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Abstract 

Perturbations on &optimal solutions are used for the 
derivation of efficient/feasible predictive algorithms. 

1 Introduction 

Model based predictive control (MBPC) has at- 
tracted a lot of research both in the unconstrained 
case (eg. [l, 2, 3, 43) and the constrained case (eg.[5, 
61). The constrained case involves an infinite dimen- 
sional problem, but practicable algorithms can be de- 
rived by performing the optimization over a finite 
number of future control moves. This restriction has 
been removed in [7, 81 which is based on conditions 
which are sufficient and necessary for the guarantee 
of stability. The sequence of predicted future control 
moves is no longer forced to be a Finite Impulse Re- 
sponse (FIR), but the degrees of freedom available for 
the purposes of optimisation is still taken to be finite. 

In the absence of constraints, a desirable solution 
is provided by L&R, but on account of the restricted 
number of degrees of freedom in the earlier MBPC 
algorithms, it was not possible to recover an L&R 
type of solution, even for the part of the trajectories 
that lies beyond the “fast transient” horizon, say N, 
for which constraint violation is not a problem. To 
remedy this [9] consider a state space description and, 
propose an Algorithm which optimizes over a FIR 
sequence of control moves with the modification that 
control law switches to the L&R law beyond N. 

Here we propose an alternative approach which 
considers the class of stable predictions and within 
this identifies the unconstrained &optimal solution. 
This may not be feasible, and to cope with this prob- 
lem we perturb the optimal so as to avoid constraint 
violations. A simple perturbation consists of a re- 
placement of the target setpoint value by a slack vari- 
able which is then chosen to be as close to the actual 
setpoint as the constraints will allow. The advantage 
of the resulting algorithm is that it avoids the need 
for Quadratic Programming (QP) routines which can 
be computationally very demanding and that it is 
circumvents infeasibility problems for all achievable 
setpoints. A second alternative considers a FIR per- 
turbation in the class of stable 12-optimal prediction 
equations and uses QP over a finite number of degrees 
of freedom, ne, invoking the constraints over a finite 
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horizon neon. This alternative shares many features 
in common with [9] but results in a different con- 
trol law. It is conjectured that a comparison between 
these two approaches will be example dependent and 
that n, often will be smaller than N thereby reduc- 
ing the computation involved in QP. It is argued here 
that through the introduction of a slack variable for 
the setpoint it is possible to take n, to be as small as 
required (and our choice will be n, = 0). The paper 
concludes with a simple algorithm for the determina- 
tion of n,,, which improves upon earlier algorithms 
and with a numerical examples section. 

2 Stable/optimal predict ions 

Consider the scalar, discrete-time, time-invariant 
model: 

- 1 b(z) -1 w 
Yt+i = z a(z)Ut+i = 2. A(z) --nu,+i, i = 1,2). . 

A(z) =‘(i - z-l)+); hh, = ut - utsl 

(1) 
where yt is the system output at time t, and ut is the 
corresponding input; z is the z-transform variable and 
2-l is the backward shift operator. Although the ob- 
jectives of the various predictive control algorithms 
may differ, in common to all is the requirement for 
a guarantee of stability, and this in turn requires the 
use of control laws which result in stable input and 
output predicted behaviour. The following section 
gives a brief derivation for the class of such stable 
predictions. 

2.1 Stable input/output predictions 
. 

Let ut+i, i = 0, 1, . . . be a predicted input trajectory 
and let &+i, i = 1,2,. . . be the corresponding pre- 
dicted output trajectory. Then from (1) we have: 

+ ‘(‘); B(%) = &+,) (2) 

where P(z) accounts for initial conditions at t. It is 
emphasised that F’(Z) is the z-transform of the pre- 
dicted output and involves future values only. Next 
assume for convenience (without loss of generality) 
that the setpoint trajectory is a constant, TO. The 



resulting reference signal rt = ~0 and corresponding 
predicted error signal it = rt - & have z-transforms: 

^ 
R(z) = *, &) = Q@) -;(y*U(r) (3) 

where Q(Z) = a(z)rc-P(z). Thus the predicted error 
will be stable if and only if: 

Q(z) - B(z)*@) = A+(z)@(z) (4) 

where Q(Z) is a polynomial or stable transfer func- 
tion; it is assumed that A(z) = A+(z)A-(z) and 
that the roots of A-(z) are all inside the unit cir- 
cle, whereas those of A+(z) are all on, or outside the 
unit circle. From eqn. (4) we have that the predicted 
input behaviour will be stable if and only if: 

A+W(4 + B+WW = Q(z) (5) 

where, as with A(z), B(z) = B+(z)B-(2); and ‘I’(z) 
is a polynomial or stable transfer function. 

Theorem 2.1 The class of stable input and output 
predictions is defined by: 

^ 

E(z) = A- (2) + A-(z) 
B+(z) qz) $44 

(6) 

^ 

Au(Z) = B-(z) .B-(2) 
A+(z) Jyz) %@I 

(7) 

where F(z) is an arbitrary stable transfer function 

and$(Z), Qp(z) d enote a pair of particular solutions 

to the Betout identity of eqn. (5). 

Proof: This follows from (3), (4) and the fact that 

Q(z) = @I’(4 + B+ww 
q(z) = @k> - A+GNz) 

define the entire class of solutions to eqn. (5). 0 

2.2 Unconstrained optimal 

To define the framework for the constrained predic- 
tive control we first consider the unconstrained case. 
As is usual we consider as our cost, a function J that 
penalizes predicted error and control activity. In par- 
ticular we shall take J to be: 

J = F[E~;+~ + X2A0,2+d-1] @> 
a’=1 

= & f[@(~)[~ + A21*&,121$ 

+jll[@] [-t&]F’~4~~2~, + 

where F’(z) = A(z)F(z)/A-(z)B-(z) and use has 
been made of Parseval’s theorem and of (6,7); I] . I] 
is the Euclidean norm and all contour integrals are 
taken over the unit circle (Iz] = 1). Here h(z) is the 
stable solution of the identity: 

B*(z)B(z) + A2A*(z)A(z) = A*(++) (9) 

where (.)* denotes replacement of z-l’ by Z; as ex- 
pected A(Z) will be shown below to be the 12-optimal 
closed-loop pole polynomial. Then making use of the 
transformation (which is unitary on the unit circle): 

[ 
B*wA*w -y;yy$4 
XA(z)/A(z) z z 1 

we deduce that J can be written as: 

J = $f IG(z) + F’(r)l’$ 

+j& {I 
A+W&) + %W?44 “g. 

w 2’ 
B* WPb> 

G(*) = A*(z)A-(z) -’ 
2 A*M%(4 

A*(z)B-(z)’ 

The 2nd term of J is constant and can be ignored 
during the minimization which now becomes: 

min J’; J’ = - 
F(z) 

j;T f P+(z) + F”(z)12$ 

where F”(z) = F’(z) + G-(z) and G(z) = G+(z) + 
G-(z), with G-(z) = &(z)/A-(z)-X2&(2)/B-(z), 
G+(z) = T~(z)/A*(z) - X2T2(z)/A*(z), and Sl(z), 

Z(z), SzM, T ( > 2 z are the minimal order solutions of 
the Bezout identities: 

A*(.+&) + A-(+?(z) = Bag&) (10) 

A*(Z)&(Z) + B-(z)T2(2) = A*(z)$,(z). (11) 

With these definitions it is easy to show that: 

J’= & 

s 
2?r 

0 
IG+(ejs)12d0 + -& 12” IF”(eie)12d0 

0 

(12) 
which is clearly minimized for F”(z) = 0, ie. when: 

J’(z) = &t(Z) = 
-B-(z)&(z) + X2A- (z)S&) 

A(Z) 
\ I 

(13) 
The proof of (12) relies on an application of Cauchy’s 
Theorem for the case when F”(z) is strictly proper 
(when viewed as a rational function in z-l), or in all 
other cases one can resort to the application of the 
Residue Theorem (applied to all the simple poles). 

The following optimal predicted control increment 
and output error equations can be derived by substi- 



tution of eqn. (13) into eqns. (6,7): 

Although it appears that the stable poles and mini- 
mum phase zeros appear as poles in the optimal pre- 
diction above. However using the Bezout identities 
of (10) and (5) it is easy to show that the numerator 
of the first term in the expression for l?,+(z) vanishes 
at the roots of A-(z); similarly using (11) and (5) it 
is easy to show that the numerator of the first term 
of Al&(Z) vanishes at the roots of B-(z). 

3 Predictive algorithm 

In most practical applications the input values ut 
and/or the control increments, Aut, are subject to 
(hard) constraints of the form: 

g 2 ut+i 5 ii, Au < Aut+ 5 nu; i 2 0 -- (15) 

where u, U, &, z are assumed to be constants 
satisfying the obvious steady state requirements: 

41) 
g+E s b(l) -rg 5 U--E; Au& 5 0 5 G-E’; E, 6’ > 0 - 

(16) 
Remark 3.1 On account of the stable nature of (6,7) 
it is not necessary to invoke condition (15) for all 
positive i; indeed there will always exist [8, lo] a fi- 
nite constraint horizon, n,,,, with the property that 
if (15) holds true for all 0 5 i < neon, it will hold 
for all positive i. For convenience nCO,, should be 
chosen to be as small as possible, and suitable al- 
gorithms for the selection of n,,, have already been 
proposed [8, lo]; an alternative algorithm which en- 
ables the determination of non-conservative neon will 
be described in section 5. 

The existence of hard input constraints implies that 
the optimal solution of (13) may not be feasible. In 
the next section we deal with the general constrained 
predictive control strategy, but here we begin with the 
case where the constraints of (15) are wide enough as 
not to cause infeasibility. In this case the optimal 
predicted control law of (14) is feasible and suggests 
as the current optimal control increment the value: 

Aut = (17) 

x2 A(z)S2(z) + A+(*P-(*N(z) 

B- (%)A-(%) 1 . 

Thus given the previous control ut-1, it is possible to 
compute the current optimal control ut. This value 

can be implemented and the procedure repeated at 
the next sampling instant, thus yielding the following 
/a-optimal predictive control algorithm: 

Algorithm 3.1 (i). Set t=O. 

(ii). Given the past outputs and control incre- 
ments, yt-i , Aut--i-r, i = 0, 1, . . . , n (where n 
is the degree of A(z), and for convenience it has 
been assumed that the degree of B(z) is one less 
that of A(z)) form the polynomial P(z). 

(iii). For the P(z) above and the given setpoint 
rc, compute Q(z) in eqn. (3) and solve the Be- 
zout identity of eqn. (5) for aa,( %Pclp(z). For 
simplicity these two polynomials could be taken 
to be the minimal order solutions of (5). 

(iv). For the (a,(z), qp(z) of step (iii) obtain 
the minimalorder solution to the Bezout identi- 
ties (10,ll) and introduce these in (17) to com- 
pute the current optimal control input ut. 

(v). Implement ut, increment t by 1; GOT0 (ii). 

Remark 3.2 The implementation of the algorithm 
is not in its most efficient form; it is clear from (14) 
that the z-transform of the optimal predicted error 
and control increment trajectories is of the form: 

^ QP (2) 
Eopt(Z) = A-(z) + A-(z)A(z) 

B+(z) N(z) 

Aapt = ?k@ - A+(z) N(z) 
B-(z) B-(z)A(z) 

where N(z) is a polynomial of given order (dictated 
by (14)). A more efficient way of computing the op- 
timal N(z) is to: (i) form a vector N out of the co- 
efficients of N(z) taken in ascending powers of z-l, 
(ii) use the Theorem of the Residues to express the 
cost of (8) as a quadratic function of N. The optimal 
choice can then be computed by setting the gradient 
of J with respect to N equal to zero. Another efficient 
alternative can be derived by writing : 

^ NE (2) 
EOP44 = n(Z); d,pt(z) = w 

z 
(18) 

and recognising that NE(Z) and Nav(z) satisfy the 
Bezout identity: 

~*)NE(*> - %)NAv(~)= A(z>Q(*> 

Solving this for polynomials NE(Z), Nav(z) of the 
appropriate degrees (as indicated by eqn. (14)) will 
generate the unique optimal solution. 

Theorem 3.1 In the absence of model mismatch and 
disturbances, Algorithm 3.1 has guaranteed stability 
and will cause the actual error signal et = rg - yt to 
converge asymptotically to zero. 



Proof: This is easy to establish by showing that the 
optimal cost function is a monotonically decreasing 

Si, S2 are linear functionals of eP, !PP, respectively, 
and these in turn from (5) can be seen to be lin- 

function of time. This in turn follows from the fea- 
sibility assumption and the stability of control incre- 

ear in Q, the vector of coefficients of Q(Z). Combin- 

ment and error predictions of eqns. (6,7). 
ing these observations with the definition of Q(z) (as 

cl given in (3)) we deduce that: 

4 Constrained algorithm 

In general the optimal solution of eqn. (14) may 
not be assumed to be feasible due to the presence of 
constraints. At times of infeasibility therefore it be- 
comes necessary to perturb F(z) away from its opti- 
mal choice given in eqn. (13). We will do this subject 
to the obvious requirement that the new algorithm 
will converge in finite time to a Fort(z) which is fea- 
sible. In this section we consider two alternative al- 
gorithms that satisfy both these requirements. 

4.1 Using a setpoint slack variable 

Depending on the size of the setpoint change, ro, it 
may not be possible to implement the optimal solu- 
tion of (14) without violating the constraints of (15) 
and rs will be termed respectively feasible (for suffi- 
ciently small ru) and infeasible (for all other rs). A 
way of avoiding infeasibility is to adopt, in place of 
rs, the feasible setpoint value ri which is nearest to 
rs. At the next time instant, rt will still be feasible, 
but a new rT, which is nearer to ru can be defined and 
adopted as the new target. Because of the stable na- 
ture of the predicted input trajectories the difference 
in rz at successive times cannot be zero over an infi- 
nite time interval. It follows that after a finite (but 
unknown) time the input and control increments will 
fall well within their respective constraints so that rs 
itself will become feasible. From then on the proce- 
dure outlined will become identical to that described 
in section 3 and will therefore lead to stability and 
asymptotic &optimal tracking. 

Theorem 4.1 The conmputation of ri, the feasible 
setpoint is a linear program. 

Proof: It was already remarked in section 2 that the 
numerator and denominator of the first term in the 
expression for Aoa,t of eqn. (14) have B- (2) as a 
common factor, as a result of which we may write: 

A(z)$,(z) - X2A(z)S2(z) - lL(z)A+(z)S~(z) = 

B-(z)NAU(z) 

which is linear in the coefficients of \E‘, (z), 4(z), 
&(z), N’u(z). Hence the vector NAV of the coef- 
ficients’ of &u(z) can be written as a linear combi- 
nation of the vectors !PP, Si, S2 of the coefficients 
of !PP(z), &(z), Sz(z). By (10,ll) it is obvious that 

NAU=VIX+V~ (19) 

where VI, V2 are known vectors and where x has 
been used in place of rs. Then, denoting by hi, 
i = 0, 1,. . . the elements of the impulse response of 
l/A(z), we have from eqn. (18) that: 

Aiit+a = HT(Vlx + V,), i = 0, 1, . . .ncora, PO> 

where HT = [ha hi-1 . . . ho 01. We also have that: 

j=i 
Ot+i = c Ati t+j+Ut-1, i=O,l,... n,,,. 

j=O 

Thus both the predicted absolute and incremental 
values for the optimal inputs are affine in rz and 
therefore the minimization problem 

rT, = arg{mfi Ire - x1; subject to constraints (15)) 

(21) 
constitutes a linear program. 0 

Algorithm 4.1 This is identical to Algorithm 3.1, 
except that infeasible ru are to be replaced by the op- 
timal solution r: to the minimization problem of (21). 

Theorem 4.2 Algorithm 4.1 has guaranteed stability 
and will track asymptotically any setpoint ro. Feasible 
setpoint trajectories will be tracked optimally (in the 
12 sense), whereas for rc infeasible the algorithm will 
steer the system in such a way that ro will become 
feasible at some finite moment in time, say t = to and 
thereafler the algorithm will give trajectories with are 
optimal with respect to the initial conditions at to. 

Proof: For rs feasible Algorithm 4.1 is identical to 
Algorithm 3.1 and the proof proceeds as per that 
given for Theorem 3.1. On the other hand at all t 

for which rc is infeasible, the algorithm will adopt a 
sequence of different setpoints r2; which by their defi- 
nition (eqn. (21)) will tend towards rc. This together 
with the stable nature of the predictions of eqn. (14) 
(computed for rz) imply that within finite time, say 
t = to, re will become feasible. From then on (in the 
absence of model mismatch and disturbances) the al- 
gorithm will follow the trajectories of eqn. (14) which 
are optimal with respect to the 12 cost of eqn. (8) for 
the -initial conditions at t = to. 0 

Remark 4.1 An important advantage of Algorithm 
4.1 is that though it clearly addresses the problem of 



optimising performance it does so in a manner that 
avoids computationally expensive techniques such as 
QP which is used widely in the constrained predictive 
control literature. Instead, all that is required here is 
the solution of a linear program. 

4.2 Perturbations on the optimal F(z) 

An alternative way of regaining the feasibility of re 
is to detune the optimal control law of (14) via the 
introduction of extra degrees of freedom. In partic- 
ular, with F(z) = F&(z) + C(z) in (6,7) one could 
stipulate the detuned predicted trajectories: 

i(Z) = &pt(Z) + 

A??(Z) = Ai&,, 
(22) 

where C(z) is a polynomial of finite degree whose co- 
efficients are to be used in the minimization of J sub- 
ject to constraints (15). Introducing these expressions 
into the cost of eqn. (8) and using Cauchy’s Integral 
Theorem we deduce that: 

J = J&t + ~~[~~~~2~~~2]lc(~)~2~ 

= Jopt + CTSC (23) 

where the Theorem of the Residues has been used to 
express the perturbation on the cost as a quadratic 
function of the vector C of the coefficients of C(z); 
S is a known symmetric positive definite matrix and 
JOpt denotes the value of the cost J for F(z) = I&(z). 

Theorem 4.3 Let n, - 1 denote the degree of the 
polynomial C(z) and assume that Al&,,(z) for a se& 
point ro is feasible at time t. Then nc can always be 
chosen to be large enough (but finite) so that at the 
next time instant the AC(z) of eqn. (22) computed 
for a new setpoint re + 6re will be feasible, irrespec- 
tive of how large ro; it is assumed that re does not 
violate the steady state constraints (16). 

Proof: This is straightforward, but involves a fair 
amount of algebra and is given only in outline. Here 
is a sketch of the key steps: Let AOt+llt(z) denote 
the z-transform of the predicted values for the control 
increments at t + 1 given the optimal control law at 
t. Then it is possible to show that: 

ffA(z) A??t+,(z) = A&+&) + b(z)6r~ - 

04) 
where cr is a constant. By assumption Af?t+,,t(i) is 
feasible, therefore all that is required is a choice of 

C(z) that will counteract the effect of rc. Clearly if 
it were possible to chose: 

C(z) = CY B- (z)A- (z> hro 

A(Z) 

then the effect of re would be cancelled altogether. 
However this would require an C(z) whose sequence 
of coefficients is infinitely long. Yet given the stability 
of the RHS of eqn. (24) it follows that a finite time t’ 
exists such that the sum of the impulse responses of 
the first two terms (of the RHS (24) is less than the 
E of condition (16); therefore C(z) need only match 
the MacLaurin expansion (in terms of powers of z-‘) 
of the RHS of eqn. (25) up to the t’-th power. 0 

From eqn. (22) it is possible to write the input 
constraints of (15) as linear inequalities in C: 

- 
Au < [Aii,,],+i + G$ 5 Au -- j=i 

u 5 C{[A&pt]t+j + GTC} + ut-1 5 u (26) 
j=O 

for i= O,l,...neon, where GF = [ga gi-1 . . . go 0], 
and gi, i = O,l,... are the elements of the impulse 
response of -A+(z)/B-(2). 

Algorithm 4.2 As per Algorithm 3.1, with Al&(z) 

of (14) replaced by AC(z) of (29) for C(z) corre- 
sponding to the solution of: 

C,,t = arg{m$J; subject to constraints (26)) 

(27) 
Note that C,,t can be obtained using standard QP. 

Theorem 4.4 Algorithm 4.2 has guaranteed stability 
and asymptotic tracking. Furthermore, for ro feasible 
it will be identical to Algorithm 3.1, whereas for rg in- 
feasible it will steer the system in such a way that after 
a finite time to the optimal control law of eqn. (14) 
will be feasible and thereafter will give input/output 
trajectories which are 12-optimal with respect to the 
initial conditions at to. 

Proof: From the form of the cost J of eqn. (23) it 
is obvious that for feasible rg the optimal choice for 
C is C = 0 which shows that Algorithm 4.2 will be 
identical to Algorithm 3.1 for re feasible. 

For re infeasible and ne large enough, the QP prob- 
lem of eqn. (27) is feasible and hence it is easy to show 
that J will be a monotonically decreasing function of 
time. This relies on the fact that the C,+ computed 
at t provides a predicted control trajectory which is 
feasible and will remain so at the next instant if the 
control law is not changed but will (on account of the 
infinite horizon used in the cost) result in a smaller 



cost which may be reduced further upon further op- 
timization (over C) at t + 1. The monotonic decrease 
of cost combined with earlier arguments can be used 
to show that within finite time the control law of (14) 
will become feasible at which point the optimal choice 
for C,,t is C,,t = 0, and this completes the proof. •I 

Remark 4.2 For certain initial conditions and large 
rg it may be necessary to use a large n, in order to en- 
sure feasibility. However ne is the number of elements 
in the vector C and as such represents the number of 
degrees of freedom available in the QP problem of 
eqn. (27). This may increase the computational load 
unacceptably. At such times it is perfectly possible 
to use a smaller n, and allow the working setpoint 
to become a slack variable along the lines indicated 
in section 4.1. The earlier arguments can be applied 
once again to prove that the resulting algorithm will 
steer the system in such a way as to make rs fea- 
sible within finite time, upon which finite time the 
algorithm will automatically revert to Algorithm 3.1. 

5 The selection of neon 

For simplicity we consider here rate constraints 
only; the extension to the general case is obvious. 
Let u denote the dimension of NAU, and invoke the 
rate constraints of (15) to (19,20) to get: 

Au+Au 2 
NAU-- - 

Au-Au 1 
5 1; i = O,l,. . .v 

L - -, 

(28) 

which has the form of the “bounded noise” identifica- 
tion problem [ll]. Following this work it is possible 
to use a Kalman iteration type of algorithm to define 
an ellipsoid within which NAV must lie: 

(NAU -~o)~V(NACJ -eo>L 1 (29) 

where 8s is a constant vector and V a symmetric 
positive definite matrix. Combining the above with 
eqns. (19,20) it is easy to deduce that: 

Li<Atit+i<Ui; i>u (30) 

where Li = HT& - pa, Vi = HT80 + j3i and j3i = 
(HTV/-1Hi)1’2. 

Proof: If the rate constraints hold true for up to 
i = neon, then NAP will lie in the ellipsoid of (29) 
so that (30) will hold true. Thus if the predicted 
control law is feasible for all i 5 neon, it will also be 
feasible for all i > i,,, and also for all i > n,,, . 0 

Remark 5.1 None of (28,29,30) depend on time t, 
hence the computation of neon can be performed off 
line; furthermore, the computational burden is clearly 
small. Despite this, simulation has shown that the 
values of n,,, suggested by Theorem 5.1 are smaller 
(in cases by a considerable amount) to those given by 
the algorithms proposed in [8, lo]. 

6 Illustrative Example 

An example is included to illustrate the advantages 
of Algorithms 4.1 and 4.2 over existing algorithms. Of 
the existing algorithms we select Infinite Horizon Pre- 
dictive Control (IHPC) [7] as representative, because 
it considers the whole class of stable predictions and 
does not constrain the sequence of the future control 
increments to be FIR’s. The means of comparison 
will be plots of simulated responses and an evalua- 
tion J” of the cost J over the actual error and control 
increment values. We emphasise here that because 
of the nonlinear nature of the control and the use of 
J”, comparisons are example dependent; the example 
discussed below has been chosen to: (i) be simple; (ii) 
demonstrate an instance when the algorithms devel- 
oped in this paper afford significant advantages. 
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Theorem 5.1 Let i,,, be the smallest integer i for 
which Li and Us in (30) lie in the interval [Au, X] 
for all i > i,,, and define n,,, = max{v, i,,,T Then 
if the rate constraints of (15) are satisfied for all i 5 
neon, they will also be satisfied for all i. 

Figure 1: Responses for IHPC, Algorithm 4.2 and 
Algorithm 4.1; (a) outputs and setpoint, (b) inputs, 
(c) output and slack variable for Algorithm 4.1 



The parameters for this numerical example are: 

u(z) = 1 - 1.552-l + 0.65~-~ - 0.076~-~, 
b(z) = 1+ 0.5%-i - 0.662-2, - 

Au = -AU = 0.3, ?i = -g= 0.6, (31) 

72e z, A = 0.5, To = 1 

With zero initial conditions the chosen setpoint is fea- 
sible, and so all three algorithms produce stable re- 
sponses as shown in Fig. la and Fig. lb. From these it 
is seen that IHPC, due to its “cautious” aspect (it re- 
places only unstable and undesirable/slow open loop 
poles) produces a slow output response, and does not 
use the whole range available for the control incre- 
ments (]Au] < 0.155 for IHPC in Fig lb). In contrast 
Algorithms 4.1 and 4.2 hit the limit of 0.3 and pro- 
duce much faster responses (these are indistinguish- 
able from eachother in Fig.s la,b). This is due to 
the wide input constraints which result in a sequence 
(0.68, 1, 1, . . .} of slack setpoint variables used by 
Algorithm 4.1 (as shown in Fig. lc), deviating from 
the desired target of TO = 1 only at the first sampling 
instant. The respective costs are: 

LPC = 1.146; &i N &4.2 = 0.585; J; = 0.470 

where the cost jU for the unconstrained case is in- 
cluded to show that the constraints, though loose, 
have a significant effect. 
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Figure 2: Response for Algorithm 4.1; (a) output and 
setpoint, (b) input, (c) output and slack variable 

The effect of constraints is very pronounced with a 
rate limit of 0.15 in (31). The costs are then: 

LlPC = - 1.263; 54.1 = 1.018; J4.2 = 170.2. 

Clearly, with only one degree of freedom Algorithm 
4.2 is unstable due to infeasibilty problems, whereas 

IHPC, though not unstable, givesa larger cost. The 
sequence for the slack setpoint variable in this case 
is (0.33, 0.68, 1, 1, . . .} (as shown in Fig. 2c) and 
causes a slower output response (Fig. 2a). Neverthe- 
less Algorithm 4.1 uses the full range of control incre- 
ments (as deduced from the input response shown in 
Fig. 2b) and gives stable and satisfactory responses 
at a computational cost which is considerably smaller 
than that required by either IHPC or Algorithm 4.2. 
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