- 

ever, if we consider Iye ] < & and assuming that: 

V(Y~, @e, xe) E Rx1 - n, 4~ R, V(K(O), xe(0)) < 
Min(2X3, QkXgq, 

moz 

then control (13) asymptotically stabilizes (ye, 8,) xe) at 
the origin. In the sequel we prove that the con@ration 
and curvature errors converge to zero. 

l the case that 2X3 < 4 kX presents no problem, 

l in the adverse case, we can easily shown that the max- 
imum of 2, on the contour curve: 

VPe, xe) - V(Pe(O), x&q) 

is given when xe = Be = 0. Hence zrnaZ = ye. 
However, as we want ] ye ] to remain inferior to &, 

itsufficetotakeV(P,,x,) < +. 
~nz!xE 

Now let us analyze the relationship between initial con- 
ditions and controller gains. 

Let us take the simple case that S is given by: S = 
{(pe, xe)/V(Pe, xe) < 2X3}, (we assume that 2X3 < 

kX 

2Xf,,, 
1 

In this case, the domain S must be bounded by 0, = 
5~. This leads us to find the relationship between the i& 
tial ~I@wation error (PT, XO) = (20, yo, Bo, xo)T and 
the controller gains. Let: 

Vi = $[k$ + X2pxE + 4X2 sin2(;)] < 2X3 a-4 

Since V (P, , xe) is decreasing in S, it follows: 

i [kzz + X2/&z + 4X2 sin”($)] < 2X3 (30) 

In order to assert that OFar is smaller than 7r the inequal- 
ity (3 1) must be satisfied (v, is assumed to be greater than 
‘zero): 

x72(1 + cos e. - he; - PX;] - 2keo(yo + pxo)x 

-qyo + Pxo)2 > 0 

(31) 
For example ifwe consider that (x0 = 0) and 2 ( l+cos 0,) - 
he; > 0, the inequality (31) is satisfied if we take a X 
greaterth~keoyo+IyoI cos tjdZ/[2(1+~0~ e,)-he,“]. 

Finally, for a given domain of possibleinitialconditions, 
we can always choose X, k and p such that the inequality 
be verified on the domain. 
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Figure 10: “Experimental results” The realized path for the ROBUTERTM 
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