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Abstract 
The motion planning problem for non- 
holonomic systems without drift is solved 
under the constraint that the control inputs can 
take values in a set that contains a finite 
number of allowable levels. If the system to be 
steered is also nilpotent or nilpotentizable, the 
steering can be exact. The results are applied in 
the steering of a simple system. 

1. Introduction 

In this paper we propose an algorithm that 
solves the Motion Planning Problem (MPP) of 
a drift-free nonholonomic system, whose inputs 
take values in a discrete levels set. Motion 
planning problems are concerned with 
obtaining open-loop controls which steer a 

system from an initial point x, to a final point 

xf over a given finite time interval. In other 

words, the MPP is the problem of finding 
reasonable algorithms producing for every pair 

x, and xf of points, an open-loop control 

t + u(t)= (q(t)... u,,,(t)) that steers x, to xf . 

The MPP has been studied by several 
researchers and the literature is quite extensive. 
Most of the proposed strategies deal with 
nonholonomic systems whose inputs take 
values in % without any constraint and work 
well in a number of special cases. A variety of 
motion planning techniques are described in the 
book [6], which is a collection of research 
articles on nonholonomic motion planning. 
Besides [6], an excellent introduction to motion 

planning for nonholonomic systems can be 
found in the book by Murray, ‘Li and Sastry [7]. 
The book by Latombe [5] also contains a nice 
chapter on nonholonomic motion planning. The 
motion planning methodologies can be loosely 
classified into three approaches: differential- 
geometric and differential-algebraic techniques, 
geometric phase methods and control 
parametrization approaches. 

Our method uses tools from the differential- 
geometric control theory and is based on the 
strategy proposed by Lafferriere and Sussmann 
in [l-4], where they define a general framework 
for solving the MPP for drift-free non- 
holonomic systems, which has the following 
characteristics: (a) it does not in principle 
require special assumptions on the spans of the 
Lie brackets; (b) it does not use optimal 
control; (c) it works exactly for nilpotent and 
nilpotentizable systems; (d) it produces an 
iterative algorithm for completely general 
systems which converges quickly to a solution; 
(e) admits extensions to some systems with 
drift. 

This paper is organized as follows: In section 2 
we present our main results concerning the 
trajectories of a drift-free nilpotent system, 
whose inputs take values in a discrete levels set 
and in addition we state the algorithm that 
solves the MPP for such a system. Finally, in 
section 3 we explore the details of the proposed 
algorithm using a specific example. 

Notation 

-4 the Controllability Lie 



Algebra of the system (S) 

LC(g,,..., g,) the Lie Algebra generated by 

the vector fields {gl,...,g,,} 

3 the set of real numbers 

!iJv the n-dimensional Euclidean 
space 

eg the formal exponential of the 
vector field g 

2. Main Results 

We consider a drift-free nonholonomic system 
of the form 

@,Q):d~)=d& +-.+dx)v,n (1) 

where the state x(t) belongs to an open subset 

N of %“, while the m inputs y, v2, . . ..v. take 

values in a discrete levels set Q={q,,...,qr}. 

We assume that the vector fields 

g,(x), g,(x), . . . ,g, (x) , which are defined on 

N, are smooth, complete and linearly 
independent. We also suppose that the system 

(X ,Q) is nilpotent with order of nilpotency k. 

The Controllability Lie Algebra (CLA) of the 

system (IX ,Q) , & , is generated by the vector 

fields 

Gkv) = gdx)v, + g, WV, + -.- + g, WV, 
for all the admissible values of the input vector 

v=[vl vz . . . VJ. Since we have r discrete 

levels, the control vector v can take values in a 

set containing y=r” admissible input vectors. 

We denote with Q(qi,...,q,) this set. Then, the 

CLA of (C ,Q) is given by 

-& =LC(z, = G(w), vi E Q(qpqy 94,)). 

We also consider the corresponding 
unconstrained system 

(s >: a= g, (d4 +.**+d&, (2) 

where the m components of the input y , . . ., u, 

take values in 5X without any constraint. The 

CLA of (S ) , denoted with L, , is given by 

-& =LC(g,(x),g,(x),...,g,(x)). 

The controllability of (X ,Q) has been studied 

in [8] and is described by the following 
proposition: 

Proposition 1 ([8], Proposition 4) 
Let us consider the nilpotent drift-free systems 

(Z ,Q) and (S ) with order of nilpotency k. For 

every choice of the discrete levels ql,. . . ,q, such 

that q,=o and qi # 0, i=2 ,..., r, with 

r 2 m or r<m , the associated CLAs L, and 

L, are such that L, = L, 

In this section we are going to propose an 
algorithm that solves the Motion Planning 

Problem of the system (Z ,Q) . In particular, we 

will propose a control algorithm that produces, 

for every pair x, ,xf of points, an open loop 

control 

t +v(t)=[y(t) v*(t) *-. v&)1’ 
that steers the system (C ,Q) from the initial 

point x, to the final point xf. The proposed 

algorithm is based on the algorithm of G. 
Lafferriere and H. J. Sussmann presented in 
references [l-4]. 

If the system (S ) can be steered from X, to 

xf then the controllability condition L, =Ls 

guarantees that there is a control v(t) that steers 

the system (X ,Q) from x0 to xf . Thus if the 

system (S ) can be steered from x0 and xf 

and the discrete levels ql,. . .,q, have been 

chosen in such a way that q,=O and qi f 0, 

i=2,...,r then the system (C ,Q) can also be 

steered from x, to xf . 

According to G. Lafferriere and H.J. Sussmann 

in [2], the control algorithm for the system (S ) 

involves two basic steps: 



Algorithm 1: ([2]) 
STEP I: Find a control w(t) that steers x, to 

xf for the extended system S, . 

STEP II: Use w(t) to compute a control u(t) 

that steers x, to xf for the system S . 

The method that is proposed in [l-4], can 
mainly be applied to nilpotent or 

nilpotentizable drift-free systems providing 
exact steering. The main point of this strategy 

is the use of the extended system (S,), given by 

(SJ:X(t)= g,(x)w,+ . ..+ g&w, +...+g,(x)w, 

where gl(x), . . . , g,(x), . . . , gp(x) are higher 

order Lie brackets of the g,(x), . . . , g,(x) 

chosen so that they span 9% for all X, or at least 
for all x in some prescribed bounded region R. 

Definition 

We say that the system (S ) can be steered 

from x0 to x1 in: 

l M polynomial moves if the corresponding 

trajectory has the form e”lG1 eazG2 . . . eaM GM 

where a i, i=l ,...,M are real and the vector 

fields Gj are Gi = uil g, + . . . + ui,,, g, for some 

real uV , j=l,...,m ; 

l M,, bang-bang moves if the corresponding 

trajectory has the form eal” eaZG2 . . . eaMb” GMbb 

where CX~E % and Gi E {gl,..., g,} for 

i=l,...,m. 

Proposition 2 

Let us consider the nilpotent systems (C ,Q) 

and (S ) where the discrete levels Q = {q,,...,q,} 

are such that: 

4 a=0 
b) qi f 0, i=2,...,r 

Then the system (Z ,Q) can be steered ii-om 

x0 to xf in at least A4 moves, where A4 is the 

minimum number of moves that (S ) needs for 

the same movement. 

Proof 

We consider the systems (C ,Q) and (S ), 

while the discrete levels Q satisfy conditions 

(a) and (b). Let us assume that the system (S ) 

can be steered from x, to xf in, at least, M 

moves. Then the corresponding trajectory has 
the form 

e %Gl ev% . . . eat GM 
(3) 

where a i, i=l,...,M are real and Gi are vector 

fields of the form G, = uil g, + . . . + uj, g, for 

some real ~~,j=J...,m. 

Next, let us assume that the system (Z ,Q) can 

be steered from x0 to xf in A4 moves where 

M < A4 . Then the corresponding trajectory 
has the form 

eM em . . . ebzu FM 
(4) 

where 4 are real and e = Q, g, + . . . +Q, g, 

for i=l,... ,M and Q, EQ j=l,...,w1 

However, trajectory (4) can also be followed by 

(S ) . This means that (S ) can be steered from 

x0 to Xf in M CM moves, which is in 

contradiction with the assumptions of the 

proposition. Thus, (Z ,Q) needs at least M 

moves in order to be steered from x, to X, . 

Proposition 3 

We consider the nilpotent systems (C ,Q) and 

(S ) where the discrete levels {ql,...,qr} are 

such that: 

a) q,=o 
b) qi f 0, i = 2,...,r and 

c) at least one of qi is negative. 



Then the system (C ,Q) can be steered from 

x,, to xf in exactly Mb, bang-bang moves, 

where M,, is the minimum number of bang- 

bang moves that (S ) needs for the same 

movement. 

Proof 

Assuming that the system (S ) can be steered 

from x0 to xf in at least M,, bang-bang 

moves, then the corresponding trajectory has 
the form 

where oil % and Gi E {gl,..., g,} for i = 

l,...,m. 

But we can write that aiGi = z(QjGi) i,j = 
J 

L...,~,, 

where Qj E {qz, ***p 4,) and is such that 

aiQj > 0 

Thus we can write (11) in the form 

“(Q,G,) %Gz) -(c&b GM,, ) 
eC?l e4% ... eQAr** (6) 

Relation (6) means that the system (E ,Q) can 

be steered from x0 to xf in M,, moves. 

Let us assume that (E ,Q) can be steered from 

x0 to xf in less than M,, moves, i.e. in 

p-&!,, moves. Then the corresponding 

trajectory has the form 

,~I(Q,G~,~&,G~) eT~(%Gr) . . . (7) 

where T, are positive real numbers, Qi E Q 

and Gi E {gi, . . . . gm} for i=l,..., p 

But relation (7) can be written in the form 

,(WI )G, e(W, )Gz . . . e(T&i lGr 
(8) 

which means that (S ) can be steered from x, 

to xf in @V,, moves which is impossible. 

Thus (C ,Q) can be steered from x, to xf in 

exactly (or more) M,, bang-bang moves. H 

Now, we are ready to present the algorithm 
that can be used to solve the MPP for the case 

of the system (X ,Q) . If the unconstrained 

system (S ) can be steered for the initial point 

x,, to the final point xf then according to 

Proposition 1 the constrained system (E ,Q) 

can also be steered from x, to x/. The 

proposed algorithm provides exact steering and 
this is guaranteed by Corollary 1. 

Algorithm 2 
Step 1: Compute the control u(t) that steers 

(S) fromx, to xf,or 

compute the control w(t) that steers 

(S,) from x, to xJ . 

Step 2: Using u(t) or w(t) from the above 

step find the control v(t) that steers 

(= ,Q) from x0 to xX 

Corollary 1 
If the discrete levels satisfy the conditions of 
Proposition 3 then there is at least one control 

v(t) computed by the above algorithm that 

steers (E ,Q) from x0 to xf . 

Proof 
If the discrete levels satisfy the conditions (a), 
(b) and (c) of Proposition 3 then according to it 

the system (Z ,Q) can be steered from x0 to 

X, in exactly M,, bang-bang moves. Thus, 

there is at least one control v(t) that steers x, 

to xf . In order to compute v(t) we can follow 

the method used in the proof of Proposition 3, 
which is Algorithm 2 n 



3. Example 

We will explore the details of our strategy 
through a specific example. Consider a disk 
rolling on a plane without slipping (pl. see Fig. 
1). The configuration space is given by 

(x,y,yl,8), where (x,y) are the coordinates of 

the contact point, 8 is the steering angle with 
respect to the x-axis and y is the contact point 
in wheel coordinates. The controls are the 
driving speed and the steering speed. The 
kinematics of the disk are given by the 
equations ([ 11) 

i = cos(e)Y, 

j = sin(S)u, (9) 

8=ZL, 

The system is locally nilpotentizable near the 
origin and using the feedback 

q= l 
cos(x,) 

wl, “L =cos2(x3)w2 

can be transformed to 
i-, = Wl 

X2 = tan(x,)w, 

x3 = cos(x3)w2 

(10) 

where (x1,x1,x3)= (x,y,B). System (10) is a 

nilpotent system with degree of nilpotency &2, 
since 

[91x21= 10 -l 4“ 
and [s,,[g,,g,]]=[g,,[g,,g,I]=[O 0 01’2 
where gl(x,,x2,x3)= [l Wx,) 01’ and 

g&,x2,x3)= [o 0 cos2(x3)]T * 

Our purpose is to steer (10) from the initial 

point x0 = [o 0 01’ to the final 

xs = [2 1 01’ . Given the backwards P. Hall 

coordinates (a, Iz&) = (2,0,-l) of xf we can 

find numbers a,, a,, a3 such that 

e a1 l?, e% g1 ,(X3 g2 = e 4 [a 22 l,h g2 e4 &?I 

Using the Sussmann formula we get 

ki 63 al= 4 --= 0.5, a2= 4=2 and as= -=-0.5 
4 h, 

Thus, using the controls 

(wI,wI) = (0 a,)= (0 0.5) for unit time 

(wl,wZ) = (a2 0)=(2 0) for unit time 

(w,,w*) = (0 a,)=(0 -0.5) for unit time 

we can steer (10) f?-om x, to xf . 

Next, we consider the same system where the 

inputs w, and w2 take values in the discrete 

levels set Q = {0,+5,-5). The qi ‘s are such that 

41 = O, qi + OJ i = 2,3 and, at least, one of 

them is negative. Note that the set Q satisfies 
the conditions of Proposition 6. Thus, the 

const-rained system can be steered from x, to 

xf in three moves. In fact, using the controls 

(v,,y) = (0 5) for time 0.1 

(v,,v*) =(5 0) for time 0.4 ; 

(vI,y) = (0 -5) for time 0.1 

the system follows the trajectory 
eo.1(5g,)eo.4(5gl)eo.1(-5g,) 

that steers it from x0 to xf . 

4. Conclusions 

The motion planning problem for nonho- 
lonomic systems without drift is solved under 
the constraint that the control inputs can take 
values in a set that contains a finite number of 
allowable levels. The proposed algorithm can 
be applied to nilpotent or nilpotentizable drift- 
free systems providing exact steering. In 
particular, if the corresponding unconstrained 

system can be steered from an initial point x, 

to a final point xf then the constrained system 

can also be steered from x0 to xf . The results 

are applied in the steering of a simple system. 
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Fig. 1 A disk rolling on the plane 


