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Abstract

In this paper we present two methods for computing fil-
tered estimates for moments of integrals and stochas-
tic integrals of continuous-time nonlinear systems. The
first method utilizes recursive stochastic partial differen-
tial equations. The second method utilizes conditional
moment generating functions. For the case of Gaussian
systems the recursive computations involve integrations
with respect to Gaussian densities, while the moment gen-
erating functions involve differentiations of parameter de-
pendent ordinary stochastic differential equations. The
second method is applied in the expectation maximiza-
tion algorithm.

1. Introduction

This paper discusses the following problem. We are given
noisy observations {ys;0 < s < t} of the system state
process {z;;0 < s <}, and we wish to derive filtered es-
timates for moments of integrals and stochastic integrals.

Specifically,
dil:t = f(t, :z:t)dt + U(t, :ct)dwt, .’1:(0) € ]Rn, (1)
dy: = h(t, ze)dt + azdw; + N/ 2db,, y(0) =0 e R, (2)
where z; e R™,y: ¢ R? and {ws;0 <5 <}, {bs;0 < s <
t} are independent standard Wiener processes; z(0) is a
random variable independent of the Wiener processes.

We are interested in conditional expectations (filtered es-
timates) of moments of integrals and stochastic integrals

t K t K
Lg,,tl = (A f1(s,x3)ds) 3 LS,’E = (A f2(5,l’s)d’ws> y

3)

t K
Lg) = ( fa(s, ws)dbs) , k21
0

Aside from their mathematical value, these estimates
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are important, for example, in least-squares estima-
tion/filtering, Volterra series expansions of nonlinear real-
ization theory [1], Wiener Chaos expansions (of nonlinear
filtering) [2], Maximum Likelihood Estimation.

The first method, Theorem 3.2, utilizes a recursive system
of stochastic partial differential equations (SPDE’s). The
second method, Theorem 3.9, utilizes conditional moment
generating functions of L(l):{, 7 =1,2,3. That is, for a test
function ® : R® — R, we use measure-valued conditional
moment generating functions

Bl (@) = Bl@(as) exp (6L 172,), 0 =iw, i=vT,

for j = 1,2,3. We show that when 3%/ (®) have density
functions, # (z,t),7 = 1,2, 3, then

CodE sy ~ .
lim —077 (@) = E[8(20) L] |75 w.pl, £ 20, (4)
. dF = =g
911_1'% mﬂt’ (1) = E[Lg}{ |78l wp.1, £ > 0. (5) )

The unnormalized versions of 3¢ (%,t),7 =1,2,3 satisfy
linear SPDE’s. For the case of Gaussian system models
(ie., dos = Fa.dt + Gy, dye = Hzedt + adwy + N3by),
we employ (5) to derive filtered estimates for

t t £
/ e Qzsds, / z% Rdws,, / z% Sdb,. (6)
0 0 0

Each filtered estimate is propagated by 4 statistics;
the conditional mean and error covariances of z: given
{ys;0 < s < ¢} (Kalman filter), and modified versions of
the Kalman filter. These estimates can be used in the
Expectation Maximization algorithm derived in [3].

2. The DMZ Equation
Notations 2.1

1. “” denotes transposition of a matrix, I, denotes kxk
identity matrices, (-); denotes the ith component of
a vector, and (-);,; denotes the ijth component of a
matrix;



. L(V1; V2) denotes the space of linear transformations
of a vector space V) into a vector space Vs;
]

- Do =2 I, Di=|

. % : R®™ —» R denotes an arbitrary test function
which is CZ(R™) and has compact support;
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. E,E denote expectations with respect to measures
P, P, respectively. [

Assumptions 2.2

1. £:[0,TIxR" = R",0: [0, T]xR" — (R™;R"),h:
[0,T] x R* - R4, T > 0;

2. N:[0,T] = (R4 R%),a: [0,T] - L(R™;R?), N,
are continuous in ¢, and 38; > 0, such that N; >
Bila;

3. £ @)+ k(s x)| + llo(t o)l < k(1L +|z]). O

Consider the P-martingale m; fot R (s, 2:)C5 tdys,
C: = ata+ Ny, and introduce the exponential martingale
- 1

e (ms) = exp(—my + E(m, mt), (7)
where (m, m); = fot |C§1/2h(s,xs)|2ds is the quadratic
variation of {my;? € [0, T]}. By Assumptions 2.2, we have
E[e™'(m:)] = 1,V¢ € [0,T], (see [4]). Consequently, we
define a measure P through the Radon-Nikodym deriva-
tive

-1 . =|dP _
Ao,; =E [ﬁlj:o,T] e~ (mr). (8)
Since P(Q) = [, Agt(w)dP(w) = 1, Vi € [0, T], the Gir-
sanovs Theorem, (see [4]), states that P is a probability
measure on (Q,.4) and that

|

we| _
&) =[] -
are Wiener processes. Therefore, under the probability

space (Q, F, P; Fo,¢) the processes {z:;t € [0, T}, {ys;t €
[0,T]} are solutions of

we
bt

wt

b:

[2ab O h(s, z,)ds
fot Nsl/zc’s_lh(s,:cs)ds

(w7 m>t
(b, m)t

|

dzy = f(t,z:)dt — o(t, 2)ayCy h(t, z:)dt
+o(t,ze)dw:, z(0) eR",
dy: = ardw: + N/ %db;,  y(0) =0¢R”,

)
(10)
Notation 2.3

1. {F§;t€[0,T]} denotes the complete filtration gen-
erated by o-algebra o{y-;0 < 7 < t};

2. The measure-valued process
3:(®) = E[®(z+)Ao,e| 77 ]

is well defined. O

o

Lemma 2.4. [5, 6] Suppose g:(-) has an F§ ;-measurable
density function ¢ : R" x [0,T] x @ — R. Then

— qt(q)) _ fRn q)(z)q(z7t)dz

E[®(z:)|FY,] = = o (11
[ ( t)l O,t] Qt(l) fR’n. q(z, t)dz ( )
Note that {Ao,:;t € [0, T]} is given by
¢
Ao =1 +/ Ao sh' (s,25)C5  dys. (12)
0

Theorem 2.5. [5, 6] Suppose ¢:(-) has a density function
q(z,1). The unnormalized density of the conditional dis-
tribution P(z: € A|F§,), A € B(R") is ¢(-) and satisfies
the SPDE

dQ(z7 t) = A(t)*q(z: t)dt + B(t)*q(za t)dyfv q(z: 0) = po((Z)),
13

where
n

A@) () = 3 27,0 (5555 (0(t,2)0' (1, 2)), ; B(2))
-, 2 (filt, )2 (@),
Bi(t)*®(z) = 14, (Ci1), 4 hilt, )3 ()
-3 a%i((a(tf, w)a@C{l)i,k ®(z)). O

Definition 2.6. A fundamental solution of (13) is an
F§ ;-measurable function ¢(z,t;z,s), with (z,z) € R™ X
R™,0 < s <t < T such that the following hold:

1. For fixed (s,z) € (0,t) x R", q(-,t;z,s) ¢ CZ(R")
and ¢(-,-; z, s) satisfies (13);

For ¢ : R™ — R, which is continuous with compact
support

tim [ Zq<z,t;x,s>w(w)dx=<p<z>. o (4

Theorem 2.7. Suppose for each s € [0,7] there exists
a random process {g(z,%;2,5);0 < s <t < T}, (2,2) €
R™ x R™ which is a solution of
dq(z,t; z, 8) = A(t)*q(2, t; x, s)dt
+ B(t)"q(z, t; z, s)dys, ltlin a(z, t;z,8) = 6(2 — ). (15)
8

Then

_au(®) fmn ®(2)q(z,t;z,0)po(z)drdz

E[Q(xt)lfg,t] - Qt(l) - fRzn q(z,t,m, 0)p0($)dl‘dz

Proof. Apply the Ito differential rule to g(z,t) =
Jrn 4(z,t;2,0)po(z)dz, to show that g(z,t) satisfies (13)
and then follow Lemma 2.4. O

3. Moment Generating Functions
Definition 3.1. Let f; : [0,T] xR = R, f2 : [0,T] x
R* - (R™), fs : [0,T] x R® — (R?)’ be such that
Elfy 1£i(t,2)]* < oo,k > 1,5 =1,2,3.



1. The integrals L0 4 Lo, 2 LEE o+ are well-defined.

2. The measure-valued processes

M7 (2) = E[®(z) Ao L} |17E,], 20, (16)
are well-defined for j =1,2,3. O
For j =1, 2,3, we wish to derive expressions for
~ . E[A L"'“’J F
Blrgiie) = Senl P ooy )

E[AO,tlfg,t] ’

3.1 Recursive Equations

Theorem 3.2. Suppose M;*(-) have F§ ,-measurable
density functions M™7 : R™ x [0,T] x Q@ = R,j =1,2,3.
Then

M®™(z,t)de = E[lpcanho L5 |FE,], &2>1, (18)

i = 1,23,
SPDE’s:

satisfy the following recursive system of

AM*™ (z,t) = A@t)* M™" (z, t)dt + B(t)* M"™ (z,t)dy;
+ kfi(t, )MV (@, )dE, & > 1, (19)

AM®™?(z,t) = A(t)* M™2(z,t)dt + B(t)* M~ (z, t)dy:
1 —
+ 56k = DIfa(t 2) M7 (x, t)dt

Ny
"”“;a_zi

+ K fa(t, 2) M2 (2, )0t C; dye, £ > 1,

(M*22(2,1) (0(t,2) fi(e, 1)),) di

dM™3(z,t) = A(t)* M™3(z,t)dt + B(t)* M"™>(z, t)dy:

+ %n(k —D)|CY2NY2 g, 2)|P M2 (s, £)dt

+ kfs(t, z)M 13 (@, )NV2C Yy, & > 1, (21)

Here we use the convention MP7(z,t) = 0 for p < 0.
Also,

M™(2,0) =0, x> 1, M> (z,t) = q(z,t), j =1,2,3.
(22)

Proof. Consider $(x:)Ao, tLO . » where {z;¢ € [0, T]} and
{Ao,:;t € [0,T]} are solutions of (9), (12), respectively. By
the Itd product rule

t
Ly = n/ Ly " fi(s,me)ds,  w>1.  (23)
0
Employing the 1td product rule once again, we have
q>($t)A0 tLO t = fO @(.’Es)d(Ao SLK 1) (24)

+ [y d2(ws)ho,e Ly + [o(B(2), AL™)e,

AOtLOt —'foAOSdLgsl+foL dA03+f0 (A, L),
—'ifo fi(s, zs)AOngslld
+ fi Ao, L B (s, 8)Cx 2 4.

(20)

Substituting into (24) we obtain

®(zs)Ao Ly = % fo AosL§, Tx (o (s, zs)

o'(s,25)Di®(z,) )ds + fo Ao,s Ly Dy ®(zs)o (s, zs)
D24 + [} Ko, L2 ®(xs)H (s, 25)Ci Y 2dys
+f0 Ao SLS;D' (:cs)a(s ), Ca/ 2 di,
4 f5 Mos LM f1(s, zs)ds.
(25)

Conditioning each side of () on 7§, using (18), and then
integrating by parts, we deduce (19). When k = 0,j =
1, we have M*'(z,t)dz = E[ls,cizMo|F5,], and thus
M®(z,t) satisfies the DMZ equation. The remaining
equations are obtained using the same procedure. O

Remark 3.3. Notice that the filtered estimates for
L{7,k>1,7=1,2,3 can be computed from

Jan M™ (2,t)dz

Blrg 17 = S
Rn »

k>1.. 0 (26)

Lemma 3.4. Suppose M (-) have F§ ;-measurable den-
sity functions. Then

¢
M”’l(z,t)=n// fi(s, )MV (z, 5)q(z, t; z, s)dxds,
o JRn

M™*(z,t) = %H(n—l) /Ot /Rn |f2(s,2) > M* 2% (, 5)
n n
. _ 0 E—1,2
.q(z,t;z, s)dxds H/o /n ;——-l 5%, (M (z,8)

- (o(s,3) f(s, z))z) q(z,t;z, 8)dzds

t
+f§/ fa(s, z)Mk_1’2(m,s)a’sCs 1q(z,t;x,s)dxdys,
o JR®

€
M (2,t) = 2wk —1)/0 /Rn ICHANTY2 fo s, )2

¢
.Mk_z’a(:c,s)q(z,t;z,s)dwds+n/ / f3(s,x)
o Jrn
.Mk—l’a(a:,s)Nl/zcglq(z,t;w,s)Cs_ldzdys,
where £ > 1 and MPJ(z,£) =0forp< 0,5 =1,2,3.
Proof. Follow the derivation of Theorem 2.7. O

3.2 Moment Generating Functions

Next we introduce moment generating functions for com-
puting the conditional moments of integrals and stochas-
tic integrals (17).

Definition 3.5. Let 0 = iw,i = +/—1.

1. The measure-valued conditional moment generating
functions of the stochastic processes {L0 i;te0,T]},
given by

Bl (®) = i@ (a) exp (6131) 178,), 5 = 1,2,3,
(27)

are well-defined.



2. The measure-valued unnormalized conditional mo-
ment generating functions of the stochastic processes
{Lgi;t €[0,T]} given by

B79(®) = B[@(zt) Ao, exp (6L ) 17, 5 =1,2,3,
(28)
are well-defined. O

Lemma 3.6. Suppose 877 (-) have F§ -measurable den-
sity function 8%7 : R™ x [0,T] x 2 = R.

1. Then

E[®(2:) exp (9L3:g) 7] = 859 (®)

g,

+

g:(1)
_ Jan ®(2)B% (2, t)dz 193
- Jan t(zt)dz J =049

(29)

2. The conditional characteristic functions of of the
stochastic processes {L(l)zi;t € [0, T]}, are given by

R S R e ¢)
Efexp (meO"t) 6.l = q:(1)
_ Jen B (= 1)dz j=1,2,3. (30)

Jan a(z,t)dz
Proof. Similar to Lemma 2.4. O

Theorem 3.7. Suppose ,Bf 7 (.) have F§ ;-measurable
density functions 8%7(.),j =1,2,3.

The densities of the measure-valued unnormalized condi-
tional moment generating functions, namely,

B°9 (2, t)ds = Ellacashorexp (6L31) |17, (3D)
where j = 1, 2, 3 satisfy the following system of SPDE’s:

dp® (z,t) = A@t)*A* (z,t)dt + B(t)* 0% (x,t)dy:

+0f1(t,z)B% (z, t)dt, (32)

4% (@, 1) = AW)"8°*(a, )it + B8, )y,
+ 18P o, )

— 9 z_; aizz ((U(t, fb‘)fé(:c,t))i ﬂg’z(m,t)) dt

+6£2(t,7)8"% (z,1)04C  dy, (33)
% (z,t) = A®)*B"°(z, t)dt + B(t)* 87> (z, t)dy:
+ "2—2|01/21\r—1/2 fa(t, )87 (z, t)dt
+ 0fs(t, 2)B%3 (2, t)NV2C~dy,. (34)
The initial conditions are
B9 (z,0) =po(z), zeR", j=1,2,3 (35)

7

Proof. First, absorb exp (BL&{) in the exponential term
Ao, by setting

K{;,t = Ao,: exp (6’Lé:{) .

Second, apply the Ité product rule as in Theorem 3.2.
This derivation is along the lines of information state
equations in [6]. O

Proposition 3.8. Suppose E[exp (fOT |fi (t,xt)|2dt)] <
00,7 =1,2,3.
Then

E [®(x:) Ao, exp (0Lg ) |FY,] = E [®(z)Ao | FE,]
+ Y n o ([ a2 172,

where the infinite series converges in L'(Q, F¢,, P).
Moreover,

(36)

BI(®) =qi(®)+ ), %Mf’j(é), i=123. (37
k=1 '

Proof. Similar to [2]. O

Theorem 3.9. Suppose E[|L[1):t. |*] < oo for some positive
integer k, § = 1,2, 3.
Then for j =1,2,3

1. B™(1) have & continuous derivatives with respect
tow w.p.1;

A C))
60 di*  g:(1)

= E[®(z:) L5 |12, wpl. (38)

s 6.3
A
60 db* ¢ (1)

=E[Ly]|FL,] wpl. (39)

Proof. The derivation is based on Kolmogorovs conti-
nuity theorem and its application to parameter depen-
dent diffusion processes (see [7]). First, note that if
the measure-valued processes (¢ (-) have density func-
tion then (32)-(34) hold. If 8% (x,t) are in the function
space of continuous functions, then their derivatives with
respect to 6 will also be continuous; this is done as in
[7). Hence, by normalizing (37), as § — 0, the left-hand-
side of (38) and (39) converge in distribution provided the
density functions M*7(z,t) exist. The a.s. convergence
is established as follows. For each measure-valued process
B%9(.),5 = 1,2,3 there is a stochastic ordinary differen-
tial equation analogous to (25). A direct application of
the Blagovescenskii and Freidlin [7] result establishes the
a.s. continuity and convergence. O



3.3 Expectation-Maximization
Consider the system
dIL‘t = F(Btdt -+ det,
dys = Hzodt + N7 db,

z(0) e R™,
y(0) =0,
At z) = %x'Qz, fa(te)=2'R, falt,z)=o'S.

Here Q = @'. We assume z(0) is a Gaussian random
variable.

Suppose F,H are random matrices which we
wish to identify or estimate. The expectation-
maximization algorithm, (see [3]) enables computation
of maximum-likelihood estimates of F,H, in terms
of filtered estimates of the processes fot fi(s,zs)ds,
fot fz(s,:1:3)(111@,]'0t f3(s,zs)dbs. Here we apply The-
orem 3.9 to obtain the filtered estimates of these
integrals.

A solution of (13) is

1 1,,0-% =0 2) 0
t)y= —————exp|—z|P' *(z—Z X Ao ¢,
q(z,t) (2#)%|Pt°]% P( 2| t ( t)l 0,t

where EO(-),PO(-),KO(~) are given by
di) = F&ldt + PPH'N™' (dye — Hz{dt), 3°(0) =¢,
P =FP?+PF — PPH'N'HP?
+GG', P°0) = h,

t
Kg,t = exp (/ (HES)IN“Idys
0
L [ 0n Ar=1g7m0
-3 A (Ha:s) N "Hzgds) .

1. Computation of Etl),} = E[% fot € Qusds|FY ]
A solution of (32), (35) is, (see for example [5, 6])

1 1 6.-1 "
4,1 - - _ = *T g ___ 2
R e e Rad G CREAY)

t
x A%, x exp (g / Tr(PfQ)ds) , (40)
0
where
4z = (F + OPfQ) 7 dt
+POH'NTT (dy — HELd), B(0)=¢,  (41)
P! =FP! +P/F' — P} (HN'H-6Q) Ff
+GG&, PY(0) =Py, (42)
~ t '
Ag,t = exp (/ (H&:‘ﬁ) N—ldys
o
_1r (H"e)l N"'HFd (43)
2 ), T, z.ds ).

In fact, we can show that limg_,g P! =P?, uniformly on
compact subsets of [0, 7], and limg_Z¢ = Z{ a.s.

According to Theorem 3.9 we need

iﬁf’l(l)_ d 12e (70 \71 o [t 6
a0 7\8,t =10 AO,t (Ao,t) €Xp 5/0. TT(PSQ))]~
(44)
Let 4
d
w=da w-ip

Then from the differentiability of parameter dependent
solutions of stochastic differential equations we know that

= /ot (F + 9P§’Q) rds + /Ot PPH'N™? (dys - Hrﬁds)

t t
+ / 920 07%ds + / S H'N! (dys—H:’E‘zds)
0 0

1
+ [ Plaatas, (45)
0
t i t
22:/ Fzﬁds+/ zﬁF’ds—/ =) (H'N'H
] 0 0
t
— 0Q) Plds — / P! (H'N"'H - 0Q) xids
0
T
+ / PYQPYds, (46)
0

are continuous in (¢,8) w.p.1. Similarly as before we have
limg_orf =79 (a.s.), limp_o B¢ = =2, where

t t
rf:/ PSOQﬁEgds+/ SeH' N~ (dys — HE{ds)
0 0
t t
+ / Frlds+ / POH'N™" (dy, — Hrlds), (47)
0 0
t
zg=/ (F - P°H'N~'H) 20ds
o

t 1
+/ 2 (F—P°H’N-1H)'ds+/ P°QPYds.
0 0

(48)
Consequently,
0,1
lim ~£- ()
8—0 Ag
t ¢
=l 0{(/ (Hrﬁ)’N-ldys—/ (Hr®Y N~ HzYds
- 0 0

1t 9 6
+ —/ Tr (P/Q +0672Q) ds)
2 Jo
[y \ =1 ¢
XAg,t (Ag,t) exp (Q/ TT(PfQ)ds) }
2 Jo
Finally, f(l)i =E[L Y L Qxds|FY,] is given by
71,1 1 £ 0
Ly = 3 Tr (Ps Q) ds
0

t
+ / (Hr?)' N7 (dy, — HZds) . (49)

o]



2. Computation of E(I):f = E[fot x5 Rdws| 7§ ,]:
A solution of (33), (35) is, (see [5])

1 _8-1 N
6" (z1) = 510 (e=at) )

1
—n .1 SXp
(27) | Pf| (

t
X Ag’t X exp (g/ Tr(PfRR')ds> , (50)
0
where
d&} = (F + 0P/RE +0GR') #}dt
+PYH'NT? (dy: ~ HEldt) , 5(0) = ¢, (1)

P! = (F+60GR') P! + P} (F +6GR")’
— P (H'N"'H - 6RR') P{ + GG', P°(0) = Ps, (52)

RS, =exp ( /O t (22) N~tay,

_ %/t (Hi‘s’)lN_lHi‘:ds) .
0

By Theorem 3.9 we need

(53)

(54)

4B’ _4d [xg,t (Kg,t)_lexp (g /Ot Tr(PfRR’))} .

& Ry,
(55)

Computing limg_.o rd = limg_o %ﬁ =70 limg_oX¢ =
limg_,o %Pf = PP, similarly as before, we have

]
rd = / (P)RR' + GR') %3ds
0
t
+ / SYH'N' (dys — Hzgds)
0
t t
+ / Frids + / P)H'N' (dy, — Hrdds),  (56)
0 0
t
¥g = / (F—P°H'N™'H) %{ds
0
t t
+ / s (F - P°H'N'H)' ds + / P’RR'Pds
0 0
t t
+ / GR'Plds + / PRG'ds. (57)
0 0
Hence

9,2 t
m 48 _ l/ Tr (PPRR') ds
6—0 df Ag ‘ 2 0

t
+ / (Hr) N7 (dys — H%9) ds, (58)
0
Finally, E(l,:f = E[f; «\ Rdw.|F},] is given by
71,2 1 ¢ 0 !
Th? = 5/ Tr (P°RR') ds
0

t
+ / (Hrd)' N™* (dys — Hz3ds) .
0

(59)

N

3. Computation of Eé:f = E[f; 5 Sdbs| 7§ ,]:
Following the same approach we deduce that Eé:f =
B[} @}, Sdbs| Y] is given by

~ t
L(l):g’ :/ (HTS)IN-1 (dys — H?Egds)
0
t 1 ' 1
+/ N72§'%;) N7 (dys — N™='S'8ods), (60
| ( :l:) (ys z 3) ( )
where
t
= / (ESH’N—I + PS"(SN‘%)’N‘I) (dys — HZ2ds)
Ot .
+ / P)H'N"" (dy, —(SN'E)’Eﬂds)
0
t t
+/ Fr‘jds+/ P)H'N™' (dys — Hr2ds), (61)
0 0
1
z?:/ (F~P°H'N"'H) x%ds
0

t
+ / S0 (F - P°H'NT'H)' ds
0

—~ /t P? ((SN—%)N‘1H+ (N-lH)’(SN-%)') PYds.
0
(62)
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