
A State Configured Sensor Based Control Architecture for an Autonomous Underwater
Vehicle

Georgios A. Demetriou & Kimon P. Valavanis*

Robotics and Automation Laboratory

Center for Advanced Computer Studies & A-CIM Center
University of Southwestern Louisiana

Lafayette, Louisiana, USA

(E-mail: gad@acim.usl.edu, kimon@cacs.usl.edu)

Abstract

A new embedded control system hardware and

software architecture suitable for an AUV is presented. The

proposed scheme is based on the shared memory principle
and consists of three components, a supervisory controller, a
functional and a hardware/execution component. Off-the-
shelf technology has been used to build and implement the
described AUV control architecture. Key features of the
proposed architecture include: autonomy, learning, recovery,
multiple goals in a single mission and use of multiple sensors

for data collection. This embedded architecture is modular,
reconfigurable, expandable, upgradable and cost-effective.

1 Introduction

The reported research has been motivated by the

challenge to design and implement a sensor-based hardware
and software control architecture for an Autonomous
Underwater Vehicle (AUV). The central research objective is
that the AUV will operate autonomously in coastal and
shallow water sensitive environments like wetlands, shallow
water fisheries and polluted environments. Such an AUV is
expected to be used for offshore oilfield platform and
pipeline inspection and maintenance, wetlands gain/loss
detection, shallow water fisheries monitoring, coastal studies,
monitoring environmental pollution due to industrial wastes,
thus, assisting in preserving the nation’s ecosystems.

The AUV’s practical use and functionality

constraints have been determined based on operational needs
specific to the Gulf Coast Region and the more shallow
waters of Louisiana. Key features of the proposed
architecture include: autonomy, learning, recovery, multiple
Goals [11, multiple Sensors [11, modularity/expandability.

The rest of the paper is organized as follows:

Section 2 reviews some of the existing AUV architectures,
compares and summarizes their advantages and

disadvantages. Section 3 gives a detailed description of the
proposed control architecture. Iu Section 4 the

* To whom all correspondence should be addressed

implementation process of the proposed architecture is
explained. Section 5 gives a case study example and
demonstrates the system’s functionality. Finally section 6
concludes the paper.

2 Comparison of Existing AUV Architectures

The dynamics of AUVs are typically nonlinear and
uncertain [3]. Nonlinearities arise from the hydrodynamic
forces as well as cross coupling between vehicle states.
Uncertainties arise from changes iu the environment that the
vehicle interacts with. To meet the demanding control
requirements of AUV control four major control
architectures have been developed, called hierarchical
architecture, heterarchical architecture, subsumption
architecture and hybrid architecture.

Hierarchical Architecture: In a hierarchical architecture, the
various system components are arranged in levels, with
higher levels commanding lower levels. The higher levels are

responsible for all mission goals and lower levels are
responsible for solving smaller problems that are needed to
accomplish the mission [2]. The hierarchical architecture is a
representation of a top-down approach which is extremely
rigid [3]. Each level in the hierarchy receives commands
from the level directly above it and sensory information horn
the level directly below it. The information exchange rate
decreases from the bottom to the top of the hierarchy. Non
adjacent layers can not communicate directly with each
other. This results in long processing times, unreliable

sensory information and unknown reactions to unpredictable
events [3]. The t&level control architecture of the NPS
Phoenix AUV is an example of a hierarchical architecture.
For a more detail description of the NPS Phoenix the reader
is referred to [5,6].

Heterarchical Architecture: To overcome the communication
overhead of hierarchical control architectures some
researchers have proposed heterarchical control architectures.

The individual functional modules are treated as cooperating
equals with possible direct communication without any

supervisor. The advantage of this architecture is that
knowledge and sensory information can be easily integrated
into any module. However, the control representation aspects
are difficult to address and relatively complicated issues such
as chaotic behavior may arise [27].

Subsumption Architecture (Layered Control): Layers of

control are used to let the robot operate at increasing levels
of competence [l]. Layers are made up of modules that
communicate over low bandwidth channels. Higher level
layers can subsume the roles of lower level layers by
suppressing their outputs. In the subsumption architecture

there is no high-level supervisor (high level of control). Data
and control are distributed through out all layers and each
layer processes its own information (sensory and
commands). The subsumption architecture is decomposed
based on the task achieving behaviors of a system. All
behaviors are explicitly implemented and then tied together
to form a robot control system. Bellingham and Consi [7]
modified the subsumption architecture and derived the state

configured layered control architecture. The main

disadvantage of the subsumption architecture is the difficulty
associated with synchronization and timing of the various
modules (layers). This difficulty is due to the fact that there
is no high-level control. This makes it hard to verify
correctness and stability of the system. Another disadvantage
is that the complexity of the system increases significantly as
the number of behaviors increases. The expandability and
robustness that this architecture offers is a great advantage.
The real advantage of the layered control architecture is that
the behavior network has a relatively low computational
overhead. An example of a system that uses the subsumption

architecture (in a modified manner), is the Sea Squirt AUV
that was developed at MIT [7].

Hybrid Architecture: In hybrid control different levels of
abstraction are used for system modeling and control
purposes [4]. The hybrid architecture is a combination or
modification of the other two architectures. The hybrid

architecture integrates both low and high level control in a
coherent structure [3]. The lower levels of the system have
similarities to the subsumption architecture while the desired
higher level control (missing from the subsumption
approach) has similarities with hierarchical system modeling.
An example of a hybrid architecture, is the control
architecture of the Ocean Voyager II developed by the
Florida Atlantic University [8].

Nine AUV control architectures have been
reviewed: Texas A&M’s Autonomous Underwater Vehicle
Controller (AUVC) [9], Florida Atlantic University’s
OcearVoyager ZZ [8], Massachusetts Institute of
Technology’s Sea Squirt AUV [7], Naval Postgraduate
School (NPS) PHOENZX AUV [5, 61, Znstituto Superior
Technic0 ‘s Marine Utility System (MARZUS) Programme
AUV [lo], Monterey Bay Aquarium Research Institute
(MBAZU,) and Stanford University Ocean Technology’s

Testbed for Engineering Research (OTTER) AUV [l 11,
Massachusetts Institute of Technology Sea Grant’s Oc&ssey
AUV [21], University of New Hampshire’s Experimental
Autonomous Vehicle (EAVE) ZZZ [16], University of
Technology at Sydney’s ERIC AUV [16], and Woods Hole
Oceanographic Institution’s Autonomous Bentic Explorer
(ABE) AUV [161. These AUVs have been chosen because the
proposed hardware and software sensor based control
architecture (presented in the next Section) draws upon the
operational and functional principles of the reviewed AUVs.
Table 1 compares their control schemes.

3 State Configured Sensor Based Embedded
Control Architecture for AUVs

The proposed embedded control architecture
consists of three components: a supervisory control, a
functional control and a hardware/execution component, as
shown in Figure 1. The supervisory control component is
responsible for the coordination of the overall AUV. It
monitors and coordinates the order of module task execution

(of the functional component). The functional component is
responsible for specific task/operations occurring in a
mission. Each module performs a well defined set of tasks.
The hardware/execution component consists of the actual

electrical, mechanical and sensory components of the AUV
and it is directly controlled by the functional component.

The described control architecture is modular and
the functionality of each module is determined based on
specific tasks performed. All modules share a common
communication bus for data storage and retrieval. There is no
direct communication between individual modules.
Information exchange is accomplished through shared

variables. The overall control system architecture
functionality is based on state diagrams that define specific

AUV operations. A state diagram is responsible for
determining the sequence of AUV tasks/operations through
the mission various phases. A major advantage of this design
scheme is that not all system modules are located at the same
level, thus minimizing the delay between sensor readings and

data transfer. This delay may be further minimized if the
sensor control module (of the functional component) is
integrated within the supervisory control component. In such
case, the only delay time involved is the time required by the
supervisory control component to transfer data from one
module to another.

Supervisory Control Component

The supervisory control consists of the Master
Controller (MC) and the Shared Memory. Figure 2 shows the
internal structure of the MC. The MC contains a main/central

processor (Intel Pentium), a local memory unit (for execution
purposes) and the following four software processes that
coordinate the operation of the AUV.

2

i. Shared Memory Management (SMAfl process: It takes
care of all variable transfers between the modules and the
shared memory. These variables are used to transfer
information between the modules. Such information is
the parameters supplied by the sensor control module

(sensor data), the current map file generated by the map
generator module, etc.

ii. Interrupt Handling (ZH) process: It monitors the shared
memory for interrupt variables that are sent by the
Monitoring and Recovery module if a software or
hardware malfunction takes place. If an interrupt occurs,
it performs the necessary action (usually stops operation
and initiates some kind of recovery function from the
Monitoring and Recovery module).

iii. Monitor External Signals (MES) process: It monitors the
shared memory variables for the signals that the modules
send to the MC. These signals include requests for
variables, acknowledge signals, and so forth.

iv. Mission Scheduler (MS) process (state configured
operation): It coordinates the operation of the AUV by

transferring control among the modules. The transfer of
operation is based on state diagrams. State diagrams
represent the mission of the AUV.

The means of communication among the system
modules is the shared memory system of the Supervisory
Control component. The goal is to make sure that data
integrity and synchronization is maintained at all times. This

is done using mutual exclusion by employing semaphores
[2]. Each variable is assigned a semaphore. To avoid
corruption of the shared memory, thrusted functions are used
to guaranty that the only relevant parts of the shared memory
are accessed by the various processes. The shared memory
system is accessible by all the modules of the system. The
MC is responsible for the coordination and management of
the shared memory (shared memory management process).
The various modules need not know about the function of
other modules. The only information a module needs is the
data stored in pertinent variables is shared memory.

The Functional Component

The functional component is composed of modules

that function independently of one another. These modules

are:

i. Sensor Control module: Controls the activities of the

sensors and receives information from the sensors. It
makes necessary calculations and generates results that
are needed by the rest of the modules of the system and
sends the results to the shared memory of the Supervisory
Control component.

ii. Map Generation module: Generates maps of the 3-D
environment based on data obtained by the sensors and

on any previously known information of the
environment.

iii. Navigation and Task Execution module: Responsible for

generating collision free paths, trajectories over the paths
and avoiding obstacles. It generates global paths (from
point A to point B), and local paths (sub-point paths
between A and B). It is also responsible for performing
necessary mission tasks (i.e. pick object, scan object,
etc.). It controls the motors, fins, thrusters, gyros, servos,
end effector of the vehicle.

iv. Object Recognition and ClassiJcation module: Obtains
the information generated by the Sensors Control module
and classifies the objects detected by the sensors. After
classification, the objects are stored in the Knowledge
Base (KB) of the AUV. The KB database is located in a
physical storage device (solid state disk).

v. Global Positioning System module: Calculates the correct

location of the vehicle in relation to the world
(environment).

vi. Monitoring and Recovery module: Studies the overall

functionality of the system. It locates malfunctions, either
software or hardware, and initiates recovery procedures if

necessary. It also initiates recovery procedures when the
vehicle runs into situations that normal operation is
impossible (avoid obstacles, etc.).

vii. Acoustic Modem module: Communicates with external, to

vehicle, operators or computers. This allows monitoring
of the system by external sources.

The Hardware/Execution Component

The hardware/execution component consists of the
actual mechanical, electrical, electronic components of the
AUV. It is beyond the scope of this paper to discuss the
actual mechanics of AUVs. Only the communication
procedures (protocols) and message/data passing between the
hardware and functional components are considered.

3.1 Discussion

Given the configuration of the proposed
architecture, the functionality and operability of the vehicle
is divided into phases (states). A state diagram, that resides in

the control level, transfers operation from phase to phase.
Each phase requires the coordination and functionality of
specific modules. In state configured control, only the goal

oriented modules pertinent to the specific phase of the
mission are active. The others remain inactive. In this way,
power consumption requirements are minimized. The
responsibility for ensuring that the modules are activated at
the right time and with the right priority is delegated to the
state diagram of the MC. The example in Section 5 clarifies
such issues. A similar approach was used by Bellingham and
Consi in [7]. The main differences of this design are that the
communication between the various modules is

3

accomplished by using shared memory variables, and that the

overall operation of the system is coordinated by the MC.

The shared memory is controlled by the MC. Since

access to shared memory variables is controlled using
semaphores and automatic logging of variables needs time
stamps, every variable is accompanied by a semaphore
variable and a time stamp variable. Every module has its own
local memory (for execution purposes). A process keeps a
local copy of any shared memory variable that it needs to

access. Before accessing a shared memory variable, a process
must set its semaphore and reset it after the variable data is
transferred to the local copy of the variable.

This architecture is a state configured embedded
control architecture. Single Board Computers (SBCs) are
used for one of the modules. Each SBC has its own on board

memory and access to any peripherals that it needs. A real-
time operating system (QNX) is responsible for the operation
of the whole system. The use of SBCs allows the system to
be easily expandable, easily upgradable, modular, reliable

and very inexpensive.

4 Implementation

After reviewing existing technology, it was decided

to use the QNX real-time operating system (OS) for software
development and the use of single board computers (SBCs)
with the STD-32 and CompactPCI standards as the hardware
platform for the proposed embedded control architecture.

4.1 The QNX Operating System

The QNX is one of the most powerful real-time
operating systems (OS) for embedded control systems. QNX
is a UNIX-like operating system suitable for applications
where real-time multi-tasking performance is an important
criterion. QNX Software Systems has updated the initial

release of QNX to provide POSIX capabilities and a scalable
architecture, two features often required for embedded
applications [12, 13, 141.

For embedded applications, the modularity of the
OS allows the developer to omit unneeded system processes.
With its real-time performance, a reduced-size QNX system
becomes comparable to a real-time executive, while

delivering the functionality of a POSIX runtime and
development environment. In a minimal system, only the
micro-kernel, process manager, and system shared library
need be present. All other system processes are optional and
can be dynamically started and stopped at runtime, or
statically bound in at boot time for ROM-based applications.
With the addition of the small QNX networking module, an
embedded system can become a network-transparent
extension of a larger QNX environment for distributed
applications, booting either from ROM or from the network

[141.

With its micro-kernel, message-passing architecture,
QNX can take a network of computers and present them to
applications as a “single logical machine,” regardless of how

many physical computers are joined by the network.
Applications developed for this “single logical computer”
will run without changes even as the number of computers is
scaled to suit the scope of the application. This scalability is
possible because QNX encourages applications to be
designed as a team of cooperating, communicating processes
on a single machine. When run on a QNX network, those
processes can be configured to run throughout the network,

while QNX provides network-transparent messaging between
those processes. The networking allows any process to use
any resource on any computer on the network. Disk-less
machines can also boot from the network and then use any
resource, anywhere. Mission-critical applications are aided
by using the network-distributed messaging to implement
“hot standby” systems. Multiple redundant network links
between network nodes provide protection from network

failures as well.

4.2 STD-32 SBCs

The STD bus has been the standard bus for
industrial control systems since the 1970s. The STD-32 Bus
combines a small, industrial strength architecture with the
functionality and performance of today’s high-end personal
computers. This versatile 8-, 16- and 32-bit scalable
computer is the right choice for demanding real-time control
and data acquisition applications where small system size
and cost are important. STD 32 is an open, well designed
standard with a wide range of processors, peripherals,
industrial I/O, enclosures and complete systems from
numerous manufacturers [12, 191.

The STD 32 Bus can run at 32 Mbytes per second
for very high-speed data processing applications. Its EISA-
like architecture provides more than just a high-performance
data path. Other performance characteristics include:
Multiprocessing, with centralized arbitration logic to monitor

access to the bus, allows the implementation of multiple
processors in a single STD 32 system. The 32-bit throughput
of the bus is crucial to inter-processor communication in
real-time multiprocessing applications; 32-bit addressing and
pipelining dramatically improves throughput for block data

transfers by reducing bus cycle time and increasing bus
bandwidth; High-speed Direct Memory Access (DMA) over
the backplane streamlines the operation of data-intensive
applications; Slot-specific interrupts expand the number of
available system interrupts for servicing systems requests.

A critical component in an STD-32 system is the
backplane. The backplane design incorporates several
important features including increased backplane signal
impedance. A higher backplane signal impedance means
“cleaner” signals are sent across the backplane. That is,
ringing and reflections are minimized. This is especially

4

important during signal transitions between the TTL

threshold regions of 0.8V and 2.OV. Figure 3 shows a typical
STD-32 system. The system shown here is the STD 32
STAR System that is available by Ziatech Corporation. It is a
simple, yet extremely powerful approach to the design of
real-time control computers. It includes multiple PC-
compatible CPU cards in a single card cage (backplane).
Each CPU has its own memory and operating system, but
shares backplane memory, disks, video and I/O with other

CPUs in the system.

4.3 CompactPCI SBCs

The newest standard for PCI-based industrial
computers is called CompactPCI. It is electrically a superset
of desktop PC1 with a different physical form factor.
CompactPCI utilizes the Eurocard form factor popularized
by the VME bus [20]. It is defined for both the 3U (1OOmm

by 160mm) and the 6U (160mm by 233mm) card sizes.
CompactPCI has the following features: standard Eurocard
dimensions; high density 2mm Pin-and-Socket Connectors

IEC approved and Bellcore qualified; vertical card
orientation for good cooling; positive card retention;
excellent shock and vibration characteristics; metal front

panel; user I/O connections on front or rear of module;
standard chassis; uses standard PC1 silicon manufactured in
large volumes; staged power pins for Hot Swap capabilities;
eight slots in basic configuration (easily expanded with
bridge chips).

CompactPCI is intended as an industrial bus for
applications in telecommunication, telephony, real-time
machine control, industrial automation, real-time data
acquisition and other applications requiring high speed
computing, modular and robust packaging design and long
term manufacturers support. The CompactPCI bus provides
the features and benefit of the PC1 bus specifications. Its bus
is 32- or 64-bit and its bandwidth is 132 or 264 MB per

second [20].

4.4 AUV Embedded Control System
Implementation

For the design of the sensor based control
architecture of the AUV the use of the STD-32 and the
CompactPCI bus architectures are chosen. STD-32 offers the
use of multiple CPUs (SBCs) within the same system. Each
one of the CPUs will function as a module of the overall

system. SBCs offer the flexibility, upgradeability,
expandability, modularity and reliability that is desired for
this system. Using SBCs eliminates a big part of the design
process and also the risk of developing a not so reliable
control system. The QNX real-time operating system is also
chosen as the operating system of the AUV control system.
Each module of the system is represented as a CPU in an
STD-32 bus configuration. The Ziatech STD 32 STAR
System is chosen as the backplane of the control architecture.

The STAR System (shown in Figure 3) resembles the control
architecture of the AUV shown in Figure 1.

Figure 4 shows the overall system design using the
STD-32 STAR System, STD-32 modules and CompactPCI
modules. The SSD module is the Solid State Disk that holds
the control software of the system and the QNX operating
system. It is from this device that the system boots up. The
SSD device is also used for storage purposes. When the
system starts operation, each one of the modules transfers its
execution functions (stored in the SSD) into its local memory
and starts execution. The common memory, shown in Figure
4, is accessible to all CPUs for communication. The CPUs
operate from local memory for maximum speed.

Currently, the conceptual embedded control
architecture design has been completed. An URV, the
Phantom S2 ROV (from Deep Ocean Engineering) has been
acquired. Its architecture is being modified to convert it to an
AUV.

5 Example

A simple example, presented in this section,
demonstrates and clarifies the functioning of the embedded

state configured control architecture.

Consider the simple AUV mission: “Move from
location A to location B”. Figure 5 shows the different
phases the AUV has to go through and the modules activated
within each phase. The AUV is required to generate a global
path from A to B, and local paths between A and B
depending on the state of the sensed environment, follow the
derived path(s) avoiding obstacles and possibly perform pre-
specified tasks at certain points between A and B (for
example, stop and take a picture of the surrounding

environment). Figure 6 shows the state diagram for this
mission and illustrates how control is transferred between the
various phases of the mission.

6 Conclusion

The described embedded control architecture is
simple and cost effective. This architecture is based on
individual modules with a master controller (MC) serving as

the coordination module for the overall operation of the
AUV.

The described design utilizes off-the-shelf
components thus minimizing development time. The STD-32
and CompactPCI standards have been tested in many other
applications, and they have been widely adopted. Given the
hardware platform, the actual control algorithms are
implemented at the software level.

Major advantages of the described architecture
include:

5

i. Learning Capabilities: The system has a knowledge base
(KB) that keeps information that can be used for the
current mission or for future missions.

ii. Recovery Capabilities: Recovery techniques can be used
to bring the system out of unpredictable situations.

iii. State Configured Modification of the mission is easily
done by modifying the state diagram. The modules do not
need to know about any modifications. All of the mission
modifications are done at the control level (MC).

iv. Expandability/Modularity: The functionality of the
system is easily upgraded or modified. This can be done
by removing or adding new modules. Only minor
modification to the overall system are necessary in such a
case. Only the functionality of the phases and the state
diagram need to be changed in order for the system to
have a new functionality.

V.

1.

2.

3.

4.

5.

6.

9.

Underwater Vehicle, Proceedings of the International
Program Development in Undersea Robotics &
Intelligent Control (URIC), A Joint U.S./Portugal
Workshop, 78-90, March 2-3, 1995.
Bellingham, J. G. and Consi, T. R.: State Configured
Layered Control, Proceeding of Mobile Robots for
Subsea Environments, Int. Advanced Robotics
Programme, 75-80, 199 1, Monterey, California.
Smith, S.: An Approach to Intelligent Distributed
Control for Autonomous Underwater Vehicles,
Proceesings of the 1994 Symposium on Autonomous
Underwater Vehicle Technology, July 19 and 20, 1994,
Cambridge, Massachusetts, USA.
Barnett and McClaran, S.: Architecture of the Texas
A&M Autonomous Underwater Vehicle Controller,
IEEE 1996 Symposium on Autonomous Underwater
Vehicle Technology, 23 l-237, June 2-6, 1996, Monterey,
California.

Simple Communication: The communication of the
system is done through the shared memory. The
complexity of the subsumption architecture on the overall
system design, synchronization and timing, is eliminated.
It also eliminates the long processing times, bad sensory
and the unknown reactions to unpredictable events that
are associated with the hierarchical architecture.

10.

11.

7 References

Brooks, R. A.: A Robust Layered Control System for a
Mobile Robot, IEEE Journal of Robotics and
Automation, Vol. RA-2, 14-23, 1986.
Ganesan, K., Smith, S. M., White, K., Flanigan, T.: A
Pragmatic Software Architecture for UUVs, 1996 IEEE
Symposium on Autonomous Underwater Vehicle
Technologv, 209-215, June 2-6, 1996, Monterey,
California.
Coste-Maniere, E, Wang, H. H. and Peuch, A.: Control
Architectures: What’s Going On?, Proceedings of the
International Program Development in Undersea
Robotics & Intelligent Control (URIC) - A Joint
U.S./Portugal Workshop, 54-60, March 2-3, 1995.
Antsaklis, P. J.: Intelligent Control for High Autonomy
in Unmanned Underwater Vehicles, Proceedings of the
International Program Development in Undersea
Robotics & Intelligent Control (URIC), A Joint
U.S./Portugal Workshop, 25-32, March 2-3, 1995.
Healey, A. J., Marco, D. B., McGhee, R. B., Brutzman,
B. P., Cristi, R. and Papoulias, F. A.: Coordinating the
Hovering Behaviors of the NPS AUV II using Onboard
Sonar Servoing, International Advanced Robotics
Programme, The 2nd Workshop on: Mobile Robots for
Subsea Environments, 53-62, May 3-6, 1994, Monterey,
California, USA.

12.
13.

14.

15.

16.

Pascoal, A., Silvester, C., Oliveira, P., Fryxell, D. and
Silva, V.: Undersea Robotics Research at IST: The AUV
MARIUS Programme, Proceedings of the International
Program Development in Undersea Robotics &
Intelligent Control (URIC), A Joint U.S./Portugal
Workshop, 11 l-l 18, March 2-3, 1995, Lisbon, Portugal.
Rock, S. M., Wang, H. H. and Lee, M. J.: Task Oriented
Precision Control of the MBARIStanford OTTER
AUV, Proceedings of the International Program
Development in Undersea Robotics & Intelligent
Control (URIC), A Joint U.S./Portugal Workshop, 131-
138, March 2-3, 1995, Lisboa, Portugal.
STD32 - QNX, http://www.ziatech.com, 1 l/22/1996
QNX 4.21 from QNX Software Systems,
http://wwwvir.com/vir/QNX-infol. html, lll2411996.

Qm 4.21 Specifications Overview,
http://www.vir.com/vir/QNX-info3. html, 11/24/1996.
Lehrbaum, R.: Desirrninz with PC/104 - A Tutorial,
AMPRO, Computer Incorporated
Istituto Automazione Navale, CNR, Control
Architectures Database,
http://www.ian.ge. cnr. it/robotics/archit/dbarchit. htm,
01/16/97.

17.

18.

19.

20.

Antsaklis, P. J., Passino, K. M.: An Introduction to
Intelligent and Autonomous Control, Kluwer Academic
Publishers, 1993, Norwell, Massachusetts, USA.
Yun, J.: Underwater Robotic Vehicles: Design and
Control, TSI Press, 1995, Albuquerque, New Mexico,
USA.
Why STD 32, http://www.std32.com/Whystdhtml,
01/30/97.
CompactPCI, Welcome to the Future of Industrial
Computing, http://wwwgespac.com/html/cpci.html,
02117197.

Healey, A. J., Marco, D. B., McGhee, R. B., Brutzman, 21. Bellingham, J. G., Bales, J. W., Atwood, D. K.,

B. P. and Cristi, R.: Evaluation of a Tri-Level Hybrid Chrissostomidis, C., Consi, T. R., Goudey, C. A.:

Control System for the NPS PHOENIX Autonomous Demonstration of a High-Performance, Low-Cost

7.

8.

6

Autonomous Underwater Vehilce, MIT Sea Grant
College Program, Technical Report, MTSG 93-28,
MIT, Cambridge, Massachusetts, USA.

Acknowledgment:

The Authors wish to thank Dr. Denis Gracanin and
Dr. Ramesh Kolluru for their useful suggestions. This work
has been partially supported by an NSF grant, NSF BES 95-
06771 and LEQSF R-3130.

7

Master Controllr

WJ

,.1,_) .: ., ,. ,,
,I_2 _‘,, ‘.,
Ilj b.‘$.i : :_ ;,,, :
;’ ‘; : .,@.&& .;:

;,;:;;*‘ ;r~GfAil& - j

I,, . . . _ ::..,c;;;I
: I$;: <I _,: I 5,.

,). / i :
$” 7: ‘: ,; j :
‘,: ._’ ,. .._i I- :

4:

“I ,l,,. / .:: ;. J ,. : j

y I Supervisor
Control

Functional Functional
Control

: .

(Visual&Non Visual)

Motors
Fins

Thrusters

cyros

Hardware/Execution
Control

. ..A

Figure 1: Block Diagram of the Control Architecture of the
AUV

Master Conhwller (ItiC)

(Intel Pentium Single Board Computer Module)

Figure 2: Master Controller

8

CPU #O

Applications
cmuseccinmon
memory dimly

I

+ 4
STD32 Bus

T T T srARBIosmmm!A -lOoSpi- .kW.i.CCdhldby
sam+,cainmmmn
-.

Peripheral
: App,I~DRI M - “0
? dkilyatkLwsuahwt w h 1 BIOShMvdrn

.:,,-~-“.-_

Figure 3: STD-32 STAR System Architecture

Complete System Design Using CompactPCI and STD32 Components

Muter
Conhvtkr

w-2

ZT 8906
cmnpnslpcl

PdUX
pIacessor

slots
(1.5 MB of
DRAM)

Figure 4: Control Architecture of the AW using STD-32 and CompactPCI products

I

Modules Activated ’ Phase of Mission
__---------------- :--------------------

: PHASEII:
I Classify I Detect
I Objects
I

i PHASEIII:
, Recover System
,
I

: PHASEIS’:
: Execute mission task
I

Figure 5: Phases of the Case Study Mission

Figure 6: State Diagram of the Case Study Mission

10

Table 1: Comparison of Existing AUVs

AUV Developer Hardware Software Advantages Disadvantages

AUVC Texas A&M. Processors (nodes) arranged in 18 Sofhwre processes Knowledge Base System (KBS) allows Very complex software.
Plannar-2 Network Topology. control the AUV it to learn and refer back to its

functionality. environment.
Great recovery procedures.
Capabilities to achieve multiple goals
simultaneously with its many
processors/processes that function
independently.

Ocean Florida Distributed control system that Each node has its own The distribution of the system increases No recovery techniques
Voyager Atlantic divides the system into control software and reliability and capability while and no learning

II University individual control subsystems communication software complexity decreases. capabilities.

(F-W. (nodes) composed of that allows it to Simple software.
sensor(s), actuator(s) and a communicate with the Modular system (software and
micro-controller. The nodes other nodes. hardware).
are arranged in a serial
communication network.

Sea Massachusetts GESPAC 68020 computer. OS-9 real time operating Ability to accomplish multiple goals
Squirt Institute of Micro-controller based system. simultaneously.

Technology subsystems. State configured layered Modular system.

WV . control. Expandable system.
NPS Naval GESPAC M68030, computer, A t&level sofhvare Simple software. No learning capabilities

Phoenix Postgraduate SUN SPARC-4 computer and control architecture The execution level offers great Recovery techniques are
School (NPS). SGI Indigo Elan. comprising strategic, expandability. not very sophisticated.

tactical and execution
levels.
Execution level is based
on the layered control
architecture.

MARIUS Institute Hierarchical architecture. Libraries of primitives Simple guidance system that makes it Many systems
Superior (elementary tasks). easy to navigate and operate. coordinate the operation
Tecnico The libraries of primitives allows (it can lead to

OS-0 expansion. unpredictable
situations).

OTTER MBARI / A network of UNIX Object Based Task Level Simple operation since all functions are No reasoning or
Stanford workstations. Control (OBTLC). performed in the task level. judgment.
University. Operator is responsible

for issuing tasks.
Odyssey Massachusetts GESPAC 68020 computer. OS-9 real time operating Simple software.

Institute of Micro-controller based system. Expandable system.
Technology subsystems. State configured layered Modular system.

MT) Sea SAIL local area network. control.
Grant.

EAVJZ III University of Four level layered hierarchical Four Levels of hierarchy. Levels are divided according to required Complex operation.
New architecture. Each level has a speed for data manipulation and action Complex
Hampshire action control and data control. communication between

manipulation. Modular. the levels and modules.
ERIC University of Three level subsumption Three levels of software Simple software. Timing problems that

Technology architecture. each responsible for a Expandable system. are associated with
in Sydney different part of the Modular subsumption

operation. architecture.
ABE Woods Two layers distributed Individual modules of Modules are divided into two levels Not easily expandable.

Oceanographi hierarchical architecture. software. according to computational capabilities.
c Institution Modular.

11

