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Abstract- In this paper, we propose algorithms for select- 
ing the regressor terms in linear-in-the-weight yeural netForks. 
These algorithms are accompanied by approprmte learnmg al- 
gorithms for adjusting the weights of-the neur@ netyork. By 
analyzing au appropriate error functmnal, we mvestlgate the 
convergence properties of the proposed algorithms; moreover, 
we investigate the optimality of these algorithms and we con- 
struct conditions - regarding the nature of the regressor terms 
- under which the proposed algorithms are optimal. 

I. LINEAR-IN-THE-WEIGHTS NEURAL NETWORKS 

Neural networks are lmown to possess powerful approxi- 
mation capabilities; theoretical works by many authors [3, 12, 
8,9, lo] have shown that various neural network models are ca- 
pable of approximating either functions or dynamical systems 
to any degree of accuracy. In this paper, we will concentrate our 
attention to linear-in-the-weights neural networks. In general, 
such neural networks are mathematically described as follows 

Y = W’4(X) (14 

where z E R”’ denotes the input vector to the neural net- 
work, y E R”a denotes the output vector of the neural network, 
w E R”axL denotes the synaptic matrix of the neural network, 
f$ : Rnl H RL is a nonlinear vector function of regressor terms 
and the integer L denotes the number of regressor terms. It 
can be shown that various neural network models belong to the 
class (1.1); for instance high order neural networks, radial ba- 
sis function networks, neural network with shifted sigmoidals, 
adaptive fuzzy systems, etc, (see e.g. [3, 12, 8, 9, lo] and the 
references therein) belong to the class of neural networks (1.1). 

A very important property that many neural models of 
the form (1.1) satisfy is the following: 

(Pl) We say that a family of neural networks of the form 
(1.1) is a family of universal approximators, if for every 
continuous function F : SP I+ Ena, for every E > 0 
and every compact subset X C R”’ there is an integer 
L and a matrix w* such that the neural network with L 
regressor terms satisfies sX IF(z) - w*~~~(z)I~~z < E. 

Many families of neural models of the form (1.1) such as high 
order neural networks, radial basis function networks, neural 
network with shifted sigmoidals satisfy property (Pl). 

Suppose that 4r(.),&(.), . . . ,&(.), . . . are all the possible 
regressor terms. Let us now fix the function F(e) and the com- 
pact set X; let also a neural network with L regressor terms, 
whose indices belong to the set of integers L with cardinality 
L. Then, the optimal synaptic matrix w* and the optimal mod- 
eling error ~(a) w.r.t. L, 4, F(e) and X are defined as follows: 

W* fi W(L, 4, F, X) k agminw Jx IF(Z) - Ci,, wr4i(x)12dz 
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where w denotes the matrix whose columns equal wir i E L, 

and V(X) 2 N(L,4, F, X)(Z) g F(Z) - Ci,-13~,7+i(~). It 

is worth noticing that from property (Pl) sX IV(Z)]” can be 
made arbitrarily small by appropriately selecting L. In general, 
s, IV(Z)]” becomes smaller whenever L increases [9, 10, 121. 
We will say that the neural network (1.1) approximates F(.) 
with degree of accuracy E if lx IF(z) - Ci,,, WT4i(z)12d% < e 
for some wi E Wa. In [12, 8, 9, lo] many globally convergent 
learning laws for adjusting the weights of linear-in-the-weights 
neural networks have been proposed. Among the nice proper- 
ties of these learning laws is that - contrary to the backprop- 
agation learning algorithms - they guarantee convergence to 
the global minimum. While in multilayer neural networks the 
error functional possesses many local minima, in the case of 
linear-in-the-weights neural networks there exists one and only 
one (global) minimum. 

II. A CONVERGENT ALGORITHM 

In order to simplify the analysis, we will assume that 
nz = 1, i.e., we will concentrate our attention to single-output 
neural networks. It is worth noticing that all the results of 
this paper can be straightforwardly extended to the multi- 
dimensional case. Consider now that we select a linear-in- 
the-weights neural network satisfying property (Pl) - i.e., it 
is a universal approximator - and suppose that we wish to 
approximate an unknown function F(.) with degree of accu- 
racy e. Let us consider now a family of L regressor terms 
@ := (41 (.)I 42(e), * * * I &(.)I, aud suppose that we want to 
construct a neural network of the form (1.1) in order to ap- 
proximate the function F(a) over X. Moreover, let us suppose 
that we initially select - probably randomly - el regressor terms 
belonging to @, and try to approximate F(m) using a neural net- 
work with these ei regressor terms. Let C denote a subset of 
L := {1,2,. . . , L} such that i E C if the regressor term +i(.) is 
contained in our initial choice of ei regressor terms (obviously 
the cardinality of C is JJi). Then the neural network used for 
approximation of F(e) is described as follows 

Yl = C Wi4i(z) (2-l) 

iEC 

Suppose now that we train neural network (2.1) in order to 
approximate F(e). Obviously the mean-square approximation 

error is given by E := J, I’&, wi4i(z) - F(Z)/’ dx. Let US 
now pick a regressor term - not belonging to the initial set of 
t, regressor terms - i.e., let us select a j* E L such that j* $! C, 
and let us form a new neural network containing this additional 
regressor term, 

Yl = C Wi&(z) + Wj*4j* (z) 

iEC 
(2.4 
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I Then the mean-square error of the new neural network is given 

by 
E’ := 

JI 
c Wi&(X) + Wj*+j* (x) - F(x) 2 dx 

x iCC 

Ol- 

E 

’ - Jl c wi4;-F 2d~+ jWj*dj*12dX 

I J 

- +liizwi’i - FJ wI4j*dx 

. 

(2.3) = E+w$ 
1 

dj* (X)2dX 
x 

+2Wj* JC C Wi&(x) - F(X) $j* (x)dx x if32 

Let dj* := - Sx (CiEC wi&(Z)-F(S) +i* (l)ds 
,f,, -#y* Wad% 

If, the 
- .- 

- quadratic in Wj* - term &j* := Wj”* Jx 4j* (X)2dX 

+2wj* J, (xi,, Wi+i(z) - F(X)) +j* (x)~x is negative then we 
have that E’ < E. It can be easily seen that Qj* is nega- 
tive iff either dj* < 0 and wj* E (Zdj*,O) or dj* > 0 and 
wj* E (0, Zdj*). In other words, an additional regressor term 
will improve the neural network’s performance, provided that 
dj* is different than zero and that the weight wj* is appropri- 
ately chosen. 

From the above analysis, it is clear that if the quantity 
dj* can be computed, then we can construct very easily conver- 
gent algorithms for selecting the regressor terms of the neural 
network. Suppose now that we are provided with N training 
points of the form (x@I , y@)), lc = 1, . . . , N where ytkI satisfies’ 
yck) = F(x(~)). In thi s case, we can approximate dj* by aj* 
computed as follows 

Other, more accurate - and of course more complicated - nu- 
merical integration methods can be applied as well. In this 
paper we will assume that 

(Al) The training points (z ck), ytk)) are such that Idj* - 
/ij+OasN-tca 

In simple words, the above assumption states that the training 
data are rich enough in the sense that they contain enough in- 
formation about the unknown function F(e). Thus, in the case 
where the above assumption is valid, we have no pathologi- 
cal situations such as the case where big areas in the input- 
output space X x F(X) contain no training data, the case 
where all the data belong to a small subset of X x F(X), 
etc. Moreover, for technical reasons we will assume that 

J,,, h(x)2dx # 0, Vi E 4. If the above assumption does 
not hold for a particular regressor term &(*), then the effect of 
this term to the neural network output will be negligible, and 
thus it does not make sense to include this regressor term in 
the set @. 

‘Our analysis can be easily extended in the case of noisy training points, 

i.e., in the case where ~(‘1 = F(zck)) •t E, where E is a zero-mean random 

process. 

We are now ready to propose our first algorithm for select- 
ing the regressor terms in the neural network. The algorithm 
is as follows (here C denotes the set of indices of the regressor 
terms included in the current neural network while 7L denotes 
the indices of the remaining regressor terms; IE denotes the 
number of iterations we have run the algorithm; in the sequel 
we will say the a particular neural network is associated with 
the set C if its regressor terms’ indices form the set C): 

ALGORITHM A.1 

1. Set x := (1,. . . , L} and C := 0. Set the desired degree 
of accuracy E; set IC = 0. 

2. Select - possibly randomly - the initial er regressor terms; 
train the neural network using any appropriate training 
algorithm and using the training data (~(~),y(~)), k = 
1 , . . . , N. Let C be the set of integers satisfying the fol- 
lowing condition: i E C if the regressor term d;(e) is 
contained in our initial choice of & regressor terms. Set 
lZ=LnC. 

3. For au . R 
set 2~; = Aj. and calzulate ej := w;’ Jx +j(x)2dx + 

2wjf Jx (C~,gwib(x) - F(X)) 4j(x)dx 

4. Select j* as f0llOWS j’ = argminj ej 

5. If Jj* = 0, then STOP. 

6. If Jj* # 0, add the regressor term +j* (a) in the neural 
network and set C = C + {j’} and a = 72. +r(j*}. Set 
Wj. =aj.. 

7. Calculate - numerically - the mean-square approximation 

error E := J /xi c wi&(x) - F(x)/~ dz If E 5 E OR 
7Z = 0, ST06 OTfiERWISE GO TO STEP 3. 

cl 
The next theorem summarizes the convergence properties 

of algorithm A.2. 

Theorem 11.1: Consider the algorithms A.2. Suppose that 
assumption (Al) holds and let E” be the mean-square approx- 
imation error of the neural network at the K-th iteration of the 
algorithm. Then, as N + 00, E”” 5 E”. Moreover, let ~~~~~~ 
denote the total number of iterations of the algorithm. Then 
E”+’ < E” for all n f (0,~‘~~~’ - 1). 

III. ALGORITHMS BASED ON THE OPTIMAL SELECTION OF 
WEIGHTS 

In this section we present two new algorithms for select- 
ing the regressor terms. The difference between these new al- 
gorithms and the ones of the previous section is that in the 
new algorithms the weights are computed in such a way that 
they optimize the mean-square error. Thus, although these 
new algorithms are very similar to the Algorithm A-2, in the 
sense that the regressor term that is selected to be added is 
the one that minimizes the quadratic term &j, the advantage 
of the new algorithms is that the weights are “optimally se- 
lected”. Of course, such an optimal selection of the weights 
results in a more computationally complicated algorithm. Let 
us now consider the problem of optimal selection of weights in 
a neural network with fixed regressor terms (let us assume that 
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I this neural network is associated with the set Ch). Then, the 
mean-square error for this neural network is given by 

Eh := JI C W;&(X) - F(X) 2 dX (3.5) x iECh 

By calculating the gradient (w.r.t. ui) of the above quantity 
and by setting this gradient equal to the zero vector, we can 
easily see that the optimal weights w!’ (that is, the weights for 
which the minimum mean-square error is achieved) are given 
by the following equation 

W h* = 
(k d”(zWh%)d+ -’ (s, F(.)m”(.)dx) (3.6) 

where w h’ h* is I&l-dimensional vector whose entrk are Wi 

with i E Ch and dh is I&l-dimensional vector whose entries are 

&(X) with i E Ch. Let now Ph := (~x~h(~)~h’(~)d~)-l and 
P& denote the (ij)-th entry of the matrix Ph. Then, equation 
(3.6) can be rewritten as 

w;’ = C P$ (J, F’(s)+j(r)dz) 

iEch 

Using (3.7), equation (3.5) can be rewritten as 

(3.7) 

Eh = Jl x 2 ,g p”i(x) (S, ‘(X)4j(x)dx) - F(x)l da; 

(3.8) 
Using the same ideas as in the previous section but based on 
the above mathematical formulas, we can develop new algo- 
rithms for selecting the regressor terms of the neural network. 
As in the algorithm A.2, we start with a neural network lr 
regressor terms and, at each step of the algorithm, we aug- 
ment the neural network by adding the “best” regressor term. 
The LLbest” regressor term is selected to be the one which - 
among all the other regressor terms in ‘JZ - contributes the 
best to the minimization of the mean-square approximation 
error. As in the previous section, the regressor term that con- 
tributes the best to the minimization of the mean-square er- 
ror is the one that minimizes the quantity & Iwjdj(a)12 ds + 

2 J, [wjbj(x) [CiECh wi&(x) - F(X)]) dx. The difference 
betwekn the aliorithms of the previo; section and the ones 
proposed in this section lies on the computation of the weights 
Wi. 

Two different algorithms are proposed: these algorithms 
differ in the way the weights are computed. In the first of them, 
the weights Wi are set equal to their optimal values for the case 
where all the L regressor terms are used, while in the second 
algorithm at each iteration we recompute the weights’ optimal 
values. We now present the two algorithms and we will analyze, 
and explain them further later on. The notation remains the 
same with that of the previous section. 

ALGORITHM A.3 

1. Set 7Z := (1, . . . . L} and C := 0. Set the desired degree 
of accuracy E; set K = 0. 

2. Select - possibly randomly - the initial f?r regressor terms. 
Let C be the set of integers satisfying the following con- 
dition: i E C if the regressor term &(a) is contained in 
our initial choice of er regressor terms. Set YR, = Ln C. 

3. Let Cr. denote the set of indices that corresponds to the 
neural network composed of all L regressor terms belong- 
ing in a,. Let also PL,tpL be defined similarly to Ph,qSh. 
Then, compute w” as follows 

w” = c (J Pi$ F(x)dj(x)dx 
iECL a! > 

4. Select j* as follows 

3 .* = age lw~dj(x)12dx (/ X 

+2S, (Wfdj(XI [zdb(x) - F(x)]) dx} 
5. Add the regressor term $j* (v) in the neural network and 

set C = C + {j’} and 72. = ?Z + {j’}; set K = K + 1. 

6. Calculate - numerically - the mean-square approximation 
error 

E := Jl C w;&(x) - F(Z) 2 ds x iEC 

If E 5 E OR 7L = 0, STOP; OTHERWISE GO TO 
STEP 4. 

0 

ALGORITHM A.4 

1. Set 77, := {l,.. ., L} and C := 0. Set the desired degree 
of accuracy E; set )E = 0. 

2. Select - possibly randomly - the initial er regressor terms. 
Let C be the set of integers satisfying the following con- 
dition: i E C if the regressor term di(*) is contained in 
our initial choice of er regressor terms. Set 12 = & n C. 

3. Let PC, 4” be defined similarly to Ph, +h for the neural 
network associated with the set C. Then, compute w” as 
follows 

w” = c (J P; F(x)+j (x)dx 
ig X > 

4. Calculate - numerically - the mean-square approximation 
error 

E := Jl C W”&(x) - F(X) 2 dx x iEC 

If E 5 E OR 7L = 0, STOP; OTHERWISE GO TO 
NEXT STEP; set n = K + 1. 

5. For all j E 7L calculate tij as follows 

iiij := argmin w; wj { J 4j(x)2dx 
+22uj JC X 

LWf&(x) - F’(x)) h(r)dr } 
iEC 

and let 

ej .= a? 
* 3 J 4j(x)2dx+2aj C Wfdi(x) - F(X) +j(x)dx 

X iEC 
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Select j* as follows 

i' = Wt 2: {ej} 

6. Add the regressor term dj* (e) in the neural network and 
set C = C + {j’} and R = 72 + {j*). 

7. GO TO STEP 3 

Cl 
The difference between the two above algorithms is that in 

Algorithm A.4 we compute the optimal weights of the network 
associated with the set C at each iteration while in Algorithm 
A.3 we compute the optimal weights for the network composed 
of all L possible regressor terms and we keep the weights con- 
stant and equal to their initial value at each iteration. However, 
we must mention here that in the case where L is very large - 
and that’s usually the case - Algorithm A.3 becomes impossi- 
ble to be implemented in practice, since it requires calculation 
of all L weights UJ” (which in turn implies that we need to 
calculate the inverse of the L x L matrix (~,#‘(z)@‘(z)), 
etc). Therefore, Algorithm A.3 is useful only in cases where 
the unknown function can be approximated by a small number 
of regressor terms. 

The next theorem summarizes the properties of the two 
above algorithms. 

Theorem 111.1: Consider the algorithms A.3 and A.4. 
Suppose that assumption (Al) holds and let E” be the mean- 
square approximation error of the neural network at the a-th 
iteration of the algorithm. Then, as iV + 00, for both algo- 
rithms the following hold 

(a) For the case of Algorithm A.4 we have that E”+l 5 E”. 

(b) Fix a constant E: > 0. If L is sufhciently large, in the sense 
that there exists at least one neural network composed 
of some of the regressor terms in @ that approximates 
F(e) with accuracy E, then, for both Algorithms A.3 and 
A.4, there exists a f&rite number of algorithm iterations 
after which E < E. 

IV. OPTIMAL SELECTION OF THE REGFLESSOR TEFCMS 

So far we have constructed convergent algorithms for the 
selection of regressor terms; a natural question that arises is 
if such algorithms are optimal or under which conditions these 
algorithms are optimal. In this section, we will examine under 
which conditions the proposed algorithms are optimal. How- 
ever, before we proceed we must clarify what we mean by say- 
ing optimal algorithm for the selection of the regressor terms. 
In order to do so, consider again the problem of selection of 
regressor terms as stated in the first paragraph of the section 
III. Obviously, in the case where L is sufficiently large, there 
may be more than one neural networks (with regressor terms 
from a) possessing the property that the mean-square error 
that corresponds to these neural networks is less than the de- 
sired accuracy E. That is, there may be more than one (say 
H) sets of indices Ch, h = 1,2,. . . , H satisfying the following 
property: for any h E (1, . . . , H} there exists a set ofz weights 
Wi, 8 = 1,. . . , l&l satisfying 

JI 
C Wi+i(Z) - F(Z) ’ dz < E (4-l) 

x iECh 

a ICI denotes the cardinality of the set C. 

Then we say that the neural network whose set of indices is 
the set Ch* is optimal, if this neural network satisfies the above 
property (4.1) and moreover it has the least number of high or- 
der connections among all the other neural networks satisfying 
(4.1), that is, the optimal neural network satisfies 

ICh*I = 
h$f?,H) lch’ 

An algorithm that converges to a neural network associated 
with the set Ch* will be called e-optimal algorithm, while the 
neural network associated with ch* will be called e-optimal 
neural network. 

A. Algorithm A.3 is O-Optimal in the Case of Perfect Matching 

Let us consider the case where the unknown function F( .) 
can be ezactly reconstructedby a neural network, that is, there 
is a set of indices C’ and a set of weights wr, i E C* such that 

F(Z) = C WUf&(Z) (4.2) 
iEC* 

Obviously, the neural network (4.2) is an O-optimal neural net- 
work In order to examine the conditions under which the pro- 
posed algorithms are optimal, we will make the following two 
assumptions: 

(AZ) The set C* is a subset of (1, . . . , L}. 

(A3) The set Co of ei regressor terms (see Step 2 in all Algo- 
rithms) is a subset of C’. 

The first assumption states that the set @ of all possible regres- 
sor terms that the Algorithm examines contains all the regres- 
sor terms of the O-optimal neural network (4.2). The second 
assumption states that the initial neural network that is used 
in order to start the Algorithm is such that its regressor terms 
are regressor terms of the the O-optimal neural network (4.2). 
Then, we have the follow@ result. 

Proposition IV.1: Consider Algorithm A.3 and assume 
that the unknown function F(e) satisfies (4.2). Also assume 
that (Al), (A2), (A3) hold. Then, as iV + 00, the Algorithm 
is O-optimal, and, moreover, it converges to the neural network 
(4.2), i.e., the Algorithm converges to a neural network which 
does not have more regressor terms than the neural network 
(4.2). 

B. The case of Orthogonal Regressor Terms 

In this subsection, we will consider the extreme case where 
the regressor terms &(*) are mutually orthogonal. It is worth 
noticing that the problem of optimally selecting the regressor 
terms in orthogonal networks was solved decades ago (the most 
known case is the case of Fourier series; the reader is referred to 
any textbook about Fourier series); in this paper we consider 
the case of orthogonal regressor terms in order to examine the 
optimality of the proposed algorithms, on the one hand, and to 
examine the case where pseudo-orthogonal regressor terms (for 
the definition of pseudo-orthogonal regressor terms see next 
subsection) are used since pseudo-orthogonal regressor terms 
possess many advantages over orthogonal ones. Consider now 
that the regressor terms &(*) are mutually orthogonal, that is, 
they satisfy the following3 relation: 

J (4.4) 
X 

3For simplicity, we will consider the case where the regressor terms are 

orthonormsl, i.e., they satisfy relation (4.4); however, all the results cm be 
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Many known networks (see e.g. [12, 6]), satisfy the above rela- 
tion. 

The next proposition summarizes the properties of the 
proposed algorithms in the case where the regressor terms are 
ortogonal. 

Proposition IV.,%‘: In the case of orthogonal regressor 
terms, Algorithms A.2, A.3 and A.4 are s-optimal for all non- 
negative e. 

C. The case of Pseudo-Orthogonal Regressor Terms 

Let us now consider the case where instead of using or- 
thogonal regressor terms we use pseudo-orthogonal ones; here 
the term pseudoorthogonal is used for regressor terms that 
satisfy 

J X 

where 6 is a small positive number and the symbol A must be 
interpreted as follows 

Pseudoorthogonal terms possess certain advantages over or- 
thogonal ones; the most important of them is that pseudo- 
orthogonal terms possess better approximation capabilities in 
the sense that if there are two networks approximating the same 
function, one with orthogonal regressor terms and the other 
with pseudoorthogonal ones, and moreover for every regressor 
term &(.) in the orthogonal network there is a regressor term 

Jj(.) in the pseudo-orthogonal network SU& that di(.) & Jj(.), 
then the pseudo-orthogonal network produces better (smaller) 
mean-square error than the orthogonal network does. In other 
words, if we “deform” the regressor terms of an orthogonal net- 
work by making them pseudo-orthogonal then we increase the 
approximation capabilities of the network. 

The next proposition summarizes the properties of the 
proposed algorithms in the case where the regressor terms are 
pseudo-ortogonal. 

Proposition IV.3: Consider one of the Algorithms A.2, 
A.3 or A.4. Then for each of these algorithms the following 
is true: in the case of pseudo-orthogonal terms, there exist 
b*,s* such that the algorithm is s-optimal for all 6 E (O,S*) 
and all E > E*. 

V. SIMULATIONS 

In order to examine the applicability of the proposed al- 
gorithms, we performed two different sets of simulations. 

Simulation I. In our first set of simulations we se- 
lected a High Order Neural Network (HONN) which was used 
for the approximation of three different nonlinear functions. In 
all three examples we used two-input single-output functions. 
The number L of all possible regressor terms was set equal to 15 
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Figure 1: Performance of the Algorithms A.2, A.3 and A.4 for the case 
of function FI(.). 

where Si = S(ci); zi i = 1,2 denote the two input variables 
and S(e) is a sigmoidal function chosen as follows 

S(z) = + - 3 

The three different functions used in simulations were the fol- 
lowing: 

FI (XI, x2) = 1 - 0.9s; + 0.6S,2S1 

F2(~1,22) = 1 - 0.9&r($) + 0.6S;Si 

fi(~1, ~2) = cos(1 - O.gsin(Si) + 0.6SgS1) + sin($) 

As it can be easily observed, the first of the above functions is a 
HONN. Figures l-3 plot the mean-square error versus number 
of iterations) for the Algorithm A.2 (upper subfigure), Algo- 
rithm A.3 (middle subfigure) and Algorithm A.4 (lower sub- 
figure). As we can see, Algorithm A.3 and A.4 are superior 
to Algorithm A.2. Although Algorithm A.2 is a convergent al- 
gorithm there are cases (e.g. the cases of functions Fz(.) and 
Fs(.)) where the Algorithm A.2 converges to a neural network 
which is very far from the optimal one. However, all three al- 
gorithms converge to the optimal network in the case where 
the unknown function can be exactly described by a neural 
network (the case of Fl(.)). Here, we must mention that, in 
the case where the uuknown function can be exactly described 
by a neural network, we can apriori guarantee that Algorithm 
A.2 and A.4 will converge to the optimal neural network. As 
we have shown in subsection V.A, only Algorithm A.3 can be 
proven that converges to the optimal network. 

On the other hand we can see that in all three examples 
the algorithms are convergent with the exeption of the last 
example for the case of Algorithms A.3 and A.4 where we have 
cases where the Mean-Square Error at a particular iteration 
is larger than that of the previous iteration. This happens 
because (see also Remark IV.l) the number N is not sufliciently 
large and thus the calculated weights are close but not exactly 

_” _ equal to their optimal values. and the set I, of all possible regressor terms was as follows: L = 

{1,S~,S2,s~s22,S1S2,S13,STS2,S~S22,S~,S:,S~,S:S22,S1~,S~~ Simulation 2. In our second set of simulations we 
selected a neural network with pseudo-orthogonal regressor 

eGly extended to the case where relation (4.4) is replaced by terms. For simplicity, we considered the case where the in- 

J 

put is one-dimensional; the number L of all possible regressor 
+i(E)+j(Z)dZ= O ii i 23 (4.3) 

Pi terms was set equal to 15 and the set 4 of all possible regressor 
x terms was as follows: L = {R(z), R(z + 0.5) R(z - 0.5), R(z + 

where pi ia a constant. l), R(z - l), R(z + 1.5) R(z - 1.5), R(z + 2), R(z - 2), R(z + 
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Figure 2: Performance of the Algorithms A.2, A.3 and A.4 for the case 
of function Fz(.). 
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Figure 4: Performance of the Algorithms A.2, A.3 and A.4 for the case 
of function F*(.). 

2.5), R(z - 2.5), R(z + 3), R(” - 3), R(” + 3.5), R(” - 3.5)~ ) 
where R(a) is as follows 

s(x) = -( 1+ f-15, - l)( 1 + & - 1) + 1 

It can be easily seen that the regressor terms belonging to L are 
mutually pseudo-orthogonal. The function used in simulations 
was the following: 

F4(c) = R(z)-0.9R(z+0.5)+0.6R(z-0.5)+0.7R(~+1)+0.2R(~+2.5) 

In figure 4 the reader can see the results of the simulations. AII 
three Algorithms converge to the optimal network and, more- 
over, ah three Algorithms behave the same, in the sense that 
at each iteration they chose the same regressor term, and they 
calculate the same values for the weight and the Mean-Square 
Error at this iteration. 

[1] N.E. Cotter, “The Stone-Weierstrass theorem and its ap- 
plication to neural networks,” IEEE Trans. on Neural Net- 

m works, vol. 1, no. 4, pp. 290-295, 1990. 
q20M) _..__.. i ___._._.._..__~ ._............ j j > j ..- 
5 [2] N. J. Dimopoulos, D. Radvan, and W.A. Keddy, “Learn- 
iEo 2 4 e s 10 12 14 ing in asymptotically behaving neural networks,” Proc. of 

nurriw d iterations 
Algon’ttm A3 

the 1990 Int. Conf. Neural Networks, San Diego, CA, vol. 
b . . . ...! . . . . . . . . . . . ...! . . . . . . . . . . . . . . + . . . . . . . . . . . ...! . . . . . . . . . . . ...! J III, pp. 233-238, June 1990. 

_.....! . . . . . . . . . . . . . . . . i . . . . . . . . . . . . . . . . i . ..- [3] B. Igelnik and Y.H. Pao, “Stochastic choice of basis func- 
___.__ i __............ I i’ y . . . . . . . . . . . . . . . ..- tions in adaptive function approximation and the func- 

4 5 s 10 12 14 
tional link net,” IEEE Transactions on Neural Networks, 

numbsrditeratione vol. 6, no. 6, pp. 1320-1329, 1995. 

i2col I 
NgorithA4 [4] E. B. Kosmatopoulos, M. M. Polycarpou, M. A. 

i,-T ________...~ / . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..- 
Christodoulou, and P. A. Ioannou, ‘High-order neural net- 

; i ; ; ; ; ; 
work structures for identification of dynamical systems,” 

x0 2 

IEEE Transactions on Neural Networks, vol. 6, no. 2, pp. 
4 8 s 10 12 14 

nunbr d iterationa 
422-431, March 1995. 

[5] E. B. Kosmatopoulos and M. A. Christodoulou, “Struc- 
Figure 3: Performance of the Algorithms A.2, A.3 and A.4 for the case 
of function Fs(.). 

turaI properties of gradient recurrent high-order neural 
networks,” IEEE Transactions on Circuits And Systems- 
II: Analog and Digital Signal Processing, vol. 42, no. 9, 
September 1995. 

[S] M.M. Polycarpou and P.A. Ioannou, “Identification and 
control of nonlinear systems using neural network models: 
design and stability analysis,” Tech. Rep. 91-09-01, Univ. 
of Southern Cal., Los Angeles, September, 1991. 

6 


