
Abstract 
This paper presents a general line matching method 
based on geometrical invariants. A line segment is 
characterized locally by invariant parameters under 
the group of displacements within an image and the 
scale changes. Matching is achieved through two steps, 
features clustering and hypotheses verification. Ex- 
periments have shown an high rate matching on dif- 
ferent types of images. This is due to the stability of 
the used line invariants which leads to few hypothe- 
ses of matching, as well as the verification using geo- 
metrical constraints. Tests conducted on different se- 
quences have shown efficient matching of images and 
parts of scenes. 

I Invariant matching 
technique 

Matching an image to a model, or to another image 
for the purpose of object recognition, motion esti- 
mation or viewer localization is a common and im- 
portant task in computer vision. The problem of 
matching was widely treated [5, 6, 71. The invari- 
ants are the properties of geometric configurations 
which remain unchanged under an appropriate class 
of transformations such as rigid, alline and projective 
transformations, and therefore, they are of the major 
importance in various problems in matching tasks. A 
lot of work in object recognition and matching based 
on the invariant scene description has been already 
reported [l, 3, 41. Most of these invariants are de- 
veloped for planar objects, and are often applied to 
images with invariants computed from point sets and 
so, they are inherently error-prone. In the proposed 
matching approach, invariants features are directly 
computed from sets of lines. This type of invariants 
are less sensitive to the image noise. The essential 
philosophy of our approach is that the primitives in 
the images are to be described in terms of such in- 
variants and that these invariants provide all the in- 
formation about shape and configuration required to 
carry out the matching tasks. The article is organized 
as follows. In section 2, we give a brief review of the 
most important geometrical relations and some use- 
ful line representations in images. The section 3 de- 
scribes the analytical method to compute the invari- 
ant line features from corresponding projective bases. 
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The section 4 is a summary of experimental results 
realized on different types of computer generated and 
real data. We conclude with some future directions 
and applications of this work. 

2 Line coordinates in (8, r) 
space 

We deliberately use the projective representation [9] 
instead of polar representation [2] due to the fact that 
the former is homogeneous and can easily be subject 
to the matrix operations. However, with a view to 
the computation of the invariants, we may wish to 
have an unique representation of line (u and Xu rep- 
resent the same line). The representation (0, r) is a 
good candidate for our purpose; in addition, it can 
be related to the projective parameterization by the 
function F which maps the polar representation (6, r) 
to the projective representation (~1,212, us) : 

F : S2 e W3 

F(B, r) = (cos ~9, sin 8, -r) = (ui, ug, us) 

F maps the vector w = (e, r) representing a line 
in the (0,r) space into the parameters vector u = 
(~1, ~2, us) representing the same line in the projec- 
tive plane : 

F(w) = ‘1~ 

If ,9 E [0, ‘rr), then F-l exists and is defined by the 
mapping G : 

G : B3 t---d s2 
-1 a (tan L, 

G(ul, ~2, ~3) = 

(tan 3% ‘&$ U250 

(1) 
G maps the vector u into G(u) = w such that the 
followings equations define the same line : 

i 

u1z1+ u222 + u3z3 = 0 

(2) 

cos exl + sin 8x2 - rxs = 0 

As Xu and u define the same line, they will be mapped 
by G to the same w : 

G(h) = w 



In the projective plane, let P be a mapping : 

UI = P(u) = P(F(w)) (3) 

Note that to the vector u’ we associate the vector 
wr = (e’, YI) in the parameter space. In the projec- 
tive plane, the mapping P transforms u into u’; H’ is 
the corresponding mapping which transforms w into 
WI in the parameter space. w and WI are then related 
by : 

WI = G(d) = G o P o F(w) = H’(w) (4 

Where HI is a combination1 of the mappings G, P 

and F. 

3 Invariant line features from cor- 
responding projective bases 

Our purpose in this section is computing invariant 
encoding way (computation of the transformation P) 

such that any pair of corresponding lines will have 
the same features in an invariant parameter space. 
More specifically, let Image 1 and Image 2 be a pair 
of timely consecutive images obtained by moving a 
camera in a scene; and let I : 2 cos 0 + y sin 0 - T = 0 
and 1’ : xcost9’ + ysinB’ - r= = 0 be a pair of cor- 
responding lines belonging in these images. 1 and 1’ 
have the respective feature vectors w = (0, r) and 
W ’ = (6”, r’). The computed encoding must trans- 
form w and w’ to the same invariant vector, namely, 
WI. From analytic geometry, we know that an usual 
representation of a geometric entity (line in our case); 
is obtained by the coordinates in a given reference 
frame. On the other hand, one of the natural way of 
encoding lines in invariant manner is to find an unique 
transformation which maps a set of lines as a distin- 
guished reference frame into a common canonical ba- 
sis. The computed transformation is then applied to 
the remaining lines to obtain their coordinates in this 
canonical basis. Such coordinates are invariants for 
corresponding lines [8]. If we consider that the set of 

lines by is the chosen projective basis in Image 1, bR 

is the set formed by corresponding lines to bL . Le H’ 

be a projective relating lines in Image 1 and Image 2, 
we can ttthen write : 

bR = H,(h) 

Now, if we consider that P is an unique linear appli- 
cation which transforms the projective basis bL into 
a canonical basis bc : 

bc = P(h) 

lThe symbol o means the combination of mappings. 

If in Image 2, it exists an unique application P’ which 
transforms the lines forming the set bR into the canon- 
ical basis bc : 

bc = P’(bR) 

we can deduce that : 

bc = P’(H,(bL)) = P(bL) 

and that : 
P = P’ o H, 

P associates to each line in Image 1 an homogeneous 
vector P(Z). In Image 2, P’ also associates to each 
line I’ a vector P/(1’). As 1’ corresponds to 1, we can 
write : 

1’ = H,(Z) 

We can then deduce : 

P’(t) = P’(H,(Z)) = P(2) (5) 

The expression (5) proves that the representations ob- 
tained by applying respectively P and P’ to a pair of 
corresponding lines 1 and 1’ are identical; so these rep- 
resentations are invariants under the projective trans- 
formation H,. In the invariant parameter space, the 
feature vector WI is computed by applying the map- 
ping G, and because of the equality between P(Z) and 
P’(Z’), they have the same invariant parameter vector 
WI. So the lines 1 and 1’ are represented by the same 
invariant feature vector WI : 

WI = 
G(w(e, r))> 

(6) 
G(P’(F(e’, +))) 

3.1 Projective basis correspondence 

In the Image 1, we have chosen a feasible set of four 
coplanar lines as a basis bL. As we have seen before, 
to compute line features in the Image 2, we must 
identify the set of lines belonging to the Image 2 and 
corresponding to bL. The key idea to identify such 
set, is indexing the set bL by invariant parameters. In 
Image 2, the identification scheme will consist to the 
search of combination of lines which have the same 
index parameters as the basis bL. 

From projective geometry, it is known that there ex- 
ists only two independents invariants resulting from 
a set of five lines which are directly related to the 
order of lines which enter in the computation. These 
scalars, Ii and 12, are largely used in numerous recog- 
nition algorithms. Let FL = {ui, ui, ui, ui, u”,} be a 
set of five homogeneous lines; the invariant scalars 11 
and 12 computed from this set are : 

DmllDsz~~ I1 = /DIzI,,&sI, 
(7) 



Where the matrix Dijk is computed from homoge- 
neous coordinates of lines u:, uj”, and ui : 

Now, if we consider that the inverse of P is given by 
the matrix : 

( 

cos ef 

Dijk = sin ef 
?;j ?$ 

-7-f % -rj -rL 

1 Dij,+ 1 is the determinant of the matrix Dijk. In Image 
2 we form a set offive lines FR = {u{“, u$‘, u$‘, u$‘, uI,“>, 

where : 

We are dealing with homogeneous coordinates, vec- 
tors uf and Xi@, i = 1,. . . ,4, represent the same line 
and so : 

XiPUf=ei, i=1,...,4 

We can then deduce the followings equations : 
14:~ = (c0s Of’, sin@‘, -rib’), i = 1, . . . ,5 

Let Ii and Ii be the invariant scalars associated to 
the set FR computed from Dijk, the matrix of lines 

~:~,u~~,andu~,i,j,le=l,..., 5. 
If : 

I 
II = I; 

I2 = I; 
(8) 

We can deduce that : 

U!b = H 
2 s () i=1,...,5 u! (9) 

In Image 2, the corresponding projective basis, bR, 

is then formed by the lines represented by the homo- 
geneous vectors uib, i = 1, . . .4 : 

bR = {u,,“, ~'26, IL& u;}. 

The projective basis bR is then identified. 

3.2 Invariant encoding way computa- 
tion 

The computation of P and P’ depends on the lines 
forming the sets bL, bR and bc . P and P’ are homoge- 
neous matrices, with eight unknown coefficients, and 
so they are included in the projective transformation 
group. Usually, a pair of quadruples of correspond- 
ing lines are sufficient for the determination of pro- 
jective transformation. Let bL = {u~,up,u~,u~}, be 
the projective basis. bL line’s are represented by the 
followings homogeneous vectors : 

U: = (COS ei , sin ei , -$), i=l >“‘, 4 

The set bc = {ei, e2, es, e4) is the canonical basis 
whose the homogeneous vectors ei, i = 1, . . . ,4 are 
chosen such that : 

el = (cosO,sinO,O) = (l,O,O) 
e2 = (cos$,sin~,O) = (O,l,O) 

es = (cosO,sinO,-1) = (1,0,-l) 
e4 = (cos $, sin %, -1) = (0, 1, -1) 

&=all---- a12 a13 

cosef - sine! - -rF 

~2=a21- a22 a23 -=- 
coseij - sine; -I$ 

(10) 

(11) 

x3 = 
a11 - a31 a12 - a31 a13 - a33 

cos e; 
= 

sin e; 
= 

-ri 
(12) 

A4 = 
a21 - a31 a22 - a32 a23 - a33 

cos et 
= 

sin e; 
= 

-r$ 
(13) 

The resolution of equations (lo), (ll), (12) and (13), 
yields the coefficients aij, i, J’ = 1, . . . ,3. The matrix 
P can be then written : 

P=& (Et g EE ) (14) 

The coefficients pij and ci, i, j = 1. . .3 are given 
in the Annexe A. 

Finally, in Image 1, for each line 1 represented by 
the homogeneous vector u = (cos 8, sin 8, -r), we com- 
pute a pair of the invariant parameters (e’, rl) which 
are given by :: 

(Or, r’) = HI(L), r) = G(P(F(B, r))) = G(P.u) 

By Substitution of P defined in (14) and applica- 
tion of the mapping G described in the relation (1), 
the invariants parameters 6’ et r’ represented the line 
1 can be written : 

( 0’ = tan-‘(def/abc) 

r1 = -gcf 
((a’++(def)“) 

(15) 

The coefficients a, b, c, d, e, f, and g are explicited 
in the Annexe A. 
The respective substitution of t$ and rf with Oib and 
rib, i = 1,. . .4 in the formulas (14), we can easily 
compute the mapping P’ which transforms the pro- 
jective basis bR to the canonical basis bc, and then 
calculate the invariant parameters for each line in Im- 
age 2. 



4 Experimental results 

The proposed approach was implemented on Station 
SUN using the C programming language. The used 
images are timely consecutive and obtained by an un- 
known displacement of camera in a polyhedral scene. 
The approach has been verified on both computer 
generated and real data : 

4.1 Synthetic images 

We have developed a software which generates syn- 
thetic scenes. The images taken with a virtual camera 
can be formed.The following figures present the result 
of line matching between images of the same planar 
object observed at different viewpoints. 

Figure 1: Polygon 1 - Polygon 12 

After the estimation of the projective transforma- 
tion relating Polygon 1 and Polygon 12, we predicted 
the positions of segments in Polygon 12. The cor- 
responding line segments in the pair Polygon 1 and 
Polygon 12 are presented in the figure 3. 
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Figure 2: Representation of lines in Polygon 1 and 
Polygon 12 in the invariant parameter space (e’, rl) 

Figure 3: Matched line segments in Polygon 1 and 
Polygon 12 

4.2 Real images 

By the conducted tests on real images, we prove that 
the invariant line matching technique can be applied 
for line matching in image sequences which are dif- 
ferent by their nature (indoor, outdoor image) and 
the aim of the line matching tasks (modeling, recog- 
nition, . . .). 
In the image Panel 4 of the couple in figure 4, we 
choose the set FL = {20,21,22,23,28}, the associ- 
ated invariants are 11 =1.0928, 12 = 0.2529. The 
projective basis by is composed by the following line 
segments {20,21,22,23}. In Panel 7, FR found by the 
searching process is formed by the lines { 40,46,49,50,39}, 
the computed invariants are I: =1.07 and Ii = 0.2496. 

The basis bR is then identified. 

Figure 4: Panel 4 - Panel 7 
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Figure 5: Representation of lines in Panel 4 and Panel 
7 in the invariant parameter space (#, $) 
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Figure 6: Real and predicted positions in Panel 7 

The line segments in Panel 4 which have a corre- 
sponding line segment in Panel 7 are shown in the 
figure 7. 
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Figure 7: Matched line segments in Panel 4 and Panel 
7 

The figure 8 presents aerial images of an industrial 
city taken at two different viewpoints. Because the 
altitude of the camera position is bigger than the size 
of the observed objects size, the primitives in the im- 
ages Aerial 1 and Aerial 2 are related by a projective 
transformation; and so, the proposed line matching 
technique can be applied to this type of images.In 
the image Aerial 1, the set FL is selected. In Aerial 
2, we idenify the set FR and the projective basis bR, 

as is fetched in the figure 8. 

Figure 8: Aerial 1 - Aerial 2 
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Figure 9: Representation of lines in Aerial 1 and 
Aerial 2 in the invariant parameter space (@I, rl) 

The predicted positions of line segments in Aerial 2 
are presented in the figure 10. 
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Figure 10: Real and predicted line segments of Aerial 
2 

After the verification scheme, the corresponding 
line segments in Aerial 1 and Aerial 2 are shown in 
the figure 11. 
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Figure 11: Matched line segments in Aerial 1 and 
Aerial 2 

The invariants line features are then computed and 
represented in the same parameter space. 



5 Conclusion 

This report was dealing with the problem of analyz- 
ing of the timely consecutive images using feature- 
based approach. In the past, this problem has been 
discussed under various geometrical and physical set- 
tings. In the present work, a new approach was for- 
mulated; it is based on the transformation invariant 
indexing, and largely inspired by the classical geomet- 
ric hashing. The lines in the images are represented 
by an invariant feature vector from the sets of cor- 
responding lines chosen as frames. The line match- 
ing is then reduced to the clustering of two sets of 
primitives in a common parameter space. The veri- 
fication scheme is included in the matching stage to 
ensure that correspondence of line features in the de- 
rived parameter space implies the correspondence of 
lines in the image plane. As the local properties of 
the invariants make this method efficient against to 
occlusions, the hypotheses verification by geometri- 
cal constraints provides a robust technique to scene 
clutter. We show that the approach can be used in 
a noisy environment where only line features can be 
rather reliably detected. Future research may include 
considering the sensitivity of the geometric matching 
with line features, analytically determining how the 
uncertainty of line parameters affects the computed 
invariants and resolve the problem of the false match- 
ings due to the bad primitives extraction in the im- 
ages. 

References 

[l] Forsyth, D. and all. Invariant descriptors for 3D 

object recognition and pose. IEEE TRANSAC- 
TIONS ON PAMI, 1991, Vo1.13, no.10, p.971- 
991. 

[2] Hu, Z. and De.Ma, S. The three conditions of a 

good line parameterization. Pattern Recognition 
Lett, 1995, ~01.16, p.385-388. 

[3] Mohr, R. and all. Relative 3D reconstruction us- 

ing multiples uncalibrated images. Tech. Rep. RT 
84-IMAG LIFIA 12, LIFIA-IRIMAG, 1992. 

[4] Mundy, J. L. and Zisserman, A. (ed.). Geomet- 

ric Invariance in Computer Vision. MIT Press, 
Cambridge, Massachusetts, London, England, 
1992. 

[5] J.K Cheng and T.S Huang. Image registration by 
matching relational structures. Pattern Recog., 
17(1):149-159, 1984. 

[6] R. Deriche and 0.D Faugeras. Tracking line seg- 

ments. Proc of the first ECCV, Antibes, 1990, 
Springer-verlag, Berlin, pages 259-269, Image 
and vision computing journal, November 1990. 

[7] B. Giai, R. Deriche, T. Vieville, and 0.D 
Faugeras. Suivi de segments dans une &qquence 

d’images monoculaires. Technical report 2113, 
INRIA Sophia-Antipolis, France December 1993. 

[8] F. Klein. Elementary Mathematics from Ad- 

vanced Standpoint: Geometry. Macmillan, New 
York. Third Edition (English Translation), 1925. 

[9] D. Kachi, and X-W. Tu Matching of Line Fea- 

tures with Projective Invariants In proceedings of 
The International Society for Optical Engineer- 
ing SPIE’95 -Vision Geometry IV-, July 9-15, 
San-Diego, U.S.A, Vo12573 pp. 96-107. 

Annexe A 

cl = -7-i sin(@ - ~9:) + ri sin(@ - e;) - r$ sin(@ - et) 
c2 = -rt sin(@ -e;) + 7-i sin(@ - e:) - r! sin(@ - e:) 
c3 = r$ sin(Bi - e;) - 7-i sin(@ - e$ + rf sin(@ - e$ 
pll = c2(clrg sin epclrF sin e;+c3r; sin $-c3$ sin e:) 
p12 = -c2(c17$ c0s 8~--clrf c0s 08+C37$ c0s @-c37$ c0s ei) 
p13 = c2(c1 sin(@ - e:) + c3 sin(@ - 8;)) 
~21 = clc3(rf sine; - rg sine;) 
p22 = -c1c3(rfc0s8~ - r~cos@) 
p23 = -qc3 sin(@ - eg) 
~31 = qc2(~f sine; - pisine!) 
p32 = cl c2 (rt sin e; - rf sin e;) 
p33 = -clc2 sin(@ -e;). 
a = rgsin(@ - e;) - risin(@ - eg) +risin(@ - e;) 
6 = ri sin(8 - 0:) - rg sin(B - et) + rf sin(@ - 0:) 
c=-r~sin(B~-~~)-r~sin(B~-B~)+r~sin(0~-~~) 
d = -risin(e - 0;) + rf sin(0 - 0:) - rt sin(@ - 0:) 
e = ri sin(@ - e;) - ri sin(@ - e$ + rt sin(8; - e;) 
f = ri sin(@ - e;) - 7$ sin(@ - et) + ri sin(@ - e;) 
g = r$ sin(0 - ef) - rt sin(8 - et) + r sin(@ - e:) 


