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Abstract 

This paper studies a two-stage (Two machines in tan- 
dem) manufacturing systems under hedging point pro- 
duction policy. The manufacturing system produces 
one type of product and its demand is modeled as a 
Poisson process. Each product has to go through the 
manufacturing process by a reliable machine in each 
stage. Preconditioned Conjugate Gradient (PCG) 
method is employed to solve the steady state proba- 
bility distribution of system. Preconditioner is con- 
structed by taking circulant approximation of the gen- 
erator matrix of the system. We prove that the pre- 
conditioned linear system has singular values clus- 
tered around one when the number of inventory levels 
tends to infinity. Hence conjugate gradient methods 
will converge very fast when apply to solving the pre 
conditioned linear system. Numerical examples are 
given to verify our claim. The average running cost 
can be written in terms of this probability. By varying 

different possible values of hedging point h, the opti- 
mal value of h which minimizes the average running 
cost can be obtained. Extension to multiple parallel 
machines in each stage is also discussed. 

Key Words: Manufacturing System, Hedging Point 
Policies, Steady State Distribution, Preconditioner, 
Conjugate Gradient Method. 

1 Introduction 

In this paper, we study a two-stage manufacturing 
systems. The system consists of two reliable machines 
(one in each stage) producing one type of product. 
Each product has to go through the manufacturing 
processes in the two stages before it is finished. We 
assume infinite supply of raw material for the manu- 
facturing process of the first machine. The mean pro- 
cessing time for one unit of product in the first and 
second machine are exponentially distributed with 
parameters l/p1 and l/p2 respectively. A buffer Bi 
of size bl is placed between the two machines to store 
the products which are finished by the first machine 
and waiting for further operations by the second ma- 

chine. Finished products are put in a buffer Bz of 
maximum size bz. The inter-arrival time of a demand 
is assumed to be exponentially distributed with pa- 
rameter l/X. Finite backlog of finished product is 
allowed in the system. The maximum allowable back- 
log of product is m. When the inventory level of the 
finished product is -m, any arrival demand will be 
rejected. Hedging point policy is employed as the 
inventory control in both buffers Br and Bs. It is 
well known that the hedging point policy is optimal 
for one machine (one stage) manufacturing systems 
in some simple situations, see [l] for instance. When 
the optimal policy is a zero-inventory policy (i.e. the 
hedging point is zero), then the policy matches with 
the just-in-time (JIT) policy. The JIT policies have 
strongly been favored in real-life production systems 
for process discipline reasons even when they are not 
optimal. By using the JIT policy, the TOYOTA com- 
pany can manage to reduce work-in-process and cycle 
time, see [lo]. W e f ecus ourselves in hedging point 
policies for our manufacturing systems. The hedging 
point policy is characterized by an integer number h. 
The machine keeps on producing products if the in- 
ventory level is less than h and the first buffer is not 
empty, otherwise the machine is shut down. For the 
first machine, the hedging point h is bl and inventory 
level is non-negative, i.e. m = 0. However, the inven- 
tory level of buffer Bz can be negative, because we 
allow a maximum backlog of finished product of m. 
Very often the buffer size and the inventory levels of 
Bs are much larger than that of Br. Inventory cost 
and backlog cost can be written in terms of the steady 
state probability of the system, see [3, 4, 5, 2, 6] for 
instance. 

The inventory levels are modeled as Markovian pro- 
cesses. It turns out that the process is an irreducible 
continuous time Markov chain. We give the generator 
matrix for the process, and Preconditioned Conjugate 
Gradient (PCG) method is employed to compute the 
steady state probability distribution. Preconditioners 
are constructed by taking circulant approximation of 
the generator matrix of the system. We prove that if 
the parameters ~1, ~2, X and bl are fixed and indepen- 
dent of n = m + h + 1, then the preconditioned linear 



system has singular values clustered around one as n 
tends to infinite. Hence the Conjugate Gradient (CG) 
type methods will converge very fast when apply to 
solving the preconditioned linear system. Numerical 
examples are given in $5 to verify our claim. 

The remainder of this paper is organized as fol- 
lows. In §2, we formulate the manufacturing system 
and give the generator matrix of the corresponding 
continuous time Markov chain. In 53, preconditioner 
is constructed for the generator matrix. In 54, we 
prove that the preconditioned linear system has sin- 
gular values clustered around one. In §5, we give a 
cost analysis for our method and numerical examples 
are given to demonstrate the fast convergence rate of 
our method. Concluding remarks are given to dis- 
cuss the extension of multiple parallel machines in 
each stage in 56. 

2 The Manufacturing System 

In this section, we construct the generator matrix for 
the manufacturing system. Let us define the following 
system parameters. 
(i) l/X, the mean inter-arrival time of a demand, 

(ii) l/,~r, the mean unit processing time of the first 
machine, 

(iii) l/ps, the mean unit processing time of the sec- 
ond machine, 

(iv) bl, buffer size for the first machine, 

(v) b2, maximum buffer size for the finished prod- 
ucts, 

(vi) h, the hedging point, 

(vii) m, the maximum allowable backlog, 

(viii) CI~, unit inventory cost for the first buffer Bi, 

(ix) clZ, unit inventory cost for the second buffer &, 

(x) cn, unit backlog cost of the finished products. 

We note that the inventory level of the first buffer 
cannot be negative or exceeds the buffer size bl . Thus 
the total number of inventory levels in the first buffer 
is bl + 1. For the second buffer, under the hedging 
point policy, the maximum possible inventory level is 
h(h 5 bz). Since we allow a maximum backlog of m 
in the system, the total number of possible inventory 
levels in the second buffer is n = m+ h+ 1. In practice 
the value of n can easily go up to thousands. 

We let ~1 (t) and ~2 (t) be the inventory levels of the 
first and second buffer at time t respectively. Then 

a(t) and .zz(t) take integer values in [O, bl] and [-m, h] 
respectively. Thus the joint inventory process 

{(a@>, zz(t>),t 2 0) 

is a continuous time Markov chain taking values in 
the state space 

S= {(zl(t),zz(t)) : z1 = 0,-e-, 61, 22 = -m,...,h.}. 

Each time when visiting a state, the process stays 
there for a random period of time that has an ex- 
ponential distribution and is independent of the past 
behavior of the process. The steady state probability 
of the system: 

~~~Prob{(zl(t),zz(t)) = (Cj)} =p(i,j), 

for i=o,... , bl; j = -m, . . . , h. 

We order inventory states lexicographically, accord- 
ing to zi first and then 22 and the tridiagonal block 
generator A for the joint inventory system can be ob 
tained as follows: A = 

R+/4z c 
-p1L h+D+plL c 

-. -. I 

-PlIn R+D+plIn c 

-P1L A-I-D _ 
I 

A= 

: 

0 --A 0 
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-. . -A 
0 x 

1 
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I, is the n x n identity matrix and D is the n x n 
diagonal matrix D = Diag(pp, . . . , ~2,0). The gener- 
ator matrix A is similar to the one for the two-station 
queueing system discussed in [ll]. We are interested 
in the solving the steady state probability distribution 
p of the generator matrix A. Many useful quantities 
such as the throughput of the system 

(l- f: P(O,j))PLz 
j=-m 



and mean number of products in buffer Br and Bs 
(work-in-process) 

h h h h 

can be written in terms of p, see Siha 1111. Further- 
more the average running cost and the average profit 
of the system can be also written in terms of p as 
follows: 

CIl 

bl h h h 

Cr c P(i, Ali + cl, y[Q4 Jx+ 
i=l j=-m. j=l i=o 

cl? f$P@, -3IA 
j=l i=o 

see Ching, Chan and Zhou [3, 4, 5, 61 for instance. 
We note that the generator A is irreducible, has 

zero column sum, positive diagonal entries and non- 
positive off-diagonal entries, so ((I-A).(Diag(A))-‘) 
is a stochastic matrix. Here Diag(A) is the diagonal 
matrix containing the diagonal entries of the matrix 
A. From the Perron and Frobenius theory, we know 
that A has a one-dimensional null-space with a right 
positive null vector, see Varga [13, p. 301. The steady 
state probability distribution p is then equal to the 
normalized form of the positive null vector. Since A 
is singular, we consider an equivalent linear system 

Gx+A+fft)x=f, (4) 

where f = (0,. -. ,O, 1) tisthe(br+l)(m+h+l)unit 
vector. The following lemma shows that the linear 
system (4) is non-singular and hence the steady state 
probability distribution can be obtained by normal& 
ing the solution of equation (4), see Chan and Ching 

1% 61. 

Lemma 1 The matrix G is non-singular. 

Proof: Since the matrix G is an irreducible matrix, 
by applying the Gerschgorin circle theorem (see Horn 
and Johnson [9, p.3461) to the matrix G, we see that 
all the eigenvalues has non-negative real part. More 
over, by applying Theorem 1.7 in [13, p.201 to the 
matrix G, we know that zero cannot be an eigenvalue 
of G. Thus the matrix G is non-singular. 0 

However, the analytic solution of p is not gener- 
ally available. Therefore, most of the techniques em- 
ployed for the analysis are analytical approximations 
and numerical solutions. Yamazaki [15] gave an an- 
alytical approximation for the two-station queueing 
model under the assumption of infinite buffer size. 
Our manufacturing system deals with the realistic sit- 
uation of finite buffer size. Usually, by making use of 

the block structure of the generator matrix A, clas- 
sical iterative methods such as block Gauss-Seidel is 
applied in solving the steady state probability dis- 
tribution to save computational cost, see [ll]. How- 
ever, in general the classical iterative methods have 
slow convergence rate, see the numerical results in $5. 
We employ Conjugate Gradient (CG) type methods 
to solve the steady state probability distribution. To 
speed up the convergence, a preconditioner C is intro- 
duced. We solve the following preconditioned system 

GC-ly = f (5) 

instead of Gx = f. Obviously we have x = C-l y. 
A good preconditioner C is a matrix such that it is 
easy to construct, the preconditioned matrix GC1 
has clustered singular values around one. The pre 
conditioned system Cz = r is easy to solve for any 
right hand side vector r. 

3 Construction of 
Precondit ioners 

In this section, we construct preconditioner by taking 
the circulant approximation of blocks A, C and D of 
A. It is well known that any n x n circulant matrix 
C, is characterized by its first column (or the first 
row) and can be diagonalized by the discrete Fourier 
matrix F,, i.e. C, = F,R,Fz, where the entries of 
F, are given by 

[F& = $e%$, j,k = O,l,...,n- 1, 

F,* is the conjugate transpose of F, and 0, is a di- 
agonal matrix containing the eigenvalues of C,. The 
matrix-vector multiplication of the forms F,y and 
F,* y can be obtained in O(nlogn) operations by the 
Fast Fourier Transform (FFT). By completing A, C 
and D to circulant matrices, we define the circulant 
approximation c(R), c(C) and c(D) as follow: 

- 0 -I4 

c(C) = 
-j.4 *.. 

-. . . 

0 -P2 0 

and 

c(D) = Diag(m . . -, ~2, 14. 

(6) 

(7) 



Prom (6) we define the circulant approximation c(A) easily go up to thousands. We prove that if all param- 

of the generator matrix A as follows: eters ~1, ~2, X and bl are fixed independent of n, then 

I 

c(A) + ML 4-a 
the preconditioned system GC-l has singular values 

-Plhz c(Aj +@)+pull;, @> 

*. . . 

. I 

clustered around 1 as n tends to infinity. Hence when 
CG type methods are applied to solving the precon- 

’ (8) ditioned system (5), we expect fast convergence. Nu- 

-l-G 44 + c(D) 
merical examples are given in 85 to verify our claim. 
We begin the proof by the following lemma. 

Prom (6) and Davis [7], we have the following lem- 
ms.5. 

Lemma 4 We have rank(G - C) 5 2(bl + 2). 

Lemma 2 Rank(c(A) - A) = Rank(c(C) - C) = 
Rank(c(D) - D) = 1. 

Lemma 3 The matrices c(A) and c(C) can be diag- 
onalized by the discrete Fourier transform F,. The 
eigenvalues of c(A) and c(C) are given by 

F,*c(A)Fn = Diag(vr, ~2,. . . , .v~)~ 

Proof: Prom (4), we have rank(G-A) = 1, and from 
Lemma 2, we see that rank(A - c(A)) = 2(bl + 1). 
Using (9) and (lo), we have c(A) and C differ by a 
rank one matrix. Therefore, we have 

rank(G - C) I rank(G - A) + rank(A - c(A)) 

+rank(c(A) - C) 

5 2(bl + 2). 

and 

F,*c(W% = Diag(Jl, J-2, -. -, &$, 

where 

t 

vi = X(1 - e Wi), j=l,2 ,..., n, 
Z,(j-1) i 

tj = -p2e n , j = 1,2,...,n. 

Moreover, there exists a permutation P such that 

Pt * (Iblfl 8 F,*) . c(A) . (&+I (8 F,) . P = 

Diag(Cr, C2, * * *, Cn), 

where Ci = 

i Pl+ui -Pl 0 ,1+:2+, -. -P1 52 . pz+vi -. 0 

-1 

. (9) 

We note that all Ci except Cl are strictly diagonal 
dominant and therefore they are non-singular. By 
similar argument in the proof of Lemma 1, 

6’1 = (Cl + ff”) 

is non-singular. We define the preconditioner C as 

(Ibl+l~Fn).P.Diag(~l, CZ,-- -, cn)-Pt.(h,l+l@‘F~). 
(10) 

4 Convergence Analysis 

In this section, we study the convergence rate of the 
PCG method when n = m + h + 1 is large. In prac- 
tice, the number of possible inventory states n is much 
larger than bl in the manufacturing systems and can 

q 

Proposition 1 The preconditioned matrix GC-l has 
at most 4(bl+2) singular values not equal to 1. Hence 
GC-l has singular values clustered around 1 when n 
tends to infinity. 

Proof: We first note that 

where rank(&) I 2(bl + 2) by Lemma 4. Therefore 

C-*G*GC-l - I = L;(I + Lo) + &, 

is a matrix of rank at most 4(bl+ 2). Thus the num- 
ber of singular values of GC-l that are different from 
1 is a constant independent of n. Hence the pre- 
conditioned matrix C- lG has singular values CULLS- 
tered around one by the Cauchy interlace theorem, 
see Wilkinson [14, p.1031. q 

5 Cost Analysis and 
Numerical Examples 

In this section, we give the computational cost of 
our PCG method and numerical examples are given 
to demonstrate its fast convergence rate. Prom (8) 
and (9), the construction of our preconditioner C 
need no cost. The main computational cost of our 
method comes from the matrix-vector multiplication 
of the form Gx, and solving the preconditioner sys- 
tem Cy = r. By making use of the band structure of 
G, the matrix-vector multiplication Gx can be done 



in O((bl + 1)n) operations. The solution for Cy = r 
can be written as follows (c.f. 10): 

Y = (Ibl+l@'n)-p- 

Diag(cr’, Cl’ . . ..C.l). 

Pt. (Ib,+l@F$. 

The matrix-vector multiplication of the forms F,x 
and F,*x can be done in O(nlogn) operations. The 
solution of the linear system Diag(cL’, . . . , C;‘) y = 
b can be obtained in O((bl + 1)n) operations. Hence 
the cost for solving (11) is 

O((bl + l)nlogn+ (bl + 1)n). 

We conclude that in each iteration of the PCG method, 
we need O((bl + 1)nlogn) operations. The cost per 
iteration of the Block Gauss-Seidel (BGS) method is 
O((bl + 1)n). Th’ IS can be done by making use of the 
band structure of the diagonal blocks of the genera- 
tor matrix A. Although the PCG method requires an 
extra O(logn) operations in each iteration, the fast 
convergence rate (roughly constant independent of n) 
of our method can more than compensate for this mi- 
nor overhead (see the numerical examples below). In 
Proposition 1, we have proved the preconditioned lin- 
ear system (5) has singular values clustered around 
one, so we expect the PCG method converges very 
fast. The convergence rate of BGS is roughly linear 
in n. Thus the total cost for the PCG method and 
the BGS method are 

O((bl+ 1)nlogn) and O((bl + 1)n2) 

respectively. Both PCG and BGS require O((br+l)n) 
memory. Clearly at least 0( (b, + 1)n) memory is 
required to store the approximated solution in each 
iteration. 

We use a generalized conjugate gradient method, 
namely the Conjugate Gradient Squared (CGS) (See 
[12]), to solve the preconditioned system (5). The 
method does not require the transpose of the iteration 
matrix G-‘C. We compare our PCG method with 
the BGS method in the following numerical examples. 
In the examples, we let 

The stopping criteria for both PCGS and BGS is 

IlGxrc - f112 < lo-l’, 

where xk is the approximated solution obtained at 
the k-th iteration. The initial guess for both meth- 
ods is the unit vector f = (0, -. . , 0,l)“. All the com- 
putations are done in a HP 712180 workstation with 

MATLAB. We give the number of iterations for con- 
vergence of PCGS and BGS (Tables 1) for different 
values of bl. The symbols I, C, BGS represent the 
methods used, namely, CGS without preconditioner, 
CGS with preconditioner C and the Block Gauss- 
Seidel method. The symbol ** signifies the number 
of iterations is greater than 200. 

bl =4 bl = 8 
n I C BGS I C BGS 

16 54 11 71 64 19 72 
64 130 11 142 139 19 142 
256 196 11 ** ** 19 ** 
1024 ** 11 ** ** 19 ** 

Table 1 : Number of Iterations for PCG and 
BGS 

6 Concluding Remarks 

We consider a twostage manufacturing system. The 
inventory levels are modeled as an Markovian pro- 
cess. The generator matrix A for the inventory sys- 
tem is derived. Preconditioned conjugate gradient 
method is presented to solve the steady state prob- 
ability distribution of the process. Preconditioner is 
constructed by taking circulant approximation of the 
blocks of A. We prove that the preconditioned matrix 
has singular values clustered around one. Numerical 
experiments are reported to illustrate the fast conver- 
gence rate of our method. 

We consider the case when the manufacturing sys- 
tem has multiple identical machines in each stage (rr 
machines in stage one and r2 machines in stage two). 
In this case, the generator matrix A will be given as 
follows: (see Siha [ll]): A = 

rn+r Cl 
-r A+Dr+r x2 

*. -. 7 (11: 

-r A+Db,-l+r cbl 

1 O 
where 

A= 

-? 

-0 -A 0 

-. x . 

*. . -A 
0 x 

A+% 1 

I 
7 (12) 



I 
0 

Ci = 
- min(i, 7-2)~~ . . . 

*. . . 

0 

1 
Y (13) 

1 0 -min(i,r2)~2 0 1 

D and F are the n x n diagonal matrices 

Di = min(i, m)Diag(m 1-12, - * * , ~2,0>, 

r = Diag(pl, 2~1, -. -, 7-1~2, - - -, 7-1~2) 

respectively. The circulant approximation techniques 
in $3 can be applied to the construction of precondi- 
tioner 6 for the generator a. The circulant approxi- 
mation of A, Ci, Di and I’i are then given as follow: 

x --A 0 - 
-. 

c(A) = x . 
I 

*. . -A 
--A x 

- 0 -r2p2 

c(&) = 
-r2p2 . . . 

-. *. 

0 -r2p2 0 

c(D) = Diag(rm, - - -, 7~2) 

and 

4’) = Diag(rlpl,. . . ,7wd 

(14) 

1 > (15) 

Following similar proof in 54, we can also prove that 
the the following proposition. 
Proposition 2 The preconditioned matrix klA has 
singular values clustered around one as n tends to in- 
finity. 

Thus the PCG method will converge very fast when 
apply to solving the preconditioned matrix c-la sys- 
tem. 

It is interesting to generalize our method for the 
following cases: the machines are unreliable and the 
manufacturing system has more than two stages. 
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