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Abstract 

In this paper, we propose an iterative method using 
a neural network to solve the inverse kinematic prob- 

lem ,for redundant manipulators in presence qf motion 

constraints such as joint limits or obstacles. A con- 

strained optimization scheme with penalty ,functions 

based on neural network is formulated. The neural 
network is adapted in the direction o,f decreasing a 

Lyapunov function to move the end-effector to the de- 
sired position while avoiding a collision with respec- 

tively a workspace object and a contact environment 

surface. This approach offers substantially better ac- 

curacy and avoids the computation o,f the inverse or 
pseudoinverse Jacobian matrix. The application o,f 

this scheme to a 3 degrees o,f ,freedom redundant ma- 

nipulator is demonstrated through simulation results. 

1 Introduction 

A lot of researches have been carried out in the 
area of redundant robots, since these robots offer sev- 
eral advantages in dexterous motion tasks. Many 
authors have used the extra degrees of freedom of 
the redundant robots to optimize additional crite- 
ria when the given path in the workspace is tracked. 
Such criteria are the performance index that allows 
to satisfy: avoiding obstacles, keeping the joint coor- 
dinates within their limits, avoiding singularities, and 
improving dexterity [l] [2]. 

The most applications to obstacle and joint limit 
avoidance [3] [4] h ave used one of the two main tech- 
niques for resolution of underspecified systems of 
equations: constrained generalized inverse-based ap- 
proaches or augmented task space methods. Pin in 
[5] introduced a new method (Full Space Parame- 
terization (FSP)) for the resolution of underspeci- 
fied systems of algebraic equations. Then, he applied 
the FSP method to the constrained inverse kinematic 
problem. However, all these methods need a compli- 
cated formulation and a parameterized expression for 

the entire space of solutions for the basic system. 
Our approach is based upon an optimization 

scheme using a neural network. The neural network 
is adapted in the direction of decreasing a Lyapunov 
function to move the end effector to the desired po- 
sition. This approach exploits the redundancy to 
achieve some objective functions, and to satisfy some 
inequality constraints while tracking the desired end- 
effector trajectory. It does not require to compute 
the inverse or pseudoinverse Jacobian matrix. This 
method provides an accurate solution with only a few 
iterations per input point. 

The organization of this paper is as follows. In sec- 
tion 2, we recall the kinematic formulation of robot 
manipulators. Section 3 is devoted to presenting the 
algorithm that we use to solve the kinematic prob- 
lem for redundant and non-redundant manipulators. 
Simulation results of a three DOF robot arm are given 
in section 4. Finally, some conclusions are drawn in 
section 5. 

2 Kinematic formulations 

Let 4 be a n x 1 vector of joint angles and x a m x 1 
vector of the corresponding Cartesian coordinates of 
the end-effector position (n > m), r = n - m being 
the degree of redundancy. Then x and q are related 
by the forward kinematic transformation f(.) which 
is a well-known non linear function: 

x = f(4) (1) 

One method to solve the inverse kinematic problem 
of redundant arms is to formulate it as an optimiza- 
tion problem with constraints, as follows: 

( 

Minimize @(q) 

subject to xd(t) - f(q) = 0 and h(q) < 0 (2) 

where a’(q) is a scalar kinematic objective function 
of the joint angles to be minimized, xd(t) is the de- 
sired end-effector trajectory and h(q) is the inequality 
constraint vector. 



For instance, when the redundancy is utilized to 
avoid collision with a workspace object, the distance 
between the object and the closest robot link ,8(q) 
should exceed a certain threshold c, which leads to 
an inequality constraint of the form 

hi(q) =ci-pi(q) <O,i=l;..,Z (3) 

where pi is a kinematic function of the joint angles 
q and ci is a constant. For each inequality in 3, two 
modes of operation are possible depending on 4 and 
ci : 

0 Case One: hi(q) 5 0 

- In this case, the inequality constraint is 
satisfied and can be ignored. Therefore, 
the manipulator redundancy can be used 
to achieve the objective function Q(q) while 
tracking the desired trajectory Ed. 

l Case Two: hi(q) > 0 

- In this case, the inequality constraint is ac- 
tive, and the redundancy is utilized to sat- 
isfy the constraint and minimize an objec- 
tive function CD(q) while tracking the desired 
trajectory. 

In our approach, we use the penalty-function meth- 
ods to convert constrained minimization like: 

Minimize Q(q) 

subject to hi(q) 2 0 (i = 1,2,. . ., 1) 
q E P 

(4 

into unconstrained optimization of an augmented ob- 
,jective function L!(q) : 

Wq) = Q’(q)+ c Qi P(hi(cl)) 
i=l 

(5) 

where 1 is the number of constraints, o~i is the 
it” penalty multiplier and p the penalty-function 
[G]. p may be an exterior penalty function p(hi) = 
hSl?(hi) (I’(hi) is the H eaviside function) or an inte- 

rior penalty function p(hi) = 2 

3 Principle of the proposed method 

Instead of off-line training, our approach Fig. 1 
trains on-line a neural network in order to approxi- 
mate the inverse kinematic model by a linear func- 
tion at each trajectory point [7]. For each point Xd, 
the optimal weight parameters are obtained via a 
Widrow-Hoff training algorithm as described below. 

For this purpose, we introduce an extended posi- 
tion vector as: 

x=~(q) = [ ; ] = [ ‘,;;; ] (6) 

of(q) E ER” is the forward kinematic vector defined 

in (1). 

l g(q) E 9?’ is the constraint vector added in the 
redundant case. These constraints can be represented 
by the general form proposed in Ballieul [S]: 

g(4) = iv 
T dQ(cl) = 0 

- 
84 

where N is the n x (n - m) null space matrix of J 
which corresponds to the self motion of a redundant 
arm: 

N = det(Jd [ 3i-t ] = [ -det$l,-, ] @) 

where J;r = A/ det(J,), J, is a m-square matrix 
made of the m first columns of J and Jb a m x (n-m) 

matrix of the remaining columns: J = [ J, Jb 1, A 

is the cofactor matrix of Jz, and I,-, is the n - m 
identity matrix. 

L?(q) is th e o jet ive function associated with the b t’ 
redundancy problem: 

@Without inequality constraints: 

In this case, R(q) = Q(q) is simply the scalar kine- 
matic objective function. We have for each compo- 
nent j: 

aR(cl)= a@(q) 

8% 8% 

@With inequality constraints: 

From (5), we have respectively for each component 
j: 

a) Exterior penalty method: 

aR(q)= a@(s) 

8% 
x + 2%hj (4) yI’(hj) 

3 

b) Interior penalty method: 

dR(q)= a@(q) 1 dhj(d 
8% T+“.-- 3 ’ 4 (cd2 dqj 

The problem is to find the inverse solution of Eq.6, 
i.e. the vector qd so that 

F(qd) = xd = [ 1 ;” 



3.1 The based algorithm 

For a given desired Cartesian position, the objec- 
tive is to approximate the kinematic inverse model 
by a linear function at each trajectory point i.e. to 
find q which satisfies the forward mapping x = f(q) 

while optimizing the given performance index a(q) 

and satisfying the additional constraints. 
At each iteration c for kth point, this algorithm 

involves two phases: 

l During the first phase, the input Xf (the desired 
extended end-effector position) is presented and 
propagated through the network to compute the 
output value: 

4; = qdk-, + 7 w,c x;c” (9) 

1 

2~ +y if (qi)i > 2~ 

(43 = (&Ii if (qi)i I27r (10) 
-2n + y if (qi)i < -2~ 

where (q,f)i is the it” component of qi, y is a ran- 
dom variable having a small variance to avoid 
the possible cyclic trajectory of the joint posi- 
tion, q&-, is the desired joint position obtained 
for the (Ic - l)t” p oint which is considered as 
the bias of the neural network and r is the sam- 
pling period. The initial value IV: is the optimal 
weight matrix IV:-, obtained for the (Ic - l)th 
point. 

Then, the vector q;i is used to compute the end- 
effector position: 

-G = FCC73 (11) 

and the error is given by: 

E,“zX,d-Xi= 6 [ 1 ei (12) 
l During the second phase, the weights of the 

neural network is adjusted according to the delta 
rule [9]: 

,g+l zz w,c + qnw,c (13) 

where 77 is the reduction factor (0 < 7 < 2). 

In our previous works [lo], the search direction in- 
volved an inverse Jacobian matrix calculation. This 
solution is time consuming and problems may arise 
in the vicinity of singular points. 

3.2 A new solution 

We propose here a new method avoiding these 
drawbacks and leading to a very quick and efficient 
solution. The main idea is to use a Lyapunov function 

for calculating at each iteration the search direction 
AW. 

For a given initial weight matrix W, the algorithm 
updates W iteratively in the direction of decreasing 
the Lyapunov function defined in terms of the errors: 

V = ~FE + keTe (14 

where E = xd -x = xd - f(q), e = 0 -g(q), Xd is the 
desired value of x and X is the Lagrangian multiplier. 
The purpose of this multiplier is to force E to converge 
to zero by increasing X exponentially when q is near 
the solution of E. 

For sake of simplicity, we eliminate in the following 
equations the index k and c. 

The time derivative of the Lyapunov function 
Eq.14 is given by: 

v= dq ( 
dV T, dV 

1 q+yjp (15) 

e= -(XJT& + JTe)’ 4 +i 11~11~ x (16) 

where J = v and J, = %$$, by differentiating 

Eq.9, we obtain i= r I$ Xd. For simulation on a 
digital computer, we use a discrete time update rule: 

I$ = $! and x Y %. Then, Eq. 16 becomes: 

c= - (XJT& + JTe)’ AW Xd + & 11~11~ AA (17) 

If we set: 

v= -; llEl12 (18) 

Then we can deduce the correction terms AW and 
@.A: 

nw = $ llEl12 + & llEll llell (A JTE+J,Te) SGN(Xd)T 

IIXJT& + JFell” (Xd)T SGN(Xd 

(19) 
and 

ax - llell 

II&II 
where 

sgn(xi) = 
{ 

+1 if zi > 0 
-1 if xi < 0 

By substituting Eq.19 and Eq.20 in Eq.17 we ob- 
tain Eq.18. This result implies that c< 0 V& # 0 and 
Q=OiffE=O. 



The update of W based on AW determined by 
Eq.19 guarantees the convergence. The weights of 
the neural network and the Lagrangian multiplier are 

adjusted according to 

w;+l = w,C+qnw; (21) 

x c+l = A” +Tj2AX” (22) 

where ~7~ is the reduction factor (0 < ni < 2). 

We must emphasize that no Jacobian inverse ma- 
trix calculation are necessary here. Furthermore, if 
the desired trajectory does not present large discon- 
tinuities, each new desired point X,d is very close of 
the previous one Xi-i and the error is small. This al- 
gorithm converges very quickly towards the solution 
qz with few operations per iteration. 

4 Simulation 

A 3 cl-o-f planar robot is considered to show the va- 
lidity of our method. The forward kinematic function 
is: 

f(4) = 
( 

llcl + l2c12 + l3c123 

llsl + l2sl2 + /3%23 1 
(23) 

and the (n - in) null space vector of J is : 

N = [ --/&& llhs23 + k&‘3 411252 - ~1&+,23 ] 

(24 
where sig = sin(qi+q,y), cij = cos(qi+qj). Any convex 
objective function may be used in our approach. The 
parameters involved in the simulation are listed as 
(7/l = 1.5, 772 = 0.01, X(0) = 2). 

For the two simulations that we present, the algo- 
rithm is stopped after a predefined number of itera- 
tions. For each trajectory point, this iteration num- 
ber is fixed to eight iterations and is sufficient to find 
the solution. Good results have been obtained since 
the tracking error is very small and the criterion g(q) 
is near the minimum for the whole trajectory. 

The desired objective function is taken as: Q(q) = 

i i’l li(qik - qi(k-1))2. Where li is the length of the 

9” link, qi(k-l) and qik are respectively the initial 

and current value of the ith joint corresponding to 
the JLntfL point trajectory. This criterion tends to give 
the minimum joint displacement to move from one 
configuration to another. 

4.1 The first simulation 

For the first simulation the additional inequality 
constraint /z(q) = c - p(q) 5 0 ensure that the dis- 
tance between the obstacle object and the closest 
robot link I1 should exceed a certain threshold c. 

The obstacle is considered as a circle with a center 

(xb, Yb) = (0.4,0.8) and a radius c = 0.5m (Fig.2 ). 
The solution must be such that the manipulator 

tracks the desired trajectory xd, the objective func- 
tion Q(q) is minimized and the inequality constraints 
h(q) are satisfied. 

l Fig.3 represent the arm configurations for the 
objective function Q’(q) without inequality con- 
straints. In this case we can not avoid the colli- 

sion with the workspace obstacle. 

l By applying inequality constraints, appropriate 
motion of the arm is now obtained, as show by 
Fig.4 representing the arm configuration using 
the interior penalty method (a = 0.01). The 
results show that the end-effector converges suc- 
cessfully to the desired position while minimiz- 
ing an objective function and avoiding a collision 
with a workspace object. 

4.2 The second simulation 

In this simulation, we consider the end-effector mo- 
tion on the environment surface (Fig.5) represented 
here by the straight line: 

y-ar-b=Owitha=-landb=2,(z,y)are 
the Cartesian coordinates in the base frame. 

We decide to minimize the objective function a’(q) 
defined above and ensure that the arm will not go 
over the contact surface. To this end, we maintain 
a constant distance PO between the last link position 

(22, Y2) = &Cl + l2c12 , lisi + /2si2) and the contact 
surface. The additional constraint is h(q) = p(q) - 
,& < 0 with h(q) = y2 - ax2 - 0. 

l Fig.6 exhibit the arm configuration for the objec- 
tive function a(q) without inequality constraints. 
The end-effector coordinates track very closely 
the desired trajectory. However these configura- 
tion are not attainable in practice. 

l By applying inequality constraints and using the 
interior penalty method (a = O.Ol), the arm con- 
figuration during the task is seen in Fig.7. While 
the end-effector moves, the objective function is 
well minimized and the last link position remains 
always inside the feasible region and far from the 
frontier of the allowable workspace. 

5 Conclusion 

In this paper, we have presented a new approach 
to solve the inverse kinematic problem of redundant 
manipulators. Our method is based on formulat- 
ing a simple constrained optimization problem with 



penalty methods using neural network. The neural 
network is adapted in the direction of decreasing the 
Lyapunov function to move the end effector to the de 
sired position while minimizing an objective function 
and avoiding a collision with a workspace object or a 
contact surface environment. This method achieves 
an accurate solution with only a few iterations per 
input point and requires only the computation of the 
direct kinematic functions. 
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Figure 1: The proposed inverse kinematic scheme 

Figure 2: avoiding obstacle 
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Figure 3: Arm configuration using @p(q) without con- 
straints 
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Figure 4: Arm configuration using Q(q) with con- 
straints 

Figure 6: Arm configurations using Q(q) without con- 
straints 

Figure 7: Arm configuration using Q(q) with con- 
straints 

Figure 5: End-effector motion on the environment 
surface 


