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Abstract 
We study an interesting issue arising in the digital 
implementation and hybrid control systems frame- 
works, namely what are the basic characteristics of 
the behavior of a nonlinear dynamic system when it 
is driven by input that can assume only discrete 
levels. In particular, we focus on the controllability 
of nilpotent systems with and without drift, whose 
inputs take values in a finite discrete levels set. In 
both cases, we prove that the constrained system 
and the corresponding unconstrained system have 
the same accessibility and controllability 
properties. An application of these results in 
motion planning for nonholonomic systems appears 
in a companion paper. 

1. Introduction 

A major obstacle in the digital computer realization 
of control algorithms comes from the finite nature 
of the computing devices that allows only a finite 
number of levels in the various signals. Thus, the 
control of nonlinear systems, a complex affair in its 
own, gets more complicated when one considers 
the digital implementation of the desired control 
policy. It is well known that the behavior and basic 
properties of a linear system may change drastically 
when sampling is used in one or more locations in 
the loop. This paper is an initial attempt to 
understand the effects of digital implementation on 
the behavior and properties of a class of nonlinear 
systems. 

Such matters acquire additional importance when 
one considers control systems in the more general 
framework of supervisory control systems. Hybrid 
control systems (see e.g. [l]), as the current 
modeling term goes, are a combination of 

continuous-state systems with discrete-event 
logical controllers. In such an environment, the 
repercussions from “constrained” realizations may 
be more far-reaching and, therefore, a better and 
deeper understanding of behavior is a prerequisite 
for safe and successful implementations. 

In this paper, we consider only piecewise constant 
inputs, further constrained to correspond to a 
realistic digital implementation. In a sense, we 
extend the work of H. J. Sussmann and G. 
Lafferriere [3], (see also [4, Chapter 8, Section 
3.41). This class of problems contains other 
members, such as those dealing with the prediction 
of the plant’s behavior after the application of the 
chosen control law, e.g. [6] and [2]. In [2], the 
authors examine the issue of continuous systems 
driven by discrete inputs with low bounded 
switching intervals. Although some general notions 
were introduced for the nonlinear case, specific 
developments were presented for the single input 
(multiple state) linear case and an optimal control 
approach was outlined for the single input, single 
output case. 

Our purpose in this paper is to find out the basic 
characteristics of the behavior of a class of 
nonlinear dynamic plants when they are driven by 
inputs that are piecewise constant, quantized, and 
taking values from a finite set. We focus here on 
the controllability of a nonlinear system of the form 

i(t)=f(x)+~gi(x)vi 
i=l 

where the m components of the input v,,v*,. ..,v, 

take values in a discrete levels set Q = {ql,qZ,...,q,}. 

When the term f(x) is missing, the system is called 

drift-free. Further, we assume that the system is 
nilpotent (or nilpotentizable), that is its flow- 
equivalent system can be represented, and therefore 
analyzed, in a simple way. The order of nilpotency 
is a direct indication of the necessary complexity in 
the representation. A system is nilpotentizable if it 
can be made nilpotent by a proper feedback 
transformation. 

In the rest of the paper, we study the controllability 
of nilpotent systems with drift, whose inputs take 



values in a discrete level set and we give a 
fundamental result concerning the Controllability 
Lie Algebra of the constrained system (part 2.1). 
Next, we study the case of nilpotent systems 
without drift, whose inputs take values in a discrete 
levels set and we prove that these results are 
independent of the number of levels (part 2.2). 

Notation 
The following notation will be used throughout: 

-4 the Controllability Lie Algebra 

(CLA) of the system (S) 

LC(g, ,...g, ) the Lie Algebra generated by the 

vector fields (gl,...,gm} 

% the set of real numbers 

w the n-dimensional Euclidean space 

Is the maximum number of linearly 

independent vector fields in L, 

det(A) the determinant of the matrix A 

2. Main Results 

We consider a nonlinear system of the form 

C&Q): k(t)=f(X)+~gi(x)vi, (1) 
i=l 

where the state x(t) belongs to an open subset N of 

V while the m components of the input 

y,vp..., m v take values in a discrete input levels set 

Q ={ql,q2,...,qr}. We suppose that the vector 

fields f(x),g,(x),...,g,(x), which are defined on N, 

are smooth, complete and linearly independent. 

We are going to study the controllability of the 
system (Z,Q) assuming that it is nilpotent with 
degree of nilpotency k. A Lie Algebra L is nil- 
potent if there is an integer k such that all the Lie 

Brackets [vl [vz, . .., [v~,v~+~ I.. .]] vanish. The 

smallest integer k that has this property is called 
order of nilpotency of L and L is said to be 
nilpotent of order k. The system (C,Q) will be 
called nilpotent if its Controllability Lie Algebra 

L, is a nilpotent algebra. 

The Controllability Lie Algebra (CLA) of the 
system (C,Q) is generated by the vector fields 

F(x, v) = f(x)+ g gi (xbi for all the admissible 
i=l 

values of the input vector v = [q v2 . . . v, ]' . 

If we have r discrete levels then the input vector v 

can take values in a set consisting of p=r” 

admissible input vectors. We denote this set by 

Qhw-d C onsequently, the vector field 

F(x,v) can also take ,u=r” possible values with 

each one of them corresponding to a specific value 

of the input vector v. Thus the CLA, L, , of (Z&Q) 

is of the form 

L, =LC(Zi =F(X,Vi), Vi E Q(ql,qZ,***,qr))* 
Next, we consider the nonlinear system 

(s): jY(t)=f(x)+tgi(x)ui (2) 
i=l 

where the m components of the input y, z+,, . . . ,u, 

take values in %, without any constraint. In other 
words, the system (S) is the system (C,Q) without 
the discrete input levels constraint. 
The system (S) has a CLA of the form 

4s = m(x), g, MT *--, g, (x)). 

2.1 Nilpotent Svstems with Drift 

Our purpose in this part is to find the relation of the 

CLAs L, and L, . As a “comparison tool” we will 

use the Philip Hall bases Wand B of these algebras 

respectively. At a first glance, we expect that L, is 

a subalgebra of L, , but we will prove that under 

certain circumstances L, = L, . In particular, we 

have the following theorem: 

Theorem 1 
Let the nilpotent systems 

(c,Q>: k(t)= f(X)+ tgi (X)Yi 
i=l 

and (s): i(t)=f(x)+~gi(x)ui 
i=l 

with order of nilpotency k, where the input vector 

v takes values in the set Q(ql,...,qr ) while the 

input vector u takes, without any constraint, 



values in %” . If we choose qi, i=l,...,r such the 

maximum number of linearly independent vector 

fields in L,, I,, is equal to the maximum number 

of linearly independent vector field in L, , I,, 

then L, = Ls . 

Proof 

For simplicity and without any loss of generality 
we will assume that the degree of nilpotency of the 

systems (C,Q) and (S) is k=2. Let B and W be the 

P. Hall basis of CLA L, and L,, respectively. 

Then the candidate vector fields for the basis W, 
are the following: 

w = f,&.-, Yg k g l-.Jf~g,,,l~,~g,l...> ,119 > 1 

I Ifwd~~~~~,-,~g”,l 
Assuming that all of these ,g = m + (m + ‘)! 

2(rn -l)! 
vector 

fields are linearly independent, we have that 

W=W ={wl,...,wO},where 

~ w1 =f, w* =g 1 Y.7 w,+1 =g,,..., w8 =LZm-lJgm1 

The candidates for the basis B are the following 

P! 
I”+2&2)! 

vector fields 

B = {z,, . . . . zp, hd ..., GWJ . . . . lz,,z,j . ..) lz,-,.z, jj 

Observing the vector fields belonging to B , we 
see that they can be written as linear combinations 

of the vector fields wl, . . . . w, . This means that: 

1. The basis B has, at most, 0 linearly independent 
vector fields and 

2. Every vector field that belongs to L, belongs 

also to L, . 

Let us suppose that we have chosen ql,. . .,q, in 

such a way that in B there are 8 linearly 
independent vector fields. Denoting these vector 

fields by b,, . . . . b, , we have that B =(bl, . . . . b,), 

where 

bl = ‘ll(4i lw* + ‘*. + ‘10 (4i JwO 

b2 = c*l(qi)wI + ‘.’ + c20(~i)w0 
(3) 

bO = ‘fll(4i lwl + ‘*. + ‘69 (4i IWO 

and the coefficients cij (qi ), i,j = 1,2 ,..., 0 are 

functions of qi,. . . ,4, . 

In order to prove that L, = L, it is enough to show 

that 

(a)if s ELM then s E.$ 

(b) if sELs then SE& 

Proof of (a): 
It is obvious and there is no need to prove it. 

Proof of (3): 
From the assumptions of the theorem, we know that 

the discrete control levels ql,. . .,q, have been 

chosen in such a way that 

B=C(q,)W (4) 

where B=[b, b, . . . b,], W=[w, w,...w,r 

and C(q,)= [c,(q,)l i, j =1,...,0 

with the vectors b,, b,, . . . ,b, linearly 

independent. 

This means that the qi ‘s are such that the matrix 

C(q,) is nonsingular and thus invertible. So we 

can write that 

w = c-l (qJB (5) 

Equation (5) means that the vector field of the basis 
W can be written as a linear combination of vector 
fields of the basis B, i.e. 

~1 = rll(4i bl + e.0 + rl, (4i )b, 

w2 = r21(4i)bl + ... +r20(qi)b0 
(6) 

wO = rOl(4i)b* + **’ +r&9(qi)b0 

where the coefficients r,(qi) are functions of the 

qi’s , i=l,..., m. 

Let s E Ls . Then there are real numbers 4,. . . ,A0 

such that 

s = Aw, + . . . + &ws (7) 

Using (6), equation (7) can be written as follows: 



s =J.&,b, + . . + T,sb,)+ . + &(Telb, + . . . + T,b,) 

= 

Thus scLs JSEL,. 

Having proved (a) and (b) we can say that 

L, E Ls. During the proof we assumed that all 

vector fields belonging to IV are linearly 
independent. In case where some of the vector 
fields of W’ are linearly dependent, we have the 

same result, i.e. L, = Ls . In order to prove that, we 

follow the previous procedure of proof using the 
vector fields of W that are linearly independent. 

We have just proved that if the discrete input levels 

ql,. . .,q, satis@ the condition of Theorem 1 then the 

nilpotent systems (IZ,Q) and (S) have the same 

CLA. This means that if the system (S) satisfies the 

Lie Algebra Rank Condition (LARC) [4] at a point 

p EN then (Z,Q) satisfies LARC at p EN , and 

conversely. Thus (S) has the accessibility property 

at p EN if and only if (&Q) has the same 

property at p EN . 

2.2 Nilpotent Systems without drift 

We consider a drift-free nilpotent system of the 
form 

(S )I k(t)=gl(x)ul + *** + !Zm(xbm 

where the state vector x(t) takes values in an open 

subset N of X’, i.e. N c %‘, while the input 

vector takes values in %” , without any constraint. 

We suppose that the vector fields g, (x), . . . , g, (x) 

are defined on N, are complete, smooth and linearly 

independent, VXE N . Also, we suppose that the 

system (S ) is nilpotent with order of nilpotency k. 

Our main purpose in this paragraph is to study the 

controllability of (S ) when it is excited by an 

input vector, which satisfies the discrete input 
levels constraint. 

(c ,Q): ‘(‘I= gl (XIV1 + ... + gm (Xbm 
where the input vector v = [vl, . . . . vm] belongs to 

Qh--‘qr >- 

We denote with L, and L, the CLAs of the 

systems (S ) and (Z ) , respectively. In order to 

find out the relation between L, and L, we can 

use Theorem 1 with f(x)= 0, ‘v’x E N . Thus we 

have the following: 

Corollary 1 

Let the drift-free nilpotent systems (C ,Q) and 

(S ) with degree of nilpotency k. If we choose the 

discrete levels ql,. ..,q, in such a way that 

II: E I, then Ls =L, . 

Next, we are going to give the conditions that 

q ,,..., q, must satisfy in order to Ls = L, . We 

also prove that these conditions are independent of 
the choice of r. 

Proposition 1 

Let the nilpotent drift-free systems (C ,Q) and 

(S ) with order of nilpotency k and r=m. For every 

choice of the discrete levels ql,. . .,q, such that 

q,=O and qi f 0 , i=2 ,..., m, Iz is equal to I, , i.e. 

Ix =I, 

Proof 
Without any loss of generality we will consider the 
case where k=2. 

The system (S ) has the form 

Gi(KVib gl(ar)vl +**a + gm(x)v, 

and its CLA Ls has a P. Hall basis of the form 

w =ii,> g,> “‘> g,, li,Jz,l ‘.‘I r&&J ...F k-lJ&J 
= {ym2, .“> we) 

where ezrn+ (m+l)! 

2(m -l)! ’ 
assuming that the vector 

fields wi, i =l,...,B are linearly independent. 

We choose from L, the following vector fields 

Thus we examine the system 



z, = 4118, = %lWl9 22 = 4282 = 42w2, ... 1 

2, = 4mgm = 4mwm 

and the Lie brackets 

Z m+1 = l-%z21 = qllqzWm+l~ 

‘Zm-I = lzljzm 1 = ~ll~mW2m-l~ 

ze = [zm-l~zm I= 4m-14mW8 

where qll E 1 q2, . . . . qm) 

Let W = [w, w, . . . w,]T and Z=[z, z, . . . z,r. 

Then we can write the previous equations in the 

form w = C(q,)Z , where the 8x0 matrix 

C(q,) is given by 

C(% I= 

711 0 "' . . . 0 0 

0 q2 0 

. . . 

..' 

. . . 

4", 0 

411% 

4114”l . . . 

. . . 0 w3 0 

0 . . . 0 

0 0 ... . . . 0 %14"i 

We can note that C(q,)is nonsingular since 

det(C(qi )) ;t 0 . 

Consequently, there are exactly 8 linearly in- 

dependent vector fields in L, , i.e. IX ~1, . 

Proposition 2 
We consider the nilpotent drift-free systems (X , Q) 

and (S ) with order of nilpotency k and r>m. For 

every choice of the discrete levels ql,. ..,q, such 

that ql=O and qi f 0, i = 2 ,..., m, I, is equal to 

I, , i.e. I, = I, 

Proposition 3 

Let the nilpotent drift-free systems (C ,Q) and (S ) 

with order of nilpotency k and em. For every 

choice of the discrete levels ql,...,q, such that 

q,=O and qi #0, i = 2 ,..., m, Iz is equal to I, , 

i.e. Ix =I, 

In the previous proofs we assumed that the vector 

fields wI,w2, . . . . w0 are linearly independent. If it 

is not so, we can show that IX = Is choosing only 

the linearly independent vector fields out of the 
whole set. 

Proposition 4 

Let the nilpotent drift-free systems (E ,Q) and 

(S ) with order of nilpotency k. For every choice 

of the discrete levels q, ,. . .,q, such that q,=O and 

qi z 0, i = 2 ,..., r, with r 2 m or r<m, the 

associated CLAs L, and Ls are such that 

L, CL, 

Proof 
We have proved that if we choose the discrete 

levels q1 ,..., q, in such a way that q,=O and qi f 0, 

i = 2,...,r, for every r>l, then IX = I, . But 

according to Corollary 1 when I, ~1~ then 

L, =Ls . 

Further, we proved that if we choose the discrete 

levels in such a way that q,=O and qi f 0, i = 

2 ,..., r, for every r>l, the systems (C ,Q) and (S ) 

have the same CLA. This means that if (S ) is 

controllable then (X ,Q) is also controllable and 

conversely. 

3. Conclusions 

In this paper, we studied an issue arising at the 
foundation of practical implementations of control 
systems with repercussions in the hybrid control 
systems framework as well. We found out the basic 
characteristics of the behavior of a system when it 
is driven by a finite number of discrete input levels. 
In particular, we focused on the controllability of 
nilpotent systems with and without drift, whose 
inputs take values in a finite discrete levels set. In 
both cases, we proved that the constrained system 
and the corresponding unconstrained system have 



the same accessibility and controllability prope- 
rties. An application of these results in motion 
planning for nonholonomic systems appears in a 
companion paper [S]. 
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