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Abstract 

In general semimodules, we say that the image of a linear 

operator B and the kernel of a linear operator C are direct 
factors if every equivalence class modulo C crosses the 
image of B at a unique point. For linear maps represented 

by matrices over certain idempotent semifields such as the 
(max, +)-semiring, we give necessary and sufficient con- 

ditions for an image and a kernel to be direct factors. We 
characterize the semimodules that admit a direct factor (or 
equivalently, the semimodules that are the image of a lin- 
ear projector): their matrices have a g-inverse. We give 
simple effective tests for all these properties, in terms of 
matrix residuation. 

1 Introduction 

Classical linear control theory is built on a firm algebraic 
ground: vector spaces, and modules. There is some ev- 
idence that the construction of a ‘geometric approach’ 
of (max, +)-linear discrete event systems, in the spirit 
of Wonham [14], requires the analogue of module the- 
ory, for semimodules over idempotent semirings, such as 

the ‘(max, +) semiring’ lR,, = (Iw U (--co}, max, +). 
By comparison with modules, the theory of semimodules 
over idempotent semirings is an essentially fresh subject, 
in which even the most basic questions are yet unsolved. 

Clearly, the image of a linear map F : X + y 

should be defined as usual: im F = {F(x) 1 x E X}. 

But what is the kernel of F? Some authors [7, 121 de- 
fine ker F = {x E X 1 F(x) = E}, where E is the zero 
element of Y. This notion is essentially non pertinent for 
&&,-linear maps, since ker F is in general trivial, even 
for ‘strongly’ non injective maps. 

Consider now the following alternative definition 

ker F = {(x, x’) E X2 1 F(x) = F(x’) } . (1) 

Clearly, ker F is a semimodule congruence, and we can 
define the quotient semimodule X/ ker F. Now, triv- 

ially, the canonical isomorphism theorem holds: im F 2: 

X/ ker F. Thus, in general semimodules, (1) seems to 
be the appropriate definition. For control applications, it 

is indeed appropriate, since F typically represents an ob- 
servation map, by which we wish to quotient some state 
space. 
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In this paper, we consider the linear projection problem. 
Consider three semimodules U, X, Y and two linear maps 
B, C: 

LfB’xLy. (2) 

We say that im B and ker C are directfactors if for all x E 
X, there is a unique 6 E im B such that Cx = Ct. When 
it is the case: 1. the map II: : X + X,x I+ z, which is 
linear, satisfies (II;)’ = l-l;, ll:B = B, Cl-I: = C <l-I: 

is the projector onto im B, parallel to ker C); 2. we have 
the isomorphism X/ ker C 2: im B; in particular, if L4 and 
X are free finitely generated semimodules, then the linear 
map B, which can be identified with a matrix, yields a 
parametrization of the ‘abstract’ object X/ ker C. 

In [5], a first answer to the projection problem was 
given, in a nonlinear setting. If U, X, Y are complete 
lattices, and if B, C are (possibly nonlinear) residuated 

maps (see 5 2.2 below), it was shown that im B and ker C 
are direct factors iff, setting II = B O (C O B)” O C, (where 
F” denotes the residuated map of a map F), we have 
C o Il = C and Il o B = B. Even in the simplest case 

of Knax -linear operators over free finitely generated lR,,- 

semimodules (that is, when B and C are matrices with 
entries in lR max), the operator Il = B O (C O B)$ O C is a 
complicated object (a min-max function in the sense of 
Olsder and Gunawardena - see e.g. [lo]), and the test 
C 0 II = C, II 0 B = B, is computationally difficult (an 
example of non trivial direct factors was given in [5], for 
24 = Y = (IR,,)2, X = (lR,,)3, the proof that im B 

and ker C are direct factors involved a tedious computa- 
tion of equivalence classes, together with a geometrical 
argument). 

In this paper, we give a much simpler test for matrices: 
im B and ker C are direct factors iff there exist two matri- 

ces L , K such that B = L C B and C = C B K (we denote 
with the same symbol B the matrix B and the linear map 
x H Bx). Then, II, - ’ - LC = BK. The existence of 

the matrices K, L can be checked very simply (in polyno- 
mial time) using residuation of matrices (and not of linear 
maps). 

As a by-product, we solve the following problem, 

which was left open in [5]: given a matrix B, does there 

exist a projector onto im B ?; or, equivalently does there 

exist a matrix C such that im B and ker C are direct fac- 

tors? The answer is positive iff B admits a g-inverse, that 



is, iff B = BXB, for some matrix X. The existence of a 
g-inverse can also be checked (simply) in polynomial time 
using matrix residuation. 

The proofs are critically based on a linear extension 

theorem, which states that a linear form F on a finitely 
generated subsemimodule of (IR,,)” can be represented 
by a row vector G: F(x) = Gx. This result was 
proved by Kim [8, Lemma 1.3.21 for matrices with en- 
tries in the Boolean semiring. Cao, Kim and Roush [4, 

Th. 4.7.41 proved a variant of this result for the semiring 
([0, 11, max, x). As in the case of [8, 41, the proof con- 
sists in proving that the maximal linear subextension is an 

extension. This seems to require very strong properties on 
the dioid (lattice distributivity, invertibility of product). 

Note that certain results pertaining to kernels rely upon 
a linear extension theorem whereas this theorem is not re- 
quired to prove dual results on images 

In 52, we introduce the algebraic notions used in the 
paper. In 53, we prove the linear extension theorem, and 
derive factorization theorems for linear maps. In 54, we 
characterize direct factors. In §5, we relate the existence 
of projectors to the existence of g-inverses. 

2 Algebraic Preliminaries 

We briefly and informally recall the few algebraic results 
needed here. More details can be found in [l] for dioids 
and ordered sets, and in [7] for semirings and semimod- 
ules. A seminal reference in residuation theory is [3]. See 
also [6]. 

A semiring is a set S equipped with two laws @, 8, 
such that: (S, @) is a commutative monoid (the zero is de- 
noted E); (S, 8) is a (possibly noncommutative) monoid 
(the unit is denoted e); @ is right and left distributive over 
@; and the zero is absorbing. A semiring in which non 
zero elements have an inverse is a semi$eld. A semiring 
S is idempotent if Vu E S, a @ a = a. Idempotent semir- 
ings are also called dioids. In this paper, we will mostly 

consider dioids such as Iw,,, which is also a semifield. 

2.1 Order properties of dioids 

A dioid (or more generally, an idempotent additive 

monoid) is equipped with the natural order relation: 

ulb _ u@b=b. (3) 

Then, a @ b coincides with the upper bound a v b for the 
natural order 5. Note that E is the bottom element of D: 

VX E 2), E 5 X. 

Moreover, if D is a semifield, (D, 5) is a lattice. In- 
deed, for all non zero a, b, a A b = (a-’ v b-l)-’ = 
(u-i @b-l)-’ ; if a or b is zero, a A b = E. This shows that 

(;I), 5) is a lattice. We say that the idempotent semifield D 
is distributive if the lattice (D, 5) is distributive [ 11. 

For the sake of symmetry, we will complete an idem- 
potent semifield D with a maximal element T (for “top”), 
which satisfies a @ T = T, Vu E D U {T}, and a @ T = 

T&z = T,Vu E (DU{T})\{E}. Wedenote?? = DU{T} 

this dioid, and we will call it the top completion of 2). 
In 5, the product also distributes with respect to A: 

Va,b,cEi?, 
u(cr\d) = ucr\ud, 
(cr\d)a = cu r\da (4) 

(this property does not hold in general dioids). 

2.2 Residuation 

Definition 1. We say that a dioid 27 is residuuted if 

1. foralluandbinD,{xED ]uxsb}admitsamaxi- 
ma1 element denoted u\b; 

2. {x E 29 I xu I b} admits a maximal element de- 
noted b/u; 

3. (D, I) is a lattice. 

Then, the maximal element of {x E D ] uxc I b} ex- 

ists and can be denoted a\b/c which can be read indiffer- 
ently as (a\b)/c or u\(k,c). 

The top completion S of an idempotent semifield S is 
residuated, with u\x = u-lx if a is invertible, E\X = T, 

and T\x = s if x # T, T\T = T (similar formulae 
for /). 

Consider the following linear equations in X: 

AX=B, (54 

XC=D, (5b) 

AXC=F, UC) 

where X, A, . . . are (possibly rectangular) matrices with 

entries in a residuated dioid V. 
We extend the .\. and -1. notation to matrices: 

A\B%f//{X IAXiB}, @a) 

D/CEfv{X IXCiD}, (6b) 

A\F/C%ff{X I AXC 5 F} . (6~) 

Explicitly, we have the following formulae, which relate 
the residuation of matrices to the residuation of scalars: 

(A\B)ii = A Aki\Bki t 
k 

(74 

(A\FIC)ii = A Aki\Fkl/Cil . 
kl 

(7c) 

To decide whether the matrix equations (5) have a so- 
lution, it suffices to check that the maximal subsolution 
satisfies the equality. 



Proposition 2. Take jive matrices A, B, C, D, F as 
above, with entries in a residuated dioid. Then: 

3X, AX = B _ A(A\B) = B , (84 

3X, XC = D _ (D/C)C = D , @b) 

3X, AXC = F u A(A\F/C)C = F . (8~) 

2.3 Semimodules 

In this section, S denotes an arbitrary semiring. A right 
S-semimodule, or a right semimodule over S, is a com- 
mutative monoid (E, @), together with an external law 
& x S -+ E, (u, s) H U.S, which satisfies, for all U, IJ E E, 

s, t E s, u.(st) = (u.s).t, (u @ IJ).s = u.s @ LJ.s, 
u.(s $ t) = u.s @ u.t, e.s = e, ux = e, u.e = u. 

Left S-semimodules are defined dually. For simplicity, 
we will simply speak of semimodule when the underlying 

semiring S and the side (right vs. left) are clear from the 

context. 
In a semimodule over a dioid, addition is idempotent. 

Indeed, a @a = a.e @ a.e = a.(e @ e) = a.e = a. 
A map F from a (right S-) semimodule E to a (right 

S-) semimodule 3 is linear if it is additive (Vu, u E 

E, F(u @ u) = F(u) @ F(u)) and right-homogeneous 
(Vu E &,s E S, F(u.s) = F(u).s). The set of linear 

maps E + 3 is denoted Horn (I, 3). 
A generating family of a semimodule & is a family 

{Ui Iis1 of elements of & such that each element u E E 
writes as a finite linear combination u = ei,, ui .si, with 
Sj E S (‘finite’ means that {i E I 1 Sj # E } is finite, even 
if I is infinite). A generating family {Ui}icl is a ba- 
sis if BiEl ui.si = @iE, ui.ti, with {i E I 1 st # E] and 
{i E I 1 ti # E } finite, implies si = ti, for all i E I. A 
semimodule is finitely generated t$g., for short) if it has a 
finite generating family. A semimodule is free if it has a 
basis. 

The termfree for & arises from the following universal 
property: given an arbitrary family {gi}i,, of elements of 
a semimodule 3, there is a unique linear map F : & + 3 
such that F(ut) = gi, Vi E I. 

All semimodules with a basis of II elements are isomor- 
phic to S”, equipped with the laws: Vu, u E S”, s E S, 

(u $ u)i = ui $ vi, (U.s)i = ui.s. A linear map 
F : S’ + S” writes F(x) = Ax, where A is a n x p 
matrix with entries in S. 

We will use the following notation, for matrices: 

transpose: (AT)tj = Ajt , 
kernel: kerA= {(x, y) E (9)’ I Ax = Ay} , 
image: imA={Ax 1~~9). 

That is, matrix A is identified with the linear map x H 
Ax. We will use this convention systematically in the se- 

quel. 

3 Linear Extension Theorem and 
Factorization of Linear Maps 

Let us begin with an elementary and apparently innocent 
property. 
Proposition 3. Let S denote an arbitrary semiring. Con- 
sider a free S-semimodule 3, two S-semimodules G, ‘Z-l, 
and two linear maps F : 3 + IFI, G : G -+ Ii. The 
following assertions are equivalent: 

I. imF cimG; 

2. there exists a linear map H : 3 + G such that F = 
GOH. 

Proof Clearly, (2) implies (1). Conversely, taking a basis 
of 3, {Ui}iE,, for all i E I, there exists hi E imG such 
that F(ui) = G(ht). Since 3 is free, setting H(ut) = hi, 
for all i E I, we define a linear map H : 3 + 9, which 
satisfies F = G 0 H. 0 

The dual of Prop. 3 requires some conditions on the 
semiring, as shown by the following counterexample. 

Example 4. Let 3, 8,7-Z denote three free semimodules, 
and consider two maps F : ‘l-l + 3, G : 3-1 -+ 9. The 
inclusion ker G c ker F need not imply the existence of a 
linear map H : 6 -+ 3 such that F = H O G. Consider 
the semiring IV,, = (IV U { --oo), max, +) equipped with 
the laws @ = max, 8 = +, 3 = 0 = ‘Ft = N,,, 
G(x) =x+2, F(x) =x+1. WehavekerG CkerF 
(in fact, ker G = ker F = {(x, x) I x E IV,, }) but there 
exists no linear map H such that F = H o G. Indeed, any 
linear map H : N,, --+ N,, writes H(x) = x +a where 
a = H(0) E IV,,. We obtain F(0) = 1 = 2 + a: a 
contradiction. 

We will derive the dual of Prop. 3 from the following 
semimodule version of the Hahn-Banach theorem. 

Theorem 5 (Linear Extension). Let S be a distributive 
idempotent semifield. Let 3, B denote two free fg. S- 
semimodules, and let 7-Z c 6 be a fg. subsemimodule. 
For all F E Horn (‘H, 3) there exists G E Horn (G, 3) 
such that Vx E 7-l, G(x) = F(x). 

Proof It suffices to prove the result when D = S” and 
3 = S. Since 7-t c &7 is f.g., we have ‘Ft = im H, for 
some H E Snxp. Clearly, we can assume that H has no 
zero row. In this case, for all 1 5 i 5 n, 

L(i) = {j 1 1 P j I P, Hij # E } # 0 . 

Let H., denote the j-th column of H, and let F(H) denote 

the row-vector whose j-th entry is F(H.j). We have to 
prove the existence of a row-vector G E Slxn such that 

F(H) = GH. (9) 



Using (8b), this is equivalent to 

F(H) = (WwqH (10) 

Using (7b), we get: 

((F(H)/H)H)j = @ ( 
k 

/j F(H)IHil) Hkj . 
IcL(k) 

Using the distributivity of product with respect to A 
(see (4)), we obtain: 

((fVWH)fJ)j = @ A F(HhH,T%j . (11) 
k [EL(k) 

Let Q denote the set of maps p : { 1, . . . , n} -+ &L(R), 
such that q(k) E L(k), for all k. Since the lattice (S, 5) 
is distributive, we have: 

((F(H)IH)H) = A @ F(H)p(k)H,-,‘(,)Hkj 
I p& k 

= A @ F(~po(k))H,-,‘(k~Hkj 

PC@ k 

(the last equality is by linearity of F on im H). To show 
that (F(H)/ H) H > F(H) (the other inequality is triv- 
ial), it remains to check that for all rp and j, 

CB Hq(k)H&)Hkj > H.j . (12) 
k 

If Hij = E, then the inequality (12) is plain. If Htj # E, 

we choose k = i, and obtain Htqci) Hi& Hij = Hij, which 
shows that (12) holds and the proof is complete. 0 

Corollary 6. Let S be an idempotent distributive semi- 

field. Let 3,8, ‘FI denote three free fig. S-semimodules, 
and consider two maps F : ?i -+ 3, G : Yl + &7. The 
following assertions are equivalent: 

1. ker G c ker F; 

2. there exists a linear map H : G + 3 such that F = 

H o G. 

Proof Clearly, 2 implies 1. Conversely, assume that 

ker G c ker F. Then, there exists a map K E 

Horn (im G, fl such that K(G(x)) = F(x), for all x E 

7f. Indeed, for any y = G(x) E im G, define K(y) = 

F(x). Since ker G c ker F, the value K(y) is indepen- 
dent of the choice of x such that y = F(x). Clearly, 

the map K is linear. By Theorem 5, K admits a linear 

extension H E Horn (G, a. For all x E 7-t, we have 
HO G(x) = K(G(x)) = F(x), hence H D G = F. 0 

4 Direct Factors in Semimodules 
and Linear Projectors 

Definition 7. Let X be a subset in a semimodule X and 
E be an equivalence relation in X. We say that x in X has 
a projection on X parallel to E if there exists 6 in X such 
that 6 1 x. We say that X crosses E if there exists such 
a projection for all x in X. We say that X is transverse 

to & if the projection of any x is unique whenever it 
exists. Finally, we say that X and E are direct factors if 
existence and uniqueness of the projection is ensured for 
all x in X. 

In the previous definition, consider X = im B for B E 

Horn (U, X) and & = ker C for C E Hom(X, Y), 
where U, X and Y are semimodules over a semiring S. 
If im B and ker C are direct factors, II: denotes the cor- 
responding projector. It is straightforward to check that 
l$ E Horn (X, X). Also, from the very definition, it 
comes that 

B = l-I;B ; C = Cl-I;. (13) 

However, the existence of a linear projector Il (that is, 
such that 112 = II) satisfying (13) is not a sufficient con- 
dition for im B and ker C to be direct factors. Indeed, for 
any B and C, the identity over X satisfies (13). 

Theorem 8 (Existence). Let S denote an arbitrary 
semiring. Let B E Horn (U, X) and C E Horn (X, y) 
where U, X, y are free fg. S-semimodules. The follow- 
ing statements are equivalent: 

I. there exists K E Horn (X, U) such that 

C=CBK; (14) 

2. imC = imCB; 

3. im B crosses ker C. 

Moreovel; if S is a residuated dioid, a practical test for 
checking that the above conditions hold true is by trying 

the equality 

Proof 

C = CB((CB)\C) . (1% 

1 =+ 2 The assumption implies that im C c im CB 

but the converse inclusion is trivial. Hence equality holds 
true. 

2 + 3 From the assumption, it follows that for all x E X, 
there exists u E L! such that Cx = CBu. The projection 
of x we are looking for is 6 = Bu. 

3 =+ 1 By assumption, for all x E X, there exists u E U 

such that Cx = CBu. That is to say, imC c imCB. 
From Prop. 3, it follows that there exists K E Horn (X, U) 

such that C = CBK. 



The practical test follows from statement 1, together 

with (8a). cl 

Theorem 9 (Uniqueness). The mappings B and C are as 
in the previous theorem. But now S is an idempotent dis- 
tributive semifield. The following statements are equiva- 
lent: 

I. im B is transverse to ker C; 

2. ker B = kerCB, 

3. there exists L E Horn (y, X) such that 

B=LCB. (16) 

A practical testfor checking that they hold true is by trying 
the equality 

Proof 

B = (B/(CB))CB . (17) 

1 =+ 2 By assumption, if there exist u and u’ such that 
CBu = CBu’, since x = Bu has a unique projection on 
im B parallel to ker C, it should be that Bu = Bu’. This 
means that ker CB c ker B. But the converse inclusion is 
trivial, hence equality holds true. 

2 =+ 3 If ker B = ker CB, from Cor. 6, there exists L E 
Horn (y, X) such that B = LCB. 

3 + 1 For some x, suppose there exist two projections 
Bu and Bu’ on im B parallel to ker C. Then CBu = 
CBu’, hence LCBu = LCBu’, thus Bu = Bu’ and the 
projection is unique. 

The practical test follows from statement 1, together 

with (8b). 0 

Corollary 10. Zfim B and ker C are directfactors, then 

n; =~c= BK =(B/(cB))c=B((~B)\~). (18) 

Proof If B and C are direct factors, then (14) and (16) 
both hold true. Consider II = B K. From (16), Il = 
LCBK, and then from (14), Il = LC. Thus, Ti = BK = 
LC = I12. In addition, this shows that, for any x, IIx 
belongs to im B and, moreover, (14) shows that CIIx = 
Cx, which means that the projection on im B is parallel to 
ker C. Thus this projector Il is indeed II:. The last two 
expressions in (18) result from the choice of maximal L 
and K previously mentioned. cl 

Remark 11. Gathering the results in (15) on the one 

hand, of (13) and (18) on the other hand, one has that 

C = CB((CB)\C) = C(B/(CB))C . WW 

Similarly, with (17) on the one hand, (13) and (18) again 
on the other hand, one obtains 

B = (B/(CB))CB = B((CB)\C)B . (19b) 

However, while the pair of leftmost equations have been 
proved to be a test that im B and ker C are direct factors, 
there is no evidence at this moment that the other pairs of 
equations can play the same role. 

Remark 12 (Duality). If S is an idempotent distributive 
semifield, by transposition, it is straightforward to check 
that im B crosses ker C if, and only if, im CT is transverse 

to ker BT. Likewise, im B is transverse to ker C if, and 
only if, im CT crosses ker BT. Finally, im B and ker C 
are direct factors if, and only if, im CT and ker BT are 

so. In this case, (II;)’ = II$ (in general, (M/N)T = 
NT\MT). 

5 Direct Factors and g-Inverses 

In this section, we answer the question of when a semi- 

module im B admits a direct factor ker C. Unlike in the 
case of usual linear spaces, this question cannot receive a 
positive answer for any linear operator B. An explicit test 
is given to characterize homomorphisms such that their 
images admit a direct factor. 
Definition 13. Let Lf, X denote two semimodules over an 
arbitrary semiring S. Let B E Horn (U, X). 

1. An element F E Horn (X, U) such that B FB = B is 
called a g-inverse of B; 

2. when B admits a g-inverse, it is called regular; 

3. a g-inverse F which satisfies FBF = F is called a 
reflexive g-inverse; 

4. when S is a dioid’ , an element F E Horn (X, U) such 
that B FB 5 B is called a g-subinverse of B. 

Theorem 14. Let U, X denote free fg. semimodules over 
a residuated dioid 2). Then: 

1. Any B E Horn (U, X) admits a maximal g-subinverse. 
It is denoted Bg. In matrix terms: BS = B\B/B. 

2. When B is regulal; BS is the greatest g-inverse and 
B’, defined by Bg B Bg, is the greatest reflexive g-inverse 
ofB. 

Proof 

1. This is an immediate consequence of (8~). 

2. If Bg is a g-inverse, then B’ is the maximal reflexive 
g-inverse: indeed, B’ is a reflexive g-inverse since 

BB’B = (BB”B)B”B = BBgB = B , 

B’BB’ = B”(BBgB)B”BB” = Bg(BB”B)B” 

= B”BBg = B’ _ 

‘In this case, the monoid (Horn (U, X), @) is naturally ordered by 
FiGiffF@G=G. 



It is maximal since, if F is another reflexive g-inverse, 
then F 5 Bg because BS is the maximal g-inverse. It 

follows that 

F = FBF 5 B”BB” = B’. 

Finally, if B is regular, then B B’B = B and B’BB’ = 

B’. cl 

Theorem 15. Let S be a distributive semtfield, L4, X be 

freefg. S-semimodules, and B E Horn (U, X). This B is 

regular iff im B admits a direct factor ker C, where C E 

Horn (X, Y) and Y is a free fg. S-semimodule. One can 

take for C any reflexive g-inverse of B. 

Proof Let BP be any reflexive g-inverse of B. Then the 
statements of Theorems 8 and 9 are satisfied with Y = ZA, 
C = BP, L = B, K = BP, and ker BP is the direct factor 
we are looking for. 

Conversely, if im B admits a direct factor ker C, by 
(16), B = LCB, and then by (18) B = BKB, which 
shows that B is regular. cl 

Remark 16. When B is put in the form 

Qt 

where P and Q are permutation matrices and D has no 
zero rows and columns, it is easy to check that Dg - and a 
fortiori D’ 5 Dg -have no T entries and that a particular 
reflexive g-inverse of B is 

B’ = Q-1 tr ; p-1 
( > 

Remark 17. The maximal reflexive g-inverse does not al- 
ways coincides with the maximal g-inverse. For example, 
take S = IR,,, and consider 

BE (~;8),Bg= (!;:13> # B’= (22;;) 

Example 18. The following matrix with entries in Iw,,, 

B= ii; , 
( > 

is regular whenever n > 0 and not regular otherwise: 

Observe that the image of any homomorphism being in- 
variant by translation along the first diagonal, it is enough 
to represent im B by its projection on any plane orthogo- 
nal to that diagonal (see figure). 
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