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Abstract 

Realization of digital filters or implementation of 
controllers in a digital computer may lead to unex- 
pected instabilities resulting from the finite precision 
effects. Stability is usually ensured for an idealized 
discrete-time realization of the system. Neverthe- 
less, as soon as A/D and D/A conversions get in- 
volved, the quantization of the state of the system, 
due to adder overflow, magnitude truncation, finite- 
wordlength format, may introduce severe nonlineari- 
ties responsible for overflow oscillations, limit cycles 
or chaotic behavior, even under zero input. This pa- 
per considers a parameter-dependent, discrete-time 
system in the companion form. We derive LMI con- 
ditions ensuring stability for the uncertain system in 
spite of the finite precision effect. We also seek an 
LMI formulation for the synthesis of a static output- 
feedback controller that guarantees robust stability 
for the finite precision problem. 

1 Introduction 

Proving the stability of a discrete-time system of 
the form 

x(1% + 1) = A+), (1) 

leads to the resolution of a Lyapunov equation, ie to 
find P = PT > 0 such that 

ATPA - P = -QQT, (2) 

with (A, Q) observable. Then, it guarantees that the 
above system is asymptotically stable in a “mathe- 
matical” sense, ie assuming the system is implemen- 
ted with infinite precision. In this case, explicit so- 
lutions for this equation are given in [2, I], when A 

is in the companion form. However, this case rep- 
resents an idealized behavior of the system. Most 
control problems involve the issue of finite precision 
computation. The most widely studied area where 
this problem arose during the last two decades con- 
cerns the fixed-point arithmetic digital filter. Imple- 
menting a controller in a digital computer also points 
out the difficulty to guarantee stability when A/D 
and D/A conversions are involved. There is an ex- 
tensive literature on the effects of finite wordlength or 

quantization in digital control and signal processing. 
Adder overflow in second-order digital filters are re- 
sponsible for self-sustaining oscillations, called limit 
cycles [22]. Overflow oscillations [8] and chaos [12] 
are also studied as the dramatic effects induced by 
fixed-point arithmetic for digital filters. Moreover, 
digital feedback can induce chaotic behavior when or- 
dinary linear feedback is applied. Since magnitude 
truncation, overflow and underflow result in highly 
nonlinear systems, the performance and even the sta- 
bility of such systems can be drastically affected. For 
all these examples, as explained in [4, 51, quantiza- 
tion effects can not simply be viewed as “white noise” 
or as approximate measurements. Therefore, it is of 
great interest to study these effects and find ways of 
reducing them. [21] gives conditions on the filter co- 
efficients to suppress limit cycles in first order digital 
filters. For stabilization of systems when measure- 
ments of the state are quantized, an optimal realiza- 
tion is proposed in [18]. Extensions of the L&G the- 
ory [15] and the Bounded-Real Lemma [19] are also 
discussed. State and state-estimate feedback stabi- 
lization are proposed in [4, 5, 141. 

To study the effects of quantization, let define cJ!, 

= {g : R” + R”, g(x) = [sl(xl) . . . s&n)lT, 
g(0) = 0 1 Vi E [l.. .n], Vxi E R, Igi(xi)l 5 Ixil) 
and let introduce the state Z = g(x), g E Q,. The 
operator g represents the finite precision effects and 
can specify the following arithmetics (see [S]): ze- 
roing arithmetic, saturation arithmetic or decimal- 
truncation arithmetic. Then, the quantized system 
is 

x(k + 1) = AZ(k), 

qIc + 1) = g(x(lc + 1)). (3) 

Let define the diagonal stability for the system (1) 
as the existence of a diagonal solution P to the Lya- 
punov equation (2). In [16, 9, 20, 131, the following 
theorem is stated: 
Theorem 1.1 If the discrete-time system (1) is di- 

agonally stable, then the quantized system (3) is stable 

in spite of the finite precision effects. 

When A is a companion matrix, a simple condition 
ensuring that (2) admits a diagonal solution is given 
in [17]. This condition is detailed in $2.2. 



The purpose of the paper is to derive some LMI con- 
ditions for 

to the following Linear Fractional Representation for 
the parameter-dependent coefficient uji(p) 

1. analysis of robust diagonal stability of a class of 
uncertain discrete-time systems, 

2. synthesis of a controller that stabilizes a class 
of uncertain discrete-time systems robustly in 
respect to both the finite precision effects and 
the uncertainties. 

In $2, some LMI-based conditions are derived for the 
analysis of systems when finite precision problem is 
involved. The main theorems are stated for diagonal 
robust output-feedback control in $3. 

Our notations are as follows: for a real matrix 
P, P > 0 (resp. P > 0) means P is symmetric 
and positive-definite (resp. positive semi-definite) ; 
then, P1l2 denotes its symmetric square root. We 
also use the notation diag(A,B) with A E Rpxq 

and B E RmX” to denote the block-diagonal ma- 
trix written with A, B as its diagonal blocks. For 
r = [rl, . , rn], ri E N, we define the sets 

D(r)={A=diag(611,,,...,6,1,,), I&ER}, 

B(T)= {B=diag(Bi,...,B,), 1 Bi ER?‘~‘~}, 

S(r) = {S E B(r) 1 Si > 0, i = 1,. . .,n}, 

Finally, the symbol Co denotes the convex hull. 

2 Analysis of Diagonal Robust 
St ability 

2.1 LFR of the Coefficients 

Consider the matrix A(p) given by 

A(P) = (aji(p)):f:f,n 
-- 

where c+ (.) is a rational function of the parame- 
ters pk, k = l,... N. We seek a Linear Fractional 
Representation of these coefficients. A methodology 
was given in [lo] to d erive an LFR for parameter- 
dependent systems when the parameters appear in ra- 
tional functions. This methodology is based on simple 
operations such as addition, multiplication, stacking, 
shuffling and inversion. Then, the coefficients can be 
written: 

%(P) = "ji + PjiAji(p)(I - JjiAji(p))-lyji, 

Aji(p) = diag(pl4,(j,q,. . .plv4,(j,q) E D(r), 
(4 

where Nji = cf=“=, Tk(j, i),~,;: R, pji E RlxNji, 
b.. E RNjiXN” 
Ilz J’ and yji E R J’ . This is equivalent 

aji(P) = &ji + Pjirji, 

+ji = “lji + SjiTji, (5) 

rj’ji = Aji(P)$j;. 

2.2 LMI Conditions 

Consider the following uncertain, discrete-time sys- 
tem in the companion form 

x(k + 1) = A(P)+), (6) 

where x is the state vector of the system, p is the 
parameter vector, and 

r -q(p) -Q(p) . . . -%-1(P) -a,(p) 1 

A(p) = 1 ’ 

I 0 0 

The parameters pi (t), 
bounded. Let define P 

. . . 0 0 

. . . 

. . . i 0 I 

i E l,... n, are unknown but 
= {p(t) E CN s.t. vt 2 0, 

pj}. The notation p = 0 will Vj E [I,. .Nl, bj(t)I < 
be used to signify Vt 2 0, V’j E [l, . . .N], pj((t) = 0. 

We seek the domain of uncertainty where the sys- 
tem is guaranteed to be diagonally stable. In other 
words, we seek under some constraints the maximum 
bounds for the parameters such that the diagonal sta- 
bility of the following quantized system, 

x(k + 1) = A(p)+), 
qk + 1) = g(x@ + l)), (7) 

as described in Figure 1, is guaranteed within these 
bounds. As proved in [17], the Lyapunov equation for 

Figure 1: Model of filters with quantizer in the closed- 
loop 

the nominal system, ie for (6) with p = 0, admits a 
diagonal solution P if and only if 

g- l&l 5 1. (8) 
i=l 

Moreover, the diagonal elements Pi of P must satisfy 

Pl>P2>...LPn>0. 



Then, the quantized system (3) is stable for every 
quantizer operator g E &, . These results can be used 
for the analysis of linear systems with no uncertainty, 
but the problem is much harder when it concerns un- 
certain systems. Then, the question is whether the 
parameter-dependent system (6) is diagonally stable 
or not robustly with respect to p E P. From (8), we 
can state that the system (6) is diagonally stable if 

VPEP, -&4P)I Il. 
i=l 

(9) 

The first idea would be to define gi = inf{ ai (p) : p E 

P} and Ei = sup{ai(p) : p E P} and then to check 
that n. 

Cll [ IZil ISI I IIW 5 1 
i=l 

But this arises a major problem: since a;(p) may not 
be convex in p, the computation of the global maxi- 
mum Q or minimum ai of ai (p) is an NP-hard prob- 
lem. Anyway such an approach may be used when 
the bounded parameter vector p is assumed to ap- 
pear in the companion matrix in an additive way, ie 
ai = rri + pi, i = l,...n and p E P (see [S]) 

Consider now the parameter-dependent discrete-time 
system in the companion form described by (6) where 
the coefficients ai( i = 1, . . . n, of the companion 
matrix A are rational functions of the parameters 
pj, j = l,... N. Since a;(p) may not be convex in 
p, solving (9) is now much harder. According to $2.1, 
we can write the coefficients ai with the following 
Linear Fractional Representation: 

G(P) = ai + ,Wi(p)(l- &A,(P))% 

(10) 

Ai(p) = diag(pl4-,(q,. . .PNL,(~)) E D(r). 

Then, we can state the main results of the paper 
about the state-feedback stabilization through the fol- 
lowing theorem: 

Theorem 2.1 The discrete-time, parameter-depen- 
dent system in the companion form (6) with p E P 
is diagonally stable if we can find zi E Rf, Si E 

S(r), z E S(r), i = 1,. . .n, such that 

i:- zi < 1, (11) 
i=l 

[*I <O, i=l.,...n, (12) 

[*I <O, i=l,...n, (13) 

where ai, pi, yi and & are the coeficients of the LFR 

(10) of G(P). 

This theorem takes the structure of the uncertainty 
matrix A(p) into account. Nevertheless, it neglects 
the realness of the parameters pi, i = 1, . . . N. This 
can be improved by introducing the skewsymmetric 
scaling matrices Gj and Hj, j = 1, . . . n. Then, we 
can state: 

Theorem 2.2 The discrete-time, parameter-depen- 

dent system in the companion form (6), with p real 

and p E P, is diagonally stable if we can find zi E 

R+, Si E S(r), Ti E S(r), Gi E G(r), Hi E G(r), i = 
1 ,... n, such that 

fZ- zi < 1, (14) 
kl 

~~1 <O, i=l,...n, 

~~1 <O, i=l,..':y 

(16) 
where ai, pi, yi and Si are the coeficients of the LFR 

(~01 of 4P). 

3 Diagonal Robust Synthesis 

Consider the following unstable SIMO, parameter- 
dependent, discrete-time system in the companion 
form 

x(k + 1) = A(P)+) + h(k), 

Y(k) = Cx(k), (17) 

u(k) = KY(k), 

with A in the companion form, B = [l 0 . . . OIT, 

C = (cji):sifr and p E P. We seek an output- 
feedback coirtYoller diagonally stabilizing it. Then, 
this controller is guaranteed to diagonally stabilize 
the following quantized uncertain discrete-time sys- 
tem in the companion form. 

x(k + 1) = A( + Bu(k), 

Z(k + 1) = g(x(k + l)), 

Y(k) = C%(k), (18) 

u(k) = Icy(k). 

As described in Figure 2, we can also define a more 
common class of systems for which the measurements 



r(k)=0 

Figure 2: Model of systems with quantized measure- 
ments 

of the state are quantized [4, 5, 121. Such systems are 
given by the following quantized state-representation 

z(k + 1) = A(p)z(k) + Bu(k), 

Z;(k) = s(4k)), 
y”(k) = c%(k), (19) 

u(k) = Kc(k). 

This is worth noticing that the system (19) can also 
be written in the quantized state-representation (18). 
To prove it, consider the quantized, discrete-time, 
parameter-dependent system described by (19). We 
have 

z(k + 1) = A(p)z(k) + BKG(k). 

Let A(p) = (c+(p)):s{fz and BIlC = (bji)iii>,“. 

Then we can write 
-- -- 

z(k + 1) = &aji(p)xi(k) + bjig(zj(k))]. 
i=l 

This is now easy to derive that 

3h E &, such that Vi E l,...n, 

aji(p)xi(k) + bjig(xj(k)) = (aji(~) + bji)h(zj(k)), 

which means that the system can also be described 
by (18). This latter representation, although more 
conservative, will be used for further theorems. 

Assume now that the nominal discrete-time sys- 
tem described by (6) is unstable. We seek a constant 
controller K = [ICI k2 . . . km] such that the system 
described by (17) is diagonally stable. Some theo- 
rems are stated in [6] to stabilize the nominal system 
or a class of uncertain systems, when the uncertain 
parameters appear in an additive way in the coef- 
ficients of the system. The latter theorem remains 
true for the general case of uncertain systems, but we 
need to know the bounds on the coefficients (ie pi and 
Ed). As we explained in 2.2, the computation of these 
bounds is an NP-hard problem. The main results of 
the paper for the output-feedback stabilization when 
the coefficients u;( .) , i = 1, . . . n, are rational func- 
tions of the parameters pj, j = 1, . . . N, are stated in 
the following two theorems: 

Theorem 3.1 3 Ii = [ICI kz . . . k,] diagonally sta- 
bilizing (i7) with p E P if we can find zi E R+, Si E 

s(r), Z E S(T), i = 1,. . .n, and kj E R, j = 
1 , . , ,m, such that 

k- 2; < 1, (20) 
i=l 

[*I <o,i.l )“’ n, 

[ zt-$y ~$;; ] <o, i=l,...E” 

(22) 
where ai, /3i, yi and Si are the coeficients of the LFR 

(10) of G(P). 

As described in 52.2 for the analysis of stability, we 
can take the realness of the parameters into account 
by introducing the skewsymmetric scaling matrices 
Gi and Hi E G(Y), i = 1,. . .n. Then, we can state 
the following theorem. 

Theorem 3.2 3 K = [ICI kz . . . k,] diagonally sta- 
bilizing (i7), with p real and p E P, if we can find 

zi E R+, Si E S(T), Ti E S(r), i = 1,. . .n, Gi E 
i = 1,. . .n, and Icj E R, j = 

k- 2.i < 1, (23) 
i=l 

ids < O,i= l,...n 

- 
(24) 

[~~ < O,i= ,,_, 

(25) 
where ai, pi, ^/i and & are the coeficients of the LFR 

(10) of Q(P). 

We can choose to optimize a linear or quadratic crite- 
rion on the variable I< = [kl ka . . . km] such as input 
or output norm-bounds, saturations... (see [lo, 3, 71 
for more details). These additional conditions can be 
translated into LMIs. 



4 Concluding Remarks 

Linear Matrix Inequality conditions ensuring the 
output-feedback diagonal stabilization for a parame- 
ter-dependent, discrete-time system in the compan- 
ion form were given. In other words, we extended 
the notion of robustness for discrete-time systems to 
the finite precision problem. In spite of the well- 
known numerical danger inherent in the companion 
form of systems, such a realization remains current 
so that the results presented in this paper may find 
illustrative applications. For instance, the analysis of 
the robust stability may be used to design digital fil- 
ters. Moreover our output-feedback controller guar- 
antees the stability of the closed-loop system even 
when implemented in a digital computer with finite 
wordlength arithmetic. One of the remaining open 
problems shall be to incorporate the possible coupling 
of the parameters ai via the common variable p. 

References 

[l] A. Betser, N. Cohen, and E. Zeheb. On solving the 
Lyapunov and Stein equations for a companion ma- 
trix. Syst. U Contr. Letters, 25(3):211-218, June 
1995. 

[2] R. Bitmead. Explicit solutions of the discrete-time 
Lyapunov matrix equation and KaIman-Yakubovich 
equations. IEEE Trans. Aut. Con&., 26(6):1291- 
1294, December 1981. 

[3] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrish- 
nan. Linear Matrix Inequality in systems and control 

theory. SIAM, 1994. 

[4] D. Delchamps. Controlling the flow of information 
in feedback systems with measurement quantization. 
In Proc. IEEE Conf. on Decision & Contr., pages 
2355-2360, Tampa, FL, December 1989. 

[5] D. Delchamps. Stabilizing a linear system with 
quantized state feedback. IEEE Trans. Aut. Contr., 
35(8):916-924, August 1990. 

[6] S. Dussy. Robust stabilization of discrete-time 
parameter-dependent systems: the finite precision 
problem. In Proc. IEEE Conf. on Decision & Contr., 
Kobe, Japan, December 1996. 

[7] S. Dussy and L. El Ghaoui. Robust gain-scheduled 
control of a class of nonlinear parameter-dependent 
systems: application to an uncertain inverted pendu- 
lum. In Proc. Conf. on Contr. U Applications, pages 
516-521, Dearborn, MI, September 1996. 

[8] P. Ebert, J. Maze, and M. Taylor. Overflow os- 
cillations in digital filters. Bell Syst. Tech. Journ., 
482999-3020, November 1969. 

[9] N. El-Agizi and M. Fahmy. Two-dimensional digi- 
tal filters with no overflow oscillations. IEEE Trans. 
Acoustics, speech, & signal proc., 27(5):465-469, Oc- 
tober 1979. 

[lo] L. El Ghaoui and G. Scorletti. Control of rational 
systems using Linear-Fractional Representations and 
Linear Matrix Inequalities. Automatica, 32(9):1273- 

1284, September 1996. 

ml 

1121 

P31 

P41 

1151 

I161 

P71 

P31 

PI 

PO1 

Pll 

P21 

M. Fan, A. Tits, and J.C. Doyle. Robustness in 
the presence of mixed parametric uncertainty and 
unmodeled dynamics. IEEE Trans. Aut. Contr., 
36(1):25-38, January 1991. 

X. Feng and K. Loparo. A study of chaos in discrete 
time linear systems with quantized state feedback. 
In Proc. IEEE Conf. on Decision & Contr., pages 
2107-2112, Tucson, AZ, December 1992. 

E. Kaszkurewicz and A. Bhaya. Robust stability and 
diagonal Liapunov functions. SIAM Journ. Matrix 
Anal. Appl., 14(2):508-520, April 1993. 

G. Li and M. Gevers. Optimal finite precision im- 
plementation of a state-estimate feedback controller. 
IEEE Trans. Aut. Contr., 37(12):1487-1498, Decem- 
ber 1990. 

K. Liu and R. Skelton. Optimal controllers for fi- 
nite wordlenght implementation. IEEE Trans. Aut. 
Contr., 37(9):1294-1304, September 1992. 

W. Mills, C. MuIIis, and R. Roberts. Digital filter re- 
alizations without overflow oscillations. IEEE Trans. 
Acoustics, speech, & signal proc., 26(4):334-338, Au- 
gust 1978. 

P. Regalia. On linite Lyapunov functions for compan- 
ion matrices. IEEE Trans. Aut. Contr., 37(10):1640- 
1644, October 92. 

M. Rotea and D. Williamson. Optimal realizations of 
hnite wordlenght digital filters and controllers. IEEE 
Trans. Circ. Syst., 42(2):61-72, February 1995. 

P. Vaidyanathan. The discrete-time Bounded-Real 
Lemma in digital filtering. IEEE Trans. Circ. Syst., 

32(9):918-924, September 1985. 

P. Vaidyanathan and V. Liu. An improved sufficient 
condition for absence of limit cycles in digital filters. 
IEEE Trans. Circ. Syst., 34(3):319-332, March 1987. 

M. Werter. Suppression of limit cycles in the first- 
order two-dimensional direct form figital filter with 
a controlled rounding arithmetic. IEEE Trans. Sign. 
Proc., 40(6):1599-1601, June 1992. 

A. WiIIson. Limit cycles due to adder overflow in 
digital filters. IEEE Trans. Circ. Theory, 19(4):342- 
346, July 1972. 

A Proof of Theorem 2.1 

Consider the following parameter-dependent dis- 
crete-time system in the companion form (6), where 
the coefficients ai( i = 1, . . . n are rational func- 
tions of the parameters pj, j = 1,. . .N. From (8), 
we can derive that the system (6) is diagonally stable 
if 

n 

VP E p, c l%(P)1 2 1. 
i=l 

Let introduce the variables z; 4 0, i = 1, . . . n. Then, 
the above condition is equivalent to 

3zi 2 0, 1 < i 5 n, such that 



k- .zi < 1, (27) 
i=l 

vp E P, c&(p) < zi, i = 1,. . .n, (28) 

vp E P, c&(p) > -zi, i = 1,. . .n. N-9 

We want to translate (28) and (29) into LMIs. The 
key of the theorem is based on the following idea: we 
define fictitious signals yi and ui and we shall express 
the previous conditions on ui (p) through simple LMI- 
based conditions on these signals. The coefficients 
ui(.) are rational functions of the parameters pj, so 

that yi = (u;(p)--zi)ui with yi E R’ and ui E R*, i = 
. . n, can be defined by the following LFR, with 

&p) E D(r): 

g Ix yiyiui 
= (% - Zi)Ui ; y, 

z z> (30) 
ri = b(p)&, 

The condition p E P allows us to bound the uncer- 
tainty matrix, so that we can write a “normalized” 
LFR (30) with I]Ai(p)II < 1. With this representa- 
tion of ai(p), we can infer that (28) holds if and only 
if 

Vp E P, yjui 5 0, i = 1,. . .n, (31) 

We have yiu; = ui(cr; - zi)ui +i$‘@‘ui S&,&T;, 
i=l . .n. Let introduce the symmetric scaling ma- 
trices’ S; E S(f), i = 1,. . .n, such that 

7rfIsgr~ 5 7&s-& = (u$ + 7r~&)s~(uiyi + Sgr,). 

Then, (28) holds if we can find Si E S(T), i = 1,. . . n, 

such that 

T 
Ui [ I[ ai - zj ;pi ui 

ri 
;p: 0 I[ 1 Ti < O ho1ds, (32) 

for all ui # 0 and 7ri satisfying 

T 
ui [ I[ Y? si Yi 7: Si Si Ui 

xi STS.iyi S’SiSi - Si 
I[ 1 

Ti ’ O’ 

Using S-procedure, (32) is equivalent to 

[ 
ai-zi+Y~SiYi +pi+~~SiJi <o i=l 

;g + sgjyi sTsisi _ si 1 , , . ..n. 

(33) 
Reiterating the same operation with (29) achieves the 
proof of theorem 2.1. 

B Proof of Theorem 2.2 

In Annex A, we took the block-diagonal structure 
of A into account by introducing symmetric scalings 
Si and Ti, i = 1,. . .n, commuting with A. Addi- 
tional constraints were found in [ll] when A is not 

only block-diagonal but also real. It was stated that, 
given any square complex matrix M and any A E 
D(T), the equation AMa: = 2 implies the additional 
constraint xHiVIHGx = xHGMx for all G E G(T). 
We can adapt this to the case p = Aq (see [lo]). The 
realness of the parameters p in (28) implies the fol- 
lowing additional constraint 

rTGi$i - $TGini = 0 for all Ga E G(T), i = 1,. . .n. 

(34) 
Then, when the parameters are real, (28) holds if we 
can find Si E S(T), Gi E G(r), i = 1,. . .n, such that 

T Ui [ I[ ai - Zi +/3i Ui KITi $pT 0 I[ 1 ri < 0 holds, (35) 
for all ui # 0 and ri satisfying 

Ui T y’L3iy.j [ I[ yy- si si 
SFSiyi S,“SiSi - Si 

Ui ri I[ 1 Ti 2 0 and 

T 
Ui [ I[ 0 -$Gi Ui 7f-i Giyi GiSi -STGi I[ 1 ;r~i = O. 

Using S-procedure, (28) with pj E R, j = 1,. . .N, 

holds if 

Reiterating the same operation with (29) achieves‘the 
proof of theorem 2.2. 

C Proofs of Theorem 3.1 and 
Theorem 3.2 

Consider the parameter-dependent, discrete-time sys- 
tem in the companion form described by (17)) where 
the coefficients ai are rational functions of the pa- 
rameters pj, j = 1, . . . N. We can readily state that 
3 K = [kl rk2 . . . ICm] such that the Lyapunov equa- 
tion (A(p) +BIIC)TP(A(p) + BKC) -P < 0, p E P, 

admits a diagonal solution if 

V'pEP, elmui(P)+~cjiiE,I<l. 
i=l j=l 

(37) 

From this point, the proof of theorem 3.1 is equivalent 
to the one presented in Annex A with ai replaced 

by (ui (P) - CT==, kjcji). 

Based on the results of [ll], the proof of theo- 
rem 3.2 is similar as the one of theorem 2.2 in Annex 
B. It consists in introducing skewsymmetric matrices 
Gi and Hi EG(T), i= 1,. . . n, and in expressing the 
realness of A with the additional constraint (34). 


