
A State Reconstruction Algorithm for Parameter Dependent 
Discrete Event Dynamic Systems 
F’rancesco Martinelli, Salvatore Nicosia, Paolo Valigi 

rl 
p i 

\ 
Dipartimento di Informatica, Sistemi e Produzione 

Universita di Roma “Tor VergataP - 00133 - Roma - Italy 
% 

martinelli@tovvxl.ccd.utovrm.it, {nicosia,valigi}Qdisp.utovrm.it 

Abstract 

In this paper, the problem of state reconstruction for 
the class of parameter dependent discrete event systems 
that can be modeled by means of queueing networks is 
considered, and a novel solution is proposed, based on the 
use of observed data. The algorithm allows to accurately 
reconstruct the state behavior of a system, for parameter 
values different from the nominal ones. 

The proposed approach has been applied to the on-line 
control problem for real systems, and a complete control 
procedure is proposed. 

1 Introduction 

Discrete Event Systems (DES) are important models 
for real systems whose state transitions are triggered by 
the occurrence of discrete events [l, 2, 31, such as com- 
munication networks, manufacturing systems, computer 
systems or traffic networks. 

Several techniques based on (observed) sample path 
analysis have been proposed, aimed at estimating the 
behavior of a DES under perturbed values of some of 
its parameters. In particular, perturbation analysis tech- 
niques are now well established, and can be used both for 
continuous and discrete parameters. Similar approaches 
include augmented system analysis [4], standard clock 
[5], and rapid learning [6]. Recently, an exact finite 
perturbation-like algorithm for the analysis of single class 
queueing network has been proposed, for the case of 
buffer capacity augmentation [7]. A “time warping” ap- 
proach, similar to the one proposed here, has been consid- 
ered in [8]. Modified finite perturbation rules have been 
proposed in [9, 10, 111 for the case of general queueing 
network, extending the original results in [12, 131 to the 
case of weakly adjacent events. 

Although, historically, the main motivations for the in- 
troduction of these techniques was the attempt to reduce 
simulation computation effort, they are particularly use- 
ful also to implement on-line control schemes for physical 
systems. As a matter of fact, in this case it is not pos- 
sible to run several instances of the same system, with 
different values of the parameters, in order to asses its 
behavior. Such a type of on-line comparison instead, is 
made possible by sample path techniques. 

Perturbation analysis techniques attempt to estimate 
the perturbation in the time of occurrence of events by 

comparing other time perturbations, as well as nominal 
timing, without taking into account the state evolution. 
The main difficulty in such a time “timing comparison” 
approach is that, in order to correctly compute the time 
perturbation of an event, almost all the past and future 
events are required, thus making such a computation too 
complex, and, more important, non causal. The problem 
is usually solved by assuming that only sufficiently close 
events may change order due to parameter perturbation. 
This allows to obtain computation algorithms, which are 
approximate in nature, and whose accuracy is reduced 
when larger parameter variations are considered. 

Here, a novel algorithm is proposed, fully exploiting 
the benefit of reconstructing the “extended” state of a 
queueing network: if the network state is available, the 
“destiny” of a node arriving to a queue can be decided 
immediately, without any need for future events. This 
allows to derive exact algorithms, regardless of the mag- 
nitude of the parameter perturbation. 

The proposed algorithm is based on the assumption 
that relevant information, such as the system initial state 
and the system input sequence, can be extracted from the 
observation of the system over a finite horizon, and prop- 
erly stored. Based on the knowledge of these data, and 
assuming a “topological” model of the system is avail- 
able, the state sequence can be fully reconstructed, for 
perturbed values of the system parameters. The avail- 
ability of perturbed state sequences allows to compute 
performance indices, and to implement dynamic control 
schemes. 

This paper considers the state reconstruction problem, 
illustrating in details the proposed methodology for on- 
line state reconstruction and control. In [14], the appli- 
cation of such a methodology to on-line control of manu- 
facturing systems has been tested by means of simulation 
results. Initial results on the parallel implementation of 
the algorithm are presented in [15]. The reconstruction 
algorithm is mainly intended for on-line control of real 
systems, and therefore computational efficiency is not the 
major issue. 

2 Queueing network dynamics 

In this paper it will be considered the class of systems 
that can be modeled by means of queueing networks with: 
(a) general service time at each node, (b) general rout- 



ing policy at each node, (c) general scheduling policy at 
each node, (d) finite buffer capacity, (e) multi-class, (f) 
non-preemptive service at each node, (g) infinite arrival 
rate sources, (h) infinite capacity sinks. Each node of 
a network comprises a server, which has as much input 
queues as the number of classes it can provide service to, 
and each class is associated a dedicated input queue. 

The event of type “completion of service of a customer 
on a node” is sufficient to fully describe the evolution of 
the class of queueing networks considered here. 

Notation 

Let Ns denote the number of servers in the network, 
NC the number of customer classes serviced by the net- 
work, NQ the total number of queues in the network; 
let N := {1,2,. . . , Ns} denote the set of all the nodes, 
c := {1,2,. . . ) NC} the set of all the customer classes, Ci 
the set of all the classes that may be serviced at node i, 
and Q := {(i, a) : cr E Ci, i E N} the set of all the net- 
work queues; hence NQ = 1 QI. Finally, let Nc,i denote 

the number of elements in Ci (NQ = CF1 NC,;). 

The following three types of counters will be used. The 
first counter is global, is used to count the service comple- 
tion events occurred over the whole network, is denoted 
by n, and is referred to as the global counter. The second 
type of counters are local to each node; node i counter 
is denoted by ki, i E N, counts the total number of ser- 
vice completion events occurred at node i, regardless of 
the customer class, and is referred to as a node counter. 

The third type of counters are local to each node as well; 
counter k+, a E Ci, i E N, is used to count the number 
of class cr customers serviced at node i, and is referred 
to as a class counter. Clearly, CaECi ki,, = ki. 

The event of service completion of a class a customer 
at the i-th node will be denoted by +, the service com- 
pletion of the ki,,-th customer of class Q at node i will 
be denoted by ci,(y (k), the time of occurrence of the com- 
pletion event Q,~ (k) will be denoted by t&(k); the com- 
pletion time of the customer currently under service on 
node i, or the completion time of the last customer ser- 
viced by node i, if node i is currently starved or blocked, 
will be simply denoted by tz, and tC := (tf, t$, . . . , thJT 

will denote the vector of all completion times. 

The vector x of the queueing state is given by x := 

(XL x$7 4’7 where XL is the NQ dimensional vector 
of the current queue lengths (without counting the cus- 
tomers under service), 5~ is the NS dimensional vector 
of the classes of customers currently under service (with 
XC,~ = 0, i E N denoting that server i is empty/starved), 
and finally zn is the Ns dimensional vector indicating 
whether a server is blocked or not. The above structure 
of the state vector implies that each node can be blocked 
by only one other node. Hence, splitting nodes are not 
allowed here, while assembling/joining nodes are. 

Let X denote the state space of the queueing network, 
let & = {Q, (Y E Ci,i E N}, denote the set of all the 

completion events, let A(z) := {i : (XC(i) # O)r\(zg(i) = 
0), i E N}, for all x E X, denote the set of servers active 
while the network is in state x, and let R(z’; 2, s) := {i : 
i E d(z’) \ (d(x) \ {s}), i E N} denote the set of servers 
re-activated upon the transition from state z to state z’ 
due to service completion at server s. 

It is assumed that randomness in state transition can 
only arise from random scheduling policies, and/or ran- 
dom routing policies. The stochastic structure of these 
policies is not relevant, it will be simply assumed that 
each node i, i E N, where a random scheduling policy 
is used, is associated a random sequence {us,i}k;, taking 
values in Ci, and indexed by the node counter ki. Sim- 
ilarly, it is assumed that each node i, i E N, where a 
random routing policy is used, are associated Nc,~ ran- 

dom sequences {uR,&~,, , taking values in &, indexed 
by the class (Y counter ki,, of node i. 

As for the randomness in customer service duration, 
for the purpose of this paper it will be assumed that each 
node i, i E N, are associated Nc,i random sequences 

h,i,dki,, 7 taking values in lR+ (positive real numbers), 
indexed by the class counters, with the ii,,-th element 
of the a-th sequence of node i being the random variable 
determining the service duration of the ,I&,,-th class Q 
customer serviced by node i. 

Let (0, B, P) be a common probability space for the 
whole the random sequences {US,i}ki, {Un,i,a}k;,, , and 

b,i,&,, 7 then, each element w E R corresponds to a 
unique realization of these sequences. 

Queueing network dynamics 

Let x(0) E X be the initial queueing state of the net- 
work, let t(0) E lR be the initial time, and assume the ini- 
tial service completion times t:(O), t:(O) E IR,, are given 
for all i E N. Set to zero all the counters, i.e., n = 0, 
ki = 0, for all i E N, k;+ = 0, for all (Y E Ci, and for 
all i E N. The determination of the next queueing state 
is based on the computation of the server s* where the 
next service completion will occur, and the corresponding 
service completion time t*: 

p = ,$&,(w)l 
s* = min{j : t;(n) = t*,j E d(x(n))}, (lb) 

where the min operation in (lb) allows to select a unique 
server. Given t* and s*, the new state and completion 
times can be computed as: 

x(n+ 1) = ~2(x(n),tC(n),s*,~R,2LS), (14 
t(n + 1) = t*, (14 

t”(n+ l> = ~t(xC(n),tC(n),s*,~D), (14 
n=n+l w 

where the vectors Us, ?iR, and tiD are realization of a 
suitable number of random variables from the random 



sequences {US,i}ki, {UR,i,a}k;,, , and {uD,i,cy}ki,, , respec- 
tively, and the i-th component c#Q,; of function & is de- 
fined as: 

&i(X(n), t”(n), s*, CD) = 

{ 

t* + fiD,j, if i E R(x(n + 1); x(n), s*), 

tl(n), otherwise , 

where i%D,i denotes the new service duration for server i. 
Notice that equations (2), describing the network dynam- 
ics, are completely deterministic and can be evaluated 
provided that vectors tin, Gs, and CD are given. 

Now, let the sets of known infinite sequences us(.), 
UR(‘), and UD(‘), be a realization of the random se- 

quences {%S’,i}ki, {uR,i,cy}ki,,, and {uD,i,a}k+, respec- 
tively. Let u(a) := {us(-),uR(*),uD(*)} denote the set 
of all the known sequences US(.), uR(.), and Ug(‘). For- 
mally, u(e), the input sequence, can be indexed by the vec- 
tor ([ki] [k&j) of all the node and class counters. Finally, 
let the set U of all the admissible input sequences be the 
set of all the deterministic sequences u(a) that are real- 
izations of the stochastic sequences {us,i}ki, {uR,i,cy}k+, 
and {uD,i,cy}k+, for some value w E 0. 

Then, the whole state evolution can be computed via 
the map + = (@z @F)T, obtained by the formal compo- 
sition of the equations (la)-(lf) governing a single state 
transition: 

XC*) = ~)5(40),w%u(-)), (24 
f(*> = @t(~(0),tC(O),u(*)). G’b) 

For a given initial queueing state x(O), and initial service 
completion times t”(O), a given infinite input sequence 
u(s) yields a unique infinite state sequence x(e) and a 
unique service completion time sequence t”(e) provided 
that both the initial state x(0) and the initial service 
completion times tC(0) are fully specified. 

In the following the vector xe := (xT, (tc)T)T will be 
used to represent the “complete” state, and referred to 
as the network extended state, with extended state space 

X, := X x IR. Then, (2) can be rewritten as: 

xc(-) = @(Xe(O>,U(‘>L (3) 

and function @ will be referred to as the input to extended 

state map. It is stressed that equation (3) is completely 
deterministic, and its solution depends on completely de- 
terministic initial extended state and input sequence. 

Parameter dependent queueing networks 

Let 19 E 0 be the vector of all the network parameters 
that may change value during network operation, and 
whose impact on network performance is of interest. It is 
assumed that the parameter space 0 has a finite number 
of elements and does not contain structural parameters, 
such as, e.g., the number of nodes in the network. Hence, 
a third argument 0 will be added to map @: 

xc(*) = @(xe(o>,U(.),e). (4 
It is important to stress that, for queueing networks, 

the values that the state may assume are not independent 
from network parameters. Let X(e) denote the admissi- 

ble state space under parameter 8, that is, the set of all 
the values the queueing state vector may assume, for the 
value B of the network parameter. The state space X is 
given by X = &ox(B). A given queueing state x is an 
admissible queueing state under parameter t9 if x E X(e). 

For example, if 8 is the NQ dimensional vector of buffer 
capacities, with O(i,a) denoting the buffer capacity of the 
queue (i,a) E &, then the set X(e) is given by: 

x(e) := {( XT X$ X: )* 

: XL,(i,a) E {O,l,. * . , e(i+) 1, (6 a) E Q, 

Xc,j E Cj, j EN,xB,e E &,e E N} 

where XL,(~,~), xc,j, and xn,e denote the (i,o)-th, j-th, 
and Gth component of the queueing state sub-vectors XL, 
XC, and xg, respectively. 

3 State reconstruction 

The solution to the state reconstruction problem con- 
sidered in this paper, is based on the assumption that, 
for a given physical plant, modeled by a queueing net- 
work, it is possible to observe its behavior over a finite 
horizon, and in particular it is possible to observe the 
input sequence and the initial extended state. 

The extended state sequence, for a given observed in- 
put sequence, a given observed initial state, and some val- 
ues of the network parameter, is reconstructed by means 
of the system dynamics, i.e., by means of the map (4). 

To illustrate the basic idea of the proposed state re- 
construction algorithm, the following problem is initially 
considered, though its solution is not physically realiz- 
able. 

Problem 1 Assume the evolution of a given queueing 
network over an infinite horizon is observed, for a nom- 
inal network parameter vector t9 = ON. Let x$$ be the 

observed initial extended state, u”(.) the observed input 

sequence, and x:(e) = +(xg0,uo(.),f9N) the observed 
extended state sequence. For such a queueing network, 
find the extended state sequence S&(o) corresponding to 

T. 
a perturbed value 0 = 0 of the network parameter vec- 
tor, from the same initial condition x$$, under the same 

input sequence u” (a). 0 

Problem 1 is solved by the following theorem, under 
the only assumption that the observed initial queueing 
state is admissible under perturbed parameter 6. Its 
proof is easy, hence omitted. 



Theorem 1 If the observed initial extended state x$‘o = 

cbw (t;O>T is such that x$’ E X(6), then Problem 

I is solved by the following algorithm: 

&(.) = qx~o,uo(.), 6). (5) 

Theorem 1 allows to solve the state reconstruction 
problem provided an infinite input sequence is available. 
Instead, in real applications, only finite input sequences 
are available, and one is interested in making the best 
use of them, i.e., in reconstructing the longest possible 
extended state sequence. To formally state this require- 
ment, the following notation and machinery will be used. 

Let u(.) be an admissible infinite input sequence, and 
let [Ici+] denote the vector containing all the NQ class 
counters. Then, ulki,,l (s) denotes the unique [ki,,]-length 

finite initial subsequence (briefly, [&-J-subsequence) of 
the infinite sequence u(e), i.e., the finite subsequence con- 
taining, for all Q: E C; and for all i E N, all the elements 
of the corresponding sequences UR(.) and ‘LLD (e) in u(.) 
with index less than or equal to IC+, and all the elements 
of the corresponding sequence US(.) with index less than 
or equal to ki = CaECi ki,,. In addition, given a [k+]- 
subsequence tilki,,l(.), let U(C[J+I (0)) denote the set of 
all the admissible infinite sequences having Ulki,,l (.) as 
the common [kJ-length finite initial subsequence: 

~(~i[~,,~l(~)) := (4.1 E ~4 : yk;,,] (-1 = ‘LLpi,c&)b (6) 

Now, assume a [&J-subsequence Elki,,]( an initial 

extended state xe,s, and a network parameter e are given. 
Then, for each infinite sequence u(.) in U(C[,,,+l(.)), the 
corresponding extended state sequence xe (a) from the ini- 
tial extended state XQ can be computed, and the set 

S(xe,o, qk;,J (*I, e> can be constituted as: 

ee,o, ‘Il[ki,,] (.I, e) := 

{xe(*> : xc?(*) = @( xe,o,u(-L e>T 4.1 E W[k;,,](.))~ 

The set S(G,O, ~[rci,,l(*>, e) comprises all the infinite ex- 
tended state sequences that can be generated from all 
the admissible input sequences having tilki,pl(.) as the 
common [k&j-subsequence. 

Given an extended state sequence xc,(.), the sub-se- 
quence obtained by taking the first A terms (the n-th 
term is the value that the extended state assumes when 
the global counter is equal to n) will be denoted by 
[x~(.)]~ and will b e referred to as the A-subsequence of 
the infinite sequence x, (.). 

Given the set S(x,,e, 211ki,pl (a), 8), a k-subsequence 

[xE(.)]rc is a common k-subsequence of S(xe,e, ~lk~,~l (a),@ 

if [x,(.)lk = [x2(-Ilk for all x,(.1 E S(xe,O,Ei[ki ,1(-j,@. 
The state reconstruction problem for finite input se- 

quences can be formally stated as follows. 

Problem 2 Assume the evolution of a given queueing 
network over a finite horizon is observed, for a nominal 
network parameter vector 8 = ON. Let xg, be the ob- 

served initial extended state, and u” lIcp ](.) the observed 

[kc,J-length input sequence. For su:i a queueing net- 

work, with a perturbed value 6J = 6 of the network pa- ,. 
rameter vector, find the longest common k-subsequence 

of S($o 7 $yp] c-1 > e^> * 

Problem 2 is initially solved, under the following sim- 
plifying assumption, by means of the subsequent algo- 
rithm. 

Assumption 1 The queueing network only comprises 

servers with deterministic scheduling policy. 

Algorithm 1 Deterministic Marking Algorithm 

l Given the finite observed input sequence u” py-1 (*L 
let u,“(m) be the infinite sequence obtained from usual 

by adding an infinite number of mark symbols after the 
last terms of the sequences in u$ l(e). 

l Apply the reconstruction al&ithm given by &(.) 

= +(xgo,u~(.),@ and t erminate the extended state re- 
construction when a server which needs a new service 
duration value extracts the first mark symbol. V 

Theorem 2 If Assumption I holds, then, if the observed 

initial extended state xgo = ((x:)~ (tg”)T)T is such that 

x0” E X(6), and the probability distributions of all the 

random variables determining the customer service du- 
ration r, for each server, are so that, for all E > 0, 
Prob(0 < r 5 e) > 0, then Problem 2 is solved by the 

Deterministic Marking Algorithm. 

The theorem proof, omitted for brevity, can be found 
in [16]. The extension to the general case of servers with 
random scheduling is not difficult, and is given in the fol- 
lowing algorithm. To simplify notation, assembly nodes 
are not allowed. 

Algorithm 2 Marking Algorithm 

l Given u” lkP l (a), let uy (.) the infinite sequence ob- 
*,a 

tained from u” lk-, l(e) by adding infinite mark symbols 

after the last te;& of all the sequences in u&,,l(.). 

l Associate each server i using a random scheduling 
policy a set Fi, initially empty, and Nc,~ flags f (i, a), 

initially set to zero. 

l Apply the algorithm a,(.) = @(x~~,u$)(.),@, and, 
at each state transition, update flags f(i, a), Q E Ci, and 
sets Fi, for all nodes i implementing a random scheduling 
policy, according to the following rules: 

f(i,a) := { i ft;g(:+l = mark symbol 



Fi = {(i,a), a E Ci : _f(i,a) = 1 and z~(i,o) > 0)) 

and mark all the servers for which all the three following 
conditions are satisfied together: 

1. Fi is not empty; 

2. server i has completed a customer service at the 
current transition, or is starved; 

3. Us(ki) E Fi or us(ki) = mark symbol. 

l The algorithm terminates as soon as a server with 
deterministic scheduling which needs a new service du- 
ration value extracts a mark symbol or a server imple- 
menting a random scheduling policy is marked. V 

Theorem 3 summarizes the results of the solution to 
Problem 2, in the general case in which both determinis- 
tic and random scheduling policies are allowed. Its proof 
is omitted [16]. 

Theorem 3 Assume the queueing network does not con- 

tain assembly nodes, then, if the observed initial extended 

state xpO = ((x$‘)T (tg”)T)T is such that x0” E X(8), 

and the probability distributions of all the random vari- 
ables determining the customer service duration r, for 

each server, are so that, for all E > 0, Prob(0 < r 5 6) > 

0, then Problem 2 is solved by the Marking Algorithm. 

4 Dynamic control 

The behavior of a queueing network can be assessed 
by means of a performance index J(e), depending on the 
network parameter vector 0. 

The queueing network control proposed in this paper is 
implemented on line, by periodically modifying the value 
of the network parameter 8, selecting the new value in an 
admissible subset of 0 (to be defined), with the objective 
of maximizing J(0) with respect to 8. Hence, a control 

action consists in a variation of the network parameter. 
The basic idea of the proposed control scheme is as 

follows. Suppose m control actions have been already 
implemented, m 2 0, and assume the value of the net- 
work parameter, after the m-th control action, is 8 = 0,. 

Control actions are taken with a control period (or ob- 

servation period) equal to the time required to the system 
to complete service on M customers. Parameter M is a 
design parameter. 

Within each control period, the network behavior is 
observed, and relevant data, e.g. the observed input se- 
quence, are stored for later processing. At the begin- 
ning of each control interval, all the counters are reset 
to zero. During the m-th observation period, the per- 
formance index J(em) is computed, and the input [kra]- 

subsequence uFTal (a), the initial and final (i.e., at the end 

of the period) extended state z:a and x:~ respectively, 
are recorded. 

The evaluation of J(B), for all B E O,, with 0, a suit- 
able set to be defined, can be carried out by reconstruct- 
ing the extended state subsequence for every 0 E O,, by 
means of the marking algorithm described above, with 
the input [k,&]-subsequence UK, I (.) recorded during the 

I,_ 
observation period, and a suitable initial extended state 
?i&,s, to be computed taking into account the observed 
initial state xro and the network parameter for which 
the extended state has to be reconstructed. 

Given the reconstructed extended state subsequence, 
it is possible to compute the performance index J’(d), for 
all 8 E O,, and to choose, as the current control action, 
the network parameter 0’ E 0, such that: 

(7) 

Given the final extended state x:~, the set 0, can be 
defined as: 

0, = {e E 0 : x;” E K(B)}, (8) 

where x7 is the queueing state sub-vector correspond- 
ing the the extended state x:~. Set 0, can be reduced, 
by considering suitable constraints, e.g., in order to re- 
duce computational complexity, or to take into account 
constraints in the real system. 

The initial extended state xLo to be used by the re- 
construction algorithm can be selected by one of the two 
following rules, where the distance funcion d(., .) is de- 

fined as d(x’, x2) := Czl lx;+ - x;,~ 1 , whit x;,~ denot- 
ing the i-th entry of the xLcomponent of the queueing 
state vector .j. 
Rule a). Select the initial extended state x~,~=((x$)~ 
(tg’“)T)T such that: 

xa zzz 
0 min 

roEX(e),VeEQm 
{d(xo,$)]. (9) 

Rule b). For all 8 E O,, select the initial extended 
state 2, o a;’ = ((xg>O)T(ti’“)T)T such that 

a,@ 
X0 = sol$e) Id (x0, xgm)l. 00) 

5 Simulation results 

Several simulation tests have been performed, aimed 
at verifying the performance of the proposed real-time 
control scheme, and of the underlying state reconstruc- 
tion algorithm. Here only a brief summary is given, a 
more detailed description can be found in [14, 151. 

The results refer to the dynamic control of a simple 
multi-class manufacturing system, depicted in figure 1, 



Figure 1: The manufacturing system 

and in which control actions amount to allocation of 
buffer capacities of the nodes 2,3,4,5,6, referred to as 
the set of controlled nodes, with the constraint that the 
sum of all the capacities remains constant, and equal to 
8. It is assumed that the service duration of all the nodes 
is independent of part type, nodes 3,4, and 5 works only 
one part-type each. The routing probability from node 
2 to nodes 3,4, and 5 is a model of the mix of part type 
arriving at the system, and of a deterministic routing 
policy, based on part-type: each type to a different node. 

All the simulation experiments have been carried out 
with the following specifications for the network: expo- 
nentially distributed service times, with mean equal to 
0.5, 1, 3, 2, 1, and 1, for nodes from 1 to 6, respectively. 
Routing probabilities from node 2 to nodes 3,4, and 5 
equal to 0.05, 0.05, and 0.9, respectively. 

The performance index to be maximized is the system 
throughput, computed over 30000 part serviced by node 
6. The control period h4 has been chosen as M = 500. 

The optimal buffer capacity allocation for the system 
without any control scheme active has been determined 
by means of independent simulations. Then, the simula- 
tion of the controlled system indicates that almost 80% 
of the control actions coincide with the buffer allocation, 
which is the optimal one for the system without control. 

From the point of view of performance, simulation re- 
sults indicate that the controlled system achieves a sys- 
tem throughput of about 0.81 (over a throughput of 0.815 
for the optimal system, i.e., of the system without con- 
trol scheme, and with fixed optimal buffer capacity allo- 
cation), with a 14% improvement over the throughput of 
the uncontrolled system (i.e., the system without control 
scheme, and with an fixed buffer capacity allocation of 
(1,2,2,2, l)), which turns out to be equal to 0.72. 
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