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Abstract 

In this paper a robust-adaptive control scheme is 
applied to a 9-link (8-degrees-of-freedom) biped robot 
under the assumption that the biped is subject to rapidly 
time-varying parameters. The eight degrees of freedom 
correspond to two hip, two knee, two ankle, and two 
metatarsal joints, while the motion is constrained to be 
on the sag&al plane. The robust-adaptive controller 
consists of two components; a parameter updating law 
based on the o-modification principle, and a nonlinear 
control law which is designed so that to ensure that all 
signals involved remain bouuded. Extensive simulation 
experiments were carried out which show the practicality 
and effectiveness of the proposed robust-adaptive 
controller for biped walking. 

1 Introduction 

One of the primary motivations for designing biped 
robots is to perform tasks in environments that are too 
dangerous for human beings. To be a satisfactory 
substitute for the human being, the robot must be able to 
enter a region originally designed for human access, and 
perfom tasks that are not already automated and 
normally require the capabilities of a person. One 
measure of the success of a biped design is how well it 
can emulate the agility of a human being. Therefore, a 
useful biped robot needs feet. It is not possible for a 
passive platform to stand in a single, stable position if it 
is supported on only two points. However, a dynamic 
system can balance on hvo points like stilts if the 
supporting points are allowed to move and are controlled 
by a sufficiently sophisticated control system. The stiff 
legged stilt biped must remain in a continuous state of 
motion to maintain balance. 

In this paper a 9-link planar biped model is studied 
which includes not only the main links : legs, thighs, and 
trunk, but also a two segments foot. This biped has two 
hip, two knee, two ankle, and two metatarsal joints, with 
one d.o.f. each of them. The motion is constrained on the 
sag&al plane, and as a consequence, the total number of 
degrees of freedom is going to be limited enough, always 
depending on the phase of the walking being executed. 
This two dimensional motion can in fact be achieved in 
reality, as it was shown by the Kenkyaku-2 biped [l] 
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which has a steel pipe attached to the lowest end of the 
leg in order to maintain the lateral balance. 

The goal for the choice of such a model is the 
achievement of a more satisfactory substitute for the 
anthropomorphic gait, giving great attention to the 
model which describes the foot. Most of the previous 
biped studies consider the foot as one solid element. 
Here, each foot is composed of two rigid parts connected 
at the transverse tarsal joint. The calcancus and talus as 
a single unit form the proximal segment, and the 
remaining bones and joints of the foot the distal segment. 

2 The Walking Pattern 

The most popular analytical model of walking is the 
one based on the hypothesis that walking is performed so 
as to have the least expenditure of energy [2]. In our 9- 
link biped robot model, it is assumed that at the middle 
of the supporting leg period, that is when the swing leg 
moves before the suporting leg, a new phase of the gait 
exists. This is the kick phase, where an ankle motion of 
the supporting leg is achieved, so that a maximum of the 
vertical force just before the collision appears. 
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Fig. I A ballistic walking model 
Furthemore, it is assumed that the torque, applied to 

the knee joint is zero, the desired trajectories of the 
angles 0 and y are specified as a function of ~1, and in 
addition the reference signals are chosen such that to use 
the effects of the gravity in a way that increases the 
angular momenttmr during the single leg supporting 
phase (see Fig. 1). 

Therefore, trying to utilize the gravity effect skillfully, 
the following walking pattern is adopted in this study. 

1. The body is always kept upright. 

2. The knee of the supporting leg extends straight and as 
a result the first assumption is satisfied, since the 



relation between the thigh angle 0 and the shank 
angle c1 is &a. 

3. The ankle and foot joint of the supporting leg is free 
except for the kick-phase. 

4. The foot of the swing leg is kept parallel to the 
ground. 

5. The leg-support-exchange is done in an instant (there 
is no double-legs-supporting phase). 

6. At the touchdown, the knee joint of the swing leg is 
kept in bending state. 

7. The touchdown of the swing leg is assumed to occur 
in two stages. Firstly, the toes of the swing leg take a 
collision with the ground and then the collision of the 
heel follows. 

8. The same reference signals are supplied at each step 
repeatedly. 

The reference signals shown in Fig.5 (thin line) 
describe the desire change of the angular position of the 
robot joints during the first two steps. It is obvious, that 
the reference signals during the first step are a little 
different, since the robot starts walking from the upright 
posture. The signals of the second step are recurrently 
used in every step. 

3 Kinematic and Dynamic Model 
of a g-Link Biped Robot 

The kinematic and dynamic equations of the 9-link 
biped robot model can be found as was done for the 5- 
link biped robot in [3]. 

3.1 Kinematic Model 

The 9-link biped under consideration is shown in 
Fig.2. It includes the trunk (link 5) and four links in 
each leg which represent the thigh (links 4 and 6), the 
shin (links 3 and 7), the heel (links 2 and 8) and the 
metatarsal (links 1 and 9). The links labeled li (i=1,...,9) 
are joined together at ideal pin joints. Hence, it has two 
hip joints (joints 4 and 5), two knee joints (joints 3 and 
6), two ankle joints (joints 2 and 7) and two metatarsal 
joints (joints 1 and S), which are assumed to be ideal 
(without friction) rotational joints (with one d.o.f each of 
them) driven by independent electric DC motors. At each 
joint, except the one which contacts the ground, there is 
an ideal torque Zi. Since the motion of the biped robot is 
constrained to be on the sag&al plane, for a definite 
description, we use as generalized variables the set of the 
angles of each link i with the vertical, which is denoted 
as 0i. The direction of the 0i is as shown in Fig.2. 

There are four parameters for each link : the mass of 
the link mi, its moment of inertia about the c.o.g. Ii, the 

length of the link Ii , and the distance between the c.o.g. 
and the lower joint di. Fig.3 shows these parameters for 
the i-th link. For the heel the notation is somewhat 
diferent (Fig.4). The numerical values used for all these 
parameters have been taken from [4]. 
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Fig.3 Parameters of the i-th link Fig.4 Parameters of the heel 
The kinematic model which describes the relation 

between the velocity of the foot of the swing leg and the 
change of the generalized variables is given by the 
equations 

VA =~~]=[I:L~~~]~,+[-~~~~~~~~~~~+[~~~~~~~,+[-~~~~~le, 

l@x(6, + “0 - ds cos@a + 6) - ds’ COS@, - CC) 1 98 
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3.2 Dynamic Model 

Non-kick action in single-leg-supporting phase : 
Here, the dynamic equations are studied when the biped 
robot has one supporting leg and there is no raising of 
the heel ((31, 02 constant). Applying the Lagrange 
dynamic equation, the equations of motion take the 
following closed form, for the non-kick phase : 

D(@ + C(6,6)6 + G(6) = T, (2) 

where T, is the generalized torque which corresponds to 

the variable Bi, D(0) is the positive symmetric 9x9 inertia 

matrix, C(O,& is the 9x9 matrix (with zero diagonal 

terms) which includes terms from the centrifugal and 
Coriolis torques, and G(0) is the 9-dimensional vector 

(0 



which represents the gravitational torques. The form of 
these matrices is given in [5] and due to space limitation 
are not included here. 

Kick action in single-leg-supporting phase : As 
mentioned before, since our biped robot has a 2-link foot 
we can adopt the biped locomotion with kick-action 
(only in the single leg support phase) which was firstly 
employed in Kenkyaku-2 [ 11. However, as seen from the 
shape of the human foot, the ankle torque of the 
supporting leg can decrease the walking speed but 
cannot increase it. Since the reduction of the speed 
causes an energy loss, and according to the first 
assumption that the biped robot has to keep the 
properties of a balistic model (to keep its energy at a 
constant level), in the continuous walking of this study 
the ankle joint of the supporting leg is set to be free 
except for the kick phase, when raising of the heel exists. 
In this case, an additional variation of the angle 02 

occurs, while the angle 8 1 keeps on a constant value. 
Based again on the Lagrange dynamic model, the 

equations of motion, during the kick phase, take a form 
similar to (2) (the matrices D, C, G are similar to the 
corresponding matrices with some additional terms 
caused by the raising of the heel, (see [5]). 

In the two previous phases, introducing the 
transformations 

91 =8, +% qs=85+06 

q* =-90°+&+e, -8 3 q6G@6-67 

q3 =03 -8.4 q7= -go0 f&+&3+07 

q4 =e4 -8 5 q8=88+09 
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where qi is the joint angular position, and ri is the real 
driving torque exerted by each independent actuator to 
each joint of the biped robot (the torque at the toes of the 
supporting leg is zero because of the existence of one 
unpowered d.o.f.), we get the following closed form of 
dynamic equations 

D(q)4 + C(q, Oi + G(q) = 7 
This dynamic model will be used in the control part of 

the paper. 
Leg-support-exchange : The walking pattern 

adopted here implies that the leg-support-exchange is 
done in an instant. In this way, the double-leg- 
supporting phase is omitted. Then, just after the 
touchdown of the swing leg, the exchange of the 
supporting leg occurs. Hence, we assume that the biped 
robot is instantly, just before the collision, on the air. As 
a result, at the time of the swing leg collision with the 
ground, the constraint XT;T-yT=CQnStant, which exists 
during the single leg supporting phase, is lost. In this 
case, two more variables (the coordinates XT, ye of the 
supporting leg toes) are required for an exact description 
of the position of the biped robot. The elements of the 
inertial matrix D, for this case can again be found in [5]. 

Collision of the swing leg with the ground : For a 
mobile robot, the collision with the environment is an 
ordinary affair and one of the effects of robot collision is 
the abrupt change of the joint angular velocities. As 

mentioned in the walking pattern, the collision with the 
ground occurs in two stages. Firstly, the toes (l3) of the 
swing leg take a collision with the ground and then the 
collision of the heel (A) follows. Thus the velocity 
change is given by [6] : 

A6 = Da-’ BJpT BJ, D,-’ 
( 

BJaT 
1 
-‘Ax, (3) 

where D, is the inertia matrix of the robot model when it 

is instantly on the air and B J, is the associated Jacobian 

matrix. After the first collision, the velocity of the toes 
(B) of the swing leg vanishes, hence 

6, =Afm+Da-’ BJ,T(BJ, D,-’ BJ,r)-‘(-kB) (4) 
ah before 

Then, the collision of the heel (A) of the swing leg 
occurs. Hence, the general relation takes the form 

AtI= Da-’ *JaT *J, D,-’ 
( 

*JpT 
) 
-‘Ai, (5) 

Similar to the first case, after the second collision, the 
velocity of the heel (A) goes to zero. Hence 

$r= jkre+Da-’ ‘JaT(“J, Da-’ *JaT)-I(-&) (6) 
before 

where 4, is equal to 4, which is computed from the 
before after 

first collision. 

4 Robust-Adaptive Control of Biped Robots 

The locomotion activity and gait,in particular, belongs 
to the class of highly automated motions. When a man is 
walking in a steady regime or in an environment 
imposing small disturbances, the central nervous system 
is not involved. When large disturbances occur, the 
system actions are directed only to the preservation of the 
system overall stability, i.e., towards preventing the 
system from falling down. This requirement is of 
primary importance in biped locomotion [7]. 

In this paper, we apply a robust-adaptive control 
scheme which aims at minimizing the sensitivity of the 
system performance under the presence of large and 
rapid time-variations in the robot parameters. This 
control scheme ensures that all signals of the robot 
system are bounded, and that the mean tracking error is 
of the order of the parameter variations which are not 
required to be small [8]. 

The dynamic equations of a biped robot whose 
parameters may explicitly depend on time, have the 
following form 

Wq,t) . 
We 0 ii + ~ at q + C(q, 4, thi + Wq, 9 = z (7) 

where wq, 0 F(q, t) = dt, and P(q,t) is the potential 

energy of the system. Here, because of parameter time- 
variations, the important skew-symmetry property of the 

matrix (D - 2C) is written in the form : 

uTk~~4-2Ck,~,~)]l=o vq ew’ (8) 



where D, is the ij-th element of D(q,t). 

Define now the new vector s as : 

s=ij+fiq (9) 

where q = q - q, is the n-vector of tracking errors and A 

is a symmetric positive definite matrix, or more 
generally a matrix such that A is Hurwitz. Furthemore, 
we may interpret s as a ‘velocity error’ term 

~=a--al where q, =qa --AT (10) 
The control objective is : For a given reference signal 

qd(t) , generate the applied torque z for the biped robot 

(7) with unknown and time-vaving parameters so that 
all signals in the robot system are bounded and the joint 
position q tracks qd as close as possible. 

To achieve such an objective the biped model (7) is 
first parameterized as : 

D(q,t)s+C(q,q,t)s=r-D(q,t)ii,-C(q,q,t)$,-F(q,t)-~~ 

where ( -DKqr - C,q, - F, ) is the term of the model 

with unknown parameters, Y(q,q,q,,q,,t) is a nxr 

matrix of known functions for some r>O, and a(t) E ‘3 

contains parameters which may be time-varying. In (11) 
the regressor Y(q,q,q,,q,,t) is bounded for bounded 

q,i,ir,, and&. 
The following assumptions are made about the biped 

robot model (7) : 

(i) I/a(t)/ I p0 , Il~(t)ll I p for some constants 

PO >o, P’O. 

(ii) 
/I II 
y I y f(q) for some constant y>O and 

known bounded f(q) for bounded q. 
(iii) qd(t), q,,(t), id(t) are bounded. 

The new characteristics of this biped robot model are: (i) 
the presence of the unknown and time-varying vector 
a(t) (which is going to be estimated), and (ii) at the same 

time the existence of the unknown term a.Wq,t) . 
79’ If 

the parmeters of the terms D(q,t) and P(q,t) were known, 

then a(t) and Ws, t) ----q could be calculated so that the dt 

control law 

z(t)=Y(q,&&,i,,t)a(t)+Fcj-K,s (12) 

could be implemented (like the computed torque 
methodology), which guarantees global stability and 
asymptotic tracking. However, for unknown D(q,t) and 
P(q,t) we have to develop an adaptive control scheme 

(control law - update law) which is robust with respect to 

aD(q,t) . the time-variation of a(t) and dtq . 

A first feedback controller suggested by (12) could 
include a ‘feedforward’ term DKqr +C,q,+Yi, a 

simple PD term K, s , and a term which causes 

robustness with respect to the time-variations of 

Wq,t) . 
7% 

A first type of the parameter update law could include 

a term i = -I?-‘YTs, and at the same time a term 

-r-‘o(t)G(t) suggested by the o-modification technique 

which takes care of the robustness to the time-variations 
of a(t). 

Taking into account the above considerations, the 
following controller and update law structures are 
proposed : 
Controller: 
T(t) = D,Jq>t)ii,(t)+ C,(qAt)i,(t) + Y(qAi,&W)+ T&)- K,s(t) 

(13) 
where zn(t) is the term which will ensure the 

robustness with respect to ~ Wq, 9 i 
at . 

Update law : 

P = -r-‘YT(q,q,q,,q,,t)s(t) -l?s(t)G(t) 

where o(t) is the switching signal : 

q>= :pg 

I 

if Il:‘(t)ll < M 

if M 5 IlG(t)ll< 2M (o. > 0) 

(14) 

(15) 

if Ili(t)ll> 2M 

which use,“ie a priori information that supIla(t)ll is 

upper bounded by M. 
Let us now consider the positive definite function 

V(s, Z) = (l/2) (sTDs + iTIX) 

where D=D(qO),t) and Z(t) = ii(t) -a(t) 

Differentiating, and using (8) yields : 

v(s,I,t)=-Zs ’ ‘F(i#, + q,(t)) + S*T - sI[D&,(t) + C&,(t) + Ya(t)] 

+ iP(t) - iTi’(t)ri(t) 

= +y(q(t)+ Ii,@)) +sIr,(t)-sTK,s-?‘(t)o(t)a(t)- i?(t)Ri(t) 

5 $(t)l[l~llK. . III q(t)+ q,(t) +s’r,(t)-s’K,s-ZT(t)o(t)a(t)- Z’(t)Ei(t) 

(16) 
Then choosing : 

zR@) = -(k,llW) +~,W$(~)“sct, 

the inequality (16), becomes : 

~~-(m(L)/k(t)ll-~)*+~ -sTKos-ZT(t)o(t)a(t)-ZT(t)lX(t) 

(17) 
where m(t) = ko)lq(t) +q,(t)llf(q) andz,(t) = -m2(t)s(t). 



Finally, using (15) and the assumption (i) (Sec. 2) of the 
biped, one gets : 

In the inequality (18) we observe that since 
y, p and p0 are positive constants, then the first, third 

and fifth terms are negative definite functions and as a 

result have a negative contribution to V , while the other 
terms are positive definite. Moreover, since o(t) defined 
in (15) satisfies the inequality : 

I@(t) - oo)ZT(t)6(t)l I 120,M2 (19) 

it follows that V I 0 in a region V 2 V, , for g(t), s(t) 

outside a certain bounded set so that the first, third and 
fifth terms predominate (contributing negatively) in this 
inequality. The bound V,, is dependent on the other 

positive definite terms. Therefore, this robust-adaptive 
control scheme causes the boundedness of V(s,Z, t) and 

as a consequence the signals s(t) and a(t) are bounded, 

which, in view of (9), (10) and (13) implies that 
q(t), a(t) and z(t) are also bounded. 

Now the tracking error a(t) will be computed. Working, 

in a similar way on s(t) = c(t) + Aq(t) , one can derive 

the following inequality for the tracking error q(t) [5] : 
t2 

(20) 

forsomeconstants a, >O, PO >O and t2>tl>O. 

To implement the controller (13), one needs the 
knowledge of f(q) to generate the bounding signal m(t). 
A more sophisticated choice of f(q) admits a wider class 

of Ws,t> ~, but it may make the implementation of m(t) 
a 

more complicated. Note also that the above design does 
not need the knowledge of the bounds y and p. 

Furthermore, for a chosen f(q), different choices of k, 

in generating m(t) may have different effects on the 
tracking performance, while increasing k, may reduce 

the effect of y in the mean error. 
Finally, let us note that for the signal boundedness and 

the mean tracking error (20), the parameter variations 
characterized by y and p are not required to be small. 
For the 9-link biped robot, we have assumed the presence 
of time variations in the trunk parameters of the robot 
(mass m5, rotational inertia I, , distance d, from the 

hip joint to the mass center of the trunk). This is a very 
reasonable assumption. Therefore, here, the vector 

a(t) E !RiJ, which contains all the unknown and rapidly 

time-varying trunk parameters, takes the form 

a(t) = [I,, n-y&, m5d5’, m,l 
which results in a specific function Y(q,&&q,,t) . 

Clearly, the only thing one has to know about the time- 
varying parameters are the upper bounds of the 
variations, so that he has an estimation of M in (15). 
Here, the variation (which is not really known) is 
considered such that the parameters m5, d,, and I, take 

values in the region (26.95kg, 71.05kg), (0.252m, 
71.05m), and (1.2925kgm, 3.4075kgm), respectively, 
i.e., the mass parameters m5 and I, vary 45% around 

the constant value that they would have if no time- 
variation existed, and the parameter d, varies 10% 

around the corresponding value. Thus 
Ial( = II51 I3.4075 = (p, 

la,(t)1 = Im,d,l I 7 1.05 aO.308 = 21.88 = (pZ 

[as(t)/ = Irn,d,‘l I 6.74 = (p3 

la,(t)/ = Irn,l < 71.05 = (p4 

M = suplla(t)ll = sup,/q,* + ‘pt +‘pX2 + ‘pt = 74.72 = 75 

Furthermore, there exist constants y>O, p>O such that 

IlWll~ P II II F 2 yf(q) 

As mentioned before, these constants affect only the 
mean tracking error and have no influence on the design 
of control and update law. Hence 

la, (t)l = li,l = 1.057dt = pr 

lzi2(t)l = Im& + m,d,/ I8.78dt = p2 

l&(t)1 = lm,d,2 +m,2d,d,l< 3.32dt = p3 

lzi4(t)l = Iti,/ = 22.05dt = p4 

p = Jpi2 + p22 + pj2 + pd2 = 24dt 

where dt is the sampling rate. 
Here, f(q) is a known function which contains 

trigonometrical terms of the angular position qi , and as 

a result it is bounded for bounded q. In particular, an 
upper bound is f(q)=l. 

For the exact application of the control, one has to 
compute the positive definite matrices A, K n , r . The 

matrices A, Ku are chosen to take values similar to 

those we should have chosen in the computed torque 
control case, in order to achieve the ideal convergence. It 
is remarked that this approach does not necessarily 
estimate the unknown and time-varying parameters 
exactly, but simply generates values that allow the 
desired task (bounded tracking error) to be achieved. 
Sufficient richness’ conditions on the desired trajectory 
indicate how demanding the desired trajectory should be 
for tracking convergence to necessarily require 
parameter convergence. For example, in case of a 



constant desired trajectory, it would be more difficult to 
achieve parameter convergence. Hence, using our a 
priori knowledge of the desired trajectories of the robot 
joints, we choose different values for the terms of I’ for 
the cases that these signals don’t include enough 
information. Also, the tracking error does not merely 
tend asymptotically to zero, but for all practical purposes, 
converges within finite time constants determined for a 
given trajectory by the values of the gain matrices 
A, K, and r, themselves limited by the presence of 

high-frequency unmodeled dynamics and measurement 
noise. 

5 Simulation Experiments 

The 9-link biped robot, initially at upright posture 
(assuming the time-variation of the parameters 
m5, d,, I, ), is commanded a desired trajectory similar 

to that synthesized by the reference signals adopted in 
the walking pattern. The corresponding angular 
positions and position errors, during the first two steps 
(in a 3.5-set interval), are plotted in Figures 5 and 6, 
respectively. These diagrams show clearly the very good 
tracking of the desired reference signals despite the 
presence of the uncertainty. Something that is also 
obvious from the fact that the average tracking error for 
the first and second step is 0.037 rads and 0.09 rads, 
respectively. 

6 Conclusions 

In this paper the effectiveness of a robust-adaptive 
control scheme applied to a 9-link biped robot was 
studied. The biped robot was assumed to have rapidly 
time-varying unknown parameters. The eight degrees of 
freedom correspond to two hip, two knee, two ankle, and 
two metatarsal joints, while the motion is constrained to 
be on the sag&al plane. The robust-adaptive control 
scheme involves a parameter updating law designed 
using the o-modification technique, and a nonlinear 
control law, and ensures that all signals of the biped 
system are bounded, while the mean tracking error is of 
the order of the parameter variations which are not 
required to be small. A set of simulation experiments 
were performed under the assumption that there are time 
variations in the trunk parameters of the biped. These 
experiments have demonstrated the strong capabilities of 
the proposed gait control technique which is a good 
candidate for practical application. 
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Fig.5 Angle displacements and reference signals of the 
9-link, human-sized biped robot 
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