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Abstract 

A controlled Markov process in a Hilbert space and 
an ergodic cost functional are given for a control prob- 
lem that is solved where the process is a solution of 
a parameter dependent semilinear stochastic differen- 
tial equation and the control can occur only on the 
boundary or at discrete points in the domain. The 
linear term of the semilinear differential equation is 
the infinitesimal generator of an analytic semigroup. 
The noise for the stochastic differential equation can 
be distributed, boundary and point. Some ergodic 
properties of the controlled Markov process are shown 
to be uniform in the control and the parameter. The 
existence of an optimal control is verified to solve the 
ergodic control problem. The optimal cost is shown 
to depend continuously on the system parameter. 

Key words: ergodic control, stochastic semilin- 
ear equations, Markov processes in Hilbert spaces, 
boundary control. 

1 Introduction 

An ergodic control problem for a stochastic process 
in a Hilbert space H is formulated and solved where 
the process is a solution of a parameter dependent 
semilinear stochastic differential equation in H. The 
problem in the general setting is motivated by ergodic 
control problems for processes governed by stochastic 
partial differential equations with control and noise 
occurring in the boundary conditions or at discrete 
points in the domain. 

For example, consider the stochastic parabolic equa- 
tion 

z&t) = Jwt,t) +F(%w(t,c)) +4&J) (1.1) 

for (t, E) E R+ x (0,l) with the initial and the bound- 
ary conditions 

40, E) = vo(C) (1.2) 

lThis research was partially supported by the National Sci- 
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$,O) = h1(a,w(t,.),u(w(t,.))) +71(t) (1.3) 

$(t, 1) = h2(% 46 -),44t, .)I) + 772(t), P-4 

where n denotes a space dependent Gaussian noise 
that is white in time, ~1 and r/s are one dimensional 
standard Wiener processes and these three processes 
are mutually independent. Furthermore, 

a2 d Lw = 4,E2w + a+gw + c(E) 

is a second order uniformly elliptic operator where 

a, hc E CO”([O, ll), a>O,c<O, F:dxR-+ 
R, hi : Ax HxK --+ R, i = 1,2, where H = 
L2(0, l), A C Rdl and K: c R” are compact. The 
control problem is to minimize the ergodic cost func- 
tional 

J(z, u, o) = lim sup Ef 
T-CC s 

T 

c(W744t)))dt 
0 

over the set of Markov controls U = {u : H + 
K: 1 ‘11 is Bore1 measurable}, where c : H x K + R. 
The a E K: in (l.l)-(1.4) represents a parameter. 

The equations (l.l), (1.3) and (1.4) are only for- 
mal because the noise terms n, ~1 and 712 are not well 
defined stochastic processes (random fields). A stan- 
dard approach for the rigorous treatment of the prob- 
lem is to rewrite (1.1) as a controlled stochastic differ- 
ential equation in the Hilbert space H, and to define 
the noise terms using Wiener processes with infinite 
dimensional state spaces and the solution to the equa- 
tion as a mild solution, using the semigroup theory 
(cf. [10,27]). 

In the present paper, this general framework is 
used. The controlled Markov process is defined by a 
Hilbert space-valued stochastic differential equation 
((2.1) below). The linear term of the equation is 
the infinitesimal generator of an analytic semigroup. 
The general setting allows to cover, as special cases, 
stochastic boundary/point control problems as the 
above example (see Examples 4.1 and 4.2). The noise 
for the stochastic differential equation can be dis- 
tributed, boundary and point. The parameter depen- 
dence occurs in the distributed and the boundary or 



the point drift terms. The control occurs only in the 
boundary or point drift term. The fact that the con- 
trol is not distributed would seem to allow for more 
physically meaningful models. The noise is allowed 
to occur in both distributed and discrete forms to 
ensure more flexibility of the models. Since the H- 
valued Markov process depends on the control and 
the parameter, it is shown that some ergodic prop- 
erties of the process are uniform in these quantities. 
For the solution of an ergodic control problem the ex- 
istence of an optimal control is verified. It is shown 
that the optimal cost depends continuously on the 
system parameter. 

Continuity of the optimal cost on the parameter 
is an important step in solving the adaptive control 
problem when the parameter is unknown. This verifi- 
cation is important to show the optimality of an adap- 
tive control defined by means of a family of strongly 
consistent estimators of the unknown parameter Q. In 
the case when the control and noise are distributed, 
the existence of an optimal control has been proven 
in [13] while the continuity of the optimal cost is new 
also for this case. 

A brief outline of the paper is given now. In Sec- 
tion 2 the control problem is formulated and the ba- 
sic assumptions are made and explained. The con- 
trolled process is the unique, weak, mild solution of 
the stochastic differential equation and induces a 
Markov process in H. Some estimates are made of 
this process and an approximation of the transition 
probability function for the Markov process solution 
of the stochastic differential equation by transition 
functions of the solutions of the stochastic differen- 
tial equation with bounded drifts are given where the 
approximation is uniform in the control and the pa- 
rameter . The existence and the uniqueness of the 
mild (backward) Kolmogorov equation for the con- 
trolled Markov process are verified in [34]. Section 3 
contains the main results of the paper : the existence 
of an optimal control for a fixed parameter and the 
continuous dependence of the optimal cost on the pa- 
rameter. In Section 4 two examples are given that 
satisfy the assumptions that are made for the control 
problem: In Example 4.1 the control problem (l.l)- 
(1.4) is treated and Example 4.2 contains a similar 
control problem where the control and noise occur at 
given discrete points in the domain rather than on 
the boundary. 

2 Preliminaries 

Consider a controlled, infinite dimensional process 
(X(t), t > 0) that satisfies the stochastic differential 
equation 

dX(t) + AX(t)dt = (f(a, X(t)) 

+Bh(a, X(t), u(X(t))))dt 
+BdV(t) + Q1’2dW(t) 

X(0) = z P-1) 

where X(0),X(t) E H, H is a separable, infinite di- 
mensional Hilbert space with inner product (., .) and 
norm ] . 1, (u E A c Rd is a parameter and A is com- 
pact, U is a separable Hilbert space with inner prod- 
uct (., .)v and norm ] . ]u, K: is a compact product of 
intervals in R”, -A : Dom(-A) + H is the infinites- 
imal generator of an analytic semigroup (S(t), t > 0) 
such that A-’ E C(H), which is often denoted A > 0, 

f :dxH+H 

h:dxHxKAU 

are Bore1 measurable functions, B E L(U, D>--‘), the 
family of bounded linear operators from U to Dim-‘, 
where & E (0, l] is given and 0: for S > 0 is the 
domain of the fractional power A6 with the topology 
induced by the graph norm 1~1~; = IA6zI, while for 

S < 0 it is a completion of H in the norm ] . IDi. It 

is assumed that Q E L(H) is positive and self-adjoint 
and (V(t), t > 0) and (W(t), t > 0) are independent, 
standard cylindrical Wiener processes in the spaces 
U and H, respectively, that are defined on a filtered, 
complete probability space (52, .T, (&), P). The fam- 
ily of controls, 24, is 

U = {U : H 4 K: ] u is Bore1 measurable}. 

The control problem is to minimize, over u E U, the 
ergodic cost functional 

J(z, u, a) = lim sup E$ 
s 

T 

4X(s), uW(s)))ds 
T-02 0 

(2.2) 
where c : H x K: 4 R+ is bounded and Bore1 mea- 
surable. 

The following assumptions, (Al)-( A7) are used se- 
lectively in this paper. 
(Al) There exist a y E (0,1/2] and a A E (0,1/2] 

such that B E &(U, Di-1’2) and Q112 E Lz(H, 

Dz-1’2) where ,&(., .) is the family of Hilbert- 
Schmidt operators. 

(A2) For each o E A the functions h(a, ., a) : H x 
K: + U is continuous and f(cr, .) : H --f H is 
Lipschitz continuous on the bounded subsets of 
H and there are constants k, kf, kh and I 

such that If(a,s)l I kfkflzcl, Ih(a,qu)Iu i 

kfkhlzl and Ih( cr,z,u)]~ 5 i(a) for all 2 E H, 
u E K and a E A. 

By (Al) and the analyticity of -A, the com- 
position S(r)B is well defined for T > 0 and 



furthermore S(r)B E L2(U,H), S(r)Q1i2 E 
&(H) and 

J 
t 

0 
Is(T)B~&,) dr+ otIS(r)Q1~21~I(~~d~<~ 

J 

for t > 0. Therefore, the family of operators 

(Qt,t 2 OL 

Qt = I” S(r)BB*S*(r)dr + I” S(r)QS*(r)dr. 

(2.3) 
is well defined and Qt E &(H) for each t 2 0. 

(A3) The following are satisfied 

W$t)) c R(Q,1’2L 

for t E (O,T] for some T > 0, c > 0 and 
,f3 < 1 where (S(t), t > 0) is the restriction of 
(S(t), t 2 0) to the space Dip-” and R(.) is the 
range. 

(A4) There is a continuous, increasing function w : 
R+ + R+ with w(0) = 0 such that 

If(@,X) - f(P,~)I + Ih(%z,u) - W,&u)lu 

5 f-e - PI)P + 14) 
forallcu,pEd,a:EHanduEIC. 

(A5) For each ‘11 E U and (Y E A there is an invariant 
measure p(o,u) for the process (X(t), t > 0) 
that satisfies (2.1) and the family of measures 
(~(cr,~), Q: E A, ‘11 E ZA) is tight. 

(A6) The function c : H x K: + R+ given in (2.2) 
is bounded and Bore1 measurable and ~(2, .) : 
K: + R+ is continuous for each x E H. 

(A7) The set h(cr, x, Ic) x c(x, Ic) c U x R+ is convex 
for each QI E A and x E H. 

Some comments on the above assumptions (Al)-(A7) 
are given now. Assumption (Al) is a standard condi- 
tion guaranteeing that the solution of the linear ver- 
sion of the equation (2.1) (i.e., with f = 0 and h = 0) 
is an H-valued stochastic process (otherwise it is only 
a cylindrical process, see e.g., [12]). Note that (Al) 
implies that the above defined operators Qt are trace 
class operators on H. They are covariance operators 
of the (Gaussian) probability distribution of the so- 
lution to the linear equation. 

The assumption (A2) is used to verify that there 
exists a unique, weak, mild solution to the equation 
(2.1). 

The assumption (A3) is used in to prove (see [34]) 
some suitable smoothing properties of the mild back- 
ward Kolmogorov equation corresponding to the 
stochastic equation (2.1), which is needed to show 
the ergodicity of the solutions to (2.1) and some con- 
tinuity properties of the transition probability ker- 
nels. The assumption is also rather standard in the 
context of the perturbation methods, for instance, for 
Epsilon = 1 the results of Section 3 have been proven 
in [9, lo]. 

The assumption (A4) is a continuous dependence of 
the coefficients of the equation (2.1) on the parameter 
a. It is used for the verification of the results that are 
related to the continuous dependence of the optimal 
cost on the parameter. 

The assumption (A5) is a kind of stability assump- 
tion that is usually needed in ergodic control prob- 
lems. In [34] (A5) is verified in terms of some more 
explicit conditions on the coefficients of equation (2.1) 
(Lyapunov-type conditions). 

The assumptions (A6) and (A7) are typical con- 
ditions that are used in the ergodic control theory 
((A6) is sometimes called the Roxin type condition) 
and they are used to establish the existence of an 
optimal control for the given control problem. 

Consider the following two stochastic differential 
equations 

dZ(t) + AZ(t)dt = BdV(t) + Q1’2dW(t) 

Z(0) = x (2.4 

and 

dX(t) + AX(t)dt = f(a, X(t))dt + BdV(t) 

+Q1’2dW(t) 

X(0) = 2. (2.5) 

Under the assumptions (Al) and (A2) it is easy to 
verify that each of the equations (2.4) and (2.5) has 
one and only one mild solution on the probability 
space (0, F’, P), that is, the solutions to the integral 
equations 

s 

t 

2(t) = S(t)x + S(t - r)BdV(r) 
0 

J 
t + S(t - r)Q1’2dW(r) t 2 0 (2.6) 

0 

and 

J 
t X(t) = S(t)x + s(t - r)f(a, X(t))dt 

0 

J 
t + S(t - r)BdV(r) 

0 

J 
t + s(t - r)Q1’2dW(r) t 2 0. (2.7) 

0 



These solutions are Di-valued processes that belong 
to C([O,T], LP(R, H)) n C((O,T],Lp(R,Di)) for any 
p 2 1, T > 0 and S E [0, min(e, A, y)) (cf. [27]). Fur- 
thermore, the processes (X(t), t 2 0) and (Z(t), t > 
0) have Di-continuous versions (cf. [ll, 301) and in H 
they induce two Markov processes in the usual way. 

Let P, : R+ x H x B(H) + [0, l] be the transition 
probability function for (X(t), t > 0) in (2.7), that 
is, 

Pa@, 5, q = P&X@) E r> P-8) 

and let (T(t), t 4 0) be the Markov transition semi- 
group for (Z(t), t > 0) in (2.6), that is, 

W(x) = Ezcp(Z(t)) P-9) 

where IC E H stands for the initial value of X(e), 
t > 0 and cp E M(H), the bounded, Bore1 measurable 
functions on H. It is clear that 

Ttlrb) = WS(thQt)(r) 
where t > 0, I’ E B(H), x E H and Qt is given by 
(2.3) so it is self-adjoint, nonnegative and nuclear and 
N(Stx, Qt) is the Gaussian measure on H with mean 
&a: and covariance Qt. 

Let [;” be the random variable as follows 

s 

T 

5T 
a>u = 

MC X(t), 4X(t))), dV(t))u 
0 

1 T -- 
2 o Ih(QI,X(t),u(X(t)))l2Udt 

J 
(2.10) 

for o E d, u E IA and T > 0 where (X(t), t E [0, T]) is 
the solution of (2.7). A weak solution of (2.1) is con- 
structed following the standard procedure of an abso- 
lutely continuous change of probability measure (cf. 
[lo, 15, 17, 231). F or control problems, the method 
was initiated in [l, 141. Note that exp(<$“) = 1 by 
(A2). There is a probability measure P,*>” on 3 such 
that the restriction of P,“y” to FT is given by 

P,“>“(dw) = exp(<G>U)P(dw), (2.11) 

the process (V*(t), t > 0) given by 

V*(t) = V(t) - Jiu” h(cx, X(s), u(X(s)))ds 

is a cylindrical Wiener process on U and using P,*‘” 
and the solution of (2.7) it follows that 

X(t) = S(t)z + 
s 

t 

S(t - r)f(a, X(r))dt 
0 

+ 
I 

t S(t - r)Bh(a, X(r), U(X(r)))dr 
0 

+ 
I 

t 

S(t - r)BdV*(r) 
0 

s 

t 
+ S(t - r)Q1’2dW(r). (2.12) 

0 

So there is a weak solution to (2.1) which is weakly 
unique and induces a Markov process on H whose 
Markov transition semigroup is denoted as 

P,*+cp(x) = E,a+p(X(t)) (2.13) 

for t > 0 and ‘p E M(H) where E$U is the expecta- 
tion using the probability measure P,“>” and 

P*‘“(t, 2, r) = PtYr(x) (2.14) 

for t > 0, r E B(H) and x E H is the corresponding 
transition probability function. 

3 The Existence of an Optimal 
Control 

Recall that the control problem is described by the 
system (2.1) and the cost functional 

J(a, U) = limsupEgYU$ 
s 

T 

G(s), u(X(s))Ps 
T-CC 0 

(3.1) 
and the optimal cost is J*(q) = infzlEU J(cY,u). If 
(Al)-(A3), (A5) and (A6) are satisfied then the fol- 
lowing equality is satisfied 

J(a,u) = J C(Yl4Y)M% 4(y) (3.2) 
H 

so the cost J(a, U) does not depend on the initial con- 
dition X(0) = x E H. In this section the existence of 
an optimal control for the control problem (2.1) and 
(3.1) with a fixed parameter Q: E A and the continu- 
ity of the optimal cost J* : A --) B are presented. In 
Lemma 3.1 and Theorem 3.2 the parameter is fixed 
so it is suppressed for notational convenience. 

Recall that P(t,x, r) is given in (2.8) and 7 = 

P(l, 0, ->. 

Lemma 3.1. Let (A,, n E N) be a sequence in B(H) 
such that q(A,) +O asn+co. If (Al)-(A3) and 
(A5) are satisfied then 

lim sup p(u)(A,) = 0 
n’cc UEU 

(3.3) 

Proof. See [34]. 

Theorem 3.2. If (Al)-(A3) and (A5)-(A7) are sat- 
isfied for each cy E A then there is an optimal control 
for the control problem given by (2.1) and (3.1). 

Proof See [34]. 

Theorem 3.3. If (Al)-(A7) are satisfied then the 
optimal cost J* : A -+ B is continuous. 

Proof See [34]. 



4 Some Examples 

Example 4.1. Consider the scalar stochastic parabolic 
partial differential equation 

$7 E) = wt, E) + F(% 44 0) + n(t7 r> (4.1) 

for (4 t> E B+ x C&l> with the initial and boundary 
conditions 

407 El = vo(O (4.2) 

$0) = h1(a,v(t,.),u(v(t,.))) +81(t) (4.3) 

$71) = h2(Q,Zl(t,.),'ZL(Zl(t,.))) +b2(t) (4.4) 

where n denotes a space dependent Gaussian noise 
that is white in time, pr and ,& are one dimensional 
standard Wiener processes and these three processes 
are mutually independent, Furthermore, 

a2 a 
L?J = 4C),E2~ + w$ + c(C) 

where a, b, c E C”([O, l]), a > 0, c < 0, F : A x 

B 4 B, hi : AxHxK + Bi = 1,2where 
H = L2(0,1), A c Bdl is compact, K c B” is a 
compact product of intervals, F(a, .) : B 4 B is Lip- 
schitz continuous, hi(cr, ., .) : H x K 4 B i = 1,2 is 
continuous and bounded for each a E A with at most 
linear growth that is uniform with respect to a: E A 
and 

I4b - PIN1 + -447 ISI>) (4.5) 

forcu,/3Ed,<EB,a:EH)anduEKwherewsat- 
isfies the properties in (A2). The system of equations 
(4.1-4.4) can be rewritten in the form of (2.1) in a 
natural way where H = L2(0,1), U = B2, A = -L 
with 

Dam(A) = cp : cp E H2(0, l), $p(O) = $+(I) = 0 , 

f(c~~)(E) = F(~,X(J)), 2 E H, E E (O,l), ;t_nd 
h = [hl, hz]. The operator B is defined as B = AN 
where N E L(B2, Di), E < 3/4 is the Neumann map 
corresponding to the elliptic Neumann problem 

Lz(<) = 0 E E (07 1) (4.6) 

g(o) = 91 $1) = Q2. (4.7) 

A simple example of a boundary input (4.3, 4.4) 
that satisfies all the above conditions is 

gp,O) = a(v(t,-1) +P1(t) (4.8) 

(4.9) 

where (~1, ~2) : H -+ [-M, Ml2 = K. 

Example 4.2. Consider the stochastic parabolic 
partial differential equation with pointwise noise and 
control 

$6 0 = Lv(t, 0 + F(Q, v(t, 0) 

+ ~,hi(w@, .I, 446 .>)+bi(t>]&i +n(t, 5) (4.10) 
61 

for (t, 5) E B+ x (0,l) with the initial and the bound- 
ary conditions 

4% 0 = we(E) (4.11) 

w(t,O) = 0 (4.12) 

w@, 1) = 0 (4.13) 

for (t,<) E B+ x (0,l) where L, F,n,,& and hi are 
the same as in Example 4.1 and 6ti i = 1,2, . . . , N 
are the Dirac distributions at the points [i E (0,l) 
i=l,2,... , N. The equation (4.10) is given a precise 
interpretation by using the equation (2.1) with H and 
f as in Example 4.1, V(t) = @l(t), . . . ,p~(t)), U = 
BN, h = (hl,.. . , hN), A = -L with Dam(A) = 
H2(0, 1) n Hi(O, 1). 
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