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Abstract 

In this paper the notion of Normalized Coprime 
Factorization (NCF) for linear discrete-time periodic 
systems is studied. These systems arise in the study 

of linear time-varying systems with periodic coeffi- 
cients. The problem is approached by the study of 
the linear periodic state-space representation of the 

system. It is shown that the NCF can be obtained 
through the solution to discrete-time periodic Riccati 
equations (DPRE). The properties of the DPRE are 
used to study the NCF for linear discrete-time peri- 
odic systems. 

1 Introduction 

Development in the theory of H, design and robust 
stabilization problem has made the notion of normal- 
ized coprime factorizations indispensable in control 
theory. The description of systems using these fac- 
tors has been shown to have fundamental connections 

to robust stabilization problem and Hankel-norm ap- 
proximations [l]. In fact, the use of the NCF for the 
study of robust stabilization problem has resulted in 
a close connection between the classical robust stabil- 
ity problem, in the context of H, perturbation, and 

the recent theory of robust stabilization using the gap 
metric. This equivalence was explored in [2]. 

Recently, interest has been developed in the lin- 
ear time-varying (LTV) systems with periodic coeffi- 
cients [5]. These systems are used to model multirate 

plants and digital filters that arise in the description 
of cyclostationary processes. In [9] an equivalence be- 

tween m-input, p-output, linear, iv-periodic causal, 
discrete-time systems and a class of discrete linear 
time invariant (LTI) causal systems was established. 

In fact, LTI theory serves as a guide to the linear peri- 
odic systems and many classical concepts first devel- 
oped for time-invariant systems have been extended 
and applied to the periodic case. On the other hand, 
the results from studying periodic systems provide a 
guidance or proof to the theory of the LTV system. 

1 This research was supported by the National Science Foun- 

dationunder grant NCR-9210408 and by the Defense Advanced 

Research Projects Agency under contract MDA-972-93-1-0032 

and MDA-972-95-3-0016. 

In [3], the doubly coprime factorization for linear 
periodic systems is established based on its equiva- 
lent LTI representation. The optimal controller of 
disturbance rejection for the periodic system is then 
obtained with the coprime factors. From the results 
in [3], several questions arise worth further investiga- 

tion: 

1. With the lifting technique, the LTI represen- 
tation (Fi, Gi, Hi, Ei) (see Section 2) has the 
feedforward term Ei, which is a lower triangu- 
lar matrix, and it is not zero. Therefore, the 
doubly coprime factorization defined in [3] need 
to be modified. 

2. The method in [3] employs the standard tech- 
niques for computing the steady-state stabiliz- 
ing solution for the associated algebraic Riccati 

equations. However, when computing Fi, which 
will be defined in (2.2), successive matrix multi- 
plication is required. In the case when the state 
matrices Ai are ill-conditioned, such successive 
matrix multiplication may produce inaccurate 
results, especially when the period of the sys- 
tem is large. 

3. When the LTI optimal controller is built, it is 
natural to investigate how we can connect the 

controller to the original periodic system with 

inverse lifting. In particular, is the LTI con- 
troller lifting-invertible? The techniques of in- 
verse lifting are not addressed in [3]. When lift- 
ing the periodic system, the input and output 

are expanded over one period. When inverse 
lifting the LTI controller, we want the controller 
to be periodic so that it can be connected with 
the original system. If the inverse lifting tech- 

niques exist, they might bring more computa- 
tional error to the designed system. 

In this paper we study the problem of the NCF for 
linear periodic systems with its linear periodic state- 
space representations. We know that there exists an 
NCF for discrete LTI system. However, NCF for LTI 
system is not useful in getting the NCF of discrete- 
time periodic systems because no information is given 

for its original periodic presentation. Therefore, it 

is necessary to develop a direct approach by using 
DPRE for the NCF of discrete-time periodic systems. 



The positive semi-definite stabilizing solution to the 
DPRE via a deflating subspace method is given in [4]. 
This method employs the cyclic QZ algorithm and is 
numerical stable and perturbation insensitive. 

The organization of the paper is as follows. In Sec- 
tion 2 we review the background on the discrete-time 
periodic systems. In Section 3 we study the notion of 
coprime factorization for the discrete-time periodic 
systems and provide necessary and sufficient condi- 
tions under which the coprime factors exist. In Sec- 
tion 4 we present some results on the Riccati equa- 
tions for these systems and the state-space formulae 
for the NCFs. Finally, Section 5 concludes the paper. 

2 Preliminaries 

The linear discrete-time periodic system represented 
by C,, is described by the following equations: 

c,: 
1 

xi+1 = Aixi + Bini, 

Yi = Cixi + Diu;, (2.1) 

where A~+N = Ai E RR”‘“, B~+N = Bi E RnXm, 

Ci+N = Cd E lRPxn , Di+N = Di E lRPXm, and 
N E Z+. The system is said to be reversible if each 
A; is nonsingular. The state-transition matrix of the 
system is given as 

@(i’ ‘) = { 

I, i=l 

Ai-lAi.. .AlflAI, i > 1. 

@(i, I) is undefined for i < 1. We assume throughout 
this paper that the periodic systems are reachable, 
observable and reversible. Further, the transition ma- 
trix is periodic with period N, i.e., @(i+ N, I+ N) = 

cP(i,I). The monodromy matrix .F’i is defined to be 

equal to the transition matrix over one period, that 
is, 8’i = @(i+N, i). The eigenvalues of each Fi are the 
same and are defined as the characteristic multipliers 

of the system. 

It is well-known that the periodic system in (2.1) 
has an equivalent dynamic representation associated 
with N linear time-invariant systems of the form: 

where 

‘Ili+lN+l 
x; = Xi+,N,Uf= . 

1 ‘%+(l+l)N-1 

Fi = @(i+N,i), (2.2) 

BT@(i+N,i+ 1) T 

Gi = 
Br+lQT(i + N, i + 2) 

. . . 1 ’ 

Hi = 

r Di . ..O 0 

Ea = 
Ci+lBi .‘. 0 0 

L . . . D(i+N-1) j 

Definition 2.1 We say that the solution to the ho- 

mogeneous periodic system xi+.1 = Aixi on i 2 0 is 

exponentially stable if 3 p E [0, 1) and m > 0 such 

that for all ka E Z+ 

ll@(k, k0)ll 5 mpkmko, Vk>ko. 

In this paper, for simplicity we will say that the 
system is stable if it is exponentially stable. A Lya- 
punov type of characterization of the stability of the 
system can be obtained easily and is summarized in 
the following Lemma. 

Lemma 2.1 Let C, be a discrete-time periodic sys- 

tem defined as in (2.1). Then, the following state- 

ments are equivalent 

1. The system is stable. 

2. There is a positive-definite time-varying matrix 

Pi satisfying 

CYI 2 Pi _< PI 

for some positive constants (JY and p such that 

the following conditions are satisfied 

xT [ATPi+,Ai - Pi] x 5 -Xil]xl12 

for some positive function Xi and x E R”. 

Proof: Lemma 2.1 is a direct result of [7]. cl 

Since the system is entirely described by the N LTI 
discrete-time systems, at each time i we define the 
reachability and observability Lyapunov equations 

FFPiFi + H’Hi = Pi, (2.3) 

FiQi-lFT + GiGT = &i-l. (2.4) 

We can also define the periodic Lyapunov equations 
as: 

ATPi+,Ai +CTCi = Pi, (2.5) 

AiQi-IAT + BiBT = Qi. P-6) 

The relationship between the above two sets of Lya- 

punov equations is given in the following theorem: 



Theorem 2.1 Let Pi, Qi be a set of matrices with 
period N satisfying 2N Lyapunov equations (2.3) and 

(2.4) which are related with the LTI representation 

(Fi, Gi, Hi, E;) of the periodic system. Then this 

set of equations is equivalent to the 2N periodic Lya- 

punov equations (2.5) and (2.6) defined with respect 

to the original representation (Ai, Bi, Ci, Di) of the 

periodic system. 

Proof: The proof follows from the definitions of Fi, 

Hi, and Gi and the fact that the system is reversible, 
that is, Ad’s are nonsingular. 0 

According to Theorem 2.1, we can avoid solving 
all 2N Lyapunov equations. In particular, we can 
solve only two Lyapunov equations and compute the 
rest of the solution recursively. Theoretically, we can 
use either the LTI Lyapunov equations or the LTV 
Lyapunov equations to discuss the stability of the 
discrete-time periodic system. 

The main theme of the paper is to establish the ex- 
istence of the coprime factors of the periodic systems 

and we will show that the conditions for the existence 
of the coprime factors can be expressed in terms of 

the notions of stabilizability and detectability of the 

system. These properties of the system are expressed 
in terms of the closed-loop stability of state and out- 
put feedback of the system. The system is detectable 
and stabilizable if there are bounded sequences I&, Li 

such that the closed-loop systems Cd and C, defined 
below are stable. We define the periodic system Cd 
as 

d xitl = (Ai - LiCi)xf 

and the periodic system C, is defined as 

The Lyapunov criteria for the stability of the sys- 
tems in terms of the solution to the Lyapunov equa- 
tions are given as follows: 

Lemma 2.2 If the discrete-time periodic system C, 

is detectable and if there exists a periodic solution 

Pi 2 0 to the N-periodic Lyapunov equation given 
by (2.5) then the system is stable. 

Lemma 2.3 If the discrete-time periodic system C, 

is stabilizable and if there exists a periodic solution 

Qi 2 0 to the N-periodic Lyapunov equation given by 

equation (2.6) then the system is stable. 

In order to establish the existence of the coprime 
factors of discrete-time periodic systems we need a 

few ancillary results. The following result establishes 
that a discrete-time periodic system is stabilizable by 
static state feedback if and only if it is stabilizable 
by dynamic state feedback. 

Lemma 2.4 Let the discrete-time periodic system C, 
be described by equation (2.1). It is stabilizable (by 

static state feedback) if and only if it is stabilizable by 

dynamic state feedback. 

The above Lemma can now be extended easily to 
the case of output injection. We summarize this re- 
sult below: 

Corollary 2.1 The discrete-time periodic system de- 

fined in (2.1) is stabilizable (by static output injec- 

tion) if and only if it is stabilizable by dynamic output 

injection. 

Once the conditions for the existence of coprime 
factors are established, we will study the notion of 
“normalized” coprime factors. The conditions under 
which a coprime factorization is normalized will be 
derived. In this context we introduce the notion of 
an all-pass system. Suppose that the discrete-time 
periodic system C, : U H y and U and y are Hilbert 
spaces such as e2 [0, T] or f2 [0, oe) . 

A system is said to be all-pass if it satisfies the 
following relationship: 

IlQ4l; = IMtt 
for all u E 2.4 and y E Y. Equivalently, the system 
satisfies Cz C, = I where Ci represents the adjoint 
of the system. We first define and compute the state- 
space representation of the adjoint system Cs and 
then characterize an all-pass system using the com- 

puted state-space representations. 

Lemma 2.5 The adjoint of the system C, denoted 

by Ci satisfies the relation 

(&u,Y)y=(u,qY)u, VuEU, YEY. 

Furthermore, the state-space representation of the ad- 

joint system for the system C, is given by the follow- 

ing equations: 

IS;: 
1 

Pi-1 = ATpi + CTvi, 

Wi = BTpi + DTvi. 

Since we will use the notion of all-pass systems to 
prove the results for NCFs, we first present neces- 
sary and sufficient conditions under which a periodic 
system is all-pass. 

Theorem 2.2 [6] Let system C, be defined in (2.1) 

and assume the periodic solution to the Lyapunov 

equations (2.5) Pi > 0 exists. Then, C, is all-pass 

if and only if 

ATPi+,Ai +CTCi = Pi, (24 

BTPi+lAi + DTCi = 0, (2.8) 

BTPi+lBi+ DTDi = I. (2.9) 



Theorem 2.2 established a way to construct the 
NCF for the periodic systems. As its result, we can 
find the NCF of discrete-time periodic systems based 
on the state-space representation (Ad, Bi, Ci, Dd). In 
next section we will study the notion of coprime fac- 
torization of these systems. 

3 Doubly Coprime Factors 

Suppose that U, Y and W are signal spaces such as 
&[O, T] or &[O, co). The system C, is a map from the 
input space, U to the output space, y and is denoted 
as 

c P: 2‘4 --+Y, 

which are coprime as follows: 

Ni:w-ty, Mi: W--+2,4, 

Nd:U+W, Mi :y+ W. 

We define the right and left factorizations of the 
system Cp respectively as: 

2, = NiM;’ = tic1 j&i. (3.1) 

The factors are coprime if and only if there exist 
stable maps Xi, Yi , Xi and Yi defined as: 

Xi : Y --f W, Yj : U -+ W, (3.2) 

& : w-tu, g:w-+y, (3.3) 

such that the following relations are satisfied [12]: 

Furthermore, the factorization is said to be doubly 
coprime if the following condition is sa.tisfied: 

[-%i $1 [z $1 = [; ;I. (3.4) 

For LTI and LTV systems it has been shown that 
necessary and sufficient conditions for the existence of 
the coprime factors is that the system is stabilizable 
and detectable [lo, 111. We show that the coprime 

factors exist for discrete-time periodic systems under 
the same conditions of stabilizability and detectabil- 

ity. We first assume that the system is stabilizable 
and detectable and provide a state-space representa- 
tion for the factors. Since the system is assumed to 
be stabilizable, there exists a stabilizing state feed- 
back Ki. Since the system is detectable, there is a 
stabilizing output injection Fa. We now define the 
stable systems which are coprime as follows: 

Proposition 3.1 Let system C, be defined as in equa- 

tion (2.1). Define 

[;]4[*], 
[yi xip 

Ai-FaCi Bi-FiDa Fi 

UF * Ki up 1 0 ’ 

[g ] 2 [+p-pfz] , 

where Vi and Vi are non-singular periodic sequences. 

Then, the factors Ni, Mi are right coprime, fii, &li 

are left coprime and above equations satisfy equation 

(3.4). 

Proof: The proof follows easily and is along the lines 
of Proposition 2 in [8]. 17 

The above proposition provides the sufficient con- 
ditions for the existence of coprime factors which are 
provided by construction. We now show that these 
conditions are also necessary for the existence of co- 
prime factors. 

Proposition 3.2 Let the discrete-time periodic sys- 

tem C, possess left and right coprime factors as given 

by (3.1), which satisfy the conditions (3.2) and (3.3). 

Then, the system C, is stabilizable and detectable. 

Proof: The proof is similar to that of Theorem 4.6 of 
[lo] and can be obtained by modifying the arguments 

presented there. 0 

We combine the above two propositions to give the 

main result of this chapter as follows: 

Theorem 3.1 A discrete-time periodic system C, de- 

scribed in (2.1) possesses a coprime factorization if 

and only if is stabilizable and detectable. 

In this section we studied the notion of doubly 
coprime factorizations for discrete-time periodic sys- 
tems and shown that the factors can be obtained from 
by state feedback and output injection. We have 
studied necessary and sufficient conditions for the 
construction of the coprime factors. If the feedback is 

chosen to be “optimal” in the sense that the feedback 
gain is obtained through the solution of a quadratic 

optimization problem, then the coprime factors can 
be shown to be “normalized”. In next section we will 
study Riccati equations for discrete-time periodic sys- 

tems. The connection between the coprime factors 
and the solution to the Riccati equation in order to 
obtain the NCFs will be drawn later in this paper. 



4 Discrete-Time Periodic Ric- 
cat i Equations and Normal- 
ized Coprime Factorizations 

In this section we will study the optimization prob- 
lem which leads to the DPRE. We consider the finite- 
horizon problem to derive the Riccati equation. We 
then study the conditions under which the solution to 
the equation is bounded and the closed-loop system 
is stable in the infinite-horizon case. The cost index 
chosen for the optimization problem is a non-negative 

quadratic function defined by 

J(O,T) = c ; [yf-yi + UTUi] . (4.1) 
iE[O,T] 

The initial condition of the state is assumed to be 
known. We now provide the modified results from [4] 
concerning the optimization of the above cost func- 
tion with respect to the periodic system with the 
feedthrough term Da. 

Lemma 4.1 [4] A ssume that (Ai, Bi) is stabilizable 

and (Ai, Ci) is detectable for all time i. The optimal 

input do the discrete-time periodic system C, which 

minimizes the cost function J(O,T) defined in (4.1) 

is given by Ihe optimal periodic state feedback 

where 

I& = T;‘(DTG + BFPi+,Ai), (4.2) 

Ti = I + DTDi + B’Pi+lBi. (4.3) 

and Pi 2 0, i E [O,T], widh PT given, is a periodic 

stabilizing sol&ion lo the DPRE given by 

Pi = [Ai - Bi(I + DTDi)-lDTCi]T 

[Pi+1 - Pi+1 BiL7-l BT Pi+l] 

[Ai - Bi(I + DTDi)-lDTCi] 

+CT[I- Di(I + D’Di)-lD’]Ci (4.4) 

Furthermore, the optimum cost J*(O,T) is given in 
terms of the initial condition and Ihe solution Pa as 

J*(O,T) = ;x;fp,,,. 

We now turn our attention to the case when the 
final time T approaches infinity. Clearly, the stabiliz- 
ability of the system is sufficient to ensure that the so- 
lution to the Riccati equation exists and is bounded. 
Furthermore, the stability of the closed-loop system 

is guaranteed by the detectability of the open-loop 
system. In this case, we derive similar conditions on 
the system to ensure that the solution to the peri- 
odic Riccati equation is bounded and stabilizing to 

the open-loop system. 

Lemma 4.2 [4] If th d’ e ascrete-time periodic system 

C, is stabilizable then the solution to the DPRE given 

by (4.4) is bounded for all time as T tends to infinity. 

The above result guarantees the boundedness of 
the solution to the Riccati equations as the finite 
horizon tends to infinity. The classic result on the 
stabilizability of the solution of the Riccati equation 
was given by Kalman in terms of the detectability of 
the system. We see that the same result can be ex- 
tended to this class of systems. We now present the 
conditions under which the solution to the Riccati 
equation is stabilizing to the system. 

Lemma 4.3 [4] If 2he d’ ascrete-time periodic system 

C, is stabilizable and detectable then the sol&ion to 

the DPRE (4.4) b as ounded for all time as T tends lo 

infinity and is stabilizing lo the system. 

It can be verified through some algebra that the 
Joseph stabilized DPRE has the following form: 

Pi = (Ai - BiIii)TPi+l(Ai - BaK;) + IiTKi 

+(Ci - DiI<i)T(Ci - DiKi) (4.5) 

Note that the conditions provided ensure that the 
solution is not only bounded for all time but also 
guarantee the convergence of the solution to a limit. 
We will proceed to study the construction of NCFs 
using the solution to the DPRE in next section. 

The positive semi-definite stabilizing solution to 

DPRE is computed by a deflating subspace method 
given in [4]. This method employs the standard QZ 
algorithm and retains its attractive features, such as 
quadratic convergence and small relative backward 

error. The cyclic QZ method extends the technique 
of simultaneous reduction to a sequence of matrices, 

and promises the same accuracy, numerical stability, 

and perturbation insensitivity as its predecessors. 
We have seen that the coprime factors can be ob- 

tained by using a stabilizing feedback to the system. 
We will show that the choice of the stabilizing gain 

obtained through the solution to the Riccati equa- 
tions results in a normalized coprime factorization. 
We first define the notion of NCF. The coprime fac- 
tors of the system C,, Ni, n/r, and fii, A?i defined in 
Proposition 3.1 are said to normalized if they satisfy 
the following conditions: 

NfNi+MTMi = I, 

fii.iVJ+&iii?~ = I. 

We are now ready to present our main result con- 
cerning the NCFs. In Section 3, it was shown that 
coprime factors can be obtained by the choice of a 
stabilizing feedback gain. We now show that the feed- 

back gains obtained from the solution to the Riccati 



equations gives rise to coprime factors which are nor- 
malized. We will prove the results only for the right 
coprime factors. The proofs for the left coprime fac- 
tors are similar and can be obtained easily. 

Given a linear discrete-time periodic plant and let 

(Ai, Bi,Ci,Di) b e s a i iza t b 1 bl e and detectable. Theo- 
rem 4.1 shows that if I$ is chosen so that the eigen- 
values o(Ai - Bi I(i) h ave negative real parts, then we 

can define a stable right coprime factorization for C,. 

Theorem 4.1 Let the discrete-time periodic system 

C, defined in (2.1) be stabilizable and Pi be the pos- 
itive semi-definite stabilizing solution to the DPRE. 

Then, the NCFs are given by the following systems: 

where .!Ji satisfy 

UTTiLJi = I, 

and Ti is defined in (4.3). 

(4.6) 

Proof: Clearly, equation (2.7) follow from equation 
(4.5). Now, it is clear from (4.6) that Di is non- 
singular since Pi 2 0. Some algebra shows that (4.2) 
is equivalent to (2.8). Condition (2.9) follow directly 
from the definitions and equation (4.6). 0 

We conclude that the construction of the NCFs can 

be obtained through the solution to the DPRE. Fur- 
thermore, the left coprime factors can be constructed 
from the solution to the corresponding filter Riccati 
equations. The coprime factors can be used to study 
robust stabilization under perturbations in the fac- 

tors. The impetus for this approach is due to the re- 

sults in the discrete-time periodic case where explicit 

formulae for the maximum radius for stabilization are 
obtained when the coprime factors are normalized. 
Another application for NCF is in the study of the 
notion of the gap metric for discrete-time periodic 

systems. These issues will be addressed elsewhere 
and are currently under study. 

5 Conclusions 

In this paper we have studied the notion of normal- 
ized coprime factorization for the discrete-time peri- 
odic systems. We have shown that coprime factors of 
discrete-time periodic systems can be obtained by sta- 
bilizing feedback and provided the state-space char- 

acterization of the coprime factors. We have shown 
that the solution to a quadratic optimization problem 
leads to the DPREs and the feedback gain obtained 
using the solution to these equations can be used to 

provide NCF for discrete-time periodic systems. 
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