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Abstract 

A new class of nonnegative 2D Roesser type models 
is introduced. Necessary and sufficient conditions are 
established for the reachability of the nonnegative 2D 
Roesser type model for zero boundary conditions. It 
is shown that the nonnegative 2D Roesser type model 
having not nilpotent system matrix is unreachable 
for nonzero boundary conditions. The minimum en- 
ergy control problem is formulated and solved for the 
nonnegative 2D Roesser type model with zero bound- 
ary conditions. The considerations are illustrated by 
means of a numerical example. 

1 Introduction 

The most popular models of two-dimensional (2D) 
systems are the models introduced by Roesser [19], 
Fornasini and Marchesini [4,5]. The reachability and 
controllability of positive of discrete-time linear sys- 
tems have been considered in [l-3]. The reachability 
and controllability and the minimum energy control 
of 2D linear system have been considered in many 
papers and books [6-B]. The minimum energy con- 
trol problem for the classical 2D Roesser model was 
formulated and solved by Klamka [17] and next the 
method was extended for 2D linear systems with vari- 
able coefficients [lo] and other type of 2D models 
[ll-181. Recently Valcher and Fornasini in [20] have 
investigated some interesting properties of homoge- 
neous 2D positive system described by the second 
Fornasini-Marchesini type models. In this paper a 
nonnegative 2D Roesser type model is introduced. 
Necessary and sufficient conditions are established for 
the reachability of the nonnegative 2D Roesser type 
model for zero boundary conditions. It is shown that 
the nonnegative 2D Roesser type model having not 
nilpotent system matrix is unreachable for nonzero 
boundary conditions. The minimum energy control 
problem is solved for the nonnegative 2D Roesser type 
model with zero boundary conditions. 

2 Preliminaries 

Let R+ := [0, +oo) be the set of nonnegative num- 
bers and let Z+ := {O,l, 2, . ..} be the set of nonneg- 

ative integers. Denote by R’$ the set of n-tuples of 
nonnegative numbers. The set of nonnegative matri- 
ces of size n by m will be denoted by R’Jxm. 

Consider the 2D Roesser model 

xii’ = A~ij + Buij , IJij = CXij + Duij (1) 

x!.i)= [ $+~~]>X~j= [ :t] i,jEZ+ 

where zh. E Rnl is the horizontal state vector, XV. E 
R”’ is tl?e vertical state vector, uij E R” is the ir&t 
vector, yij E RP is the output vector, 

A=[ ;; ;:],B=[ ;$C=[CI C23 

Al E R”l’“‘, BI E R”lx”, C1 E RPx”‘, A4 E 
R”“X”” B E RW”, C2 E RPX”” 

Defmi~io~ 1 The 20 Roesser model (1) is called non- 

negative 20 Roesser type model if for all boundary 
conditions 

Xij E Ry, j E Z+, xyo E R”;, i E Z+ (2) 

and for all uij E RI;“, i, j E Z+ we have xij E R”+, 

n=nl+nz andyij ERT fori,jEZ+, whereR; 

denotes the set of n-tuples of the nonnegatives real 
numbers. 

Proposition 1 The 20 Roesser model (1) is non- 

negative if and only if 

A E RFXn, B E R;““, C E Rp+““, D E Rp+“” (3) 

Proof From (1) it follows that xij E R; and yij E 
R$, i, j E Z+ for all boundary conditions (2) and 
uij E R;1, i,j E Z+ if and only if (3) holds. 0 

The transition matrix zj for (1) is defined as fol- 
lows [19, 6, 171 

In (the identity matrix) 

fOT i = j = 0 

Tij = 
Tlo’E-l,j + ‘GlE,j-l 

fori,j>O (i+j#O) (4) 

Tij = 0 (the zero matrix) 

fori<Oor/andj<O 



where 3 Reachability of the 
nonnegative 2-D Roesser 

type model 

Theorem 1 The nonnegative 20 Roesser type model 
(1) is reachable for ZBC at the point (h, k) if and only 

if 
4 rank R(h, k) = n 

ii) R, (h, k) E Rymxn (9) 

.o:=[$ "a],ToF[;3 ;J 

Proposition 2 The transition matrix Tij for the non- 

negative 20 Roesser type model is a nonnegative ma- 
trix, i.e. 

zj E Rtxn for all i, j E Z+ (5) 

Proof From (4) it follows that TIo E R;““, To1 E 

Rtxn, Tl1 = TX&~ +TolT~o E Rtxn and recurrently 
Zj E Rtxn for all i, j E Z+. 0 R(h,k) := [Mhk,Mh-l,k,Mh,k-1, . ..>M~o.Mol] 

(10) 
The solution to (1) with boundary conditions (2) and R, (h, k) is a right inverse of R(h, k), R(h, k) x 

is given by xR,(h,k)=In. 

Xij = Xbc (i, j) + C Mi-p,j-pupq (6) 

(PpS)EDij 

Proof From (6) for i = h, j = k, xhk = xf and 
xbc (h, k) = 0 we have 

where xj = R(h, k) u (h, k) (11) 

Xb,(i,j) : 

(7) 

Mi-p,j-q := Ti-p-l,j-q 7 [ 1 0 
+ ‘X-pi-q-1 & [ 1 

Definition 2 The nonnegative 20 Roesser type mo- 

del (1) is called reachable for zero boundary condi- 

tions (ZBC) at the point (h, k), h, k E Z+, if for zero 

boundary conditions (2) and every xj E R”+ there ex- 

ists a sequence of inputs uij E RT for 

(i, j) E Dhk := {(i, j) E 2, X z+, 0 5 i 5 h, 

O<j<k and i+j#h+k} (8) 

such that xhk = xj. 

Definition 3 The nonnegative 20 Roesser type mo- 

del (1) is called reachable for any nonzero boundary 

conditions (NBC) at the point (h, k), h, k E Z+, if 

for any nonzero boundary conditions (2) and every 

xf E R”+ there exists a sequence of inputs uaj E R”+ 

for (i, j) E Dhk such that x:hk = xj. 

Conditions will be established under which the non- 
negative 2-D Roesser type model is reachable for zero 
boundary conditions and the minimumenergy control 
problem will be solved. 

where 

where 

u (hk) := [U;fo, U:o, $1, . . . . &l,k, U&-f 

T denotes the transposition. 
Note that for a nonnegative 2D Roesser type model 

M,, E R;“” and R (h, k) E Ryxhkm. From (9) it fol- 

lows that there exists R, (h, k) of R(h, k) and from 
(11) we have u (h, k) = R, (h, k) xj E Rtk” for any 

xf E R; if and only if R, (h, k) E Rtkmxn. 0 

Remark 1 Let the condition (9) be satisfied and let 

R, be a nonsingular matrix consisting of n columns 

of R(h, A) such that Ril E Ryxn. Moreover let u, E 

R3 be a vector consisting of those entries of u (h, k) 

which correspond to the columns selected in R,. As- 

suming the remaining columns of u (h, k) zero from 
(11) we obtain xj = Rnu,. In this case the condition 

ii) of theorem lean be substituted by Ril E Ryxn. It 

is well-known [l, 2] that R;l E Rf”” if and only if 

R, is has one nonzero entry in each row and column, 
i.e. is an n X n monomial matrix. 

Remark 2 It is well-known [20] that a finite mem- 

ory Roesser model has a nilpotent matrix A, i.e. 

Inlzl -Al --A2 

-A3 L2~2 - A4 1 = ,q’&- (12) 
Using (7) it is easy to show that if (1.2) holds then 

Xb,(i,j)=OfOTi>~,j>n. 

Theorem 2 The nonegative 20 Roesser model (1) 

having not nilpotent matrix A is unreachable at the 

point (h, k) for NBC. 



Proof From (6) for i = h, j = k and Xhk = xj and 
NBC we have 

“j - Xbc (h k) = R(h k) u (h, k) (13) 

By assumption xj E RT and zg, (h, k) E R; are any 
vectors and xj - xac (h, h) $ R;. 

If A is not nilpotent matrix then there does not 
exist a sequence uij E R;1 satisfying (13) for xj - 
zbc (h, k) with at least one negative component. There- 
fore, the nonnegative 2D Roesser model is unreach- 
able for NBC. 0 

Using a different approach a similar result has been 
obtained in [9] (see also [13]). 

4 Minimum energy control 

Consider the nonnegative 2D Roesser type model 
(1) and the performance index 

I(u) := c u;~Qu,, 
(P,B)EDhk 

(14 

where Q is the m x n symmetric positive definite 
weighting matrix such that Q-r E R;“‘“. 

The minimum energy problem for the nonnegative 
2D Roesser type model with zero boundary condi- 
tions (2) can be stated as follows. Given the matrices 
A, B of (1) th e weighting matrix Q and the point 
(h, Ic), find a sequence u ij E R;” for (i, J) E Dhk which 
transfer the model from zero boundary conditions to 
the desired local state xj = zhl, and minimizes the 
performance index (14). 

To solve the problem we define the matrix 

WQ (h,k) : = c Mh-p,k-q&-lM:-p,k-q = 

(P>!?)EDhk 

= R(WQdRT(U) (15) 

where bfh-p,k-q and R(h,k) are defined by (7) and 
(lo), respectively. 

Qd := diag [Q-l, . . . . Q-l] E Rymxhkm 

Using (15) it is easy to show that for the nonnegative 
2D Roesser type model the matrix WQ (h, k) E Rtxn 

is nonsingular if and only if the matrix R (h, k) has 
full row rank. 

Define the sequence of inputs 

~~j := Q-lMF-i,k-j w;’ (h, k) “j for (i,j) E Dhk 

(16) 
Note that ;;iij E RI; for any xj E RF if 

W~‘(h,k) E RFxn 

Theorem 3 Let us assume that 

(17) 

i) the nonnegative 2D Roesser type model is reach- 
able for ZBC at the point (h, 1), 

ii) Q-l E RTxm and (17) holds, 
iii) ?&j (i, j) E Dhk is any sequence of inputs which 

transfer the model from zero boundary conditions to 
the desired local state 2 j = xhk . 

Then the sequence of inputs (16) accomplishes the 
same task and 

I(G) 5 I(Z) (18) 

Moreover, the minimum value of (14) is given by 

I(G) = xgv,-’ (h, k) xj (19) 

Proof First we shall show that the sequence of 
inputs (16) provides xhk = xj . 

From (16) it follows that 

ii(h,k) : = [ii&, ;;;To, ii& . . . . ii;+, iZ;,,b-l]T = 

= Q,jRT(h,k)WQ1(h,k)xj (20) 

Substituting (16) into (11) and using (15) we obtain 

xhk = R(h,k)iZ(h,k) = 

= R(h, 1) QdRT (h, k) W$ (h, k) xf = xj 

Since both ?iij and ?$j transfer the model from zero 
boundary conditions to xj then 

R(h,k)Z(h,k) = R(h,k)G((h,k) 

and 
R(h,le)[~(h,L)-;Fi(h,L)]=O (21) 

From (21) and (20) we have 

[E(h, k) - G? (h, lc)lT RT (h, k) W$ (h, k) xj = 

= [Z(h,k)-G(h,k)]TQ;lG(h,R) = 0 (22) 

Using (22) it is easy to show that 

?iT (h, k) Q;%-+, k) = 

= GT (h, k) Q;% (h, k) + 

+ [E(h, k) - il(h, k)IT &a1 [~(h, k) - Ti(h, k)] 

or 

c aTqQupq = 
(P,‘?)EDhk 

= c G;qQ;ii,q + 

(P,P)EDhk 

+ c FP4 - ;;pqlT x 
(P,P)EDhk 

x Q k&v - GJ (23) 
The inequality (18) holds since the last term in (23) 
is always nonnegative. 



To obtain the minimum value of (14) we substitute 
(20) into (14) 

I(G) = c i2;qQGpq = 

(P,BWhk 

= GiT (h, k) Q;% (h, k) = 

= [QdRT (h, k) wcz’ (h k) qlT x 

x &a1 [QaRT(h,k)~~‘(h,k)xf] = 

= a$W;’ (h, k) R(h, k) QrjRT (h, Ic) x 

x iv;’ (h, k) “f = xpv~’ (h, k) Xf 

since by (15) R (h, Ic) QdRT (h, k) WG’ (h, k) = I. q 

5 Example 

Consider the nonnegative 2D Roesser type model 
(1) with 

A = [=; ;,I=[! 8 i], 

for h=lc= 1. 
Using (7) and (10) we obtain 

R(U) = [ Ml1 Ml0 MO1 ] = 

1 0 0 
= [ 1 010) rank R (1,l) = 3 

0 0 1 

By theorem 1 the model is reachable for ZBC at the 
point (l,l). 

Let the performance index has the form (14) with 
2 0 0 

h=Ic=landQ= [ 1 0 1 0 and 
0 0 3 

xcp=[$ 1 41’. 
In this case using (15) and (20) we obtain 

W, (1,1) = R(l, l)QdRT (1,1) = ; 0 0 = [ 1 0 1 0 
0 0 i 

;ii(l,l) = [ uoo UlO '1101 1' = 

= QdRT (1,1) lV$ (1,1) xf = 

= [; 1 Q]’ 

and the minimum value of the performance index is 
equal 

I(G) = +VQl(l,l)“f = ; 

6 Concluding remarks 

Necessary and sufficient conditions have been es- 
tablished for the reachability of the nonnegative 2D 
Roesser type model for zero boundary conditions. It 
has been shown that the nonnegative 2D Roesser type 
model having not nilpotent matrix A is unreachable 
for nonzero boundary conditions (2). The minimum 
energy control problem has been formulated and sol- 
ved for the model with zero boundary conditions. The 
results presented can be extended for the n-D (n > 2) 
Roesser type model with constant and variable coef- 
ficients. An extension of the above considerations for 
singular 2D linear systems is also possible. 

It is well-known [6] that the first Fornasini-Marche- 
sini model is a special case of the Roesser model. 
Therefore, the results obtained in this paper for the 
nonnegative 2D Roesser type model can be immedi- 
ately extended for the nonnegative first 2D Fornasini- 
Marchesini type model. 
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