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Abstract 

In this note, we propose a nonlinear on-line param- 
eter estimation method that utilizes neural network- 
based approximators for detecting changes due to ac- 
tuator faults in a class of structural dynamical sys- 
tems. The plant considered here is a cantilevered 
beam actuated via a pair of piezoceramic patches. We 
examine changes in the control input term, which pro- 
vide a simple and practical model of actuator failures. 
Using Lyapunov redesign methods, a stable learning 
scheme for fault diagnosis is proposed. The resulting 
fault diagnosis scheme is utilized in a control reconfig- 
uration in order to accommodate the system’s actua- 
tor failure. A numerical algorithm is provided for the 
implementation of the detection and accommodation 
scheme and simulation studies are used to illustrate 
the applicability of the theoretical results. 

1 Introduction 

The detection and diagnosis of failures of dynam- 
ical systems is attracting the attention of many re- 
searchers working on diverse engineering problems, 
[2, 9, 15, 171. As was noted in [17] and the refer- 
ences therein, many fault detection schemes deal with 
either linear or nonlinear finite dimensional systems 
(lumped parameter systems). Many physical systems 
though, are described by partial differential, integrod- 
ifferential and functional differential equations. These 
systems are infinite dimensional and their parameters 
are distributed in nature. For a class of distributed 
parameter systems (mainly flexible structures such as 
beams and trusses), damage detection based on the 
analysis of natural modes and frequencies was stud- 
ied by several researchers. As was pointed out in 
[4] and argued in [3] and their references, methods 
based on natural modes (frequencies) are highly unre- 
liable when dealing with estimation of (possibly) vari- 
able material parameters such as mass, stiffness and 
damping. The analysis of damages in parameterized 

partial differential equations with Galerkin approxi- 
mation techniques validates non-destructive damage 
detection since it incorporates information on loca- 
tion/geometry of damages in structures. This moti- 
vates our current research efforts. 

During the last two decades, a number of fault di- 
agnosis schemes have been developed using the an- 
alytical redundancy approach [lo, 16, 171. Accord- 
ing to this approach, input/output measurements are 
processed analytically to estimate the values of cer- 
tain key system variables. The estimates are then 
compared with measured signals to generate a resid- 
ual vector, which can be utilized to detect and isolate 
system failures. 

The process of system failure characterization can 
be broken up into three steps: (i) detection deals 
with determining if a malfunction has occured in the 
system; (ii) diagnosis considers the problem of iso- 
lating and identifying a failure; and (iii) accommo- 
dation attempts to self-correct a particular failure 
through reconfiguration of the control system. De- 
pending on the application, a diagnostic system may 
include some or all of the above tasks. 

In this paper we discuss a theoretical investigation 
and present a numerical scheme for a model-based 
fault diagnosis and accommodation algorithm applied 
to a class of distributed parameter system. An esti- 
mated model of the plant is used to monitor the plant 
for any changes due to faults. The estimated model 
incorporates an on-line approximator [17], which es- 
timates and monitors the parameters on-line via a 
learning algorithm. The output of the on-line approx- 
imator is used as an indicator of the occurrence of a 
fault and also as a method for identifying the loca- 
tion (fault isolation) and shape (fault identification) 
of system failures. A reconfiguration of the standard 
control is presented in order to accommodate the sys- 
tem failure. 

The structure considered in the ensuing example 
is taken to be a cantilevered beam with two piezoce- 
ramic patches attached on the opposite sides of the 
beam. As was already mentioned in many works, 



see for example [5] and the references therein, a gen- 
eral structural (and even structural-acoustic) control 
problem has dynamics described by the second order 
evolution equation 

Miir(t) + Dti(t) + Kw(t) = Bu(t) 

with output 

(1) 

y(t) = cri(t> (2) 

where the state w(t) belongs to a Hilbert space H and 
M, D, K and B, C are operators in the appropriate 
spaces. 

The paper is organized as follows. In Section 2 
we set up the abstract equations that govern the dy- 
namics of the plant (which are assumed infinite di- 
mensional) and in Section 3 we propose a model for 
the fault, which in this case is simply taken to be a 
change in actuator gain that is a function of the mea- 
surable output signals. The abstract formulation of 
the plant’s estimator is presented in $ 4 along with 
a discussion summary of well posedness. A standard 
controller for the nominal plant is proposed in 3 5 and 
a modification to the standard control is presented to 
account for the plant changes due to failures. Con- 
vergence results follow and the numerical implemen- 
tation scheme is proposed in 5 6. Simulations studies 
with discussion follow in f 7 and conclusions with fu- 
ture directions are summarized in 5 8. 

2 Plant Dynamics 

It is assumed that the beam satisfies the Euler- 
Bernoulli displacement hypothesis with Kelvin-Voigt 
damping (damping proportional to strain rate) and 
air damping (damping proportional to velocity). Two 
piezoceramic patches are bonded to the beam at the 
location 21 < 2 5 2,. and are excited out-phase, which 
results in pure bending of the beam [5]. The moment 
due to patches is localized to the region covered by the 
patches. When the structure is subject to moments 
generated by the patches, it leads to the equation 

p(x)% + YJ-$T = -- 
d2M d2M, 

ax2 ’ 
o<x<z, (3) 

where w = w(t, Z) is the transverse displacement, M 
is the internal moment given by 

a2W 
M = EI(x)~ + d(x)&, (4 

and M, is the external moment due to the piezoce- 
ramic patches. This piezoceramic moment is given 

by 
M, = -~A?&$@), (5) 

where u(t) is the voltage applied to the patches, KA 
is a constant that depends on the piezoceramic ma- 
terial properties [5] and xp(x) is the characteristic 

function, which is equal to 1 for xl 5 x 5 x, and zero 
elsewhere. The above (spatially varying) parameters 
p(x), El(x), and coI(x) above are the muss density, 
stiflness coefficient and damping coefficient, respec- 
tively. Using the above equations for the moments 

( i.e. equations (4), (5)), we arrive at the following 
partial differential equation (PDE) for the transverse 
displacement of the beam 

PWtt + [E~%z + Cd%&, = [~AXp(+]zcr, (6) 

for x E a= [0, 11, with collocated output 

y(t) = J 

I 
bx&)wtzz(t, x> dx:, (7) 

0 

where Its is a sensor constant which is a piezoce- 
ramic material and geometry related quantity, [5, 81. 
Associated with the above beam equation are the ap- 
propriate boundary (cantilevered beam) and initial 
conditions given by 

w(t, 0) = we@, 0) = 0 = wm(t, I) = wz,,(t, I>, (8) 

and ~(0, x) = we(x), wt(0, x) = WI(X). (9) 

In order to analyze the above system and propose 
its state estimator, we consider the problem in an 
abstract setting. We consider the above PDE as a 
second order differential equation in a Hilbert space. 
Let the Hilbert space H = L’(O,Z) be the state space 
and consider the space of test functions V = Hz(O, l). 
The Sobolev space Hi(O, a) is 

Ig(O, a> = {p E H2(0, 1) : p(0) = p’(0) = o} . 

In addition, we define the negative Sobolev space V* = 
Hm2(0, a) as the continuous dual of Hz(O, r), see [l]. 

When the plant (6) with output (7) is written as 
a second order evolution equation in the larger space 
V*, it becomes 

MG(t) + Dd(t) + Kw(t) = Bu(t) (10) 

with velocity output 

y(t) = C%(t). (11) 

See, for example, [5] for details on how to write (6) in 
an abstract setting. The operators M, D, K B and C 
expressed in weak form are given as follows 

(Mw, 4) = J; p(x)w(t, xM(x)dx 

(DG, 4) = J; cd(x)wm(t, x)&,(x)dx 

(I(% 4) = J; EI(x)w,,(t, x)&,(x:)dx 

@u(t), 4) = s; ~AXp(+(t)&&) dx, 

ail(t) = J; hx&)wrr(t, x> dx, 



for all (p E Hz(O, a), see also the companion paper [7] 
for a complete description of these operators. It is 
easily seen that the output operator C is a constant 
multiple of the adjoint of the input operator B, given 
byC=a,B* withop=%. 

3 Modeling of Failure 

The failure is modeled as a time varying additive 
perturbation (incipient additive perturbation) of an 
actuator fault due to a nonlinear gain depending on 
the measured output signal and is given via Bf(y)u 
with f : Et1 +R1 being a smooth vector field. Thus, 
we have 

Mti + DW + Kw = Bu + P(t - T)Bf(y)u 

y=C& 
(12) 

where the term ,d(t - T) denotes the time profile of 
the failure and is given by 

P(T) = { ; _ e-xT ii; ; ; (13) - . 

with X > 0 an unknown constant, see also [7]. 
We will now make the assumption that for the class 

of systems under study, we have admissible plants. 
Assumption 3.1 (Admissible plant) We assume 
that the (perturbed) system 

Mti(t) + Dti(t) + Kw(t) = Bu(t) + pBf(y)u 

y = cti(t> 

fort 1 T, is well posed in the sense that a weak solu- 
tion w E L2(0, co; Hi) with wt E L2(0, co; L2(s2)), 

wtt E L2(0, 00; H-2(fi)) exists that satisfies (13) with 
(8) (see [5, 191) and that has y E Lo3(0,00;~1). 

4 Model Estimator and 
Convergence 

In this section we propose a state estimator to mon- 
itor the plant for possible changes in dynamics and 
hence to detect possible failures in the system. These 
changes will be utilized by the controller to accommo- 
date the failure. The same state estimator presented 
in [7] is used here and is given by 

M$(t) + D&(t) + KG(t) = Bu(t) + Bf^(y; +(t), 

G(O) = w(O), i&(O) = wt(0) 

g(t) = bqt). 

(14) 
where &(t, x) is the estimate of the state w(t, x) and 
h h 
f(y; 0) : R x IRp -+ R is the estimate of the time 
varying failure term ,f3(t - T)f(y). 

Let the state error be given by e(t, x) = w(t, x) - 
G(t,x). In order to extract the adaptation rule for 

the estimate f^(y; g), we use the state error equation 
in abstract form 

Mk’ = -De - Ke + B [of - f^(y; Z)] u 

=-Dk-Ke+Bvu (15) 

+B [P~^(Y; e*> - f^(y; @] u, 

having zero initial conditions e(O,x) = et(O,x) = 0, 
where v(t) is the approximation error given by 

4) = P@ - T) [f(Y) - f^(Yi e*j] . 

The “optimal ” parameter B* is chosen as the value of 
0 tha: m@mizes the La-norm distance between f(y) 

and f(y; 19). The output error E(t) given by 

e(t) = gB*k(t) = a,B*&(t) = C&(t). (16) 

Using Lyapunov redesign methods [12], the adapta- 
tion law for the adjustment of parameter estimates is 
given by 

i-(t) = P {E(t)Z(t)U(t)} 

Z(O) = 0, 
(17) 

where 2 E lRY is Z(t) = @$$ and P is the pro- 

jection operator that constrains the parameter g to 
some selected compact, convex region of the param- 
eter space, [17]. As was mentioned in [7, 17, 181, in 
the case of the compact region being a hypersphere, 
the adaptive law can then be expressed as 

ic? i(t) = E(t)Z(t)u(t) - x* --p(t)Z(t)u(t), (18) 

where the indicator function x* is given by 

x* = 
1 

0 if (161 < M) or (181 = M and fiTZ&u 5 0) 

1 if (161 = M and BTZsu > 0). 

Using the smoothness assumption on f? it then fol- 
lows from (15) that 

ME = -De - Ke - [l - /3] Buf^(y; Q*) 

-BzT 
( > 

$- e* u - A(y; @?u + BUv 

where A(y; $) is given by 
h A 

A(y; Z) = f^(y; e*) - f^(y; $) - Q$% 

If we let e(t) = g(t)-e*, w(t) = -A(y(t); &t))+v(t), 
we have 

ME = -Dd-Ke-ZTB”Bu-QBuf^(y; e*)+Buw (19) 



where a(t) = 1 - ,0(t - T). 
We use the following Lyapunov functional in order 

to analyze the stability and performance properties 
of the proposed diagnosis scheme, 

V(t) = (e(t), Kc(t)) + (i(t), M&(t))+ lJ(t)12 + lQ(t)12. 

When the derivative of V(t) is evaluated along the 
trajectories of the state error equation (19), it yields 

i/(t) = 2(e, Ki) - 2(i, .2X) - 2(i, 1-e) - a(&, BuiPB”) 

-qe, @BUT) + 2(4 BUW) + 2iTTg” + %iTQ, 

= -2(i, De) - 2(d, @BUT) + 2(4 Bwu) 

-2x 
* -T &P 

e RATES - 2imTq 

where we used the fact that 6 = --A@. Using estab- 
lished results in the theory of robust adaptive control 
[ll, 131 and in automated fault detection [17, 181, 
we have that the projection term can only make the 
derivative of V(t) more negative, i.e. 

x 

Using the coercivity of the operator D (implicitly as- 
sumed in Assumption 3.1), the smoothness of the in- 
put u(t) and output y(t) and the smoothness assump- 

tion on f? we have that 

G(t) 5 -2(4 De) - 2(B*e, fDf^u) + 2(B*e,wu) 

-2mTcD 

I -cl l&l2 - 4q2 + c31w12. 

When cl]&]2 + c2]CD12 2 cs]w12 we have that e 5 O_, 
which yields the uniform boundedness of V and 0. 
Thus by integrating over a finite interval [T, T + ~1 
we have that 

V(T+r)+cl 
s 

T+T 
[+)I” dt + c2 

T J 

T+T 
IWI” d-f 

T 

T+T 
I V(T)+c3 J 

lw(t)12 dt. 
T 

The above yields the uniform boundedness of $ and 
V(t) for t 2 T. It is easily observed that V(t) = 0 
for t < T. U_sing_the observability condition, we have 
that both f(y, e(t)) and E(t) are zero prior to the 
failure time T and become nonzero for t 2 T. Hence, 
by monitoring either the output error E(t) or the on- 

line approximator output f^(y, g(t)) we can detect the 
time of failure T. Furthermore, we have that the 
extended L2 norm of the state estimation velocity 
error (and by observability, the output error) over 
any finite time interval is at most of the same order 
as the extended L2 norm of w(t). 

5 Accommodation 

The standard control law for the nominal plant (10) 
without failure terms can be chosen as u(t) = uo(t) 
with 

uo(t) = -GIG(t) - G&(t) + G3r(t), (21) 

where the gains Gi, G2 are, for example, chosen as the 
L&E feedback gains obtained by solving an Algebraic 
Riccati equation for the nominal plant (lo), and the 
signal r is a reference signal with Gs a reference gain, 
that is used if the control objective is model reference. 

In the presence of a failure the nominal control law 
(21) needs to be modified to account for the additive 
failure term Bu(t)f(y). This takes the form 

u(t) = 
1 

1+ f^(Yi e3 
uo(t>. (22) 

The closed loop state estimator is now given by 

M& + [D + BG2]& + [I( + BGl]w^ = BG3r. 

A modification to the control law (22) must be 

made in order to ensure that 1 + f^(y; $) # 0. Im- 
plicitly it was assumed that the fault term f(y) # -1 
(hence no loss of controllability in (12)) and thus the 
output of the on-line approximator must not cancel 
out the control signal in (14). In practice, the con- 

trol reconfiguration must ensure that ]I + f^(y; 6)] > c 
with 0 < c << 1 in order to avoid large voltages in the 
patch. This leads to the reconfigured controller 

1 
udt> 

1+ f^(Yi e3 
if ]l+f^(y;F)] > c 

u(t) = 

I uo(t> 
c 

if ]l+f^(y;@] 5 c. 

Alternatively, one can switch the adaptation off for s^ 

when 1+ f(y; 0) is near 0 or impose additional con- 
straints on the adaptation rule (17) such that 1 + 

f^(Yi 6 # 0. 

6 Numerical Implement at ion 

In this section we summarize the numerical approx- 
imation scheme. Assume that the beam displacement 
is approximated by 

n+l 
wn(t, x) = c ai(t) i = 1,2,. . . , n + 1 (23) 

kl 

where #r(x), i = 1,. . ., n + 1 are modified cubic 
splines on [0, I]. Then using results in [5, 141 the beam 
equation can be written in a matrix form as 

APti + D”&(t) + Pa(t) = B%(t) + PBnf(y)u 

y(t) = c”&(t) 



where the above matrices are given explicitly in [5, 
61. In this simulation study, Radial basis function 
networks are used as the on-line approximator model 
given by 

f^(y, 5.) = -g e?(t) k=l z exp (-(’ iz)2) = ZT(t)$(t). 

The finite dimensional estimator is given by 

M’%(t)+D’?i(t)+IC’%(t) = Bnu(t)+Bnf^(t,i)u(t). 

The adaptation laws are given by 

it(t) = yZ(t)&(t)u(t), 

and y is the adaptive gain, [13]. 

7 Numerical Results 

For the specific set of simulations, we assumed that 
the beam length is I = 0.4573m, with the patches 
placed at tl = 0.15m and z,. = 0.25m. The beam 
stiffness coefficient is EIb = 0.491Nm2 and the beam 
damping coefficient is cDIb = 0.649 X 10m3sNm2. In 
the damping component, we assumed air damping 
with damping parameter 0.013sN/m2. The corre- 
sponding values for the patch are EI, = 0.793Nm2, 
CD& = 1.255 x 10m3sNm2 with patch linear mass 
density pP = 0.433kg/ m and thickness h, = 0.000254m. 
The beam had a mass density pb = O.O931cg/m, thick- 
ness hb = O.OOlBm, and width b = 0.0203m. The 
piezoceramic constant KA = 1.746 x 10-2Nm/V with 
the one used for sensing KS = 1 x 10m31c~. 

The failure term is given by 

p(t - l)f(y) = 100 (1 - e-o.5(t-1)) & 

which models an incipient fault commencing at T = 1 
seconds. The adaptive gain is y = 106. The feedback 
gains Gi, Gs were found by solving the Riccati equa- 
tion IId + JZTII - IIBR-lBII + Q = 0 for the nom- 
inal system (10) written as a first order system with 
& = dz+Bu and Q given by Q = diag(500K, 104M). 
Finally, the reference term Gsr(t) = lO(sin(150st) + 
cos(250rt) + sin(2257rt) + cos(1757rt) + cos(20rt)). 

Th_e evolution of the on-line approximator output 
f^(y; 6’) is presented in Figure lb. In the same fig- 
ure we plot the actual failure term ,B(t - l)f(y) (Fig- 
ure la). It is observed that the on-line approximator 
(OLA) is able not only to detect but to diagnose the 
failure as well. 

When the output error E(t) is plotted vs time in 
Figure 2 we notice that it has a value of zero prior 
to t = 1 seconds, attains a nonzero value and then 
converges to zero. As a result we can conclude that 

Fault term 
0.04 

-0.04 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1 

Time (set) 

Fault estimate (OLA) 
0.04, 

-0.04’ I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1 

Time (SC) 

Figure 1: Evolution of OLA (solid) and failure terms 
(dashed): incipient failure time profile. 

4r,o4 , qutputeryvstiy , , , 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Time (see) 

Figure 2: Evolution of output error e(t). 

both the on-line approximator output f^ and the out- 
put error s(t) can be used for failure detection and 
furthermore the OLA output can be used for failure 
diagnosis as well. 

8 Conclusion 

In this note an on-line approximation scheme was 
proposed for the detection, diagnosis and accommo- 
dation of actuator failures in a plant whose dynamics 
are governed by a partial differential equation. The 
plant describes the transverse vibration of a flexible 
cantilevered beam actuated with a pair of piezoce- 
ramic patches that are also used as sensors. The fail- 
ure was modeled as a time varying output-induced 
additive perturbation of an actuator failure. The pro- 
posed scheme, through both theoretical and numer- 
ical results, was shown to actually detect, diagnose 



and accommodate the actuator failure with incipient 
time profiles. 
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