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Abstract: 
A comprehensive treatment of 

Cerebellar Model Articulation Controller 
(CMAC) Neural Network (NN) for the control 
of robot manipulators is presented. The 
structure and localized learning properties of 
CMAC NN is exploited to design efficient 
controllers for nonlinear systems belong to a 
given useful class. Continuous-time 
implementation of these controllers are 
systematically examined. Novel weight update 
schemes are derived and the closed-loop stability 
of the controller and the system is rigorously 
proved. These weight update schemes are 
shown to be nonstandard modifications of 
adaptive techniques prevalent in the literature. 
Finally, the validity of these techniques are 
demonstrated through numerical studies. 
Keywords: Robot Control, CMAC NN 
Controllers, Nonlinear Adaptive Control, 
l.Introduction 

In recent years, learning-based control 
has emerged as an alternative to adaptive 
control. Important in this class of controllers 
are the neural networks where the learning is 
accomplished by tuning the weights of the NN. 
Rigorous research in NN for control applications 
is being pursued by several researchers [7-S, 141. 
While NNs have been popular in the literature, 
in practice, the global nature of the learning has 
adverse effect on the learning rate that is 
achievable. To circumvent this, CMAC NN has 
been proposed in the literature [ 1,2]. 

The functional approximation 
properties of feedforward NN [4] are basic in 
their application to control. In feedforward 
neural networks [7-8,141, since all the weights 
are updated during each learning cycle, the 
learning is essentially global in nature and slow. 
On the other hand, the CMAC NNs utilize the 
information on local NN structure and thus, the 
learning is faster with a good function 
approximation. In addition, this function 
approximation generated by these CMAC NNs 
is insensitive to the order of presentation of the 

training data. Furthermore, the attractive 
feature of NNs in general is that their design is 
model-free in the sense that NNs can be 
constructed for complex ill-defined processes 
without specific knowledge of the underlying 
model or the detailed dynamical characteristics. 

To take advantage of the local CMAC 
NN structure, CMAC NNs are proposed for 
closed-loop control of complex dynamical 
systems [3,11-12,161. The CMAC is a 
perceptron-like associative memory network 
with overlapping receptive fields that computes 
a nonlinear function over a domain of interest. 
The contents of these memory locations are 
referred to as the weights and the output of the 
CMAC NN is a linear combination of these 
weights [2]. 

While the advantages of using CMAC NN 
over conventional NN in many closed-loop 
applications are well known in literature [l l- 
121, to our knowledge, there has been no study 
of using CMAC NNs for robot arm control in 
continuous-time which guarantee stabilitv and 
bounded weight estimates. In [12], although 
real-time dynamic control of an industrial 
manipulator is presented using a CMAC NN, no 
convergence or stability analysis is provided. 
Therefore in [5] and [ 161, convergence analysis 
of a CMAC NN is detailed. However, 
Lyapunov-based analysis is not discussed in both 
papers and in [12] and [16] initial learning 
phase is also required for the CMAC controller. 

The remainder of the paper is 
organized as follows. Section 2 gives a 
background on CMAC NNs and their 
appro?cimation properties using 
multidimensional receptive fields. A brief 
outline of the control of robotic systems in 
continuous-time is presented in Section 3. A 
novel adaptive law is developed and the stability 
of the closed-loop system with the CMAC NN in 
continuous-time is rigorously proved in Section 
4. Simulation results are presented in Section 5 
and the conclusions and highlights of the paper 
are summarized in Section 6. 



2. Background 
Let R denote the real numbers, 

R” denote the real n-vectors, R- the real man 

matrices. Let S be a compact simply connected 

set of R” With maps f:S+Rk , define Ck(S) 

as the space such that f is continuous. We 
denote 11 11 any suitable vector norm. Given a 

matrix A = [aij]. A ER- the Frobenius norm 

is defined by 

llAll; = tr(ATA) = Xa$ 
i.j 

with tr () the trace operation. The associated 

inner product is < A,BbF = tr(~~B). The 

Frobenius norm llA/\F which is denoted by 11 II 

throughout this paper until unless specified 
explicitly, is nothing but the vector 2-norm over 
the space defined by stacking the matrix 
columns into a vector, so that it is compatible 
with the vector 2-norm, that is IIAxlllllAll.llxll. 

In order to formulate the controller, the 
following stability notion is needed. Consider 
the nonlinear system given by 

i (t>=fW, u(t)>, y(O=W(W, 
where x(t) is a state vector, u(t) is the input 
vector and y(t) is the output vector. The solution 
is uniformly ultimately bounded m) if for all 
x(k,,) = x0 , there exists E > 0 and a number 

T(E,~~) such that Ilx(t)ll< E for all t 1 to +T 

2.1 Back Ground on CMAC Neural Networks 
In Section 4 and 5, the controller 

assumes that a mechanism for reconstructing a 
nonlinear function f(.) is available for the case 

of continuous-time controller design and f(.) and 
g(.) for the case of discrete-time controller 
design. Now we show that CMAC neural 
networks are extremely convenient for 
approximation-based closed-loop control. 
Specifically we confront the problem of multi- 
input multi-output CMAC using simple 
receptive-field functions that are easily 
computable (n-dimensional linear splines). We 
consider that CMACs with linear splines possess 
a universal approximation property that can be 
used to design a controller that guarantees 
stability for a class of systems without explicit 
knowledge of the nonlinearity. 

Fig. 2.1 shows a typical application of 
a CMAC neural network where the CMAC 
is used to manufacture a continuous function 

h(x) = [h,(?c), h2(&..h,(;U>lT, where 

XER”, and h:R” -+ Rm The nonlinear - 

function h( 2) produced by the CMAC is 

composed of two primary functions 
R:X*A 

P:A*Y (2.1) 

where X is the continuous n-dimensional input 
space, A is an IV,-dimensional association 

space, and Y is the m-dimensional output space. 
The function R(.) is fixed and maps each point 

in the input space onto a association vector 
a. = R(x) - in the association space A The 

function P(a) computes an output hi Y by 

projecting the association vector determined by 
R(x) onto a vector of adjustable weights w such 

that 

h=P(cc)=wTa, (2.2) 

R(x) in equation (2.2) is the multi- 

dimensional receptive field fLnction which 
assigns an activation value to each point in the 
input space X. 
2.2 Function Approximation of CMAC 

The next result is of major importance as it 
shows these approximations provided by the 
CMAC neural network can be made arbitrarily 
accurate. It provides the design which shows 
explicitly how to design a CMAC NN for a 
prescribed appro?cimation accuracy. 

Theorem 2.2 : The function estimate F(_x) 

provided by a CMAC uniformly approximates 

any C’ -continuous function j?“) :R” -+ Rm E FL 

on QcR”. Specifically, given any 3L and 

E > 0 the maximum partition size 8 can be 
chosen such that 

II II 
f();)-T(x) I E, ‘d f(.) eFL 

where 

(2.3) 

S=J--, (2.4) 

P-f: See [3]. I 
2.3 Implementation Properties of CMAC 

The output equation of the CMAC can be 

represented as a function from R” to Rm and 

expressed in vector notation as 

h(s) = wTl-(5) (2.6) 

where w is a matrix containing the set of 
weights, and I’ is a vector of the receptive field 
activation values. The definition of w and r is 

not unique, though wTT is equal to the right- 
hand side of equation (2.6). 



Corollary 2.3: Any C’ - functionA.) E FL 

can be e,\pressed as 

f(s)=WTI-(Q+ E, V’xEu (2.7) 

where E is the function estimation error and 

lIEI s &N > with Ed a known bound. I 

The advantage of equation (2.6) can be 
immediately seen in light of Corollary 2.3. For 

any 2, since only 2” receptive fields are active, 

only 2” weights need to be adjusted to get exact 
function reconstruction using equation (2.7). 
3. Dynamics of a Robot Manipulator 

The dynamics of an n-link robot manipulator 
may be expressed in the Lagrange form as [ 151 

Wq)ii + V,(q,@q+G(q) +F(il) +d = 7 (3.1) 

with q(t) E R” the joint variable vector, M(q) 

the inertia matrix, V,(q& the 

coriolis/centripetal vector, and F(q) the friction 

component. Bounded unknown disturbances are 
denoted by d(t) and r is the control torque. It is 
assumed that d(t) is an unknown disturbance 
with a known upper bound dM so that lldll I d, . 

The control problem is then, to design a control 
input r such that the joint angles q(t) track a 

desired trajectory qd(t) 

The robot dynamics in (3.1) satisfy some 
important properties that simplify the control 
problem. 
Property 1: 
(a) The inertia matrix M(q) is symmetric, 

positive-definite, and bounded so that 
k,I 5 M(q) 2 p21 for all q(t). 

(b) The matrix ti- 2V,(q,@ is skew 

symmetric. 

(c) /Vm~ll 5 vnl(# for constants ‘B. 

$(@I/ 2 vnll~ll+ k, for constants vn, k, . 

IIG(s)ll 5 gB (3.2) 

Given a desired arm trajectory qd (t) , the 

tracking error is given by 

e(t) = q@)- qdct), (3.3) 

and the filtered tracking error is defined as 
r=i:+Ae (3.4) 

where A = AT > 0 Differentiating r(t) and using 
(3. l), the arm dynamics may be written in terms 
of the filtered tracking error as 

Mi=-V,r-d+f+T (3.5) 

where the nonlinear robot function is 
f(x) = -M(Cl& - A&) - V,(q,q)[&, - I\e] 

-G(q) - F(4) 
<al d 

x = e [ 
T .T T .T ..T T 

e qd qd qd 1 
Define now a control input torque as 

(3.6) 

(3.7) 

5=-k,& (3.8) 

where f(x) is an estimate of fix) and the gain 

matrix k,=kT>O. The closed-loop system 

under this control input (3 .S) becomes 

Mi=-(k,+V,)r+T-d, (3.9) 

where the functional estimation error is given by 

T=f-?. (3.10) 
4. Adaptive-CMAC Control of a Manipulator 

In the implementation of the controller 

(3.Q it is assumed that an estimate ?(.) of the 

function A.) is available. According to (2.7), 
any nonlinear function can be approximated to 
any required degree of accuracy using a CMAC 
NN. The output of the CMAC NN is given as 

t(x) = W$(x) (4.1) 
where $ is a matrix of control representative 
values and $(.) is the vector of membership 

values based on the multi-dimensional MFs. 
The carets (^) denote the estimates of the ideal 
parameter values that are provided by the tuning 
algorithms soon to be presented. The proposed 
control scheme is shown in Fig. 3.1. Note that 
the structure has a nonlinear CMAC NN inner 
loop plus a linear outer tracking loop. For such 
a network to ensure small tracking error in 
closed-loop control, the weights W associated 
with the network should be known. Since the 
weights are unknown in control applications, it 
is necessary to learn the nonlinear function on- 
&. Learning laws will now be derived that 
ensure stability of the overall filtered tracking 
error system (3.9). 
Theorem 4.1: For the system in (3.1) let the 
inputs be selected as in (3.8). Further, let the 

estimate of the nonlinearity f(.) be 

manufactured by a CMAC NN. Let the weight 
estimate values of the CMAC NN controller be 
tuned on-line by the following update laws : 

ii’ = F4(x)rT - KFllrllti , (4.2) 

with F = FT > 0 a constant design matrix, and 
K > 0 a design parameter. Then for large 
enough outer-loop gains k,, , the filtered 

tracking error r(t), and the weight estimates are 
DUB. Further, the filtered tracking error can be 



made arbitrarily small by proper selection of the 
feedback gains k, 

Proof: See [3]. I 
Let U be a compact set in R” and A.) EF~. 

Select the partitions ni along each input 

dimension xi such that the approximation 

property (2.7) holds. A positive definite 
Lyapunov function is selected. The derivative of 
the Lyapunov function is guaranteed to be 
negative as long as 

,& 
llrll> 4 kl(d,+EN’ =br, (4.3) 

or 

IIiCII> ++ ++ (db’;BN) = b, (4.4) 

Therefore, for all initial conditions 
satisfying 
(5: ]]x(t,)]] 4 max{b,,r(to)} +dM} q U. cU, the 

filtered tracking error r is non-increasing and 
the solution to equations (4.3),(4.4) evolves 
entirely within U where the approximation 
properly (equation (2.7)) holds. Now as long as 
the filtered tracking error and the error in the 
weight estimates are bounded by the terms in 
equations (4.3) and (4.4), the Lyapunov function 
is decreasing. That is, the weight estimates and 
the filtered tracking error attain ultimate bounds 
given in equations (4.3),(4.4) and the solution to 
equations (3.1) evolves within U where f(.) is 
Lips&&z. But the terms on the left-hand-side in 
equation (3.4) represent an exponentially stable 
linear system driven by the filtered tracking 
error r. This proves that the tracking error is 
also ultimately bounded. Therefore, for any . 
initial condition within V. the system of 

equations (3.1) evolves entirely within U and 
attains the ultimate bounds given in equations 
(4.4),(4.5) thereby proving that the closed-loop 
system is UUEl. I 
Remarks: The first term in equations (4.2) is a 
gradient term while the second term is like 
E-mod term popular in adaptive control 
literature [13]. It is seen that the only 
equilibrium point for equation (4.2) is when r = 
0, that is, when the CMAC is able to 
manufacture the nonlinearity exactly. 

Therefore, at equilibrium W = W if an exact 

reconstruction is possible. The rate of 
convergence of the weights depends on the 
filtered tracking error and is larger for larger 

values of the error. This guarantees stability of 
the closed-loop system while the CMAC is 
learning the dynamics of the system. The 
second term is necessary to overcome the 
requirement of persistency of excitation 
condition [13] for the convergence of the 
weights, and ensures robustness in the closed- 
loop system. 
5. Simulation Results 

As an example, the controller proposed 
in Sections 4 through 6 is tested on a two-link 
robot arm [26]. The joint variable is 

q = [q, ,qzlT. The arm parameters are taken as 

1,=12=lm, ml=lkg, m,=2.3kg. Thedesired 

trajectory was selected as qd, (t) =0.3sin t , for the 

case Of joint 1 and %(t) =0.3cost for the joint 

2. The input space was partitioned in a grid of 
size 0.25 and receptive fields are selected to 
cover the input space { [-0.5,0.5] x [-0.5,0.5]} 
along each input dimension. The initial 
conditions for both the states X, and x2 and the 

CMAC NN weight estimates are taken to be 
zero. It is seen that although 625 weights are 

needed to define the outputs. only (2 x s4) 

weights are updated at any given instant. The 
controller parameters were selected as 
k, = diag{5,5} , A = diag{5,5} and the diagonal 

elements of the design matrix F are taken to be 
10with K=-2. 

The controller is designed assuming the 
dynamics of the robot arm are unknown. Figure 
5.1(a) and co) present the actual and desired 
response of the CMAC NN controller. It is seen 
from Figs 5.1 (a) and (b) that after a short initial 
learning phase, the system is able to track the 
desired trajectories satisfactorily. Fig. 5.2 
presents the response of the PD controller 
without the CMAC NNs. From these figures, it 
is to be noted that the controller functions 
effectively in the presence of unknown 
dynamics. Furthermore, unlike conventional 
adaptive controllers, the CMAC NN does not 
require the computation of a regression vector 
nor does it make any linearitv assumptions on 
the system parameters. 
6. Conclusions 

A comprehensive treatment of 
Cerebellar Model Articulation Controller 
(CMAC) Neural Network (NN) for the control 
of robot manipulators is presented. The 
structure and localized learning properties of 



CMAC NN is exploited to design efficient 
controllers for nonlinear systems belong to a 
given useful class. Continuous-time 
implementation of these controllers are 
systematically examined. 

The properties of the dynamics of the 
robot arm are employed to show the stability of 
the closed-loop system. The computation of the 
regression matrix is not performed and 
persistency of excitation is not required. Finally, 
the theoretical conclusions have been validated 
through empirical studies. 
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Fig. 2.1: A CMAC Neural Network. 



Fig. 3.1: The Continuous-Time CMAC NN 
Controller Structure. 
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rig. 3.2: Kesponse of the YlJ cOnuOller 

without CMAC NN. (a) Joint angle 1. 
(b) Joint angle 2. 
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Fig. 3.1: Response of the CMAC NN with a 
PD controller. (a) Joint angle 1. 
(2) Joint angle 2. 
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