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Abstract 

In this paper, we investigate the problem of finding 
the optimal location of controllers to achieve reduc- 
tion of the noise field in an acoustic cavity. We first 

formulate a linear quadratic tracking problem in a 
Hilbert space, and then consider the problem of op- 

timization of an appropriate performance criterion 
with respect to the location of the controls. Numeri- 
cal examples will be presented to illustrate our theo- 

retical results. 

1 Introduction 

The problem of optimal location of controls is im- 

portant in active noise suppression applications where 
an optimum amount of reduction of noise is required 
without adding much to the control cost. In these 
problems, an arbitrarily placed controller can actu- 
ally increase the sound field locally, or a controller 
placed at the node of the acoustic field will not be 
that effective at attenuating the acoustic field in other 
locations. 

In this work, we consider optimal reduction of the 

noise field inside a cavity through introduction of 
loudspeakers that would generate a secondary acous- 
tic field that interacts destructively with the primary 
noise field. This active noise control technique is use- 
ful in situations where the traditional passive damp- 

ing methods which involve addition of mass are not 
practical. In recent years, serious research effort in 
this field has resulted in a vast body of literature in 

the acoustic field [6, 7, 8, lo]. Our effort is to formu- 
late the problem within the theory of optimal control 
of infinite-dimensional system. This state-space for- 
mulation will allow us to address the important issue 
of optimal location of controls in a setting where op- 
timization with respect to location can be naturally 
formulated. 

In [l], an acoustic model based on damped elastic 
boundary conditions which preserved the frequency- 
dependent properties of the boundaries was proposed, 
and a control problem was formulated as an abstract 
linear quadratic tracking problem (L&T) in an infi- 
nite dimensional setting. In [3] numerical approxima- 

tions based on the Legendre-tau method were per- 
formed to solve the finite-dimensional control sys- 
tem. The goal of this work is to first present our 
model based on the impedance boundary conditions 
which are suitable for frequency-independent bound- 

aries. This model is similar to the lightly-damped 
enclosures that have been used and discussed exten- 

sively in acoustic literature such as [7, 111, as well as 
in mathematical papers [4, 51. We present an active 

control strategy for reducing the acoustic fields and 
focus on the issue of optimizing the performance of 
the controls with respect to their placement. 

2 Formulation of the Physical 

Model 

For simplicity, we consider a one-dimensional do- 
main of the interval R = (0,l). The governing acous- 
tic equation is given by the linear wave equation, 
and the boundary conditions at the end-points are 
the impedance boundary conditions, which relate the 
pressure field p(t, Z) to the normal velocity of the 
fluid v(t, Z) at the boundary via a complex-valued 
impedance quantity, [. For this reason, we express 
the equations in terms of the velocity potential 4(t, z) 
which is related to both the acoustic pressure and the 
fluid velocity by the relations, 

P(4 4 = #4Jt(t, xl, and v(t, Z) = -Vd(t, z), 

where p is the fluid density. 

We model the primary noise source as a single har- 
monic wave: pl(z, t) = Ijr(2)eiwt. After activation of 
the controls (speakers) at t = 0, it is anticipated that 
the acoustic pressure field will approach a steady peri- 

odic state p2 in a stable manner. With the period r = 
~GT/W, and fe(z, t) = C~,X(&)Fi(t), where & is the 
support of the ith control, the steady state pa is ex- 

pected to be governed by a non-homogeneous periodic 
wave equation. Because of the impedance boundary 
conditions, the state equations are expressed in terms 
of the velocity potential vector &(t, 2) related to ~2. 

Now the governing equations are given as 

- = c2A42 + fc 
at2 

in fi x [O,r], (1) 



where c is the speed of sound in the fluid. The impedance 
boundary condition at the boundary is 

_ p2~t, x) = wJ2(t, x) 

dv at ’ 
x E m, (2) 

d 
where - denotes the outward normal derivative to 

dv 
the boundary. This equation states that the acoustic 

impedance z = 
P 

Vincident 
at the two boundary points 

is given by PC<, where C is the complex-valued specific 

acoustic impedance of the surface [ll]. 
We choose the state vector to be x2@, cc) = [uz, p#’ = 

k42, (42)tK where the first component of the vector 
refers to the velocity potential (multiplied by c) and 
the second component refers to the acoustic pressure 

(divided by p). N ow, the state equation in the first 

order form is 

:[;:]=A[;:] (3) 

where A is defined as 

A=c ao ; . [ 1 22 
The problem is defined on a Hilbert space whose norm 

defines the energy form ]]c&]12 + ]]&]]2 = ]]u,]]~ + 
I ]p]12. Since this energy form is only a seminorm on 
the space H1(O, 1) x L2(0, l), the appropriate space 
should exclude constant functions which have a zero 
derivative without being zero. Therefore the proper 
space is 31 = Hi(O, 1) x L2(0, 1) where @(O, 1) with 
the inner-product (u, u)r = (u,, U,)LZ is the quotient 
space of Hr(0, 1) over the constant functions. With 

the domain of operator A defined to be a dense subset 
of 31 where 

DOm(A) = i 

(U,P)l(U,P) E If2 x H1> 

p(0) - Cuz(0) = p(1) + C%(l) = 0 I ’ 

A is the generator of a Ce semigroup T(e) in 31, which 
means that for an initial state (u2,o,p2,0) E Dam(A), 
the solution to (3) is given by (uz(t,x),pz(t,x)) = 
T(t)(u2,0, ps,~). From this formulation and choice of 
the state space we see that the velocity potential is 
determined only up to a constant, [5]. 

It can be shown that for Be(C) > 0 the solutions de- 
cay to zero exponentially and the system is uniformly 
exponentially stable [5]. This fact is of utmost impor- 
tance in establishing a well-posed control strategy for 
the problem, and we shall use it in the next section. 

In addition to the formulation above, we need to 
cast the problem in the weak form which is the nat- 
ural setting for the numerical approximation of the 
problem. We can show that for the initial state 
(u~,o,P~,o) E Dam(A), the solution 

(u2(t, x:), P2(& 4) = W)( us,o,p2,0) satisfies the fol- 
lowing variational equations 

~b2w741 = (CP2(%L7)1 (4 

-$2(t), h)o = -(w(t), h)l 

+c (5) 

+(f&), h)u 
for all (g, h) E Hi(R) x fir(a). Note that for the 
one dimensional domain (0,l) in our problem and the 
impedance boundary conditions at the points x = 0, 
and z = 1, the integral term in (5) reduces to 

c 
I 

r ;h(x)dx = +(O)h(O) - +(l)h(l). 

The equations (4) and (5) are called the weak for- 
mulation of the equations (1) and (2). We will use 
this formulation for the Galerkin approximation of 
the equations and the control system. 

3 A Periodic Linear Quadratic 
Tracking Problem 

The control problem we wish to solve is to find 
an optimal control which minimizes the total acous- 
tic field consisting of the primary and the secondary 
sound fields. We formulate the problem as an (L&T) 
problem where the cost function consists of a term 
due to the total field, along with the cost associated 
with the controls. Because of the periodic nature of 
the problem, the integration in time is over the pe- 

riod r. The problem now is to find an optimal control 
F* which minimizes the following 

J(F) = 
I 

oT{(Q[x~ +x2], [XI + x2])% + B(F, F)Lz}dt 

subject to 

{ . 

= 

x:;o, = 

Axz+BF forO<t<r 

x2(4. 

In the above, the state and primary noise variables 
are 

(6) 

The operator Q is a self-adjoint, nonnegative operator 

and 0 is a control design parameter, and 

BF= 



where for simplicity we consider a single control which 
is normalized by its length. In [l], it is shown that 
the optimal control is given by 

F*(t) = X1B*Gx2(t) - @B*r(t), 

where G satisfies the Algebraic Riccati Equation 

and the tracking variable T(Z, t) satisfies 

C 

f(x, t) = -[(A* - 8-1GBB*)]~ - &x1, 0 5 t 5 T 

f(O) = r(T). 

For the primary noise source modeled as a sim- 
ple harmonic wave, we have the following expression 

for the associated velocity potential function, 41 (t, z), 
[ll]: 

+l(t, x) = C(ei”Ct-2) + ReiWCt+i)) (7) 

where C is the amplitude of wave, and R is the re- 

flection coefficient which for the impedance boundary 
conditions is given by 

R= c-1 
Gi’ 

Now by using (7) and the fact that 

XI (x, t) = I,%, hlTeiwt = bih(2, t>, (41(2, t))tlT 

we can find appropriate expressions for Gr and j+. 

One can show, (see [2,3]) that the tracking variable 
for a harmonic primary noise source can be written 
as ~(2, t) = i(z)eiwt where i’(z) satisfies 

f(x) = -[iw + (A* - 6’-1GBB*)]-1Qil. 

To show well-posedness of this control problem we 

need to show that A - CIBB*G generates a Co- 

semigroup, S(t), on ‘H such that ]]S(t)]]~ 5 Mie-filt 
Vt 2 0, for some Ml, ,UI > 0. This statement follows 

from uniform exponential stability of the solutions to 
the open-loop system where B = 0, (see [5]). 

From the observations above, we can conclude that 
the optimal state satisfies: 

{ 

,, = (A - &lBB*G) xz-fPIBB*r O<t<T 

x2(0) = x2(7-.). 

As in the case for the tracking variable, it can be 
shown the periodic optimal state x2(2, t) = i2(z)eiwt 
satisfies the equation 

&(z) = -[iw - (A - 8-1BB*G)]-16’-1BB*i. 

Moreover, there exists an @* such that the optimal 
control is given by 

F+ = p*eeiUt, 

thus the optimal control in our case is sinusoidal, [2]. 

4 Optimization Problem 

Our goal is to optimize the following minimum 
LQT cost function with respect to location of the con- 
trollers, I,: 

J,i,(F*) = 
J 

0T{(Qxl,x1)7( - @(B*r, B*r)Ls}dt. 

In this expression, only the control operator, B, and 
the tracking variable, r are dependent on x,. Since 
the possible values for the location belong to a com- 
pact set, we can prove existence of an optimizing lo- 
cation by proving the cost function is weakly lower 
semi continuous with respect to x,. This result can 
be obtained by showing that B and therefore the Ric- 
cati operator, G, are continuously dependent on x,. 
In order to find the equation that the gradient of Jmin 

with respect to x, satisfies, we need to find g and 
,. 

g. One can show that C = g satisfies the fol- 

low&g Lyapunov equation: ’ 

C(A - @BB*G) + (A* - &-lBB*G)C 

= O-lG 

This equation has a unique solution as long as (A - 
8-i BB* G) generates a contraction semigroup that 
decays exponentially in time. This fact has already 

been established for our problem, (see [5]). Now that 
we have the well-posedness of the sensitivity equation, 
we can proceed with the numerical approximation of 
the optimization problem. 

5 Numerical Approximations 

To carry out the numerical approximation, we em- 
ploy the Legendre Galerkin method to cast the infi- 
nite dimensional control system in a sequence of finite 
dimensional spaces of polynomials. In this method, 
the finite dimensional solution is expanded in terms 
of the Legendre polynomials, L, (xc), [9]. These poly- 
nomials are orthogonal over the interval (-1, l), i.e., 

they satisfy the following orthogonality relation 

s 

1 

-1 
~&dLm(x)~x = &-+. 

These polynomials can be generated by the following 
recursive relation 

(n + l)L+l(x) = (2n + l)xLn(x) - nL,-I(X), 

with LO(X) = 1, and Ll(x) = x. 



In addition to these properties, Legendre polyno- 
mials also satisfy 

L,(Fl)=(ii)n, L:,(+)=(+(n+l). 

The finite dimensional space, ?lN in which the 
state equations as well as the control problems are 
posed is chosen to be the product space ‘?tN = Hr x 
Hy, where Hy is the space spanned by the shifted 

Legendre polynomials ii 
I> 

N 

i+ 
over the interval (0,l). 

These polynomials are obtained from the Legendre 
polynomials over (-1,1) by the transformation t = 
2x - 1. In other words 

L^j(X) = Li(2X - 1). 

The new polynomials preserve the orthogonality re- 
lation over the interval (0,l) 

s 

1 

0 

ij(X)ij(X)dX = &. 

With Hy = span{%}zl, we expand the approxi- 
mate solutions to the equations (4)-(5) in terms of 
the Legendre polynomials 

$(t, x> = ~qi(t)ii(x), 
i=l 

Pi% xl = ~P~i~m+ 
kl 

The approximate solution satisfies the following equa- 
tions that are analogous to the equations (4-5), and 
the functions g, and h are chosen to be the test func- 
tions ii E Hy 

= (CP%), -L>l 

;(Pw, h)LZ = -(C’IL%), L>l 

(9) 

+c 
s 

Xii (X)dX 

r Lb 

Let us denote the column vector of the coefficients 
of the state vector as g?(t) = [ET, ~$1’) where 

From equations (9) and (8), we have the following 
first order matrix equations for the state vector coef- 

ficients: 

[ is iif Ii 1 
C [ -:.%, [ ;;y+ ;-ON 1. (lo) 

The stiffness and mass matrices KN and MN are 
symmetric and positive definite and the matrix DN 
is obtained from the impedance boundary conditions 
and is symmetric nonnegative definite. These matri- 
ces are given by 

Kfi - 
$3 - s 0 

M,!y = 
s 

l(ij)(i,)dX, 

0 

D$ = +(l)ij(l) + $(O)&(O) 

jjN - ’ 
i - 2aA s 

ij (x)dx 

where for BN, 6 = [xce - a, ~,+a] denotes the domain 
of influence of a control located at x, with the width 
2;. From 

-;N -K~NN , 1 

we can write the following first order equation 

g(t) = AN%?+ BNF(t) 

XY(O) = X?(T). 
(11) 

Here AN = (WN)-lAN, BN = (WN)-lBN. The 
finite-dimensional optimal control in R2N is given by 

F$(t) = -e-W*(GN,~(t) - iqt)), (12) 

where GN satisfies the matrix Algebraic Riccati Equa- 
tion 

GNdN + (dN)*GN + QN - O-lGNt?N(BN)*GN = 0 

(13) 
and FN (t), the coefficient vector for the finite-dimensional 
tracking variable, satisfies 

PN = -[&I + (dN)* - 8-1GNZ?N(BN)*]-1QNXfJ. 

(14 
In (13) and (14) the matrix QN is defined as DWN 
where D is the diagonal matrix 

D = diag [dl I, d2 11 , 



where I is the N x N identity matrix and and di’s are 
parameters that are to be chosen for improving the 
performance of the control system. The vector %y 
is the coefficient vector of the approximate offending 

noise. To obtain an expression for this vector, we first 
expand the components of the approximate offending 
noise function 

xy(x, t) = [ii~(x),Ij~(x)]TeiWt 

in terms of Legendre polynomials as 

j=l i=l 

The coefficients UT = (uf,, . . . , ufN) and 

py = (pfi,, . . . ,pTN) are given by 

(UfJ)j = (KN);; (&, ii,(x)), 

(P?)i = (MN)$ (i~~&(X))L2~ 

where $” = [tiy , $1’. 
From the above, we can obtain the following equa- 

tion for the coefficient vector of the finite-dimensional 
optimal state 

jg = -[i”I-(dN-e-laN(aN)*GN)]-le-laN(aN)*TN 

6 Numerical Results 

For the numerical optimization, we optimize the 
following finite-dimensional cost function evaluated 
at the optimal finite-dimensional control (12) with 
respect to the location of the center of the control, 
x, : 

JN(Ffpt) = 
s 

r { (zr”)*Q”%: - O-l(r;N)*f?N(BN)*rN} dt. 
0 

(15) 
For the offending noise modeled as a simple har- 

monic wave, we consider three different frequencies: 

f = w/2n = 10 Hz, f = 173 Hz, the second harmonic 
resonance frequency of the one dimensional cavity, 

and f = 346 Hz, the third resonance frequency. In 

each case, we calculate the optimal location of the 
center of the control, with a radius, a = 0.1, and 
graph the norm of the overall reduced noise field ver- 
sus the norm of the offending noise with the con- 
trol situated at the optimal location. The degree of 
approximation is equal to 16, and all these calcula- 
tions are performed using the MATLAB Optimiza- 
tion Toolbox. The other parameters used in the cal- 
culations are set as follows: c = 346 f ,0 = 10S6, p = 

1.213, dl = 1000, d2 = 105,C = 29 + iO.07, and the 
amplitude of the offending pressure field is chosen to 

have the value of 2 Pa. The following graphs 
rize our simulations. 

summa- 

Figure 1: Norm of the pressure fields vs x, with 
control located optimally at x = 0.9 for 
frequency =lO. Total reduction=6 dB. 
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Figure 2: Control located optimally at z = 0.1 for 
frequency=173. Total reduction=26 dB. 
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Figure 3: Control located optimally at x = 0.5039 
for frequency= 346. Total reduction= 24 dB. 

From these graphs we see that for the first two cases, 
the optimal location of the control is at one of the 
two ends of the cavity where the offending noise has 
the largest norm, and for the last case the optimal 



location is at the middle which is a good compromise 
for attenuating the two peaks of the offending noise. 
To see the effectiveness of putting the control at the 
optimal location for f = 173, we calculate the overall 
noise field for the control located at x = 0.55, which 
is a non-optimal location, and compare the results to 
the optimal case. 
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Figure 4: Comparison of optimal and non-optimal 
locations in reducing the pressure field for 

frequency =173. 

While the overall reduction of noise for the optimal 
location is 26 dB, for the non-optimal location the 

reduction level is 21 dB. Also, from the graph one 
can see that in the case of the control at x = 0.55, 

the noise can locally increase (see the middle region), 
while for the optimally located control, the noise is 
reduced everywhere. 

7 Conclusions 

In this paper, we have considered the problem of 
finding the optimal location of controls for an active 
noise control problem. We have formulated a control 
strategy and an appropriate optimization problem, 
and have developed a numerical scheme based on the 
Legendre-Galerkin method to calculate the feedback 
control and the optimal location for the control. Our 

numerical results indicate that our control strategy 
is successful at attenuating the offending harmonic 
noise and situating the control at its optimal location 
offers much improved performance over an arbitrarily 
located control. The future goals involve extending 
the theoretical results to the problem of finding the 
optimal location of sensors that are used to estimate 

the unknown offending noise. 
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