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Abstract 

The development of an autonomous robotic sys- 
tem for the assistance to disabled people (composed 
of a ‘car-like’ mobile base and a robot arm) is the 
primary aim of the MOVAID Project, supported by 
the CEC in the framework of the TIDE Programme. 
In the context of the MOVAID Project, an auto- 
matic navigation system is currently being developed 
at the Robotics Lab at the Dipartimento di Elettro- 
nica ed Automatica. Prom the functional viewpoint, 
the navigation system can be decomposed into a mo- 
tion planner and a collision avoidance module. Both 
blocks, however, rely on a suitable low-level control 
procedure, which has to drive the wheel actuators in 
order to ensure the tracking of the planned trajec- 
tory with a sufficient degree of precision, opposing 
eventual parameter variations and external distur- 
bances. In this paper, a recently developed discrete- 
time Variable Structure Control (VSC) technique is 
applied to the control of the steering-wheel robot of 
the MOVAID Project. The algorithm has been de- 
signed in the discrete-time domain, therefore allow- 
ing to avoid the well known problems due to the dis- 
cretization of continuous-time controllers. The simu- 
lation study reported in this note is preliminary to the 
experimental testing of the control algorithm, which 
is being carried out. 

1 Introduction 

The development of robotic systems with increas- 
ing degree of autonomy is, at present, a challenging 
issue in robotics research. A promising application 
field covering both technical and social motivations 
is the design of robotic systems for the assistance of 
disabled, handicapped or elderly people. The devel- 
opment of such systems is particularly demanding, 
due to the remarkable autonomy and the high level 
of friendliness required to the robotic system in order 
to compensate the reduced ability of the users. 

The development of an autonomous robotic system 
for the assistance to disabled people (composed of a 
‘car-like’ mobile base and a robot arm) is the primary 
aim of the MOVAID Project, supported by the CEC 
in the framework of the TIDE Programme [2] [6] [3]. 
In the context of the MOVAID Project, an automatic 
navigation system is currently being developed at the 

Robotics Lab at the Dipartimento di Elettronica ed 
Automatica [7]. Its testing is being performed on the 
LABMATE vehicle which, although strictly speaking 
belonging to the so called ‘unicycle’ category, can be 
considered equivalent to the MOVAID mobile base. 
Prom the functional viewpoint, the navigation system 
can be decomposed into a motion planner and a colli- 
sion avoidance module. Both blocks, however, rely on 
a suitable low-level control procedure, which has to 
drive the wheel actuators in order to ensure the track- 
ing of the planned trajectory with a sufficient degree 
of precision, opposing eventual parameter variations 
and external disturbances. 

In this paper, a recently developed discrete-time 
WC technique [l] is applied to the control of the 
steering-wheel robot of the MOVAID Project. The 
algorithm has been designed in the discrete-time do- 
main, therefore allowing to avoid the well known prob- 
lems due to the discretization of continuous-time con- 
trollers. There are two main reasons justifying the 
choice of the VSC technique [4] [8] [5]: 

- the linearized model of the vehicle is not con- 
trollable: techniques based on the nonlinear mo- 
del of the system are therefore needed; 

- the widely recognised robustness of VSC can be 
exploited in case of parameter variations and/or 
presence of external disturbance in the environ- 
ment. 

The simulation study reported in this note is prelim- 
inary to the experimental testing of the control algo- 
rithm, which is being carried out. The LABMATE 
vehicle available at the Robotics Lab can be con- 
trolled by setting the steering angle of the vehicle and 
the incremental angular position of the left and right 
wheel: a dedicated DSP board then provides for map- 
ping the control inputs into properly generated motor 
torques. The experimental availability of the above 
control variables induced to consider first the kine- 
matic model of the vehicle. But the adoption of this 
model precludes any on-field testing of the VSC al- 
gorithm in presence of parameter variation, since the 
kinematic model cannot account for the vehicle and 
the wheels dimensions, the robot mass and its iner- 
tia. This is the reason why, in this paper, the vehicle 
dynamic model has been also considered, and sim- 
ulation results obtained using this model have been 
reported. In this case, however, the testing on the 



LABMATE vehicle cannot be early foreseen, since it 
would imply the designer intervention inside the in- 
ner control loops of the mobile robot in order to make 
the wheel torques directly available to control. More- 
over, a state observer should be added to the scheme 
to provide the VSC algorithm with estimates of the 
velocity variables, being VSC a state feedback tech- 
nique. 

The paper is organised as follows. In Section 2 the 
kinematic and dynamic model of the vehicle are re- 
ported, and the adopted control law is briefly recalled. 
Section 3 contains some simulation results obtained 
with reference to the kinematic model, while Section 
4 provides simulations relative to the dynamic model, 
including some tests with parameter variations. Fi- 
nally, conclusions are drawn in Section 5. 

2 Models of the robotic 
system. 

In this section a description of the robotic system 
will be given. (Fig.1). It is equipped with two driv- 
ing wheels mounted on the same axis, and additional 
free wheels not shown in the picture. The motion 
and orientation are achieved by independent actua- 
tors, i.e. DC motors providing the necessary torques 
to the wheels. The vehicle position is described by 
the coordinates (x, y) of the midpoint between the 
two driving wheels, and by the orientation angle B 
with respect of a fixed frame, as shown in Fig.1. 

2.1 Kinematic model of the wheeled 
robot. 

The kinematic model of the steering-wheel robot has 
the following form: 

{ 

i = v(t)cOs(e) 

B = v(t)sin(e) 

e = w(t) 
(2.1.1) 

where w(t) is the angular velocity, and v(t) is the 
translational velocity. The discretization of the model 
(2.1.1) assuming a sampling interval T, and a zeroth- 
order-hold provides: 

xk+l = xk + VkCOS(ek)Tc 

Yk+l = yk + ?JkSin(&)Tc (2.1.2) 

ok+1 = ek + WkTc 

the subscript k indicating the variable evaluated in 
/CT,. 

2.2 Dynamic model of the wheeled ro- 
bot. 

The non-holonomic constraint has the following form: 

-kcos(e) + jlsqe) = 0 (2.2.1) 

formalising the fact that the vehicle can move only 
in the direction normal to the drive-wheels axis, i.e. 
the mobile base satisfies the condition of pure rolling 
and non slipping. The dynamic equations of the robot 
resulting by the Newton’s equations are: . . c0s(e) 

mx=- 
Al + 44 

sil( 0) 

-7-2 - Nsin(0) 

mjj= -71 + 
&C(e) 
-T2 - ivcos(e) (2.2.2) 

‘R ’ I(g = Rq - -T2 
r r 

being m and I the vehicle mass and the moment of 
inertia, respectively, R the robot length, r the wheels 
radius, N the centripetal force, and 71 e 7-2 the input 
torques. Using the following relation for N: 

N = m(kos(8) + tjsin(f9))b 

the model (2.2.2) becomes: 

(2.2.3) 

’ mf = -msin(e)(fc0s(e) + tjsin(e))f9+ 

+ cos(e) 
-71 + 

c0s(e) 

-72 

rn$ = mc0.l(e)(kc0s(ej+ gsin(e))f9+ 

+ sin(e) 71 + sin(e) 72 

I(? = 
R rR 

r 

-71 - -72 
r r 

(2.2.4) 

Equations (2.2.4) can be rewritten in a state-space 
form introducing the state vector z = [pT qTIT , with 

P = .kl PS zalT = [x Y elT, and q = [ql q2 q31T = 
[? Ij t91T. Denoting the input vector by u = [rl 7ilT, 
the model (2.2.4) provides: 

i = f(z) + g(z)u 

being: 

(2.2.5) 

f(z) = 

1 _ 

q 

-sin(P3)[qlcoS(p3) + q2sin(p3)]q3 

cos(P3)[qlCOs(p3) + q2sin(p3)]q3 1 
=I J r;, 

(2.2.6) 



g(z) = 

0 0 

0 0 

0 0 

4P3) 4p3) ~ 

sin L3) “I sin L3) “I 

Y “h 
- Ir 

-- 
Ir 

03x2 

= faz) [ 1 

(2.2.7) 

A discretization of equation (2.2.5) can be per- 
formed integrating it from kT, to (k + l)T,. Using 
the integration by parts for the equation i, = q, 
and assuming that the sampling frequency is high 
enough to make neglectable the variations of the term 
i(z) + g(z)u within a sampling interval, one gets the 
following discrete-time model: 

z/c+1 = F’(Q) + G(zk)u 

where 

(2.2.8) 

F(Zrc) = 
Pk + T&k +j&?f(zk) 

qk + T&h) - 1 (2.2.9) 

G(Zk) = [ +,,f$ ] (2.2.8) 

2.3 Variable Structure Optimal Con- 
trol 

In this section, a recently presented control algorithm 
[l] designed for nonlinear uncertain discretized mul- 
tivariable systems will be summarized. It is given the 
following nonlinear discrete-time model: 

Zk+l = F(Zk) + G(zk)[Uk + D(Zk, Uk)] (2.3.1) 

where z E IR” is the state vector, u E IR” is the in- 
put vector, F(zk) e G(zk) are properly dimensioned 
vectorial functions representing the nominal system, 
and the vectorial function D(zk, uk) accounts for ex- 
ternal disturbances and parameter variations. It is 
assumed that a bound is available for each entry of 
the uncertain term D(zk, Uk): 

ID%%, ‘-%)I 5 $(zk, uk) i=l...n (2.3.2) 

The purpose of the control is to find the signal uk 
minimizing the following loss function: 

Ik+l = $+lRzk+l + ‘=:nk (2.3.3) 

being R and T symmetric nonnegative definite weight- 
ing matrices of proper dimensions. The control objec- 
tive can be achieved introducing the following sliding 
surface: 

Sk+1 = GT(Zk)RZk+l + nk = 0 (2.3.4) 

In fact, the minimization of index (2.3.3) provides 
equation (2.3.4) through differentiation with respect 
to Uk. A quasi sliding mode on the surface (2.3.4) 
can be imposed setting: 

uk =uiq+u; (2.3.5) 

where uiq solves the equation (2.3.4) in the nominal 
case, and uz will be defined below in order to com- 
pensate the system uncertainties. Let’s define the 
quantities: 

A(%) = GT(%)RG(zk) (2.3.6a) 

L(zk) = A(Z+k) (2.3.63) 

@(zk) = 2 IAid(Zk)l/Ii(Zk,Uk) (i = 1.. . m) 
j=l 

(2.3.6~) 

ii; = [A(?&) + T]u;t (2.3.6d) 

Theorem 2.1 [l] It is given a system of the form ’ 
(2.3.5). The control law (2.3.5) guarantees the achie- 

vement of a discrete sliding motion on the hyperplane 

Sk+1 = 0 if uy solves the equation (2.3.4) in the 

nominal case, and each entry fit(i) (i = 1.. . m) of 

ii; is chosen as: 

@(lsk(i)l - Ei(Zk)) 

I 
if [Sk(i)/ > Ei(Zk) (3.2.7a) 

U:(i) = 

1 

-&i’-+k)[sj(k) - tij,(k - I)] 

j=l 

if Isk(i)I 5 @(zk) (2.3.7b) 

where Bi (i = 1. . . m) are design parameters within 

the set Bi E (-1,l). 

3 Results. 

As discussed in the Introduction, a preliminary 
simulation study on both the kinematic and the dy- 
namic model of the vehicle has been performed be- 
fore the experimental testing. The planned trajec- 
tory in the x-y plane is depicted in Fig.2, while Fig.3 
shows the desired trajectories versus time. The con- 
trol law of Theorem 1 has been first applied to the 
kinematic model of the MOVAID mobile base. Con- 
sidering the nominal system, the errors relative the 
variables 2, y, B reported in Fig.4 are obtained, while 
Fig.5-6 show the two control variables, i.e. the trans- 
lational velocity and the angular velocity, respectively 
. When the dynamic model of the vehicle is used, re- 
sults reported in Figs 7-10 are obtained. Figures 7-8 
are relative to the nominal system, and show the er- 
ror variables and the control torques applied to the 



vehicle wheels, respectively. When a parameter varia- 
tion of 20% is applied to all the parameters appearing 
in the model (2.2.4)-(2.2.7), results reported in Figs 
9-10 are obtained: Fig.9 depicts the error variables, 
while Fig.10 shows the control torques. 

4 Conclusions. 

In this note, the control problem of a wheeled mo- 
bile base, described by a nonlinear model with non- 
holonomic constraints, has been addressed. This is- 
sue, however, has to be set against a wider context, 
being part of a CEC Project for the development of a 
robotic assistance system. A VSC algorithm, recently 
developed for discrete-time systems, has been applied 
to both the kinematic and the dynamic model of the 
vehicle. Beyond the control of the nominal system, 
perturbed conditions have been also considered in the 
dynamic model, obtaining satisfactory results in both 
cases. The simulation study reported in this study is 
preliminary to the experimental testing of the control 
algorithm, which is currently being carried out. It is 
important to point out that, as discussed in the In- 
troduction, experiments are at the moment limited to 
the only kinematic model, due to the unavailability 
of motor torques to direct control. 
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Figure 1: Schematic representation of the vehicle. Figure 4: Kinematic model: error variables. 
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Figure 2: Desired trajectory in the x-y plane. Figure 5: Kinematic model: translational velocity. 
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Figure 3: Desired trajectory. 
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Figure 6: Kinematic model: angular velocity. 
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Figure 8: Dynamic model: torques of the nominal Figure 10: Dynamic model: torques of the perturbed 
system. system. 
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