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ABSTRACT 

This article addresses the problem of distributed- 
parameter control for a class of infinite-dimensional 
manufacturing processes with scanned thermal actuation, 
such as scan welding. This new process is implemented 
on a robotic laboratory setup with infrared pyrometry, 
and simulated by a flexible numerical computation 
program. An analytical linearized model, based on 
convolution of Green’s fields, is expressed in MIMO 
state-space form, with its time-variant parameters 
identified in-process. A robust controller compensates for 
model uncertainty, and a sampled weighted attraction 
method is introduced for heat source guidance based on 
real-time thermal optimization of the heat input 
distribution. The distributed thermal regulation strategy 
with infrared feedback is validated both computationally~ 
and experimentally in scan welding tests. 

INTRODUCTION 

Since the early days of Hephaistos, the smith of the 
Olympian gods, thermal processing of materials has been 
consistently at the heart of virtually every industrial 
fabrication method, besides high-tech weaponry. In the 
automotive industry, for example, the molds of the car 
body are sculpted by automated deposition of their 
material guided by innovative thermal Rapid Prototyping 
techniques, rather than by manual forging, to keep up 
with the changing fashions in aesthetics and 
aerodynamics. In the electronics and computer industry, 
the need for faster and more powerful microprocessor 
chips is satisfied by sophisticated thermal processing of 
thin semiconductor film structures of high purity for 
implementation of complex circuitry. In telecommu- 
nications, the constantly increasing use of fiber optics 
has been made possible through the stringent quality 
specifications of optical fibers produced in thermal 
drawing furnaces. Last, in biomedical technology, the 
fabrication of prosthetic or replacement aids for injured or 
amputated organs, such as total hip replacement, relies 
heavily on special thermal production and processing of 
new alloys and composites, to ensure the required 
strength, durability and biocompatibility. 

In all these multifaceted applications, the quality of 
the thermal product, described by its geometric 
morphology, material structure and mechanical properties 
distribution, is determined by the dynamic, spatially 
distributed temperature field generated in the part during 

the process. Despite the clear infinite-dimensional nature 
of the thermal dynamics, however, real-time control of 
such manufacturing methods has invariably been 
addressed in the context of finite-dimensional regulation 
of a few localized thermal product features [ 11. However, 
the recent advent of more flexible thermal actuators, such 
as Laser and electron beams, together with sensors based 
on optical or infrared cameras and radiographic or 
ultrasonic imaging systems, enable new approaches to 
the distributed-parameter thermal control problem. 

In this direction, infinite-dimensional systems 
theory [2,3,4] has inspired the redesign of classical 
localized, serial thermal processing methods into novel 
parallel techniques with distributed actuation and sensing. 
The recently patented Scan Welding process is such a 
paradigm [5]. Rather than the localized heating of a 
sequentially-moving, conventional welding torch, the 
scan welding heat source sweeps rapidly the entire 
accessible surface of the weld, and its power is 
dynamically varied along its motion to provide a flexible 
continuous heat input distribution. This distributed 
action of the scanned Laser beam or robotically driven 
torch on the external surface is modulated to generate a 
specified temperature field in the part volume, yielding 
the desired geometric, structural and mechanical quality 
of the material. Manipulation of this scanned heat influx 
on the part boundary is based on real-time measurement 
and feedback of its external temperature distribution, e.g. 
by an infrared pyrometry sensor. The development of a 
laboratory setup for scan welding, as well as a numerical 
simulation of the thermal distribution, based on finite 
difference integration, is described in [5]. The design and 
implementation of a closed-loop thermal control strategy 
for such a distributed scan welding process is the 
objective of this article. 

MULTIVARIABLE THERMAL MODELING 

In parallel to off-line validation of an infinite- 
dimensional thermal control scheme by experiment and 
numerical simulation, its design must be established on 
the insights provided by a simpler analytical thermal 
description. Such a computationally efficient, real-time 
thermal model for the distributed-parameter scan welding 
process can be formulated as a finite-dimensional, 
multivariable expression of the temperature output with 
respect to the heat input distribution at discrete, 
representative mesh points of the weld. Figure 1 defines 
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Figure 1: Orthogonal mesh for temperature outputs 
and heat inputs for the linear MlMO model, 
and Green’s field G(i;t: 50,O) at t=1,2,3 s. 

such a low-order model for scan welded orthogonal 
sheets, in which the dynamic, lumped temperature states 
T&t), i=l..n and heat inputs QCj;t), j=l..m are described 
by the respective vectors of local values at the nodes of 
an orthogonal mesh of size k=ll, Z=9 (n=m=kZ=99). 
The square mesh element size Ds=3 mm is chosen by 
compromise between spatial resolution and 
computational conciseness of the model. In this 
arrangement, a linearized analytical formulation of the 
process dynamics is based on the assumption of linear 
transient solid conduction in a uniform and isotropic 
material, with temperature-invariant thermal properties 
and no latent transformation effects. Linear heat losses 
from the free weld surface and a Gaussian power density 
distribution of the heat source is also assumed. The 
dynamic description of the output vector 1 on the input 
vector Q is established on the concept of the Green’s 
matrix G(i;t:j;r), the elements of which express the 
transient temperature T at node i and time t, generated by 
an impulsive unit heat input Q at node j and time z [6]. 
The Green’s parameters can be expressed analytically for 
a plate as a series of thermal images: 

G(i;t:j,z) =i q 2a(t-2) 
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where x(i), y(i) are the coordinates of the temperature 
output node i, x(j), y(i) those of the heat input node j, 
and x(h)=Dsint(h-l,Z), y(h)=Dsmod(h-l,l) of node h. 
The material parameter p is the density, c the heat 
capacity, a the thermal diffusivity and y the equivalent 
conductivity factor in the melt (y=l in the solid region). 
H is the plate thickness, a the equivalent linearized heat 
transfer coefficient on the weld surface, and q, o the 
efficiency and distribution radius of the power density 
distribution of the source. Alternatively to Eq. 1, 
estimates of the Green’s matrix elements can be obtained 
by numerical simulation [5], as the dynamic temperature 
values T obtained after a unit heat input perturbation Q. 
Figure 1 illustrates the distribution of Green’s parameters 
G(i;t:50;0) on a stainless steel coupon, by a unit heat 
input at the center node, at several elapsed times after the 
torch action. Thus, the linearized temperature hill 1 can 
be derived by convolution of this dynamic field with the 
thermal power input Q throughout its trajectory on the 
part during the process: 

Z(i;t) = T(i;O) + 
i 

t 

G(i;t:j;z).Q(j;z).dz (2) 

Figure 1 clearly shows thit solid conduction results in a 
decaying transient, localized, radially symmetric 
temperature hill in the vicinity of the heat input, with 
almost no effect at remote points. This indicates that the 
Green’s matrix G(i;t:j;r) contains only a small number 
(at most n-1(1-1)/2) of nontrivial elements G(r,d), for 
limited ranges of radial distauce r&x(i)-x(j)12+[y(i)-y(j)12 
and time delay d=t-2. In addition, if heat losses from the 
weld edges are equivalent to the internal conductive heat 
flux, as for example when the coupon of Figure 1 is part 
of a larger plate, then the matrix G has a sparse, banded, 
diagonally uniform, symmetric structure (when n=m), 
with its subdiagonals containing identical elements. 
This special structure of G greatly facilitates real-time 
efficient computation of the superposition Eq. 1, and is 
graphically depicted in Figure 2. 

Figure 2; Graphical rendering of the structure 
of matrices A, B, K and A=A+BK. 



small number of independent elements A(r,d) and B(r,d). 
Moreover, Eqs. 5 preserve the uniform diagonal bands 
and the symmetry of the state matrix A and input matrix 
B (if n=m), which thus display a form similar to G 
(Figure 2). Again, this structure enables real-time 
eigenstructure analysis of the linearized model description 
(A, B }, through special sparse matrix techniques based 
on order reduction [8]. However, the nonlinearities of 
the scan welding process yield state-dependent dynamic 
parameters in the linear model of Eq. 4, as expected. 
Thus in the neighborhood of the nominal conditions (‘&, 
QJ the nonlinear thermal system can be linearized to a 
linear, time-variant (LTV) formulation, with the system 
matrices {A, B.} consisting of a stationary and a non- 
stationary (time-dependent) component: 

THERMAL CONTROLLER SCAN WELDING 

w Block diagram of closed-loop 
thermal control system for scan welding. 

However, scan welding involves nonlinearities and 
time variations of the heat transfer mechanisms, such as 
radiation effects, thermal drift of temperature-dependent 
material properties, structural transformations with latent 
thermal phenomena (fusion, solidification), and alteration 
of torch characteristics. These effects yield variable 
dynamic parameters in the linearized model (Eq. l), 
during the transients and disturbances of the process from 
its nominal conditions. Thus, initial off-line estimates 
of the time-variant constitutive elements of the Green’s 
matrix G(i;t:j;r), obtained numerically or analytically 
(Eq. l), must be updated in-process by measurements 1 
on the part surface. Such real-time identification of the 
Green’s parameters is based on incremental deconvolution 
of Eq. 2 in discrete time steps Dt [7]: 

c 

t 

I(i;t) - L(i;r) - G(i;t-Dt:j;r).Q(j;r).dz = 

[G(i;t:j;r) - G(i;t-Dt:j;z)] 
J 

Q(j;r).dz 

Thus, the numerically significant &mmeters in G(i;t:j;r) 
can be determined by commensurate linearly independent 
equations for an equal number of nodes i, selected out of 
the n relations in Eq. 3. Multiple solutions for various 
selections of nodes i can be averaged to reduce errors. 

Eq. 2 expresses the linearized thermal model in 
vectorized input-output integral form. An equivalent 
alternative description in state-space differential 
formulation can also be derived to facilitate the design of 
thermal controllers by familiar pole placement of linear 
quadratic techniques: 

&;t) = A(i,h;t).z(h;t) + B(i,j;t)*Q(i;t) (4) 

where the temperature state vector 1=1-L and the heat 
input vector Q=Q-& are measured relative to a nominal 
setpoint of operating conditions (L, QJ. The time- 
varying nxn state matrix A(i,h;t) and the nxm input 
matrix B(i,j;t) express the thermal rate of change at node 
i because of the current temperature T at node h or the 
heat input Q at node j respectively. Under the previous 
assumptions of linear conduction, these matrices can also 
be determined by analytical expressions derived from Eq. 
1, since they are related to the Green’s matrix G: 

A(i,h;t) = @i;t:j;z)*G-l(j;r:h;t), B(ij;t) = @i;t:j;t) (5) 

By arguments similar to those for the Green’s matrix G, 
the system matrices A and B are also composed by a 

A(i,h;t)=&(i,h)+DA(i,h;t), B(i,j;t)=B,(ij)+DB(i,j;t) (6) 

where A,, B, are their constant values at the operating 
point and DA(t), DB(t) their uncertain parts. The latter 
depend on time-varying process parameters, such as torch 
efficiency and distribution, thermal material properties 
and the heat loss parameters to the environment. After 
the determination of the certain components .A,, B, at 
the nominal setpoint as above, the uncertain parts 
DA(t)=A(t)-&, DB(t)=B(t)-B; can be evaluated similarly 
under process conditions other than the nominal.. 

ROBUST CONTROL & TORCH GUIDANCE 

The time variation of the scan welding description in 
Eq. 4 mandates the robustness of the thermal control 
system to be designed, to the structured uncertainty of 
the model parameters. Such a multivariable controller 
employs feedback of the temperature measurement I 
deviations from the nominal field Tq, to modulate the 
thermal distribution Q on the weld surface with respect 
to the reference heat input Qd (Figure 3): (7) 
Q&t)-Q&)=K(i,h)*[I(h;t)-L(h)] i.e. Q(j;t)=K(j,h)*_T(h;t) 

where the nxm control gain matrix K=K+DK consists 
of a standard part &, designed on the basis of the certain 
model description {&,B,}, and an additional cart DK to 
handle the uncertain process component {DA(t), DB(t)) . 
The design of this robust MIMO controller is elaborated 
in the Appendix. Thus, by combining the control law of 
Eq. 7 to the process model (Eq. 4), the thermal dynamics 
of the closed-loop welding system can be described as:(g) 

ai;t) = [A(i,h;t)+B(i,j;t)*K(j,h)]*z(h;t) = A(i,h;t)*ZJh;t) 

where A=A+BK is the state matrix of the thermal 
feedback system. Its dynamics can be properly 
designated by linear quadratic methods or pole placement 
[7] of the eigenstructure of matrix A. As it can be 
concluded in the Appendix, the co$.rolIer gain matrix K, 
and thus the system state matrix A, have also a sparse, 
uniformly diagonal banded, symmetric structure (if n=m) 
similar to the model matrices A and B (Figure 2). This 
indicates that the heat input Q(j;t) at a node j in Eq. 7 is 
actually determined by the temperatures T(h;t) of a few 
adjacent nodes h, corresponding to the numerically 
significant gains of the controller K(j,h). Thus the 
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Figure 4; Guidance of heat source motion 
by sampled weighted attraction. 

control law (Eq. 7) obtains the node heat inputs Q(i;t) by 
a computationally efficient spatial weighting of the 
measured neighboring node temperatures T(h;t). _In 
Figure 3, for a stable design of the feedback system (A), 
this modulation of the heat input distribution Q results 
in a temperature field 1 following asymptotically the 
desired thermal reference L, despite the process 
uncertainties and disturbances. 

The manipulated heat distribution Q could be 
directly implemented by high-bandwidth heat sources, 
such as Laser and electron beams, by fast raster-scanmng 
of the weld surface (similar to a CRT monitor), i.e. by 
dynamically adjusting the scanning beam intensity to 
provide the proper heat input Q(i;t) to each element 
(pixel) j of the orthogonal mesh in Figure 1. However, 
for slowly moving sources, such as a robotic torch, the 
distribution Q can be best approximated by vector- 
scanning of the source on a dynamic trajectory X(t), Y(t) 
(similar to an oscilloscope screen). The torch motion is 
directed towards the location of highest thermal demand, 
i.e. the maximum of the Q-surface (Figure 4), with 
simultaneous adjustment of its power Q(t). Thus, the 
guidance and modulation of the heat source in the scan 
welding thermal system is posed as a distributed- 
parameter dynamic optimization problem, i.e. real-time 
tracking of the locus of the moving maximum of the Q- 
surface, linearly interpolated to the control values Q&t) 
(Eq. 7). In principle, a standard steepest-ascent method 
could be used for this purpose, driving the torch along 
the gradient of the Q-surface at a proportionate velocity 
y(t)=clQ(j;t). However, this technique is hampered by 
practical difficulties, since it requires exact modeling and 
extensive sensing in the vicinity of the heat source, 
which is problematic because of the welding arc effects. 

In addition, computation of derivatives for the gradient- 
based method is untrustworthy because of its sensitivity 
to thermal noise of the temperature data 1. Moreover, 
since the slope of the thermal distribution near the source 
does not convey information on its full landscape, this 
technique tends to lead the torch to the nearest local 
maximum of the Q-surface and ignore its remote peaks 
(Figure 4). This guidance strategy favors elimination of 
local heat deficiencies before passing the heat source to 
the region of the global maximum of the thermal 
deviation, thus showing a reluctance to fast torch motion 
and degrading the welding performance. In scan welding 
of large parts with non-uniform heat demands and strict 
regulation specifications, trajectory control must be 
based on comprehensive thermal data from the entire part 
surface, beyond the local conditions near the torch. 

Such a global thermal optimization technique, the 
Sampled Weighted Anraction method is introduced, based 
on in-process random sampling of the entire distribution 
surface (Figure 4). At a fixed number N of randomly 
located positions P(h;t), h=l..N on the part surface (N 
depending on the desired thermal resolution), the actual 
spot temperatures T(h;t) are measured and the necessary 
heat inputs Q(h;t) are computed by Eq. (7). Then the 
torch velocity Y(t) is defined as consisting of N 
individual components, directed from the torch location 
r(t) to each position P(h;t), with magnitude proportional 
to the respective heat input Q(h;t), and weighted 
according to the distance of each point from the source 
bv a Gaussian distribution: (9) 

y(t) = 2 Cv Q(W) [iW;O-Ht)l exP - 
h=l 

where I( is the Euclidean distance norm, Cv the 
velocity gain and s the distribution radius of the 
Gaussian weighting distribution. Similarly, the power 
Q(t) of the heat source is also defined as: 

Q(t) = 2 CQ Q(M) exp 1 P@;O-P(t) I2 - - 2s; (10) 
h=l 

where Co is the power gain. Next, every sampling 
period Dt the oldest sample location P(h;t) among the N 
points is replaced by a new randomly selected position 
on the weld surface, and the procedure is continuously 
repeated and gradually guides the heat source P(t) to the 
global maximum of the heat input surface Q. Note also 
that in random sampling of new locations, instead of the 
assumed uniform probability distribution, a more directed 
sampling can be implemented if a variable Boltzmann 
(axisymmetric radially exponential) probability profile is 
adopted. This can be centered at the thermally weighted 
centroid of the sampled N points and with a distribution 
radius commensurate to their weighted standard deviation. 
This adjustable probability distribution can give this 
method simulated annealing features [9]. 

EXPERIMENTAL-COMPUTATIONAL TESTS 

The performance of this distributed-parameter control 
methodology is assessed in an elementary scan welding 
operation, both by computational simulation, where the 



Figure 5: Closed-loop scan welding of a triangular 
flange section at steady state (t=20 s). 

a. Reference temp. hill Td by line source (simulated) 
b. Measured temperature hill T by IR camera @t=l s) 
c. Simulated temperature hill T (Dt =l s) 
d. Simulated temperature hill T @t=O.4 s) 

numerical model replaces the process hardware, and by 
experimental tests on the laboratory setup. The stainless 
steel plate of Figure 1 is scan welded along a composite 
triangular flange pattern. Figure 5a shows the necessary 
nominal temperature field Td for this operation, generated 
by an ideal three-segment (A) uniform line heat source 
Qd=50 kW/m, along the processed edges through 
computer simulation. Alternatively, this nominal 
thermal hill may be developed directly in the laboratory 
during a satisfactory off-line reference test, and recorded 
by the infrared pyrometer in order to be subsequently 
reproduced by the thermal feedback control system. In 
closed-loop operation, the temperature measurements 
I(h;t) at the grid nodes determine the heat inputs Q&t) 
through the control law of Eq. 7. These are used to 
modulate the motion trajectory X(t), Y(t), i.e. the torch 
velocity y(t) and power Q(t) (Eqs. 9,lO) every sampling 
period Dt=l s, by the sampled weighted attraction 
guidance technique. This is applied to a total of N=lO 
sampled locations on the weld surface, with N selected as 
a compromise between heat source agility and path 
smoothness. In Eqs. 9 and 10 the optimized control 
gains are Cv=0.0078/J, cQd.34 and distribution radius 
s=20 mm. For off-line design of the control matrix K in 
Eq. 7, initial estimates of the certain matrix parts (4, 
B,) in the model of Eq. 4 are obtained by the analytical 
expressions of Eqs. 4 and 5, while their uncertain 
components DA(t), DB(t) in Eq. 6 are obtained by the 
numerical simulation by thermal perturbations from the 
nOmind COnditiOnS (Td, Qd). 

During both the computer and laboratory tests, this 
thermal control strategy circulates the heat source around 
the processed triangular pattern, so as to emulate the 
ideal line source by the scanning motion of the torch to 
the plate regions where its heat action is needed most. 
For the laboratory tests, Figure 5b shows its crooked 
trajectory, consisting of consecutive segments for each 
period Dt, lying within a triangular band surrounding the 
sides of the scan welded A section. Figure 6a illustrates 
the experimental time response of the torch power Q(t), 
before settling to an almost steady value of about 1.8 
kW. Its fluctuations relate to the random deviations of 
the torch position on its jagged path during each period 
Dt from the ideal triangular pattern. The respective 
laboratory transients of temperatures at the three comers 
A, B, C of the A section are shown in Figure 6b, 
together with the open-loop time response of the 
reference temperature of Figure 5a on the section edges. 
The noise of these experimental temperature data by the 
infrared pyrometer is attributed to variations of the 
surface emissivity value on the scan welded plate. 
Finally, the resulting top surface temperature hill at the 
process steady state (after 20 s) is illustrated in Figure 5b 
and 5c as measured experimentally and as computed by 
the numerical simulation. 

In Figures 5b and 5c, the clear correspondence 
between the measured and the computed temperature field 
validates the numerical simulation as a thermal model of 
scan welding. However, it seems that the thermal control 
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Figure 6: Torch power Q(t) and comer temperature 
responses T(t) during closed-loop scan welding 

system succeeds in generating the specified temperature 
distribution Td of Figure 5a only partially, i.e. mainly in 
the vicinity of the current torch position. This is 
because the rest of the previously heated region finds the 
time to cool down between successive passes of the 
torch, i.e. before the source arrives again to restore the 
desired thermal field. The same effect is also clearly 
observed at the temperature transients of Figure 6b, 
where the intermediate peaks and cooling intervals relate 
to the repeated passes of the torch over each comer of the 
triangle. This performance limitation is attributed to the 
slow motion of the source on its trajectory relative to the 
thermal dynamics of the part, because of the long torch 
repositioning time Dt=l s needed to cover the time- 
consuming temperature measurements by the infrared 
camera. This problem calls for a faster thermometry 
transducer or parallel sensing of the thermal data in each 
iteration, to speed up the torch transitions. For such an 
assumed repositioning time Dt=0.4 s, the numerically 
simulated temperature field at steady state (Figure 5d) 

approaches more closely the specified reference 
distribution Td of Figure 5a. 

SUMMARY 

In conclusion, the laboratory tests and computer 
simulations above validate the distributed-parameter 
sampled weighted attraction method for thermal control 
of the scan welding process. This heat source guidance 
technique adjusts the torch power and guides its motion 
towards the weld area of the highest thermal actuation 
deficiency, by synthesizing its total intensity and 
velocity by partial components to a number of randomly 
sampled locations, weighted according to their thermal 
needs. This algorithm yields dynamic trajectory tracking 
the moving global maximum of the required heat input 
distribution, to realize its optimal approximation by the 
heat source action. The necessary heat input is 
determined by a MIMO thermal control law, utilizing 
temperature feedback from the weld surface by an infrared 
camera. This controller is based on an analytical, 
linearized thermal conduction model of the scan welding 
process, expressed in state space and established on the 
Green’s field concept. The closed-loop scan welding 
system is tested off-line on a flexible numerical 
simulation of scan welding, and in-process on a robotic 
setup with infrared thermometry feedback. 

This distributed-parameter thermal control 
methodology was developed so as to match the 
innovative redesign of a class of distributed, parallel 
thermal materials processing techniques, such as scan 
welding, and to harness the benefits of their inherent 
infinite-dimensional actuation and process features. In 
particular, the regulated temperature field and controlled 
thermal cycles in the scan welding application of Figures 
5 and 6 yields an elongated, uniform weld pool spanning 
the full length of the joint centerline, and solidifying at a 
specified rate in progressive cross sectional increments. 
This contrasts to the localized ellipsoidal molten puddle 
in traditional sequential welding, which solidifies at the 
back of the mushy zone in longitudinal increments, at a 
rate dependent on the torch velocity. Thus, scan welding 
yields a better grain interweaving at the solid -melt 
interface, with fewer solidification defects, as well as a 
desirable microstructure in the heat affected zone (i.e. 
with limited sensitization in stainless steel welds), and 
minimal residual stresses and thermal distortions of the 
joint. The result is a demonstrated consistent increase of 
the tensile strength of thermally controlled scan welds 
over conventional joints [5]. Besides these quality 
advantages, productivity features of distributed-parameter 
heating include process speed, efficiency and elimination 
or simplification of postheating and inspection 
requirements. However, application of the thermal 
control strategy above is clearly not limited to scan 
welding, and current research is in progress on its 
implementation in scan heat treatment and thermal rapid 
prototyping processes. 
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APPENDIX 

The uncertain parts of the system matrices in Eq. 6 
DA(t) and DB(t) actually depend respectively on the 
vectors E(t)E RP and &(t)E Ra of time-varying thermal 
process parameters. For example, the state matrix A is 
affected by the thermal diffusivity of the material a and 
the heat transfer coefficient to the shielding gas flow a, 
i.e. r(t)=[a(t) a(t)] (p=2), while the input matrix B is 
additionally affected by the torch efficiency q and 
distribution cr, i.e. s(t)=[a(t) a(t) q(t) o(t)] (q=4). The 
following conditions apply to this thermal model: 

1. The constant matrices &, B, constitute a controllable 
pair (i.e. the respective controllability matrix CIAo,Bo] 
is of full rank n), because of their sparse, diagonally 
banded structure. 
2. The uncertain matrices DA&) and DB(&, expressing 
temperature rates due to the temperature state and heat 
input, are continuous in the thermal parameter vectors r 
and 2 respectively. 
3. The time-varying thermal parameters g(t) and z(t) 
reflect physical process conditions and thus are 
continuous functions of time and Lebesque measurable. 
4. The vectors EE @RP, SE ScRq belong to the known, 
compact bounding sets Kand S respectively, defined by 
the variation ranges of the respective parameters. 
5. The uncertain matrices DA, DB are matched by B,, 
i.e. one can determine the matrix functions: 

D(r)=(B,rB,)-lB,rDA&) of dimension 111x11, 
such that DA(I)=B$@ for VIE X (11) 

E&)=(B,TB,)-lB,‘rDB(s> of dimension mxm, 
such that DB(S)=B,E&) for Vse 5 

Thus, the problem ofrobust stabilizing control of 
thermal processing in this M&IO-LTV formulation is 
posed as the design of a feedback control law Q=KeI 
such that for all initial temperature conditions L and all 
parameter alterations TE xand s~ S, the thermal steady 
state 1 tends to L of the nominal process conditions as 

m. The mxn matrix of controller gains K can be 
izigned according to the following algorithm [5]: 

a. A mxn controller gain matrix K, is designed so that 
the control law Q=K,_T places the eigenvalues of the 
stationary, closed-loop system matrix A,=A,+B,K, at 
the desired stable locations. Because of Condition 1 
above, this is always possible and can be done through 
e.g. the Bass-Gura or Ackermann algorithms [7]. 
b. A positive definite symmetric matrix J is selected 
(e.g. J=Inxn) and the Lyapunov equation is solved for the 
nxn posit@e defini;e symmetric matrix P: 

A,rP + PA, = -J (12) 
c. The following matrix function is defined: (13) 
M&,;s) = -J + PB,[D&)+ECS)K,,] + [D&)+E(s)&]TB,TP 

d. A scalar p and a mxn matrix fi are defined as: 
p = min{ &n~[21rnxm+E(s)+ET@]: s~ S} 

and fi = $*B,TP (14) 
where the function &nin[N] denotes the minimum 
eigenvalue of a symmetric matrix N. 
e. A matrix II is constructed, the columns of which span 
the null space of Q, i.e. II(fi)=[z: &=a and a nxm 
matrix O=PB,. 
f. The scalar quantity y is determined as: 

y * = max{hm[OTMtn)Ol: E $ SE 5) 
hmin[OT~Tm] 

(15) 

-( II-ITMks>o(2: E Y, SE S] 
~~,[oTszTs201.111iU((hmax[nThl~Qnl: ZE x SE s) 

where the function h,,x[N] denotes the maximum 
eigenvalue of a symmetric matrix N, and the norm of 
matrix N is defined as IN12=&nax[NrN]. Note also that: 

-I~maxt~O,s>~l: IE % SE Sl 
= &,,I-flJn1 = -hti,[flJ~l (16) 

which simplifies the calculation of y. 
g. A non-negative scalar y is selected, such that ~>y*, 
to construct the mxn controller gain matrix: 

DK= - rBoTP (17) 

It follows that, under the specific Conditions 1 
through 5 above, a robust linear stabilizing control law 
of the thermal process is given for any r>y by Eq. 7; 
i.e. for the mxn controller gain matrix K=K+DK, the 
closed-loop system of Eq. 8 tends asymptotically to the 
stable equilibrium of the nominal operating point, i.e. 
the eigenvalues of matrix A(~,+A(~+B(S).K are 
guaranteed to lie in the left-half complex plane for all 
hi 2 SE S. This result is proven based on the robust 
stabilizing control theorem for matched systems [lo]. 


