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Abstract 

An accurate macroscopic traffic flow model of au- 
tomated highways is necessary not only for analyzing 
the collective dynamical behavior of automated ve- 
hicles but also for designing control laws to improve 
system level performance. In this paper a macro- 
scopic model for describing the traffic flow on auto- 
mated highways is developed by using the microscopic 
control laws that govern the motion of individual ve- 
hicles. Some assumptions were used to derive the in- 
stantaneous speed and density profiles from the kine- 
matics of individual vehicles. We have given enough 
structure to the modeling task, so that the model is 
independent of the implementation details, hence can 
be applied to a wide variety of automated highway 
concepts. The developed model can be used to ana- 
lyze the steady state behavior of AHS traffic flow for 
different operating conditions and is currently under 
study. We plan to use the results of this analysis as 
guidelines for designing macroscopic as well as micro- 
scopic control laws. 

I Introduction 

Historically, the macroscopic behavior of highway 
traffic has been modeled by approximating the con- 
trol actions of a human driver while driving within 
a group of vehicles [l]. These simple models based 
on human car following models [2] were progressively 
improved to account for the observed phenomena on 
highways [3, 41. Even in the earlier development cy- 
cle of automated highways, these traditional models 
describing the behavior of human drivers were used 
to approximate the behavior of automated vehicles 

14, 51. 

However, as more complex control laws have been 
developed at microscopic level, there is an ever in- 
creasing need for a model that can describe the macro- 
scopic behavior of these automated vehicles. Unlike 
human drivers, these automatic vehicle following con- 
trol laws behave in a predictable manner. Hence, one 
way of modeling the dynamics of the system at the 
macroscopic level is to use the deterministic micro- 
scopic vehicle dynamics. 

We will achieve the goal of this study by defining 
the macroscopic variables of interest in terms of the 
well defined relationships for the speed and relative 
distance for a group of vehicles under automatic con- 
trol. This will enable us to study the effects of chang- 
ing the individual control strategies on the macro- 
scopic aspects of traffic flow. Given one set of op- 
erating conditions, these automatic vehicle following 
controllers behave in a predictable fashion, unlike hu- 
man drivers who tend to produce random control ac- 
tions for the same situation; Hence a representation 
of the system in terms of these deterministic functions 
can be used to develop control laws to optimize the 
macroscopic behavior for a set of possible operating 
conditions. 

The modeling task has been subdivided into two 
parts: The first part deals with the conceptual a.b- 
straction of the system as a continuous fluid, so that 
the dynamics of the system can be obtained by ap- 
plying the hydrodynamic theory of traffic flow. In 
this part, for simplicity, we have assumed one dimen- 
sional streamline flow, i.e., no lane changes and no 
on-ramps or off-ramps. The second part, which deals 
with the global connectivity of the system, assumes 
the responsibility of processing the real time informa- 
tion so that a given highway with multiple lanes and 
on-ramps and off-ramps can be viewed as a collection 
of single lane highways with no lateral traffic flow. 
Hence the abstraction developed in part one applies 
to each one individually. 

In order to complete the first part of the modeling 
task, we start with the microscopic model which de- 
scribes the relationships for motion of vehicles within 
each platoon. By using this microscopic model, we 
develope a local macroscopic model which estimates 
the instantaneous speed and density for a section of 
highway by treating each section as an arbitrary col- 
lection of platoons. Finally, within global domain, 
we first connect different sections to form a single 
lane through appropriate boundary conditions. A 
model for multi-lane highway system is then obtained 
from these single lane highways by defining lateral 
flow across adjacent lanes. This modeling structure is 
quite flexible as different automated higway concepts 
can be represented by the same model by changing 
the global connectivity conditions which are imple- 



mentation dependent. 

2 Microscopic Model 

In this study we are modeling the macroscopic be- 
havior of automated highways in terms of the kine- 
matics of individual vehicles. These vehicles are as- 
sumed to be grouped together in platoons of differnet 
sizesl. The first step in the proposed modeling pro- 
cess is to develope the relationships for dynamics of 
vehicles as they are following each other according to 
a given inter-vehicle spacing policy. One such pla- 
toon of vehicles is shown in Figure 1. The variables 
used in the microscopic model which are also shown 
in Figure 1 are: 
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Figure 1: A platoon of vehicles. 

j : vehicle number within a platoon, j E 
J-=(1,..., n}, where n is the size of pla- 
toon, 

X,.j : relative distance between vehicle j 
and (j - l), 

v,.~ : relative speed between vehicle j and 

(j - 11, 

Sj : deviation from the desired position 
for vehicle j, 

l-5 : speed of vehicle j, 

V : external speed command, 

h : headway command, either time head- 
way or constant spacing, 

Vdj : desired speed for vehicle j, 

I$ : speed of the vehicle in front of platoon 
leader. 

The general expression for the speed and relative 
distance for the jth vehicle in a platoon is given as: 

Vj(t) = wlj(S)Kij(t)f (1) 

xPj (t) = wZjvdj (t), jEJ 

where Vdj is the desired speed for the jth vehicle and 
Wij(s), Wzj (s) are stable proper transfer functions. 

‘A vehicle traveling alone, referred to as free agent in liter- 

ature, will be considered a platoon of size n = 1 

The exact form of these transfer functions depends 
on the type of controller used, but they have certain 
characteristics which are common, irrespective of the 
type of controller. These characteristics are defined 
by the control objectives, each of these controllers 
have to follow, to achieve a stable vehicle following in 
a platoon formation. These objectives are: 

C-I Sj, vrj + 0 exponentially or at least asymp- 
totically. (With the assumption that there 
is no disturbance.) 

c-11 llsjllco L IIJj-lllco and IIv~jlloO I ll’Tj-lllCO 

The constraint C-II guarantees that there is no 
slinky type effect in the platoon. For vehicles to follow 
each other in the platoon it is required that: 

vdl (t) = min(V(t), K(t)) 
vdj (t) = vj-l(t) j=J\l (2) 

where V(t) is the external speed command and is the 
speed commanded by the roadway when such an ar- 
chitecture is present and K(t) is the speed of the vehi- 
cle in front of the platoon leader. It should be noted 
that under normal operating conditions vd, = V, 
however, during congestion or incidents the leader 
of the platoon has to track the speed of the vehi- 
cle in front which may be well below the speed com- 
manded by the roadway due to abnormal operating 
conditions. In order to simplify notation, where no 
ambiguity is possible, we will use V to denote both 
the external speed command or the speed of the ve- 
hicle in front of the platoon leader. 

By substituting the value of vdj from (2) to (1)) we 
get: 

vj(t) = fi WI,(~) V(t); j E J 1’ 1 CY=l 
ri-i 1 

xTj(t) = w2j(s) [El w'-(S)] V(t) (3) 

Now we have the expressions for the speed and rel- 
ative distance for each vehicle in a platoon. These 
expressions will be used to derive the model for a sec- 
tion of highway, which is nothing but an arbitrary 
collection of platoon of vehicles. 

3 Local Macroscopic Model 

In this section we will develop the model for a sub- 
system of the automated highway. The subsystem 
in this case is one particular section of the highway 
system and is shown in Figure 2. According to the 
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Figure 2: A section of an automated highway system. 

methodoligy chosen in this paper, the modeling of the 
given multi-lane automated highway will be done in 
several steps. In the first step, we have derived the 
kinematics of individual vehicles within a single pla- 
toon. In the next step a section of the given highway 
will be considered to contain an arbitrary collection 
of platoons of vehicles. In this part we will consider 
only the longitudinal flow and will ignore the lane 
changes, on-ramp and off-ramp traffic. By using ap- 
propriate assumptions, the states of the system, speed 
and density distributions, will be represented in terms 
of kinematics of individual vehicles derived in the last 
section. 

In addition to the variables defined in the micro- 
scopic model, the variables used in the local macro- 
scopic model are: 

i : platoon number within a section, i E 

z= {l,...,Pl, where p is the total num- 

ber of platoon, 

0: Origin for local distance measure- 
ments, located at the section boundary at 
center of the lane, 

j : vehicle number within a platoon, j E 
J- = {l,..., ni}, where ni is the size of 
platoon i, 

2 : distance measured with respect to ori- 
gin 0, 

~(2, t), k(e, t), q(z, t) : instantaneous speed, 
density and longitudinal traffic flow rate 
functions, 

Xij : position of the vehicle j in platoon 

2, 

v(xij, t) : speed of vehicle j in platoon i, 

V(m,t) : speed command for platoon 
i, where xii denotes the position of the 
leader of platoon i, 

1 : length of the vehicle, assumed to be 
the same for all vehicles, 

L : length of the section of highway, 

IL : domain of the local macroscopic model, 
L=ZxJ-. 

Remarks 

l According to our notation, both v(xij, t) and 
vij(t) represent the speed of a particular vehicle 
in a section. These two variations will be used 
throughout this paper. 

Since we are considering the microscopic details of 
the traffic flow for generating the macroscopic model, 
we can assume different traffic flow distributions to 
approximate the actual flow on the highway. For 
the most general case, we will assume that the traf- 
fic stream is randomly distributed along the section 
of highway. Also we have assumed that the speed 
command to the vehicles is time varying and is spa- 
tially distributed along the section, hence is different 
for each platoon in the section and is represented as 
V(zil, t)‘. In this section, headway command h is as- 
sumed to be constant and is absorbed in the transfer 
functions VVr (s) and Wz (s) [B] . 

Since our goal is to represent the instantaneous 
speed and density profiles in terms of the individual 
vehicle dynamics, we can simplify the calculations by 
making the following assumptions. 

Assumption: 

A-I The vehicles have similar closed loop char- 
acteristics, i.e., 

w$ IIW, - w&o I E 

SdP IIW, - w,&O I 6 a,PEL 
a,P 

where E is some small number. 

From assumption A-I, we can make the following 
approximation: 

W,(s) = Wl(S> 

W2>(S) = W2(S) XEIL (4) 

With the help of assumption A-I, we can extend the 
relationships developed for the speed and relative dis- 
tance for vehicles within a single platoon, given in (3), 
to that for each vehicle in the given section as follows: 

V(Xij,t) = [Wl(S)]jV(Xil,t); j E 3, i EZ (5) 

Xr(Xij,t) = W2(S)[W~(S)]jw1V(Xil,t). (6) 

‘In previous section we were considering only a single pla- 
toon hence the speed command was represented as V. 



In (5) and (6) the value of xij is calculated as: 

. [ 

i-l 72, 

Xij = L- ~~(x&@,t)+~)+ 
a=1 p=1 

~xT(xi,,t)+J~z , aEZ,PEJ(7) 
p=1 1 p=1 

where L is the length of the section and 1 is the length 
of the vehicle, assumed to be the same for all vehicles. 
For relation (7) to be well posed, it is assumed that 
the interplatoon distance, X,. (xir, t), i E Z, can be 
calculated from the available information. 

In order to build a space continuum model of traf- 
fic flow on automated highways we need a continuous 
representation of the speed and density profile for a 
section of highway. However, the vehicles are located 
only at discrete locations denoted as xij. To over- 
come this problem we can use linear interpolation to 
define v and k for all values of x between any two vehi- 
cles. By using (5)-(7) we can obtain continuous speed, 

v(z, t), and density distribution functions, Ic(z, t), for 
the given section as follows: 

v(x,t) b V(Xij,t) + [V(b(j-l),t) -v(x~j,t)] 

[ 

X - Xij 

X7-(Xij7t) + z 1 
k(X,t) k k(Xij,t) + [h(Xi(j-l),t) - k(Xcij,t)] 

- 

L X - Xij 

X9-(Xij,t> + z I 

1 
k(xijyt) ’ xr(xij,t) + 1 

(9) 

It should be noted that the definitions of speed and 
density distribution functions in (8) and (9) are valid 
for all values of x in the range, xpn, 5 x 2 x11, 
where xpn, , xl1 are the location of the vehicles clos- 
est and farthest from the origin 0 respectively. How- 
ever, their definitions can be extended to all values 
of x E [0, L] by considering the boundary conditions 
and extrapolation of these distributions. The bound- 
ary conditions are: 

d d 
ti(x, t) = -g(x, t) + 21(x, t)g(x, t). (13) 

It should be noted that well defined expressions for 
&v(x,t) and &v(x,t) can be obtained by using (8), 
(lo), (5) and (6). H ence the acceleration at any point 
along the highway is a deterministic function of the 
known transfer functions Wi (s) and W2 (s) . The jus- 
tification for the assumption A-I is now clear, since 
no data from automatic highways is available to cal- 
ibrate our model, it enables us to represent (13) as 
a deterministic function with no uncertain elements 
like human driving models. 

The law of conservation of vehicles, which will be 
used to find the expression for l(x, t), is given as: 

-$(x, t) + Lq(x, t) = 0 

v(0, t) = Vin@) 

at) = !&n(t) 

(11) 

where vi, qi is the speed and flow rate respectively 
of the traffic entering the section shown in Figure 2. 
Since the subtraction in the value of j in (8) and (9) is 
modulo na, the following extrapolation can be made: 

where q(x, t) = JE(x, t)v(x, t) is the instantaneous lon- 
gitudinal traffic flow rate. As discussed before, we will 
ignore the lateral traffic flow for this part of model. 
Hence, in (14) we have assumed that there is no on- 
ramp or off-ramp traffic. From (14) we have: 

i(x, t) = -4(x, t&(x, t) (15) 

To solve (13) and (15) uniquely, the required initial 
conditions are: 

0 5 X < Xpn, * Xcij = X(p+l)l = 07 Xi(j-1) = Xpn, v(x,to) =9(x) (16) 

X11 < X 5 L * Xij = Xl1 ) Xi(j-1) = 201 = L Wx,to) = f(x) 

Hence to use the definitions (8) and (9) outside the 
region xpn, 5 x 2 xii, we have introduced fictitious 
vehicles at x = 0 and x = L, denoted as XC(~+~)~, 
x01 respectively. The speed at x = 0 is given by the 
boundary condition in (ll), however, that at 2 = L 

can be assumed to be the speed of the closest vehicle, 
i.e., 

v(x(p+ql, t) = v(0, t) = Vin(t) (12) 

v(xo1,t) = v(L,t) = v(x11,t). 

The linear interpolation given in (8)-(g) is a good 
approximation for representation of the speed and 
density as continuous functions as long as the traffic 
flow rates are not negligibly small. Hence an inherent 
assumption in the definition of the speed and density 
distribution function is that the traffic flow rates are 
above a certain threshold. 

Having developed a continuous approximation for 
the states of the automated highway, [v, lilT, we can 
develop update laws for these states by using the hy- 
drodynamic traffic flow theory. According to this, 
the acceleration of an observer moving with the traf- 
fic stream is given as: 



where f(.), d.) are assumed to be known at t = to. 
The update laws for continuous states [v, lCIT in (13), 
(15) along with their definitions in (8), (9) and a rep- 
resentation of individual vehicle states [vij, IcijlT in 
(5)-(7) and (10) f orm a complete subsystem model. 
This model will be referred to as the local macro- 
scopic model and is summarized below for reference. 

wx, t) ?qx,t) = --g- 4x> t) + v(x,t)-jy; v(x,to) = g(x) 

lc(x, t) = --qe, t) y ; qx, to) = f(x) 
q(x, t) = qx:, t)v(x, t) 
v(0, t) = t&(t) ; q(O, t) = en(t) 
V(X, t) = V(Xij, t) + [V(XGi(j-l), t, - VCxij, t)] 

[ 

2 - Xij 

Xr(Xij,t) +I 1 
k(X, t) = k(Xij, t) + [k(X:i(j-l), t, - k(Xij, t)] 

[ 

X - Xij 

Xv-(X:ij,t) +I 1 
Xij 2 X 5 Xi(j-1) ;j E 3, i E Z 

. [ 

i-l np 

Xij = L - c ~GG(“aPtt) + o+ 
cr=1p=1 

~x,(xiP,t)+gz 

p=1 .I p=1 

X(p+l)l = 0,x01 = Wqp+l)l,t) = v(O,t), 

v(xo1,t) = v(x11,t) 

k(X:ij, t) = ’ 

Xr(Xijyt) +z 

V(Xij,t) = [Wl(s)]jV(x:i17t) 

XT(Xij,t) = W2(S)[W~(S)]j-1V(xil,t) (17) 

The model in (17) describes the dynamical behavior 
of a section of highway, as pointed out earlier, the 
global macroscopic model is an interconnected system 
of the local macroscopic model. In the next section we 
will develope the global macroscopic model applicable 
to a single lane. 

4 Global Macroscopic Model: 
Single Lane 

While developing the local macroscopic model, we 
have considered only a single section of a lane in the 
given highway system. The only external input to 
the subsystem model in (17) is the speed command 
V(xil, t), as the headway command is assumed to be 
constant. To model a single lane highway system 
shown in Figure 3, as an interconnected system we 
need a set of global inputs which include boundary 
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Figure 3: A single lane automated highway system. 

and initial conditions. In the following we will present 
the required global inputs to connect the contiguous 
sections to form a single lane of highway. 

The notation specific to the single lane macroscopic 
model is: 

m : section number within a lane, m E 

M = {l,...,M}, where M is the total 
number of sections, 

0’ : Origin for global distance measure- 
ments, located at a fixed point (XL, yb), 

x’ : distance measured with respect to ori- 
gin 0’ along the direction of how, 

an : Origin for local distance measure- 
ments, located at x’ = x& with respect to 

Ql, 

x : distance measured with respect to ori- 

gin om, 

21,(x$), km(x,t), qm(x,t): instantaneous 
speed, density and traffic flow rate distri- 
bution functions for section m, 

(6 : domain of the global macroscopic model, 
G=M. 

4.1 Global Inputs 

We have formulated the problem of modeling the high- 
way shown in Figure 3 as an interconnected system, 
where the elements of the system are sections. The 
set of equations in (17) is a representation of the 
states, [v,, &IT and output qm of a particular el- 
ement m E (6. The only external input present in the 
model is the speed command V(xil, t) which is as- 
sumed to be generated locally within a section. How- 
ever, for a representation of the complete system, 
some inputs are required to provide the global connec- 
tivity. For example, the boundary conditions given in 
(17) can be rewritten as: 

Vm(O,t) = ym-l)&?2--1)J), (18) 

qm(O,t) = Q(m-l)(q?n-l),t). 

Similarly, the initial conditions in this case become: 

%(XJo) = h(X)> (19) 

bn(xC,to) = fm(x), 



where to is the initial time and f,,, (.), g, (.) are known 
functions. As described earlier that the exact way in 
which the set of global inputs can be derived from 
the available information is implementation depen- 
dent, hence will be covered in the next part of this 
study for a specific system configuration. 

Hence, the local macroscopic model in (17) together 
with the modified initial and boundary conditions 
given in (19), (18) respectively represents the model 
for the single lane highway system shown in Figure 
3. Having developed the necessary conditions to con- 
nect the contiguous sections to form a single lane, in 
the next section we will consider the effect of lane 
changes and on-ramp and off-ramp flow, which have 
been ignored so far in this study, to model a multi- 
lane automated highway system. 

5 Global Macroscopic Model: 
Multi Lane 

In this section we will model a multi-lane auto- 
mated highway system as shown in Figure 4 by su- 
perimposing the effect of lateral flow on the models 
obtained by considering the longitudinal flow only in 
previous sections. This technique allows us to model a 
multi-lane highway as a collection of single lane high- 
ways connected together through the relations devel- 
oped for lateral flow in this section. 

Section 1 Section m Section M 
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Figure 4: A multi-lane automated highway system. 

As shown in Figure 4, by convention, we will con- 
sider the on-ramps and off-ramps to be always on 
the right most lane. In Figure 4 a transition lane is 
shown to identify the presence of incoming and out- 
going traffic through the network, even though no 
physical lane may be present. In the following we 
will discuss notation specific to the multi-lane macro- 
scopic model. 

Y : lane number, y E Y = (1,. . , Y}, 
where Y is the total number of lanes, 

y’ : distance measured with respect to ori- 
gin 0’ perpendicular to the direction of 
flow. 

0 : Origin for local distance measure- 
rnirts, located at (x;, yh) with respect to 

at, 

vym(x,t), kYm(x,t), qym(x,t) : instanta- 
neous speed, density and flow rate respec- 
tively for section m in lane y, 

@ Ym : average lateral flow rate for section 
m in lane y, 

G : domain of the global macroscopic model, 
G=Y xM. 

In this study we assume that the lane changes are 
executed after coordination, either at local or at in- 
frastructure level. This coordination requires that 
the operating conditions near the regions, where the 
lane change requests are initiated, be analyzed to 
select a strategy, if any, to execute these requests. 
These strategies depend on the upstream density of 
the two affected sections, their speed differentials etc. 
The complete discussion of selecting an optimal strat- 
egy which has minimum impact on the capacity and 
safety of the system can be found in [7] and will not 
be covered here. 

For modeling purposes, we assume that the exact 
outcome of the strategy chosen by the roadway will 
manifest in the form of a change in the speed and/or 
headway command around the affected region. As 
described earlier, the only input to the local macro- 
scopic model in (17) is the local desired speed com- 
mand. Till now the headway command is assumed to 
be constant, hence did not appear in the model. How- 
ever, during lane changes the headway command is 
not constant. Any change in headway command will 
change the coefficients of transfer functions T/v,(s), 
Wz(s) and cause some transients to occur during this 
change. In [B], it has been shown that, for time 
headway policy, the transients are bounded and de- 
cay exponentially; a similar analysis can be done for 
fixed distance headway policy. In either case, we can 
rewrite (5) and (6) as: 

v(xij,t) = [Wl(% qljv(w,q (20) 

Xr(Xij,t) = W2(S,h)[WI(s, h)]j-'V(Xil,t) (21) 

where dependence of WI and W2 on headway is shown 
explicitly. Hence any changes in the speed and head- 
way commands caused by the requested lane changes 



will show up automatically in the model in terms of 
a change in the states of the system around the re- 
gion affected by these processes. In addition to the 
dynamic effect of lane changes, the steady state effect 
will show up in the form of change in the size of two 
interacting platoons, which is assumed to be known 
at all times. In this context, a quantity which may 
be used for design purposes is the average lateral flow 
rate for a section, defined as: 

Qym(t) 2 q$yl’“(t) + q5(y+l)m(q - Ym 

4Tyyl)m(t) - ~~y~l)m(t) (22) 

where t$~~~~~~ denotes the lateral flow from source 
section to the target section in two consecutive lanes. 
Each component in (22) can be obtained by averag- 

ing the successful lane change operations between two 
consecutive lanes within a specified interval of time. 
In this definition we have assumed that simultaneous 
multiple lane changes are not allowed. 

In the next part of this study we will use this 
model to analyze different traffic flow scenarios on 
automated highways. 

6 Conclusion 

In this paper we have developed a model that de- 
scribes the macroscopic behavior of automated high- 
ways in terms of the kinematics of individual vehi- 
cles. The model captures the details of microscopic 
control laws, which are deterministic in nature, in a 
form which can be used for analysis and design of 
control laws to improve system level performance. 
A structured modeling approach was used so that 
the same model can be used for different automated 
highway concepts by changing the global connectiv- 
ity conditions, which are implementation dependent. 
The model is currently being used to analyze several 
automated highway concepts for stability and perfor- 
mance. 
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