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Abstract 

This paper deals with the problem of global sta- 
bilization independent of delay for a class of delayed 
linear systems subject to bounded controls. 

A new sufficient condition addressing the global 
asymptotic stabilization (G.A.S.), via saturated (static 
or dynamic) feedback, of such class of systems is pro- 
posed. It concerns the class of systems for which the 
open-loop system without time-delay term is Hur- 
witz. 
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1 Introduction 

Several study upon independent time-delay stabi- 
lization of delayed linear systems, by means of linear 
controls, have been reported in the literature [2], [7], 
[9], [lo], [ll], [16], [17]. Some of these studies have 
been extended to the class of delayed linear systems 
with saturating controls [3], [12], [15]. In these pa- 
pers, neither the form of a state feedback required 
to obtain G.A.S. nor the estimated region of local 
stability is specified. Furthermore, their results were 
obtained for a nonlinearity contained in a conic sector 
where saturation was included as in [8]. By address- 
ing directly the saturation issue, one should expect 
to obtain less restrictive stability conditions [14]. 

In this paper, we focus attention on the global sta- 
bilization independent of delay for a class of inter- 
nally delayed systems with saturating controls. The 
resulting closed-loop system is then of a nonlinear 
type. A sufficient condition independent of delay, im- 
proving that one in [5] is proposed, when the matrix 
of the open-loop system without time-delay term is 
Hurwitz. Firstly a saturating static state feedback 
is used, afterwards a saturated dynamic controller, 
built from delayless observer, is considered. 

The following notations and terminology are used. 
The inner product of two vectors x, y E R”, is de- 
noted by 4 Z, y t-, the symbol “grad V” denotes the 
gradient vector of the function V, ” Re( .)” denotes the 

youcef@ige.univ-fcomte.fr 

real part of (.), and 1, represents the identity matrix 
of dimension (n x n). Finally we denote by ]]x(t)]] the 
euclidean norm of vector x(t), l/All the following ma- 

1’2 trix norm A,,,( AtA) and p(A) the matrix measure 
defined by &&,.&At k A). 

2 Preliminaries 

Consider the following linear time-delay system de- 
scribed by: 

{ 

ii(t) = Ax(t) + Ax(t - h(t)) + Bu(t) 

y(t) = cx:(t> 
(1) 

where matrices A, A E ?Rnx”, B E ?JYx”, and C E 
?RJZlx“ with rank(C) = 1. The varying-time-delay h(t) 
is nonegative, bounded and continuous function sat- 

’ isfying 0 5 h(t) 5 T, with h(t) 5 S < 1, where 7 < 00 
is any constant. Further, for system (1) the following 
properties hold: 

P-1) 

(P-2) 

(P-3) 

(P-4) 

x(t) = q(t), ‘d t E [to - T, to], to > 0, where 
Q(t) is a continuous vector-valued initial func- 
tion. 

The control vector u(t) is assumed to belong to 
a compact set Q C %!“‘, Qt 2 0, defined by: 

R = {u(t) E $?I - ?.& 5 u”(t) < uz ; 
u$, uz > 0;Vi = 1,2, . . . . m} 

(2) 
where u” represents the ithcomponent of the 
vector u(t). 

The pairs (A, B) and (A, C) are assumed to be 
stabilizable (or controllable) and detectable (or 
observable) respectively. 

Matrix A is assumed to be Hurwitz. 

Assume that all states are available to a measure. 
Then by implementing a saturated static controller: 

u(t) = sat(Fx(t)), F E ZRmxn (3) 

system (1) becomes: 

2(t) = Ax(t) + Ax(t - h(t)) + Bsat(Fx(t)) (4) 



where the saturation term 

sat(Fx(t)) = [(sat(Fx(t))‘, . . . . (sat(Fx(t))“]t 

is defined, for i = 1,2, . . . . m, by: 

if (Fx(t))’ > I& 
sat(Px(t))’ = Tkx(t)); if 

I 

-u:, 5 (Fx(t))’ 5 z& 
-& if (Fx(t))” < -uA 

(5) 
The saturation term can be written as 

sut(Fx(t)) = Q(a(x))Fx(t) (6) 

whose entries ct!(x(t)) of the diagonal matrix Q, are 
defined for i = 1,2, . . . . m, by: 

2(x(t)) = 1 

{ 

&t$ if (Fx(t))’ > uh 
if -u; 5 (Fx(t))’ 5 & 

-$f$$ if (Fx(t))’ < -& 

(7) 
and satisfy 

0 < &(x(t)) 5 1, V i = 1, . . . . m. (8) 

Thus, from (6)-(8), system (4) can be rewritten 
equivalently as: 

x(t) = (A + B@(a(x))F)x(t) + Ax(t - h(t)) (9) 

Note that system (4) is of a nonlinear type. 

Further, it is well-known that if matrix A in (1) is 
Hurwitz, then there always exists a symmetric posi- 
tive definite matrix P (P > 0) solution of: 

AtP + PA = -NtN (10) 

where N is any nonsingular matrix. 

We study, in this paper, the global asymptotic sta- 
bilization, independent of varying-time-delay, by us- 
ing a saturating (static or dynamic) feedback law. 
The case of constant time-delay systems follows as 
a particular case. Then, we give a feedback law type 
and a new sufficient condition for which G.A.S of sys- 
tem (4) is guaranteed. 

The following Lemma concerning the G.A.S of sys- 
tem (4), gives us a way to choose a suitable matrix 
F. 

Lemma 2.1 : If for system (4), there exists a Lya- 

punov function V(x(t)) for which: 

i/(x(t)) = -x grad V(x(t)), Ax(t) + Ax(t - h(t))+ 

Bsut(Fx(t)) +< 0, Vh(t) 5 r 

(11) 
for any x(t) E ?JY\{O}, then V(x(t)) must necessar- 
ily be a Lyapunov function of the following open-loop 

system 

i(t) = Ax(t) + Ax(t - h(t)) (12) 

The proof of this lemma follows by using the same 
approach as in [5]. 

3 Main results 

Following Lemma 2.1, system (12) must be stable. 
On the basis of the previous result, the determina- 
tion of the feedback matrix F can be made from a 
suitable Lyapunov function of system (12). Hence, 
we introduce the next theorem which provides a new 
sufficient condition for global asymptotic stability of 
system (4). 

Theorem 3.1 : Assume that matrix A is Hurwitz ; 

the state feedback control law (3) with the following 

matrix 

F = -D(y)BtP (13) 

where D(y) is a diagonal matrix of positive elements, 
and matrix P > 0 is solution of (lo,), globally stabi- 
lizes (G.A.S) system (4), independently of time-delay, 
provided that: 

II(N-l)tPAN-lII < JP(l - P)(l -S), P El0 l[ 

(14) 

Proof : Consider the coordinate transformation x = 
N-l Z. Hence the system (4) may be transformed 
into: 

i(t) = Aoz(t) + Aoz(t - h(t)) + B,,sut(Foz(t)) (15) 

where Ao = NAN-l, A0 = NAN-l, B. = NB and 

Fo = FN-l. Substituting matrix A = NMIAoN into 
(lo), one gets: 

At,(N-l)tPN-l + (N-l)tPN-lAo = -In (16) 

To examine the global stability of system (4), we 
define a Lyapunov function candidate V(z(t)) as: 

V(z) = zt(AqtPN-lz + p 
J 

t 
z”(e) z(e) CM (17) 

t-h(t) 

where /I > 0 and (N-l)tPN-l> 0 is a solution of 
(16). The time-derivative of V(z) along the trajecto- 
ries of system (15) is evaluated by: 

v(z) = -ztz + 2zt(N-1)tPBsat(FN-1z)+ 
2z~(Nymv-lz(t - h(t)) + pz”z- (18) 

/3(1 - h(t)) zyt - h(t))z(t - h(t)) 

From the equivalent form of the saturation term, given 
by (6), and using matrix F defined in (13), equation 

P-9 b ecomes: 

P(z) = -(l - p) Z% - 2zt(N-l)tPB~~(y)BtPN-lz 

+2zt(iv-l)tPAN-lz(t - h(t)) - p(1 - i(t)). 
zyt - h(t))z(t - h(t)) 

(19) 



and can be majorized by: 

q4 I -0 - ~>ll~(~Il” + 211v-1)t~~wI Il4W 
II@ - Wt))ll - P (1 - 6) Il4t - WII” 

(20) 
since 

Z”(t)(N-‘)“PBaqa)D(~)BtPN-lz(t) 2 0, vt > 0. 

In terms of r](t) = [[[z(t)]] ]]z(t - h(t))]]]” yields: 

~W)) 5 -+@I R v(t), 

where 

R= (1-P) -II(N-l)tPAN-lJI 

-II(N-l)tPAN-lII PO - 6) 1 (21) 
If the condition (14) is satisfied, then matrix R is 
positive-definite and we get: 

ri(z(t)) < 0, Vz(t) E %“\{O} 

This implies the global asymptotic stability of sys- 
tem (15) and therefore that one of system (4). n 

Remark 3.1 : Note that the maximized value of the 

term dm with p ~10 l[ is obtained for /3 = i. 

Thus, the condition (14) can be replaced by: 

II(N-l)tPAN-l~~ < ;&CT) (22) 

Dynamic output feedback 

Suppose that the state vector is not completely 
available for measurement. In order to reconstruct 
needful states for feedback, we can use dynamic feed- 
back, built from minimal-order observer. Let us con- 
sider a reduced-order observer, realized as follows: 

i(t) = De(t) + E e(t - h(t)) (27) 

Hence, it appears clearly that if matrices D and E 

can be chosen such that the condition (iv) holds, the 
observer (23) converges, i.e., e(t) -+ 0 as t + 03. 

The objective is then, to give a sufficient condi- 
tion for which the feedback, matrix F, given in (13), 
globally stabilizes the following composite system: 

{ 

G(t) = D w(t) + E w(t - h(t)) + Gsat(FP(t))+ 

H y(t) + J dt - h(t)) 
iqt) = M w(t) + I< y(t) 

(23) 

i(t) = Ax(t) + Ax(t - h(t)) + B sat(F(x(t) + Me(t))) 
i(t) = De(t) + E e(t - h(t)) 

(28) 

where w(t) E %(+‘) and D, E, G, H, J, M, Ii’, are Theorem 3.3 : Assume that matrix A is Hurwitz 

constant matrices of appropriate dimensions, which and that conditions (26) hold. The composite system 

can be determined as shown in Appendix. The exis- (28) is globaIly asymptotically stabilizable, indepen- 

tence conditions of such class of observers are given dent of time-delay, by means of the feedback matrix 

below. F given in (13) if the condition (22) is satisfied. 

Theorem 3.2 : [4] Ifrank[Ct AtCt] = n, then the 

necessary and suficient condition for the existence of 

a delayless observer with E null is that all transmis- 

sion zeros for (A, AIIi, C) be stable, where II is any 
matrix satisfying range[IIi] = nurr[C]. Note that SO 
is said to be a transmission zero of (A, A@, C) if 

Proof: Let the coordinate transformation G = N-rz. 
Hence, the system (28) may be transformed into: 

{ 

i(t) = A,z(t) + Aoz(t - h(t))+ 

Bos@‘o(z(t) + NMe(t))) (29) 
i(t) = D e(t) + E e(t - h(t)) 

where Ao = NAN-l, 20 = NAN-i, B. = NB and 
F. = FN-l. 1 <2n-1 

The conditions under which the state w(t) is an 
estimate of Tx(t), for some T E ?J?(“-‘)x”, i.e., 

where 

&I& c(t) = 0, VW(O), x(O), u(t) (24 

are: 

c(t) = w(t) - Tx(t) (25) 

z’) G = TB, 

‘;) [ “0’ ;!I- [ ‘; ;A]=-[ %” ;C]> 

iii) MT + KC = In, 

iv> P(D) < -IIq. 
(26) 

Specify that condition (iv), in (26), is only suf- 
ficient for the observer’s convergence. Nevertheless, 
conditions (i), (ii), (“‘) zzz are necessary, for the exis- 
tence of delayless observer. 

Followig (25) and conditions (26), the reconstruc- 
tion error vector, defined by: 

e(t) = 2(t) - z(t) 

can be expressed as: 

e(t) = Me(t) 

with 



Now, consider the candidate Lyapunov function de- 
scribed by (l?), for which equation (16) holds. Its 
time-derivative along trajectories of system (29) is 
given by: 

Q(z) = -(l - p)z”.z + 2zt(N-l)tPAN-1z(t - h(t)). 

+2zt(N-l)tPBsat(FN-lz) - pzyt - i(t)) 
Z(t - h(t)) + 2zt(P)tPB f(z, E) 

(30) 
where f(z, 6) = [sat(.Fi’V1(z + NME)) - sat(FN-‘z)] is 

globally Lipschitz function [13], i.e., which satisfies: 

IIfb> ~>I1 I P IWII~ P = k IPdl IPWI > 0 (31) 
Substituting the equivalent form of the saturation 
term, given in (6), and matrix F in (13), into (30) 
we have: 

P(z) = -(l - p)z”z + 2z~(N-yJAN-1z(t - IL(t)) 
-2zt(NTl)tPB~(cY)D(y)BtPN-lz 

+3(1 - h(t))zt(t - h(t))z(t - h(t)) 
+2zt(PpJB f(z, 6) 

(32) 
By using (31), equation (32) can be majorized by: 

V(z) I -(l - P)llzll” + 2~~(N-1)tPAN-1~~~~2~~. 
Il4t - h(4)ll - PC1 - 6) Il4t - Wll” 
+2/JllP-1)t~~lll141 lkll 

(33) 
In terms of q(t) = []]z(t)]] Ilz(t - h(t))]]]” yields: 

~Mt)) F -rl?) R rl(t) + 2+(t>ll IWII (34) 

where R is given by (21) and (T = p ]](N-l)tPB ]I> 0. 

If condition (14) is satisfied, one gets R > 0 and 
we can write: 

+(z(t>> I -xmin(R) ll~(t>l12 +2a IIZ@>ll Il4>ll (35) 

Taking into acount that: 

A1 Mt>l12 5 ww 5 Mz@)l12 + +(r>ll” 
(36) 

where X1 = A,in((N-l)tPN-l), X2 = X,,X((N-l)tPN-l), 

I E [t - h(t), 4 and that llz(E)II 5 IMt>ll, we have 
]]q(t)]] > J/W. This allows to obtain an upper 

bound on Q(z(t)). Therefore 

WtN I --a VW> + 2b mm IIWI (37) 

wherea=wand b=-&. 2 

Letting W(t) = dm, from (37) yields: 

k(t) I -; W(t) + bll@>ll (38) 

By integrating the both sides of (38) we obtain: 

t 
W(t) I W(t0) e - 4(-o, + b 

s 
e-4(-) Ilc(e)ll de (39) 

to 

From the left side of (36) and (39), it follows: 

wo> - gt-to, 
J 

t 

Ilz(t)II I r e + & to e-%(-j Ilc(S)ll d6’ 

(40) 
Hence, if the condition (22) is satisfied, so a > 0, then 
by taking into account that conditions (26) and those 
of Theorem 3.2 hold, by assumption, one gets: 

lim z(t) = 0 
t+cc 

since e(t) + 0 as t + 00. This means that system 
(28) is globally asymptotically stable. n 

Suppose h(t) = r < 00, Vt 1 0, so S = 0, then from 
Theorem 3.1 and Theorem 3.3, derived the following 
Corollary. 

Corollary 3.1 Under assumptions (P.l)-(P.4), the 

feedback matrix F in (13) globally stabilizes system 

(4) and the composite system (28), satisfying condi- 

tions (26), with constant time-delay, if 

II(N-l)tPAN-lll < ; (41) 

Proof : Follows from Theorem 3.1, Theorem 3.3 and 
Remark 3.1, by taking S = 0. n 

Remark 3.2 : The case of full-order observer can 

be obtained, as particular case, by taking w(t) = x(t), 

D = A - HC, E = A, G = B, J = OnXlr M = In,, 

K = Onxl andT= In. 

Remark 3.3 : Notice that condition (22) is less con- 

servative than that one given in [2], [5], [12]! that is, 

llp~ll < hn(Q) Amin(P) 
2 &x%x(P) 

(42) 

and also less restrictive than the well-known condi- 

tion: 

44 < -1141 

Remark 3.4 : An interesting open problem consists 

in finding the pair of matrices (N, P) which mini- 

mizes the term II(N-l)tPAN-llj. This defines the 

following constrained optimization problem: 

m$ II(N-l)tPAN-lII 

Subject to: AtP + PA = -NtN 

for which condition (41) must holds, 



4 Conclusion 

Design of linear saturated controller, built from 
delayless observer, to globally stabilize continuous time- 
delay systems with constrained controls has been de- 
veloped in this paper. It has been established that if 
there exists a Lyapunov function of the open-loop de- 
layed system, for which matrix A is Hurwitz and the 
condition (14) is fulfilled, then the state feedback ma- 
trix, built from this function, globally stabilizes the 
composite system (system+observer) independently 
of time-delay. 

When matrix A is not Hurwitz, the local stabiliza- 
tion independent of delay, can be envisaged to de- 
termine some positively invariant and asymptotically 
stable domains, in which the behavior is of a nonlin- 
ear type. This case is studied in [6]. 

5 Appendix 

To determine all matrices of system (23), we can 
consider the method proposed in [l], for undelayed 
linear systems. It’s well known that there exists an ar- 
bitrary choice of real constant matrix A E %(ra-‘)xn 
such that matrix ,$? = [C” Alt is nonsingular. Hence, 
using the similarity transformation x(t) = Sz(t), sys- 
tem (1) can be described by: 

i 

k(t) = SAS-lx(t) + SAS-‘x(t - h(t)) + SBu(t) 

y(t) = cs-lx(t) = [Iz 01 x(t) 

(43) 
and partitioned as: 

[ ;:I= [ 2 ::I] [ ;:i:j]+ 

1 u(t) 
y(t) = 

where xl(t) E ?I?, x2(t) E %cn--l). 

If (A, C) is observable, then (A22, A12) is also ob- 
servable [l]. Only the last (n - 1) components of x(t) 
have to be estimated. 

By setting w(t) = iz(t) - Ly(t) = %2(t) - Lxl(t), 
where 

iz(t) = A22 C(t) + A22 k(t - h(t)) + Azlxl(t) 
+A21x1 (t - h(i)) + Bzu(t) 

(45) 
we obtain: 

G(t) = (A22 - LA12)w + (A22 - LAn)w(t - h(t)) 

+[(A22 - LA12)L + (A21 - LAll)]y(t) 
+[(A22 - LA12)L + (A21 - .LA,,)]y(t - h(t)) 
+(Bz - LBl) u(t) 

(46) 

where L is a suitable matrix, chosen to satisfy: 

14422 - ~542) < 4422 - ~A1211 

Thus, if we define: 

e(t) = %2(t) - x2(t) = w(t) - Tz(t) 

then, from (23), (27) and (46) one gets: 

D = (422 - ~5412) 

E = (A22 - ~5412) 

G = (Ba - LB1) 

H = [(A22 - -42)L + (421 - LAll)] 
(47) 

J = [(A22 - L-412)L + (A21 - L&I)] 

T = [-L I(,-I)] S 

According to [4], it is clear that if matrix E is 
chosen null, then matrices J and H can always be 
calculated once L is determined so that matrix D is 
Hurwitz and A22 - LA12 = 0. 
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