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Abstract 

This paper addresses the problem of on-line param- 
eter estimation for nonlinear continuous-time dynam- 
ical systems of known structure. Two parameter esti- 
mation problems are formulated and explicitly solved. 
The resulting parameter estimation algorithms incor- 
porate an observer; the adjustment of the observer 
parameters is considered as a stabilization problem 
for an uncertain system and is solved using sliding 
mode method. In the full information parameter es- 

timation problem it is assumed that all the system 
states and their derivatives are known. In the out- 

put measurement parameter estimation problem we 

assume that only one state is known, the other states 
are reconstructed using an adaptive observer. The 
proposed algorithm is applied for parameter estima- 
tion of a Van der Pol oscillator. 

1 Introduction 

System identification often constitutes the first step 
to a successful simulation, prediction and control. 
Due to existence of well developed theory and excel- 
lent software packages, see [7] and [8], identification of 
linear dynamical systems and of systems linear in the 
parameters is no more difficult. Unfortunately, quite 
often modeled phenomena are highly nonlinear and 
cannot be represented using linear models or mod- 
els linear in the parameters. Parametric models of 
nonlinear systems are common in the situation when 
there exists some physical insight into the system dy- 
namics. Hence the need for parameter estimation 
methods for nonlinear systems. Unfortunately, iden- 
tification of nonlinear systems is much more difficult 
and much less developed as it is for linear systems. 
An overview of existing methods can be found, e.g., 
in [12]. In this paper we concentrate on the problem 
of finding unknown parameters of a nonlinear dynam- 
ical system, described by a set of ordinary differential 
equations of known structure. A possible approach, 
that follows methodology used in the field of param- 
eter identification of linear systems, is to minimize 
some performance index, using it#s gradient or Hes- 
sian, see [2]. Least Mean Squares method and Least 
Squares method, suitable for linear systems, [14], will 
fall into this category. Unfortunately, this approach is 

not most appropriate in practical applications for pa- 
rameter estimation of systems which are nonlinear in 
the parameters, since, even in the exact case (no mea- 
surement noise), they can get stuck in local minima 
of the associated performance indices. Another, ad 
hoc, possibility is to use the extended Kalman filter, 
see [l]. Several other methods are tailored to specific 
system structures, assuming that the system is linear 
in the parameters, [5], [9], is of 1st order [15], contains 
nonlinearity at the output [lo], or is multinomial in 
inputs and outputs, see [13]. 

The present paper addresses the problem of on-line 
parameter estimation for nonlinear cont,inuous-time 
dynamical MIS0 systems of known structure, i.e. a 
special case of the systems considered in [4]. 

Two parameter estimation problems for the noise- 
free case are formulated and solved. The resulting 
parameter estimation algorithms incorporate an ob- 
server which is on-line adjusted and guarantees pa- 
rameter and state convergence. The adjustment of 
the observer parameters is considered as a stabiliza- 
tion problem for an uncertain system and is solved 
using known methods. In the full information pa- 
rameter estimation problem it is assumed that all the 
system states and their derivatives be known. The 
parameter update of the observer is computed using 
sliding mode methods, yielding exponential conver- 
gence of the state estimation error and the parame- 
ter estimates. In the output measurement parameter 
estimation problem we assume that only one state is 
known. Unlike the first problem, the state estimation 
error, necessary to calculate the parameter update, 
cannot be computed exactly. Instead, its dynami- 
cal approximation is utilized. Its convergence follows 
from singular perturbation theory. 

The solutions to both problems possess some de- 
grees of freedom, thus enabling time-varying weight- 
ing of the parameter updates. By introducing dummy 
variables it is possible to control and trade-off track- 
ing ability versus noise rejection. The output mea- 
surement parameter estimation algorithm is tested 
on a simulation example, where three parameters and 
both states of a Van der Pol oscillator are estimated 
using one measurable system state. The example 
demonstrates parameter and state convergence, ini- 
tially and after a parameter jump in a noise-free case, 
and in a noisy case. 



2 Problem formulation 

In this work we consider Lyapunov-stable systems 
described by equations of the form 

LiQ = E2 
iT2 = x3 

. i f( 

(1) 
297 2, u, 0) 

Y = Xl, 

where x = [xl 22 . . . x,]’ E R” denotes the sys- 

tem state, u E lRP the known system input, which 
is assumed to be a differentiable function of time, y 
the measured variable, f(., ., .) E C1 a known smooth 
nonlinear function, and 0 E fi c R” the unknown 
parameter to be identified, with fi a compact set in 
R*. Note that the system (1) is a special case of 
the class of systems considered in [4], where also con- 
ditions to transform a general nonlinear system into 
the form (1) are discussed. For this special class of 
nonlinear systems we consider the problem of param- 
eter estimation. A possible way of handling such a 
problem is as follows. 

Problem 1 (Full Information Parameter Estimation) 

Given the system (l), find a family offull information 

parameter estimation methods (FIPEM) described by 

equations of the form 

i = hl(x,u,[,f+z,J, 

i = h&v,J,k&), 

where e E R”, and c E R”, such that, as t + co, 

t + 2, 

e + e, 

f(bd) + f(vG). 

Note that, throughout the paper, 6 denotes the es- 
timate of the parameter 8. The above problem is 
used to formulate and solve the following more natu- 
ral, and more difficult, problem. 

Problem 2 (Output Measurement Parameter Esti- 

mation) 
Given the system (l), find a family of output mea- 

surement parameter estimation methods (OMPEM) 

described by equations of the form 

j = h(x1,u,C,b), 

i = h&wdh)> 
+j = h3(wd>v)> 

(3) 

where 6 E R”, E E Rn, and n E R”, such that, for 
any pre-given E > 0, one has 

Ik- 412 < -5 

rl + 0, 

e -+ e, 

IIf -f(Z,U,qll2 < 6. 

Remark 1 The variable v introduced in the OM- 
PEM is necessary to build an estimation of the un- 
measured system states, i.e. x2 through x,. Observe, 
moreover, that any OMPEM can be regarded as an 
adaptive observer for the system (1)) see [ll]. 

Remark 2 Since we do not impose any persistence 
of excitation conditions, solving FIPEM and OM- 
PEM does not guarantee that 8 + B as t + 00. How- 
ever, it must be noted that, in the case of nonlinear 
parameter dependence, even the persistence of exci- 
tation conditions do not ensure convergence of the 
parameter estimation to the real value. In what fol- 
lows we do not address the (difficult) problem of iden- 
tifiability and we content ourself with an estimation 
which is able to reproduce the dynamics of the system 
from which the data are generated. 

3 Full information parameter es- 

timation 

In the present section we give a sufficient condition 
for the solvability of Problem 1. In particular we 
give an explicit formula for a FIPEM whiz11 solves 
the problem. 

Theorem 1 

Consider the system (1). Assume the following. 

(III) For all (E, u, 8) E IR” x R” x .IIzp, 

Ilf& u, @II # 0. (4) 

Then the Full Information Parameter Estimation 
Problem (Problem I) is solvable. 

Proof. Let h2(.) be defined by 

il = E2 . f in = f(Ed). (5) 

Note now that there exists a function A~(x,<, u, 8) 

such that 

If 
r(x, u, Q)i+fu(x, u, @-f&7 u, @i-f& u, + < 

A(x,t, u, % 

(6) 



for all B E s2. Let e” = hl(.) be any function such that 

f&,U,8)8 = $ ( n -52 + Cpi-lei+l + 
i=2 ) (7) ,. 

Al(x,t,u,e)w ( el +C~~21~i-lei , > 
where e E F+l, defined by 

[ 
x--t 1 [ X-5 e= f(x,u,fq -f(E,U,@ = 2, - f(5d) 1 (8) 

is the state and dynamics estimation error, and the 
constants pi > 0 are such that all roots of the polyno- 
mial P(s) = 1 + Cyzlpi si are in the left half plane. 
Consider the following weighted model error X E R 

Due to (11, (5), and (9), the time derivative of the 

error (9) becomes 

i = e2 + kpi-lei+l + P,&+I, 
i=2 

(10) 

where, from (8)) 

&+1= f3J(2,21,B)j:+f~(z,u,B)u-fE(~,u,~)i 

-fu(t, u, 8); - f&, u, @i. 

(11) 

Hence, from (11) and (7) we get 

i 
- = f~(x:)u,B)a:+f,(a:,u,B)u-f~(~,u,B)i- 
PTI 

fu(5,u,& - Al(x,l,~) .sgn(X). 

(12) 
Note that all quantities appearing in the RHS of (7) 

are known and that fe([, U, @ is known as well. Ac- 

cording to (6), the last four terms in the RHS of (12) 
are majorized by the first term. Hence, X converges 

to zero in finite time. As a consequence, B converges 
to zero in finite time and e = x - E converges expo- 
nentially to zero. Which concludes the proof. a 

Remark 3 The function hr (.) satisfying (7)) always 
exists by Hypothesis (H2), but is not unique. The re- 
sulting freedom can be exploited to improve parame- 
ter convergence and noise rejection, what may require 
introduction of some optimality measures. Here we 
propose a simple choice of hl(.) . Dropping the ar- 
guments, we can rewrite equation (7) in the form 

f,-i = ‘p. Such an equation admits the solution e” = 

~.f~Pl(.f$v;)> where M E #Xmxm is a possibly 

time-varying, positive definite matrix. Note that such 

solution minimizes 118]],-+. 

Remark 4 As discussed in [14], the discontinuous 
function sgn(.) appearing in (7) can be replaced by a 
C1 approximation, leading to an improved numerical 
implementation of the proposed method. 

Remark 5 Assumption (H2) can be relaxed by ex- 
tending the parameter vector 0 with a dummy pa- 
rameter 8*, i.e. Best A [Q’, 6’*]‘, and modifying the 
last equation of the system (1) to 

zi& = f(x, u,Q) + e*. 

Obviously, for this modified system it follows 

wb-w4 +e*) 

deezt 
=[* * * ..’ * 11, 

hence 1l.b 11 > 0 for all (x, U, eezt) 

4 Output measurement param- 

eter estimation 

In practical situations, most of the system states are 
not measurable. Hence, the state estimation error 
vector (8) cannot be computed exactly. Here we show 
how to solve the parameter estimation problem in the 
output measurement form, assuming that only the 
state xi is known. 

Theorem 2 

Consider the system (I). Assume the following. 

(HI) For all ([, u, 8) E R” x LY x R’, 

Ilf& u, @II > 0. (13) 

Then the Output Measurement Parameter Estimation 
Problem (Problem 2) is solvable. 

Proof. The proof and the construction of the OM- 
PEM are similar to those in Theorem 1, hence they 
are omitted for shortness. a 

5 A simple example: the Van 

der Pol oscillator 

In this section we demonstrate applicability of the 
(OMPEM) on a simulation example. Consider the 
equations describing an autonomous Van der Pol os- 
cillator, i.e. 

i1 = x2, 

22 = 2wv (l- /ix:> x2 - w2x1. 
(14 

Such a system is a simple nonlinear system, which is 
also nonlinear in the parameters w, I/, and p. Hence, 



it often serves as an example in papers dealing with 
parametric identification of continuous-time nonlin- 
ear systems, see [6], [l], and [3]. The parameters, cho- 
sen in the simulations as 0’ = [w v ,u] = [0.5 1 21, 
are to be identified by using only the output mea- 
surement, corrupted by an additive noise, i.e., x1 +v. 
Both the system and the identification algorithm (de- 
fined in Theorem 2) are simulated in ACSL. The sim- 
ulation time is much bigger than the limit cycle pe- 
riod; the data collected over this interval constitute 
persistent excitation. The weighting matrix, intro- 
duced in Remark 3, is chosen such that the only es- 
timated nonlinear parameter 81 = w is most likely to 
be tuned. 

The first experiment is performed without any noise, 
i.e., v f 0. Figure 1 (top) demonstrates the trajec- 
tory convergence, while Fig. 2 shows the parameter 
convergence. 

Figure 1: Phase portraits of the Van der Pol system 
(solid) and its identified model (dotted), in the noise- 
free case (top) and for parameter jump (bottom). 

In the second experiment, the only measured state 
variable is corrupted by an additive disturbance v(k) E 

0.55 
0.5 “““. “’ i” 

0.45 

1:I 

: 

~Blil 0.4 
0.35 

- 

- 

: 

.,.. 

:.. 

- 

“‘Z : .. 

: : : : : 

“% I 
10 M 30 40 50 60 

7; io 
90 1w 

t 

1.8 , , , , I , , 

1.7 . ..i ..; .,.. .:. . ..j ..I :.. / .: .,._ 

1.6 .j .:. ; ..;.. . ., j 

.: )... : ., ,.. .: 

.....: .. ... ..,. : : .. ... .. ..- 

%,I 
. . . . . . . . ..I ..;.. i... i” .: ,.. 

1.2. ..I I ,.. :. .: :. ., ..- 

o,g- ..i i.. .i... .-. : 

““0 10 20 30 40 50 60 70 80 9i ,w 
t 

2.2 , , , I , 

: j : j j 

,.B .: . . . . .i ‘.- . . . . : 

: : : j 

p& 1.6 iv : .:. .i : 1 ~. 

: : j : : 
,,4... 1. . . . . ,,. ~... ;.. 

i i i i. : 
j 

/ : 
; / / ; j 

: j 

‘0 10 20 30 40 50 60 70 80 90 
t 

Figure 2: Estimated parameters, & (top), 6 (center), 
fi (bottom), in the noise-free case. 

N(O,O.O25). Comparing Figs. 2 and 3, we note that in 
the “noisy” case the estimates never converge. This 
is a common property for parameter identification al- 
gorithms which can track time-varying dynamics, a 
property which is also shared by the proposed algo- 
rithm. As a matter of fact such a property is demon- 
strated in the third experiment. The system param- 
eters vary according to the table: 

time interval w I/ p 

o<t<70 0.5 1 2 
70<t<150 0.3 1 2 

Figure 4 shows parameter values and estimates, while 
Fig. 1 (bottom) displays the corresponding phase por- 
traits. 
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Figure 3: Estimated parameters, & (top), fi (center), 
,G (bottom), in the noisy case. 

6 Conclusions 

This paper addresses the problem of on-line parame- 
ter estimation for nonlinear continuous time dynam- 
ical systems of known structure. Two parameter es- 
timation problems for the noise-free case are formu- 
lated and then explicitly solved. The resulting param- 
eter estimation algorithms incorporate an observer; 
the adjustment of the observer parameters is consid- 
ered as a stabilization problem for an uncertain sys- 
tem and is solved using sliding mode method. In the 
full information parameter estimation problem it is 
assumed that all the system states and their deriva- 
tives be known. In the output measurement parame- 
ter estimation problem we assume that only one state 
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Figure 4: Estimated parameters, G (top), fi (center), 
fi (bottom), for parameter jump. 

is known, the other states are reconstructed using an 
adaptive observer. The proposed algorithm is ap- 
plied for parameter estimation of the Van der Pol 
oscillator, where parameter and state convergence is 
demonstrated, initially and after a parameter jump 
in a noise-free case, and in a noisy case. 

The proposed method has also been used to esti- 
mate the parameters of a pendulum on a cart. The 
result of the experiments, carried on the pendulum 
built at the Automatic Control Laboratory of the 
ETH-Zurich, will be reported in the final version. 
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