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Abstract

This paper deals with the problem of global sta-
bilization independent of delay for a class of delayed
linear systems subject to bounded controls.

A new sufficient condition addressing the global
asymptotic stabilization (G.A.S.), via saturated (static
or dynamic) feedback, of such class of systems is pro-
posed. It concerns the class of systems for which the
open-loop system without time-delay term is Hur-
witz.
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1 Introduction

Several study upon independent time-delay stabi-
lization of delayed linear systems, by means of linear
controls, have been reported in the literature [2], [7],
[9], [10], [11], [16], [17]. Some of these studies have
been extended to the class of delayed linear systems
with saturating controls [3], [12], [15]. In these pa-
pers, neither the form of a state feedback required
to obtain G.A.S. nor the estimated region of local
stability is specified. Furthermore, their results were
obtained for a nonlinearity contained in a conic sector
where saturation was included as in [8]. By address-
ing directly the saturation issue, one should expect
to obtain less restrictive stability conditions [14].

In this paper, we focus attention on the global sta-
bilization independent of delay for a class of inter-
nally delayed systems with saturating controls. The
resulting closed-loop system is then of a nonlinear
type. A sufficient condition independent of delay, im-
proving that one in [5] is proposed, when the matrix
of the open-loop system without time-delay term is
Hurwitz. Firstly a saturating static state feedback
is used, afterwards a saturated dynamic controller,
built from delayless observer, is considered.

The following notations and terminology are used.
The inner product of two vectors z,y € R”, is de-
noted by < z,y >, the symbol ”grad V” denotes the
gradient vector of the function V', ” Re(.)” denotes the

real part of (.), and I,, represents the identity matrix
of dimension (n x n). Finally we denote by ||z(t)|| the
euclidean norm of vector z(¢), ||A|| the following ma-

trix norm AMZ, A*A), and p(A) the matrix measure
defined by %)\max(At + A).

2 Preliminaries

Consider the following linear time-delay system de-
scribed by:

{ 8(t) = Av(t) + Au(t = h(O) + Bu(®) ;)
y(t) = Cz(t)

where matrices A, A € R***, B € $"*™ and C €
%" with rank(C) = I. The varying-time-delay h(t)
1s nonegative, bounded and continuous function sat-
isfying 0 < h(t) < 7, with h(t) < § < 1, where 7 < 00
is any constant. Further, for system (1) the following
properties hold:

(P.1) 2(t) = ¥@), YVt € [to—1, to], to > 0, where
WU(t) is a continuous vector-valued initial func-
tion.

(P.2) The control vector u(t) is assumed to belong to
a compact set @ C %™, V¢ > 0, defined by:

Q= {ult) € R — i, < wi(t) < uy
Uy, Uy > 0;Vi=1,2, ..., m}
(2)

where u’ represents the it®component of the
vector u(t).

(P.3) The pairs (A4, B) and (4, C) are assumed to be
stabilizable (or controllable) and detectable (or
observable) respectively.

(P.4) Matrix A is assumed to be Hurwitz.

Assume that all states are available to a measure.
Then by implementing a saturated static controller:

u(t) = sat(Fz(t)), F € R™*" (3)
system (1) becomes:

£(t) = Az(t) + Az(t — h(t)) + Bsat(Fz(t)) (4)



where the saturation term

sat(Fz () = [(sat(Fz(t), ..., (sat( Fz()™]
\ \“// (RN \ \“// 3 RN \ \*// 1
is defined, for 1 = 1,2, ...,m, by
. wy i (Fa(t))>uy
sat(Fz(t)) = { (Fz(t))' if —um, <(F2(t) <uy
| —ul, if (Fz(t) < —um
(5)
The saturation term can be written as
sat(Fz(t)) = ®(a(z))Fz(t) (6)

whose entries o(z(t)) of the diagonal matrix @ are
defined for i = 1, 2, ..., m, by:

(g i (Fo(t)) > uly
o'(z(@) =< 1 i —ub, < (Fa(t) < uly
—romls i (Fa() < —ul,
(M)
and satisfy

0<ai(z(t) <1, Vi=1,..,m. (8)

Thus, from (6)-(8), system (4) can be rewritten
equivalently as:

2(t) = (A+ B&(a(z))F)a(t) + da(t — h(t) (9)
Note that system (4) is of a nonlinear type.

Further, it is well-known that if matrix 4 in (1) is
Hurwitz, then there always exists a symmetric posi-
tive definite matrix P (P > 0) solution of:

A*P+ PA=-N'N (10)

where N is any nonsingular matrix.

We study, in this paper, the global asymptotic sta-
bilization, independent of varying-time-delay, by us-
ing a saturating (static or dynamic) feedback law.
The case of constant time-delay systems follows as
a particular case. Then, we give a feedback law type
and a new sufficient condition for which G.A.S of sys-
tem (4) is guaranteed.

The following Lemma concerning the G.A.S of sys-
tem (4), gives us a way to choose a suitable matrix
F.

Lemma 2.1 : If for system ({), there exists a Lya-
punov function V(x(t)) for which:

V(:c(t)) = < grad V(z(t)), Az(t) + Az(t — h(t))+
Bsat(Fz(t)) =< 0, Yh(t) < T
(11)

for any z(t) € R™\{0}, then V(x(t)) must necessar-
ily be a Lyapunov function of the following open-loop
system

&(t) = Az(t) + Az(t ~ h(t)) (12)

The proof of this lemma follows by using the same
approach as in [5].

3 Main results

Following Lemma 2.1, system (12) must be stable.
On the basis of the previous result, the determina-
tion of the feedback matrix F' can be made from a
suitable Lyapunov function of system (12). Hence,
we introduce the next theorem which provides a new
sufficient condition for global asymptotic stability of
system (4).

Theorem 3.1 : Assume that matriz A is Hurwitz ;
the state feedback control law (3) with the following
matric

F=-D(y)B'P (13)
where D(7y) is a diagonal matriz of positive elements,
and matriz P > 0 is solution of (10), globally stabi-

lizes (G.A.S) system (), independently of time-delay,
provided that:

I(N"1)PANTY| < /B —B)(1~8), B€lo 1[(14)

Proof : Consider the coordinate transformation z =
N~1 z. Hence the system (4) may be transformed
into:

#(t) = Aoz(t) + Aoz(t — h(t)) + Bosat(Foz(t)) (15)

where Ag = NAN-', Ay = NAN-!, By = NB and
Fy = FN~!. Substituting matrix A = N~1A4yN into
(10), one gets:

AYNTYPNTL+ (N"Y PN~ Y4y =—I, (16)

To examine the global stability of system (4), we
define a Lyapunov function candidate V(2(t)) as:

V(z)=2(NT")}PN 248 t 24(0) z(6) d8 (17)

t—n(t)
where 8 > 0 and (N~1)PN~1> 0 is a solution of

(16). The time-derivative of V() along the trajecto-
ries of system (15) is evaluated by:

V(z) = —zz4 ZZt(N“l)tPBsat(FN_lz)-i-
2:"(NTY)'PANT 2(t — h(t)) + Bz'z— (18)
A1~ h(t)) 2*(t — h(t))=(t — h(t))

From the equivalent form of the saturation term, given
by (6), and using matrix F' defined in (13), equation
(18) becomes:

V(z)= —(1—B)z'z—2:*(N~*)' PB&D(y)B'PN~z
+22 (N~ PAN = 2(t — h(¢)) — B(1 — h(2)).
24t — h(t))2(t — h(¢)) )



and can be majorized by:

V()< —(1=B)llz@I +2l(N"1) PAN | [|z(3)]]-
ll2(t = R(EDI = B (1 — &) ll2(t — REDI®

2N~ PB®(a)D(y)B*PN~12(t) > 0, ¥t > 0.
In terms of n(t) = [[|z@®)|| [|2(t —~ RE)IT yields:

V(1)) < —n'(t) R n(t),
where
R= (1-8) —(N ) PANTH|
~ L -l PANTY| B(1-6)
(21)
If the condition (14) is satisfied, then matrix R is
positive-definite and we get:

V(z(t)) < 0, Vz(t) € R\ {0}

This implies the global asymptotic stability of sys-
tem (15) and therefore that one of system (4). n

Remark 3.1 : Note that the mazimized value of the

term \/B(L — B) with B €]0 1 is obtained for = 3.
Thus, the condition (14) can be replaced by:

IV PANT < 5VT-8) (@2)

Dynamic output feedback

Suppose that the state vector is not completely
available for measurement. In order to reconstruct
needful states for feedback, we can use dynamic feed-
back, built from minimal-order observer. Let us con-
sider a reduced-order observer, realized as follows:

w(t) = Duw(t)+ E w(t — h(t)) + Gsat(Fz(t))+
{ H y(t) + 7 y(¢ — h))
E(t)= Mw()+ K y(t)

(23)
where w(t) € ®*~D and D, E, G, H, J, M, K, are
constant matrices of appropriate dimensions, which
can be determined as shown in Appendix. The exis-
tence conditions of such class of observers are given
below.

Theorem 3.2 : [4] Ifrank[Ct A'C?] = n, then the
necessary and sufficient condition for the existence of
a delayless observer with E null is that all transmis-
sion zeros for (A, AIlt, C) be stable, where I is any
matriz satisfying range[ll'] = null[C]. Note that sq
is said to be a transmission zero of (A, AIlt, C) if

Sofn — A AHt
c 0

rank ] < In-—1

The conditions under which the state w(t) is an
estimate of Tz(t), for some T € R*=Dxn je

t]il{.lo €(t) = 0, Yw(0), z(0), u(¢) (24)
where
€t) = w(t) — Tz(t) (25)
i) G = TB,

@ [DT 0 ]_[Ta o ]__[HC o
0 ET 0 TA |~ o JC |’
iti) MT + KC = I,
w) p(D) < —||E]|-
(26)
Specify that condition (iv), in (26), is only suf-
ficient for the observer’s convergence. Nevertheless,
conditions (7), (iz), (¢¢f) are necessary, for the exis-
tence of delayless observer.

Followig (25) and conditions (26), the reconstruc-
tion error vector, defined by:

e(t) = &(t) — z(t)
can be expressed as:
e(t) = Me(t)

with
€t) =De(t)+ Ee(t — h(t)) (27)

Hence, it appears clearly that if matrices D and
can be chosen such that the condition (¢v) holds, the
observer (23) converges, i.e., €(t) — 0 as t — oo.

The objective is then, to give a sufficient condi-
tion for which the feedback matrix F, given in (13),
globally stabilizes the following composite system:

&(t) = Ax(t) + Az(t — h(2)) + B sat(F(z(t) + Me(t)))
ét)=De(®)+ Ee(t— h(2))
(28)

Theorem 3.3 : Assume that matriz A is Hurwiiz
and that conditions (26) hold. The composite system
(28) is globally asymptotically stabilizable, indepen-
dent of time-delay, by means of the feedback matriz
F given in (13) if the condition (22) is satisfied.

Proof: Let the coordinate transformation z = N~ tz.
Hence, the system (28) may be transformed into:

{ (1) = Aoz(t) + Aoz(t — h(t))+
Bosat(Fo(z(t) + NMe®)))  (29)
&)= De(t)+Ee(t — h(t)

where Ag = NAN~!, Ay = NAN-!, By = NB and
Fy=FN-1



Now, consider the candidate Lyapunov function de-
scribed by (17), for which equation (16) holds. Its
time-derivative along trajectories of system (29) is
given by:
V(z) =—(1—B)z'z+2z(N" ) PAN T 2(¢ — h(2)).
+22' (N~ PBsat(FN~'z) — Bz*(t — h(t))
2(t — h(t)) + 22'(N"") PB f(z,€)
(30)

where f(z,¢) = [sat(FN~(z+ NMe)) — sat(FN~'z)] is
globally Lipschitz function [13], i.e., which satisfies:

1z oll <plle@®ll, p=EllFoll |NM]| >0 (31)

Substituting the equivalent form of the saturation
term, given in (6), and matrix F' in (13), into (30)
we have:

V(z)= —(1—p)z'z+225(N"" ) PAN " 2(t — h(t))
~224(N~1)!PB®(a)D(y)B*PN 'z

—B(1 = h(1))z(t — h(1))2(t — h(2))
+225 (N1 PB f(2,¢)

(32)
By using (31), equation (32) can be majorized by:

V()< == B)llzl +2|(N 1) PAN |||
ll2(t = R@)]| = B(1 = 8) ||2(¢ — R(E)I®
+20/|(N =) PBI[|| =] lle] 53)

In terms of n(t) = [||z®)|| [lz( — R@))||]* yields:

V(z(®) < —0'(t) R n(t) + 20 |lz@)]] le@)]]  (34)
where R is given by (21) and ¢ = p||(N~1)*PB [|> 0.

If condition (14) is satisfied, one gets R > 0 and
we can write:

V() < —Amin(R) 9@ +20 [l2®)]] lle)Il (35)
Taking into acount that:

M (@)1 < V(2(2) < Aallz@I” + Tlla‘f(f)llz(36
where A1 = Amin (N ") PN, X2 = Amax((N 1) PN D),
¢ € [t — h(f), ] and that [|z(§)]| < [In(?)]], we have
[|2(2)|] > \/%:—_I(_EP. This allows to obtain an upper
bound on V(z(t)) Therefore

V(=) < —aV(2() +2b VV (=) [le®l  (87)

—_ A1:|:|i1.:1 R —_ (3
where a = 4—2,\2_‘4 and b= v

Letting W (t) = 1/V(2(t)), from (37) yields:

. a
W) < —5 W(0) +olle@)l (38)
By integrating the both sides of (38) we obtain:

t
W () < W(to) e™ 5470 b / =5 1c(8)]] o (39)
tg

From the left side of (36) and (39), it follows:

Wt — &(f— b P e
el < 5 o 8-ty [ et )
(40

Hence, if the condition (22) is satisfied, so a > 0, then
by taking into account that conditions (26) and those
of Theorem 3.2 hold, by assumption, one gets:

to

tlirn z(t) =0

since €(t) — 0 as t — oco. This means that system
(28) is globally asymptotically stable. [ |

Suppose h(t) = 7 < 00, V¢ > 0,50 § = 0, then from
Theorem 3.1 and Theorem 3.3, derived the following
Corollary.

Corollary 3.1 Under assumptions (P.1)—(P.4), the
feedback matriz F' in (13) globally stabilizes system
(4) and the composite system (28), satisfying condi-
tions (26), with constant time-delay, if

vt F e 1
(V=D PANTY| < 5 (41)

Proof : Follows from Theorem 3.1, Theorem 3.3 and
Remark 3.1, by taking § = 0. |

Remark 3.2 : The case of full-order observer can
be obtained, as particular case, by taking w(t) = &(¢),
D=A-HC,E=A,G=B,J =0, M =1,
K=0,x and T =1,.

Remark 3.3 : Notice that condition (22) is less con-
servative than that one given in [2], [5], [12], that is,

and also less restrictive than the well-known condi-
tion:

wA) < -4

Remark 3.4 : An interesting open problem consists
in finding the pair of matrices (N, P) which mini-
mizes the term ||(N~1)'PAN-Y||. This defines the
following constrained optimization problem:
min [[(N-1)'PAN"|
Subject to: AP+ PA=—N!N

for which condition (41) must holds.



4 Conclusion

Design of linear saturated controller, built from
delayless observer, to globally stabilize continuous time-
delay systems with constrained controls has been de-
veloped in this paper. It has been established that if
there exists a Lyapunov function of the open-loop de-
layed system, for which matrix A is Hurwitz and the
condition (14) is fulfilled, then the state feedback ma-
trix, built from this function, globally stabilizes the
composite system (system-observer) independently
of time-delay.

When matrix A is not Hurwitz, the local stabiliza-
tion independent of delay, can be envisaged to de-
termine some positively invariant and asymptotically
stable domains, in which the behavior is of a nonlin-
ear type. This case is studied in [6].

5 Appendix

To determine all matrices of system (23), we can
consider the method proposed in [1], for undelayed
linear systems. It’s well known that there e}usts an ar-
bitrary choice of real constant matrix A € R(»—Dxn
such that matrix S* = [C?* A]® is nonsingular. Hence,
using the similarity transformation x(t) = Sx(t), sys-
tem (1) can be described by:

x(t) = SAS™ x(t) + SAS™'x(t — h(t)) + SBu(t)

y(t) = S x(t) = [In 0]x(?)

(43)
and partitioned as:

[a]= [a 4] uo]+
]

[ A As 1(t—h(
I Az As [ ;Et—hgtgg ] + ()
B
| B, } u(t)
y(t) = x1(t)

where x1(t) € ®', x2(t) € RD.

If (A, C) is observable, then (Asg, A12) is also ob-
servable [1]. Only the last (n — ) components of x(t)
have to be estimated.

By setting w(t) = xa2(t) — Ly(t) = X2(t) — Lxa(t),
where

x2(t) = Az %2() + Az2 R2(t — k(1)) + A21x1(2)
*+Azixa (t — k(2)) + Bau(t)
(45)
we obtain:
w(t) = (A22 — LA12) w + (Azz - LAlz)w(t - h(t))
+{(A22 — LA12)L + (A21 — LAu)]y(?)
+[(A2z — LA12)L + (A21 — LA11)]y(t — h(t))
—|-(Bz — LB]) 'u.(t)
(46)

where L is a suitable mairix, chosen to satisfy:
p(Azg — LA1p) < —||Asa — LA14]|
Thus, if we define:
€(t) = Xa(t) — x2(¢) = w(t) — Tz(t)

then, from (23), (27) and (46) one gets:

(A22 — LAp»)
(A22 — LA49)
(Bz — LBl)

[(As2 — LAo)D + (Aay — LAy)) 47

[(A2a — LA13)L + (A21 — LA)]
[_L I(n-—I)] S

Nsmamy
1 T 1 R I

According to [4], it is clear that if matrix E is
chosen null, then matrices J and H can always be
calculated once L is determined so that matrix D is
Hurwitz and Asy — LA;5 = 0.
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