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Abstract l A(r(t)) = Ai, B(r(t)) = Bi when r(t) = i. 

This paper considers the mode-dependent state- 
feedback control problem of linear systems subject to 
random Markovian jumps in parameter values. For 
this kind of systems, the mean-square stability does 
not ensure the stability of every mode in the determi- 
nistic sense. We provide stabilizing solution in both 
senses. The proposed approach differs from the modi- 
fied jump regulator approach and has several advan- 
tages. The proposed conditions are only sufficient, 
but less conservative. We can treat uncertainties that 
can affect modes or the transition probability matrix. 
The problem is formulated as a convex constraint 
(LMIs) one. 

Here Ai E Rnxn, Bi E Rnxm, i = 1,. ..N, are 
known matrices. System (1) can be viewed as a Mar- 
kov process with randomly jumping parameters. This 
means that the system operates under several known 
“modes” (Ai, Bi). Due to random changes of the pa- 
rameter r(t), the system can “jump” from one mode 
to the other, according to the transition probabilities 
given above. This kind of systems can be used to mo- 
del systems subject to failures or structural random 
changes. They are also used to describe linearized 
models of a nonlinear system whose operating point 
changes . 

Key Words. Jump linear system, Markov pro- 
cess, Mean-square stability, Linear Matrix Inequality. 

In this paper, it is assume that the transition ma- 
trix II(t) is “uncertain”. By this it is meant that II(t) 
is only known to belong to a bounded convex set. We 
assume that this set is a polytope: Co{II1, . . . , IIL}, 
where IIk = [$j]i<i,j<N, k = 1,. . ., L are known 
transition matrices. Note that a convex, linear com- 
bination of transition matrices’ is also a transition ma- 
trix. 

The system (1) is said to be mean-square stable if, 
when u = 0, and for every initial condition Z(O), the 
corresponding trajectory satisfies: 

Notation 

The matrix MT denotes the transpose of the real ma- 
trix &l. For a real matrix P, P > 0 (resp. P 2 0) 

means P is symmetric and positive-definite (resp. po- 
sitive semidefinite). I denotes the identity matrix, 
with size determined from context. The symbols Co 
and E denote the convex hull, and the expectation 
operator, respectively. 

1 Introduction 

The linear system with Markovian jumps is defined 
by: 

dx 

dt 
= A(r(t))x + B(r(t))u (1) 

where z E R” is the state vector, u E R” is the 
control input, and 

l the process T : R+ -+ (1, . . . . N} is Markovian, 
with transition probabilities defined by: 

Prob{r(t + A) = jlr(t) = i} = 

{ 

r’ij &)A + o(A) ifi# j, 

1+ ~ii(t)A + o(A) else, 

where II(t) = (nij(t)) is a “transition matrix”, 

that is, rij 2 0 for i # j, and -rii = xy.; 7Fi.j < 
0. The rij are the transition probability rates 
from i to j. 

Exit + 0 for t -+ 0. 

We consider the problem of finding a state-feedback 
laws which involves jointly mean-square stability, and 
every mode stability (each pair (Ai, Bi) is stabilizable 
in the deterministic sense.), using a control law of the 
form 

u(t) = IQ-(t)):(t), 

where K(r(t)) = Ii’;,when r(t) = i, 
I(; constant matrix, i = 1, . . . , N. 

(2) 

These laws are required to be robust to uncertain- 
ties in the transition matrix II, i.e. to stabilize the 
system for every value of II taken in a bounded convex 
set. Our conditions are formulated in terms of an LMI 
problem . For more details on LMI problems and al- 
gorithms to solve them, see [3, 4, 111 and references 
therein. 

In the control point of view, both notions of sta- 
bility are needed. One have to ensure that the plant 
state of the linearized models of a jump nonlinear sys- 
tem, will not increase and go outside the domain of 
validity. In the case of linear jump systems, one have 



to take into account a ‘relatively long’ evolution in a 
certain given mode. 

In [9, 81, we can find an approach based on a mo- 
dified jump regulator problem with a prescribed de- 
gree of stability. This approach is more conservative 
than the proposed one here. Futhermore, it assumes 
a precise knowledge of the transition probability rates 
which are in general difficult to estimate. In contrast, 
the proposed approach of this paper is adequate to 
deal with such problem. 

For more details on the jump linear systems, we 
mention some references which are concentrated on 
an optimal control approch (with respect to a quadra- 
tic criterion), see e.g. [lo, 12, 5, 7, 21, and references 
therein. 

2 Preliminary 

Consider the open-loop system: 

The following result can be found in [l, 61 
Theorem 2.1 The following properties are equiva- 

lent. 

1. System (3) is mean-square stable. 

2. There exist matrices PI, . . , Pry > 0 such that: 

j=N 

ATPi+PiAi+CnijPj <0 i=l,...,N. (4) 
j=l 

3. There exist matrices &I, . . . , QN > 0 such that: 

j=N 

AiQi + QjAT + C TjjQj < 0 i = 1,. . . , N. 
j=l 

(5) 

Due to the fact that the term TijPi is negative, the 
mode Ai may be unstable. To stabilize every mode, 
the idea in [9, 81 is to cancel the destabilizing influence 
of n;jPi. This idea is based on a modified jump re- 
gulator problem with prescribed degree of stability. 
This leads to a set of coupled Riccati equations, in 
which the term ri;Pj disappears: 

j=N 

ATPj+PjAi-P,BjR;‘BT+C nijpj+Qj = 0, (6) 
j#i 

where Qi 2 0, Ri > 0, i = 1,. . ., N, are specified 
weighting matrices. 

Under certain assumptions as in [12], the resulting 
positive solution of (6)) involves the existence of ma- 
trices Kj = -R-lB:P; for i = 1,. . . , N, such that: 

j=N 

(A + BiKj)TPj + Pj(Ai + BiIij) + C TjiPj < 0 

j#j 
P1 >o,..., PN>o, i=l,..., N. 

(7) 
Consequently, the resulting closed-loop system is jointly 
every mode and mean-square stable. 

In the next section, we show that the condition (7) 
is conservative than the proposed (LMIs) condition. 

3 Main results 

We begin by the following result: 
Theorem 3.1 The two statement are equivalent 

1. there exist PI, . . . , PN > 0 such that 

j=N 

ATPj+PjAj+CrjjPj<O, i=l,...,N 
j#i 

2. there exist &I, . . . , QN > 0 such that 

j=N 

AQi+Qi&‘+~~ji&j<O, i=l,..., N. 
j#i 

(9) 
Proof: 

Let Ai = Aj- :njjI. The condition (8) can be written 
as: 

j=N 

$Pj + PjAj +-x ?TjjPj < 0, 
j=l 

Pl >o,..., PN>o, i=l,..., N, 

the result of theorem 3.1 shows that is equivalent to: 

j=N 

L&i + &;A7 + C TjjQj < 0, 
j=l.- 

Ql>O ,..., QN>O, i=l,..., N, 

The proof is then straightforward. q 

The system (3) is jointly every mode and mean- 
square stable if and only if there exist Qi, . . . , QN > 0 
andRi,...,R~>Osuchthat: 

j=N 

A&i + Q;AT + C TjiQj < 0, 
j=l (10) 

AjRj+RjAT<O, i=l,..., N. 

This is a simple LMI feasibility problem that is easy 
to check. Contrarily, the problem of finding trac- 
table necessary and sufficient conditions for the state- 
feedback synthesis (In both stability senses) is still an 



open problem. That is why we propose only a suffi- 
cient condition by setting in (10) Rj = Qi. We show 
that we can provide a stabilizing control law by the 
following result: 

Theorem 3.2 There exists a control law of the form 

(2) that stabilizes every mode and the system in the 

mean-square sense if there exist &I,. . . , QN > 0 and 

K,..., YN such that: 

j=N 

k&i + QjAT + BiYZ: + TTBT + C TjjQj < 0, 
j=l 

AiQi + &,A: + Bjx + xTB’ < 0, 

(11) 
Then, the corresponding stabilizing control law (2) is 

given by: 

ICj = Y;Q,‘, for i = 1, . . . . N. (12) 

Proof: 

The system (1) is jointly every mode and mean-square 
stabilizable if there exist matrices Qi > 0, . . . , QN > 
0 and Ki, . . . , l<N such that 

j=N 

(A + BjIci)Qi + &;(A; + BiICj)T + C TjjQj < 0, 
j=l 

Making the change of variables Y; = KjQi, we obtain 
(11). 0 

Now, we establish that if there exist a stabilizing 
solution of (6), th en it yields a solution of (11). In 
other words our approach is less conservative. Effec- 
tively, the resulting closed-loop system corresponding 
to (6) satisfies: 

j=N 

(A + BiIci)TPi + Pi(Ai + B<Kj) + C TjjPj < 0, 

j#i 
i=l >“‘> N. 

The result of theorem 4.1 shows that above inegalities 
are equivalent to: 

j=N 

(A + BjI(;)Qi + Qi(A + BjIci)T + C TjiQj < 0, 
j#i 

i=l 7”‘) N. 

which implies (11). 
Furthermore, in the numerical section we give a 

counterexample (16) for which the approach of [9, 81 
does not provide a stabilizing solution. In contrast, 
the approach adopted here provides a stabilizing so- 
lution. Besides that, this solution takes into account 
uncertainties which can affect the transition probabi- 
lity rates. 

In the sequel, we assume that II is unknown and 
belongs to a bounded convex set: 

where XI, 1 O! k = 1,. . . , N, 5 XI, = 1, and IIk = 
I;=1 

[$j]l<i,j<N> k = 1, . . .I L are known transition ma- 
trices. We have the following result: 

Theorem 3.3 There exists a control law of the form 

(2) that stabilizes every mode and the system in the 

mean-square sense for every II E P if there exist 

&I,. . . , QN > 0 and Yl, . . . , YN such that: 

j=N 

Ai&; + &;A? + Bix + xTBT + C rjjQj < 0, 

A&i + QiAT + Bix + yTSf < 0, 
i=l I.‘.> N, k=l,..., L. 

(14 
Then, the stabilizing control law (2) is given by: 

I(;=yiQil,foti=l,..., N. (15) 

4 Numerical examples 

Consider the three-mode jump linear system defined 
by: 

A1 = i 0.9304 0.5269 0.6539 0.7012 0.8462 0.0920 0.4160 0.9103 1 ' 
AS = 

B2L= [ g;; 1, si= [ ;yk 1, ’ 
-1.6667 0.6353 1.0333 

and II0 = 0.9000 -1.6000 0.7000 . 
0.4000 0.6667 -1.0667 1 (16) 

AS we have seen before, if each mode stabilizing 
control law corresponding to the coupled Riccati equa- 
tion (6) exists, then the closed-loop system satisfies 

j=N 

(A + BjI(i)Qj + Qi(Ai + Bil(i)T + C TjiQj < 0, 

j#i 
i=l >“‘I N. 

Or equivalently 

j=N 

A&i + QjAT + BjK + xTBT + C TjjQj < 0, 

j#i 
i=l ,“‘, N. 

For the given example , we have tested the feasibi- 
lity problem of the above LMIs in Qi > 0, x using 



LMITOOL implemented with the software of [4, 111. 
This above LMI contraints have no feasible solution. 
In this case, we conclude that the approach of [9, 81 
cannot provide any solution. 

Alternatively, we have solved (11)) which provides 

&I = 
0.2182 -0.5348 

-0.5348 1.3108 ’ 

Q2 = 
0.2518 -0.6171 

-0.6171 1.5128 ’ 

Q3 = 
0.4111 -1.0112 

-1.0112 2.4878 ’ 

Yl = [-0.2563 - 0.1210]Y2 = [0.1801 - 4.23071, 
and Ys = [0.4552 - 1.1007]. 

The corresponding every mode stabilizing control law 
is: 

Ii1 = lo3 x [-9.6004 - 3.91701, 
K2 = lo3 x [-41.208 - 16.8141, 
and Ks = [416.9556 169.03831. 

With the same data matrices (Ai, Bi), assume now 
that II is unknown and belongs to Co{I11,112,113}, 
where the vertices are given by: 

and IIs = 

Note that II’ given above in (15) belongs to the same 
set. 

In this case, we have sought a mode-dependent 
control law, for which the closed-loop system is jointly 
every mode and mean-square stable for any value II 
whithin Co{II’, II’, II’}. We have obtained the fol- 
lowing robust mode-dependent control law 

,[“b z lo4 x [-1.3581 - 0.55511, 
Icp z lo4 x [-4.6760 - 1.90951, 
and I(3Tob = [359.1818 144.89451. 

5 Conclusion 

In this paper, we have treated the robust stabiliza- 
tion of jump linear systems. We have presented a 
new approach which differs from the approach of mo- 
dified jump regulator problem. The proposed condi- 
tions are only sufficient but less conservative. They 
can take into account different specifications. Preci- 
sely, we have provided a mode-dependent control law 

which stabilizes the system jointly in the mean-square 
and each mode of operation. In application, this pro- 
perty is important. Regarding to a jump nonlinear 
system, one have to ensure that the plant state of 
the linearized model will not grow and go outside the 
domain of validity. Regarding also to a jump linear 
system which may have a ‘relatively long’ evolution 
in a given mode. Another important aspect, is that 
the approach presented here takes into account un- 
certainties that can affect the transition probability 
rates, which are difficult to estimate. This approach 
can be extended to the case when the modes are un- 
certain. 
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