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Abstract 

Based upon a condensed Brunovsky form, feedback lin- 

earization for both single-input and multi-input nonlinear 
systems is derived in a unified manner. The derivation ap- 

pears considerably simpler than the known derivations for 
the multi-input case. A straightforward characterization of 
the coordinate transformation required in the feedback lin- 
earization is provided. 

1 Introduction 

Consider nonlinear systems of the form 

5 = f(z) +g(x)u, ZER”, u E Rp (1) 

where f and columns of g are smooth vector fields on a 
neighbourhood M E Rn of s(O) = ~0. Assume that the 
columns of g denoted by {gi} are linearly independent on 

M. 
This paper deals with the problem of finding a coordi- 

nate transformation E = T(x) on M such that in the new 
coordinates 

i=A[+B(a+bu) (2) 

where A E Rnxn, B E Rnxp are constant matrices and 
the pair {A, B} is controllable, a = a(!!!‘(~)) E’ Rp and 
b = b(T(s)) E RPxP are with elements being functions 

of IC, and b is invertible on M. It is then trivial to use the 
feedback control u = b-l(v - b), where v is a new con- 

trol input, to bring the system (2) into a pure linear control 
systemi=Ac+Bv. 

This is the so-called feedback linearization problem by 

using static state feedback. The above problem formula- 
tion appears slightly different from but, of course, is equiv- 
alent to the those addressed in [l]-[5]. 

The feedback linearization problem has attracted con- 

siderable attention in 1980s. The problem was posed and 
solved in [l] under sufficient conditions for the single-input 
case. An appealing solution under necessary and sufficient 

conditions was further given in [4]. In [2] and [5], the re- 

sults of [l] and [6] were generalized to the multi-input case 
and the corresponding necessary and sufficient conditions 
were obtained. In the book [7] a set of necessary and suf- 
ficient conditions for the feedback linearization are neatly 
represented. The reference [8] is an excellent survey on 
the feedback linearization and other related problems, see 
also comments provided in the bibliographical notes in [7]. 

Compared with the treatment of the single-input case, 
the known derivations of the solution for the multi-input 

case are considerably complicated. This prevents a ready 
understanding of the multi-input solution compared with 

that for the single-input case. 
The objective of this paper is to derive the multi-input 

solution in a manner analogous to the single-input case. 
The derivation provides not only insights into the problem 

but also a simple procedure for constructing the coordinate 
transformation required in the feedback linearization. 

A crutial technique in dealing with feedback linearisa- 
tion problems is the use of the BrunovslrJi form of a con- 
trollable pair {A, B} as initiated in [9]. The treatment in 

this paper follows still this line. But, instead of the original 
form, a condensed Brunovslj form is used, which simpli- 
fies the essential equation formulation as well as derivation 
and expression of the solution considerably. 

The notation in this paper is quite standard. Let CY E R, 

p E Rrxn a&y E Rnxl be respectively smooth func- 
tion, covector field and vector field of real variables 2 = 

[ 21 ... 2, ] ‘, where (.)’ stands for the transpose of 
(.) . The Lie derivatives of a, /3 and y by an n-dimensional 
smooth vector field f are L~CX = ef, 

The short notation dcr = $$ will also be used. The well- 
known Leibniz formula under Lie differentiation is 

Lf (6 Y) = OX 4 + (P, a44 (3) 

where (., .) denotes the inner product, e.g. (p, y) = ,&y. 
Repeated Lie derivatives of Q, ,8 and y by f are defined 
by induction: Lfa = Lf(Lrmlcw), L$/? = Lf(LF-lp), 

ad!y = adf (ad;-l-y) with L@ = Q, Ly/3 = p and 

adyy = y. 
For simplicity, the notations LUCY, LIP and adfy are, 

by abuse, still used when y = [ yi . . . 3;n 1, 

--[;;I, i?=[ j!] (4) 

where ~i, pi and yi are real smooth function, covector fields 
and vector fields, respectively. In such circumstances, Lfcx, 



LfP and adyy are understood as 

Lfa=[ ?J) Lf,[ 7;; 

adfY = [ adfyl . . . adf3in ] 

and furthermore L,cr means 

J&%z ... LYm%l 

At places the notation, e.g., p = col. [ ,& . . . pm ] 

is also used to indicate the same /3 as given in (4) to save 
space. 

2 Condensed Brunovskf form 

The coordinate transformation E = T(z) with feedback 
control u = b-‘(v- b) preserves controllability of the sys- 
tem (1). Hence, a necessary condition for the feedback lin- 

earization is that there exists an m-tuple of integers 
{ kl, . . . , km} with, 
k1 2 ... 2 k, > o any;m ;.or”rtpsuc~~~; 

z-1 2 , 
rat&(?(z) = n on M, where 

C.? = [ g1 adfgl ... ad:‘-‘gl +.. 

gm adfgm . .. ad;“-lg, 1 
is called the controllability matrix and { kl, . . . , km} the 
controllability indices. A formal proof of the requirement 
of nonsingularity of the controllability matrix will be given 

in Section 3. 
A controllable pair {A, B} with the indices {ICI, . . , km} 

is said to be in the controllability controllability form [ 1 l] 
if A = diag (Al,. . . , A,), B = diag (Bl,. . . , B,), where 

Ai E Rki “;, Bi E Rki “, ai is are generally non-zero 
constants. 

If in (5) all oi,j = 0, {A, B} is said to be in the Brunovsky’ 
form [ 10, 111. A controllable linear system can always be 
transformed into the Brunovsk$ form via a state coordinate 
change and static state feedback control. 

By grouping together vector fields of the same order Lie 
derivatives in c’, an equivalent controllability matrix is 
given by 

G = [ gl ... gpo adfgl ... adfgpl ... 

adk-’ f 91 *.* ad~-‘gprpl 1 (6) 

wherep =pc 2 ... 2 p&l > 0, k = 5, ~~~~pi = n. 
Clearly, there exists a one-to-one correspondence between 
thep-tuple {ICI, . . . Ic,} and the k-tuple of {pa, . . . , ~k-~}. 

The following theorem introduces a compact version of 
the controllability form which is referred as to the 
condensed controllability form. 

Theorem 1 For a controllable pair {A, B} with the in- 
dices {PO, . . . , p&l} a nonsingular constantmtrix P Can 

be determined such that (A, B) can be transformed into 
the condensed controllability form 

PAP-l = 

. . . 

l; 0 

. . . X 

. . . . 

EL-, 0 

(7) 

where [Bol # 0, Ei = [ el,...,epi ] E RPi-lxPi, ei 
is the ith column of the pi- 1 -dimensional identity matrix, 
and ‘x ’ denotes some matrices of no interest. 

Pro05 According to the matrix pencil decomposition 
technique [ 121, via orthogonal transformations, {A, B} 
can be transformed into the staircase form 

. (8) 

where&ERPi-lxPi,i=l . . . 
7 , k - 1 have full column 

rank, 1 B1 I # 0, and ’ x ’ denotes matrices whose values are 
of no particular interest. Here A N A and B N B mean 

PAP-l = A and PB = B, where P is a nonsingular 
matrix. 

Denote the matrices in (7) as 

Alll, 

X X X Bl 
X X 

1 

A;-, x x 

1 [I 

,I?=;. 

0 0 AL-, X 0 

Since Aim1 has full row rank, there exists a nonsingular 

matrix, say p&, such that Ak-,P;J1 = EL- 1. Let 

rl00 0 1 

4-1 OI 0 = - 0 0 0 P&l Pk-&:,+_,x J ’ 
00 0 I 

where A’+ k-1 = &-i(A&4k-$1. Then, with P&-i, 



Hence, by repeating the above procedure, it is easy to ver- 
ify that A and B can further transformed into the form (7) 
where Bc = PcrBi. 0 

Clearly, for the single-input case, asp0 = . . . = pk-r = 
El = . . . = I.&-r = 1 with k = n and Bo = constant # 
0, PAP-l and PB in (7) are reduced to Al and B1 de- 
fined in (5). 

Consider a linear system j: = A x + B u with {A, B} 
being in the form (7). It is readily to find a feedback con- 

trol, say u = Kx + u, such that in the closed-loop system 
matrix A + BK all ’ x ’ matrices in (7) can be eliminated. 

For the similar reason, as no particular assumptions on 

matrices a and b, except nonsingularity of b, in (2) have 
been made, all terms ’ x ’ and Bo in (7) can be included in 
a and b in (2). Hence, the following proposition is imme- 

diate. 

Proposition 1 The feedback linearization problem is solv- 
able iff there exists a coordinate transformation E = T(x) 
on M such that (I) can be transformed into (2) where 
{A, B} is in the condensed Brunovsky form 

0 

A = E: ‘*’ . (9) 
. . . . 

EL-, 0 

From this proposition, the remaining part of the paper 
will focus on finding the state coordinate change 5 = T(z) 
which transforms (1) into (2) where A and B take the sim- 
ple block forms shown in (9). 

3 Essential Conditions 

This section derives several fundamental conditions re- 

quired in solving the feedback linearization problem. 

Proposition 2 Zf the feedback linearization problem is solv- 
able, then there exists a k-tuple of {po, . . ’ , p&l} such that 
rank G(x) = n on M, where G is defined in (6). 

Proof Let < = T(z) be the coordinate change trans- 
forming (1) into (2). Then, 

i= f5+gcu, f5=AC+Ba, gE=Bb. 

It can easily be verified that, for j = 1, . . . , n - 1, 

j-1 

ad$<gE = (-l)jAjB b + c AiB vi, 
i=o 

where rlj E RPxP contains some smooth vector fields of 

no interest, and therefore that 

rank gc adf< gc . . . 
[ adye- 1 gc 1 

= rank[ B AB ... A”-lB ] b=n (10) 

as the pair {A, B} is assumed to be controllable and b is 
nonsingular. Moreover, the commutative property of co- 
ordinate changes and Lie derivatives of vector fields [ 131 
implies that ad-l gc = dT ad3fg 
gularity of dT sd (lo), leads to 

which, due to the nonsin- 

rank [ g adf g ... aG-‘g ] = n. 

This guarantees that a k-tuple of {PO, . . . , p&i} exists such 
that rank G = n. 

As pointed out in Section 2, {A, B} in (2) can be a: 

sumed, without loss of generality, being in the condensed 
Brunovsky form (9). Hence, some simple structure restric- 
tions on the transformation T(x) are implied by (9) 
as shown in the following proposition. 

Proposition 3 Assume rank G = n and G has the control- 
lability indices PO, . . . , pk- 1. Let 

T = col. [ T1 Tz +. . Tk ] , Ti E RPi-I 

transform (I) into (2) with A and B being in the form (9). 
Then, the following relations hold 

L,Ti=O, LZTi=E;-lTi-l, i=2,...,k(ll) 

L,Tl = b, LfTl =a. (12) 

Proof A comparison of p = dT(f + g u) with p = 
A T + B(u + b u) leads immediately to these relations. 0 

Usethenotation,fori = l,...,k- 1, 

&+I = [ Gi c+(i) ] , s(i) = [ 91 . . . gpi ] (13) 

and define Gr = g(o) = g. 
The proposition below indicates the equivalence between 

L,Ti = 0 and (dTi, Gi-1) = 0 under the condition 

LZTi = Ei-,Ti-1. 

Proposition4 ZfLfTi = El-ITi-1, i = 2,. .. , k, hold, 
then,fori = 2,...,k, 

L,Ti=O N (dTi, Gi-1) = 0. (14) 

Proof Note that ‘+’ is obvious, only ‘=+’ needs to be 
proved. 

Clearly, (14) is true for i = 2. Suppose that (14) holds 
fori = j. Use thenotation Gj = [ g adfGj-r 1. Then, 

by the construction of G given in (6), span Gj = span Gj. 

Here, span D stands for the distribution spanned by vector 
fields contained in D [7]. 

Hence, (dTj+l, Gj) = 0 iff (dTj+l, Gj) = 0. More- 
over, the left hand-side of (14) implies (dTj+l, g) = 0 for 
j = l,e..,k - 1. Hence, (dTj+l, Gj) = 0 iff 

(dTj+l y UdfGj-1) = 0. By the Leibniz formula (3) and 
from LfTj+l = E;Tj, 

(dTj+lr adfGj-1) 

= Lf (dTj+l, Gj-1) - (Lf(dTj+l>, Gj-1) 
= Lf (dTj+l, Gj-1) - E; (dTj, Gj-1) = 0 - 0 = 0. 



This inductive step verifies (14). 

In the above equation, (dTj, Gj-1) = 0 is clear by the 
inductive assumption. Lf (dTj+l, Gj-1) = 0 needs fur- 
ther verification. In fact, (dTj+l, Gj-1) = 0 is to be 
proved in the following. 

AS Gj-r = 
[ g(o) &g(l) . . . 

&jm2 
f %-2) 1 3 (dTj+lT Gj-1) = 0 is equivalent to 

(dT.+l y adlfql)) = 0 > 1 =O,l,...,j-2. (15) 

Clearly, due to the first set of equations in (1 l), (15) is true 
for 1 = 0. 

Now suppose (15) is true for 1 = Q. Then, for I = Q + 1 

(I j - 9, 

( dTj+l, adT+‘g(q+l)) 

= Lf ( dTj+l, ad;g(q+l) - > ( Lf(dTj+l), ad4fg(q+l) > 

= Lf ( dTj+l, adTg(q+l) > ( - E; dTj, adTg(q+l) > 

which is identical to zero owing to the facts that 

( dTj+lT adQfgcq) 
> 

= 0 implies 
( 
dTj+l, ad;g(,+l) 

> 
= 0 as 

Q(q+l) c g(Q) and that (dTj, Gj-1) = 0 implies 

( dT’, a$g(q+l) = 0. > 
0 

4 Coordinate Transformation 

This section characterizes the coordinate transformation 
which solves the feedback linearization problem under nec- 
essary and sufficient conditions. The proposition below is 
useful. 

Proposition 5 Let Tj (j 5 k) be a solution to 
(dTj, Gj-1) = 0 with dTj havingfill row rank, Then 

( 
LjpidT. 

f 3, G. 
> 

- 0 2 - 7 i=a,...,j (16) 

and,fori= l,...,j, 

rank L;-idTj, ad”f-‘q(i-l)) = dimTj . 
( 

(17) 

ProoJ: Firstly, ( 16) holds for i = j . Suppose (16) is true 

for i = 1, then, for i = 1 - 1, 

( Ljf-(‘-‘)dTj, Gt-2) 

= Lf L$-“dTj, Gl-2 
( > 

= o-0=0. 

This is because Gl-2, adfGt-2 c span Gl-1 by construc- 
tion of the controllability matrix G. Thus, (16) is proved 
by induction. 

To prove (17) inductively, let i = j, then (17) is obvi- 
ously true by assumption. Now, suppose that (17) is true 
for i = 1. For i = I - 1, direct computation gives 

L;-(‘-‘)dT,, ad;-2gCl-2j 

= L &lm2 f Q(l-2) - L;-‘dTj, ad’-’ 
>( f 

Due to (16), (L;-‘dTj, ad>-‘g(l_z)) = 0. Moreover, 

note that 
( 

L;-‘dTj, ad>-‘g(t-l)) has full row rank and 

thatg(l-1) G ql-2). Hence, 
( 

Lf ‘-tdTj> adi-‘g(l-z)) and 

thus L;-(‘-‘)dTj, ad’f-2g(t-2)) have full row rank. q 
( 

Remark 1 For the single-input case, by setting j = k = 
n, (16) and (I 7) are reduced to the well-known relations 

( 
Ly-idT,, ad+’ f q > 

=O,i=2,...,n,j=l,...,i-1 

and 
( 

LTpidT,, ad;-‘g 
> 

# 0, i = 1,. . . , n, respectively. 

Corollary 1 IfTj (j 5 k) is a solution to (dTj , Gj-1) = 
0 with dTj having full row rank, then all covectorfields in 
the set {LseidTj, i = 1,. . . , j} are linearly independent. 

ProoJ In view of (16), direct computation gives 

Cl x ‘.’ x 

. . c2 . : 

. . . x 

cj - 

with C, = 
( 

LjfMidTj , ad>-‘q(i-l,), which leads to what 

is to bd proved by virtue of (17). q 

The following is a key, though simple, lemma. 

Lemma 1 The feedback linearization problem is solvable 
iff the equations 

(dTi, Gi-S=O, LfTi=Ei-lTi-l, i=2,...,k (18) 

have a solution T = ~01. [ Tl T2 . . . Tk ] with 

(dTi, ad;-‘g(+-l,), i = 1, . . . , k, being nonsingular on 

M. 

Proo$ If the feedback linearization problem is solvable, 
necessity of (18) is implied by (11) and Proposition 4. 
Moreover, dT and, by Proposition 2, G must be nonsin- 
gular. From the first relation in (18), it is straightforward 
to obtain 

dTG= D2 ::y ik J (19) 



with Di = dTi , adi-‘g(i-l) . This verifies the require- 
> 

ment of nonsingularity of dTi, adiW1g(i-l) 
( > 

. 

Now suppose that T = col. [ Tr T2 . . + Tk ] 

is a solution satisfying (18) and with 
( 

dTi, adE;lg(i-l) 
> 

being nonsingular on M. Then, direct computation leads 
to 

T=dT(f+gu) = [ Ekzml]+[ L-yu 

where a = LfTl and b = L,Tl = (dT1, g) which is 

guaranteed to be nonsingular. That is, T = dT(f + g u) 
is indeed in the form (2) where A and B have the forms 
of (9). Finally, as nonsingularity of dT is implied by (19), 
5 = T(x) is a diffeomorphism on M. 0 

In view of Lemma 1, to solve the underlying problem 
it needs only to find existence conditions and a solution to 
the equations given in (18). 

Theorem 2 Thefeedback linearization problem is solvable 
iff both the following conditions hold 

(a) rankG(x) = n on M, where G is the controllabil- 
ity matrix with the controllability indices of the k- 
tuple {PO, . . . , pk- 1) as defined in (6); 

(b) the distributions Ai = span Gi, i = 1, . . . , k - 1, 
are involutive on M, where Gi is de$ned in (13). 

In case (a) and (b) hold, the solution of the feedback lin- 
earizationproblem is given by T = col. [ Tl . . . Tk 1, 
Ti E RPi-1 with 

x= [ ::!I = [ L~zl] , i=l,...,k--1 (20) 

where both Tk and Ti,2 with dTk and dTi,z having&l1 row 
rank are determined via 

(dTk, G/c-l) = 0 7 (dTi,2, Gi-1) = 0 (21) 

dTi,2 Ss van{LfdTi+l, dTi+l, ... , dTk), (22) 

i = I,... , k - 1, respectively. Here, de$ne Go = 0. 

Proof: Necessity of (a) follows from Proposition 2. In 
view of Lemma 1, the existence of Ti with dTi having full 

row rank and satisfying (dTi, Gi-1) = 0 is required for 
the underlying problem to have a solution. This verifies 
the necessity of(b) by virtue of the Frobenius theorem [7, 
131. 

Now let (a) and (b) be satisfied. Again by Frobenius’ 
theorem, the solutions of Tk and Ti,s with with dTk and 
dTi,2 having full row rank and satisfying (21) and (22) do 
exist because dim Tk = dim A;-, and dimTi,z = 

dim At- 1 - dimspan{LfdTi+r, dTi+l, ... , dTk}, i = 
1, . . . , k-l. Here, A’- represents the codistribution spanned 
by all covector fields orthogonal to the distribution A [7]. 

From Lemma 1, it remains only to prove that the solu- 
tion given in (20) satisfies (18) and that all 

(dT,, ad;-‘g(i-l)) are nonsingular. Owing to the special 

structure of Ei-1, the second set of equations in (18) are 
clearly satisfied by (20). 

By definition of Tk in (2O), the first equation in (18) is 
satisfied for i = k. NOW, assume that (dTj, Gj-1) = 0 
is satisfied by Ti given in (20) for i = j. By the Leibniz 

formula (3), direct computations lead to 

(dTj-1, Gj-2) = {$?$2i,2J:i) ] = 

Lf (dTj> Gj-2) - (dT’> LfGj-2) 
0 1 [I = 0 

0 

This inductive step proves that (20) satisfies (18). 
Finally, by construction and due to Proposition 5, 

{dTl,... , dTk} contain linearly independent covector 

fields. Hence, from (19), all (dTi, ad>-‘g(i-l,) must be 

nonsingular. 0 

If the controllability indices {PO, . . . , p&r} satisfy some 
simple relation, for instance in the single-input case, the 
solution (20) can considerably be simplified. Corollary 1 
and the above theorem lead to the following corollary im- 
mediately. 

Corollary 2 Zf rank G(x) = n on M with the controlla- 
bility indices {PO, . . . ,pk-1) satisfying PO = . . . = pk-1, 
then the feedback linearization problem is solvable iff the 
distribution Gk-r is involutive on M and in which case, 
the solution is given by T = col. [ Tl . . . Tk ] with 

‘Z = LfTi+l y i = l,...,k- 1 (23) 

where Tk with dTk having full row rank is determined via 
(dTk, G,+1) = 0. 

Evidently, the solution (23) is equally simple as the so- 
lution for the single-input case where po = . . . = p&i = 
1 and k = n. 

The following example taken from [7] illustrates the de- 
sign aspect of the proposed solution. 

Example 1 The system 

I 

x2 + x; 
x3 - 21x4 + 24x5 

k= 22x4 + x1x5 - xg 

x5 

G 

1 0 

0 0 

+ 1 COS(Xi - xs) 

0 0 
1 0 

1 
1 

U 

as analysed in [7], satisfies all conditions of Theorem 2 
around the neighbourhood M of xo = 0. In the following 
it is to show how the coordinate transformation required in 



the feedback linearization can easily be found by using the 

solution formulated via (20-22). 
The controllability matrix is given by 

l-1 0 
G = [ g 1 adfg 1 a&l ] = I 0 0 1 1 cos(zr-z6) 0 0 0 

0 0 
-1 COS(Xl - x5) 

-x1 + 55 -22 sin(sr-x5) 
71 0 
0 0 

with indices p. = pr = 2, ps = 1. 

1+2x2 

0 

x4 

0 

252 ! 

T3: ItiseasytoobtaindTs=[ 1 0 0 0 -11 asa 

solution satisfying (dT3, G2) = dT3 [g adfg] = 
0. Hence, T3 = x1 - x5. 

T2: As LfdT3 

dT2,2 = [ 0 0 O=l 0 

[o 10 0 01, 

] 6 span{LfdTs, dT3) 
is obviously a solution to (dT2, G1) = dT2g = 0. 

Thus,T2= [z] = [ ;:I. 

Tl: Since po = pr, 

aT2 Tl = LfT2 = & = 

Finally, it can be verified that 

[ 

-x1x4 + x4x5 + x3 

x5 I. 
-x154 + x4x5 + 23 Tl [ 1 

x5 

T= T2 = x2 

T3 x4 

Xl -x5 

is the desired transformation. 

5 Conclusion 

A condensed controllability/Brunovsky form has been 
introduced to deal with the feedback linearization problem 
for multi-input nonlinear control systems. By using this 
condensed form in the problem formulation, the underly- 

ing problem has been treated in a more compact manner. 
As the derivation is in many respects similar to the known 

treatment in the single-input case, more direct insights have 
therefore been provided in the solution of the multi-input 
case. In fact, the derivation has been unified for both single- 
input and multi-input cases. Owing to the compact formu- 
lation, the proposed solution shows a clearer structure than 
previous solutions in [2,5,7]. 

The use of the condensed controllability/Brunovsky form 
makes it possible to derive the multi-input solution in a man- 
ner analogous to the single-input case. It is believed that 
the use of the the controllability/condensed Brunovsky form 
could benefit derivations of many related problems in multi- 

input multi-output control systems. Even in the linear sys- 
tem case, the condensed controllability/Brunovsky form should 

be of 
value in designing feedback control. For instance, the dead- 

beat controller design for the discrete-time linear systems 
may be one of such examples. 
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