
On-Line Neural Network Algorithm for the Constrained Motion

Planning of Redundant Manipulators

A. Ramdane-Cherif, D. Y. Meddah, V. Perdereau and M. Drouin
Lab. PARC, Univ. P. & M. Curie, 4, place Jussieu,

boite 164, 75252 Paris Cedex 05, France
e-mail: cherif@robo.jussieu.fr

Abstract

In this paper, we propose an iterative method using
a neural network to solve the inverse kinematic prob-

lem ,for redundant manipulators in presence qf motion

constraints such as joint limits or obstacles. A con-

strained optimization scheme with penalty ,functions

based on neural network is formulated. The neural
network is adapted in the direction o,f decreasing a

Lyapunov function to move the end-effector to the de-
sired position while avoiding a collision with respec-

tively a workspace object and a contact environment

surface. This approach offers substantially better ac-

curacy and avoids the computation o,f the inverse or
pseudoinverse Jacobian matrix. The application o,f

this scheme to a 3 degrees o,f ,freedom redundant ma-

nipulator is demonstrated through simulation results.

1 Introduction

A lot of researches have been carried out in the
area of redundant robots, since these robots offer sev-
eral advantages in dexterous motion tasks. Many
authors have used the extra degrees of freedom of
the redundant robots to optimize additional crite-
ria when the given path in the workspace is tracked.
Such criteria are the performance index that allows
to satisfy: avoiding obstacles, keeping the joint coor-
dinates within their limits, avoiding singularities, and
improving dexterity [l] [2].

The most applications to obstacle and joint limit
avoidance [3] [4] h ave used one of the two main tech-
niques for resolution of underspecified systems of
equations: constrained generalized inverse-based ap-
proaches or augmented task space methods. Pin in
[5] introduced a new method (Full Space Parame-
terization (FSP)) for the resolution of underspeci-
fied systems of algebraic equations. Then, he applied
the FSP method to the constrained inverse kinematic
problem. However, all these methods need a compli-
cated formulation and a parameterized expression for

the entire space of solutions for the basic system.
Our approach is based upon an optimization

scheme using a neural network. The neural network
is adapted in the direction of decreasing a Lyapunov
function to move the end effector to the desired po-
sition. This approach exploits the redundancy to
achieve some objective functions, and to satisfy some
inequality constraints while tracking the desired end-
effector trajectory. It does not require to compute
the inverse or pseudoinverse Jacobian matrix. This
method provides an accurate solution with only a few
iterations per input point.

The organization of this paper is as follows. In sec-
tion 2, we recall the kinematic formulation of robot
manipulators. Section 3 is devoted to presenting the
algorithm that we use to solve the kinematic prob-
lem for redundant and non-redundant manipulators.
Simulation results of a three DOF robot arm are given
in section 4. Finally, some conclusions are drawn in
section 5.

2 Kinematic formulations

Let 4 be a n x 1 vector of joint angles and x a m x 1
vector of the corresponding Cartesian coordinates of
the end-effector position (n > m), r = n - m being
the degree of redundancy. Then x and q are related
by the forward kinematic transformation f(.) which
is a well-known non linear function:

x = f(4) (1)

One method to solve the inverse kinematic problem
of redundant arms is to formulate it as an optimiza-
tion problem with constraints, as follows:

(

Minimize @(q)

subject to xd(t) - f(q) = 0 and h(q) < 0 (2)

where a’(q) is a scalar kinematic objective function
of the joint angles to be minimized, xd(t) is the de-
sired end-effector trajectory and h(q) is the inequality
constraint vector.

For instance, when the redundancy is utilized to
avoid collision with a workspace object, the distance
between the object and the closest robot link ,8(q)
should exceed a certain threshold c, which leads to
an inequality constraint of the form

hi(q) =ci-pi(q) <O,i=l;..,Z (3)

where pi is a kinematic function of the joint angles
q and ci is a constant. For each inequality in 3, two
modes of operation are possible depending on 4 and
ci :

0 Case One: hi(q) 5 0

- In this case, the inequality constraint is
satisfied and can be ignored. Therefore,
the manipulator redundancy can be used
to achieve the objective function Q(q) while
tracking the desired trajectory Ed.

l Case Two: hi(q) > 0

- In this case, the inequality constraint is ac-
tive, and the redundancy is utilized to sat-
isfy the constraint and minimize an objec-
tive function CD(q) while tracking the desired
trajectory.

In our approach, we use the penalty-function meth-
ods to convert constrained minimization like:

Minimize Q(q)

subject to hi(q) 2 0 (i = 1,2,. . ., 1)
q E P

(4

into unconstrained optimization of an augmented ob-
,jective function L!(q) :

Wq) = Q’(q)+ c Qi P(hi(cl))
i=l

(5)

where 1 is the number of constraints, o~i is the
it” penalty multiplier and p the penalty-function
[G]. p may be an exterior penalty function p(hi) =
hSl?(hi) (I’(hi) is the H eaviside function) or an inte-

rior penalty function p(hi) = 2

3 Principle of the proposed method

Instead of off-line training, our approach Fig. 1
trains on-line a neural network in order to approxi-
mate the inverse kinematic model by a linear func-
tion at each trajectory point [7]. For each point Xd,
the optimal weight parameters are obtained via a
Widrow-Hoff training algorithm as described below.

For this purpose, we introduce an extended posi-
tion vector as:

x=~(q) = [;] = [‘,;;;] (6)

of(q) E ER” is the forward kinematic vector defined

in (1).

l g(q) E 9?’ is the constraint vector added in the
redundant case. These constraints can be represented
by the general form proposed in Ballieul [S]:

g(4) = iv
T dQ(cl) = 0

-
84

where N is the n x (n - m) null space matrix of J
which corresponds to the self motion of a redundant
arm:

N = det(Jd [3i-t] = [-det$l,-,] @)

where J;r = A/ det(J,), J, is a m-square matrix
made of the m first columns of J and Jb a m x (n-m)

matrix of the remaining columns: J = [J, Jb 1, A

is the cofactor matrix of Jz, and I,-, is the n - m
identity matrix.

L?(q) is th e o jet ive function associated with the b t’
redundancy problem:

@Without inequality constraints:

In this case, R(q) = Q(q) is simply the scalar kine-
matic objective function. We have for each compo-
nent j:

aR(cl)= a@(q)

8% 8%

@With inequality constraints:

From (5), we have respectively for each component
j:

a) Exterior penalty method:

aR(q)= a@(s)

8%
x + 2%hj (4) yI’(hj)

3

b) Interior penalty method:

dR(q)= a@(q) 1 dhj(d
8% T+“.-- 3 ’ 4 (cd2 dqj

The problem is to find the inverse solution of Eq.6,
i.e. the vector qd so that

F(qd) = xd = [1 ;”

3.1 The based algorithm

For a given desired Cartesian position, the objec-
tive is to approximate the kinematic inverse model
by a linear function at each trajectory point i.e. to
find q which satisfies the forward mapping x = f(q)

while optimizing the given performance index a(q)

and satisfying the additional constraints.
At each iteration c for kth point, this algorithm

involves two phases:

l During the first phase, the input Xf (the desired
extended end-effector position) is presented and
propagated through the network to compute the
output value:

4; = qdk-, + 7 w,c x;c” (9)

1

2~ +y if (qi)i > 2~

(43 = (&Ii if (qi)i I27r (10)
-2n + y if (qi)i < -2~

where (q,f)i is the it” component of qi, y is a ran-
dom variable having a small variance to avoid
the possible cyclic trajectory of the joint posi-
tion, q&-, is the desired joint position obtained
for the (Ic - l)t” p oint which is considered as
the bias of the neural network and r is the sam-
pling period. The initial value IV: is the optimal
weight matrix IV:-, obtained for the (Ic - l)th
point.

Then, the vector q;i is used to compute the end-
effector position:

-G = FCC73 (11)

and the error is given by:

E,“zX,d-Xi= 6 [1 ei (12)
l During the second phase, the weights of the

neural network is adjusted according to the delta
rule [9]:

,g+l zz w,c + qnw,c (13)

where 77 is the reduction factor (0 < 7 < 2).

In our previous works [lo], the search direction in-
volved an inverse Jacobian matrix calculation. This
solution is time consuming and problems may arise
in the vicinity of singular points.

3.2 A new solution

We propose here a new method avoiding these
drawbacks and leading to a very quick and efficient
solution. The main idea is to use a Lyapunov function

for calculating at each iteration the search direction
AW.

For a given initial weight matrix W, the algorithm
updates W iteratively in the direction of decreasing
the Lyapunov function defined in terms of the errors:

V = ~FE + keTe (14

where E = xd -x = xd - f(q), e = 0 -g(q), Xd is the
desired value of x and X is the Lagrangian multiplier.
The purpose of this multiplier is to force E to converge
to zero by increasing X exponentially when q is near
the solution of E.

For sake of simplicity, we eliminate in the following
equations the index k and c.

The time derivative of the Lyapunov function
Eq.14 is given by:

v= dq (
dV T, dV

1 q+yjp (15)

e= -(XJT& + JTe)’ 4 +i 11~11~ x (16)

where J = v and J, = %$$, by differentiating

Eq.9, we obtain i= r I$ Xd. For simulation on a
digital computer, we use a discrete time update rule:

I$ = $! and x Y %. Then, Eq. 16 becomes:

c= - (XJT& + JTe)’ AW Xd + & 11~11~ AA (17)

If we set:

v= -; llEl12 (18)

Then we can deduce the correction terms AW and
@.A:

nw = $ llEl12 + & llEll llell (A JTE+J,Te) SGN(Xd)T

IIXJT& + JFell” (Xd)T SGN(Xd

(19)
and

ax - llell

II&II
where

sgn(xi) =
{

+1 if zi > 0
-1 if xi < 0

By substituting Eq.19 and Eq.20 in Eq.17 we ob-
tain Eq.18. This result implies that c< 0 V& # 0 and
Q=OiffE=O.

The update of W based on AW determined by
Eq.19 guarantees the convergence. The weights of
the neural network and the Lagrangian multiplier are

adjusted according to

w;+l = w,C+qnw; (21)

x c+l = A” +Tj2AX” (22)

where ~7~ is the reduction factor (0 < ni < 2).

We must emphasize that no Jacobian inverse ma-
trix calculation are necessary here. Furthermore, if
the desired trajectory does not present large discon-
tinuities, each new desired point X,d is very close of
the previous one Xi-i and the error is small. This al-
gorithm converges very quickly towards the solution
qz with few operations per iteration.

4 Simulation

A 3 cl-o-f planar robot is considered to show the va-
lidity of our method. The forward kinematic function
is:

f(4) =
(

llcl + l2c12 + l3c123

llsl + l2sl2 + /3%23 1
(23)

and the (n - in) null space vector of J is :

N = [--/&& llhs23 + k&‘3 411252 - ~1&+,23]

(24
where sig = sin(qi+q,y), cij = cos(qi+qj). Any convex
objective function may be used in our approach. The
parameters involved in the simulation are listed as
(7/l = 1.5, 772 = 0.01, X(0) = 2).

For the two simulations that we present, the algo-
rithm is stopped after a predefined number of itera-
tions. For each trajectory point, this iteration num-
ber is fixed to eight iterations and is sufficient to find
the solution. Good results have been obtained since
the tracking error is very small and the criterion g(q)
is near the minimum for the whole trajectory.

The desired objective function is taken as: Q(q) =

i i’l li(qik - qi(k-1))2. Where li is the length of the

9” link, qi(k-l) and qik are respectively the initial

and current value of the ith joint corresponding to
the JLntfL point trajectory. This criterion tends to give
the minimum joint displacement to move from one
configuration to another.

4.1 The first simulation

For the first simulation the additional inequality
constraint /z(q) = c - p(q) 5 0 ensure that the dis-
tance between the obstacle object and the closest
robot link I1 should exceed a certain threshold c.

The obstacle is considered as a circle with a center

(xb, Yb) = (0.4,0.8) and a radius c = 0.5m (Fig.2).
The solution must be such that the manipulator

tracks the desired trajectory xd, the objective func-
tion Q(q) is minimized and the inequality constraints
h(q) are satisfied.

l Fig.3 represent the arm configurations for the
objective function Q’(q) without inequality con-
straints. In this case we can not avoid the colli-

sion with the workspace obstacle.

l By applying inequality constraints, appropriate
motion of the arm is now obtained, as show by
Fig.4 representing the arm configuration using
the interior penalty method (a = 0.01). The
results show that the end-effector converges suc-
cessfully to the desired position while minimiz-
ing an objective function and avoiding a collision
with a workspace object.

4.2 The second simulation

In this simulation, we consider the end-effector mo-
tion on the environment surface (Fig.5) represented
here by the straight line:

y-ar-b=Owitha=-landb=2,(z,y)are
the Cartesian coordinates in the base frame.

We decide to minimize the objective function a’(q)
defined above and ensure that the arm will not go
over the contact surface. To this end, we maintain
a constant distance PO between the last link position

(22, Y2) = &Cl + l2c12 , lisi + /2si2) and the contact
surface. The additional constraint is h(q) = p(q) -
,& < 0 with h(q) = y2 - ax2 - 0.

l Fig.6 exhibit the arm configuration for the objec-
tive function a(q) without inequality constraints.
The end-effector coordinates track very closely
the desired trajectory. However these configura-
tion are not attainable in practice.

l By applying inequality constraints and using the
interior penalty method (a = O.Ol), the arm con-
figuration during the task is seen in Fig.7. While
the end-effector moves, the objective function is
well minimized and the last link position remains
always inside the feasible region and far from the
frontier of the allowable workspace.

5 Conclusion

In this paper, we have presented a new approach
to solve the inverse kinematic problem of redundant
manipulators. Our method is based on formulat-
ing a simple constrained optimization problem with

penalty methods using neural network. The neural
network is adapted in the direction of decreasing the
Lyapunov function to move the end effector to the de
sired position while minimizing an objective function
and avoiding a collision with a workspace object or a
contact surface environment. This method achieves
an accurate solution with only a few iterations per
input point and requires only the computation of the
direct kinematic functions.

References

[l] D. T. K. Cleary, “Incorporating multiple crite-
ria in the operation of redundant manipulators,”
in IEEE International Conference on Robotics

and Automation, (Cincinnati, USA), pp. 61%
624, 1990.

[2] H. Sera,ji and R. Colbaugh, “Improved configu-
ration control for redundant robots,” Journal o,f

Robotic Systems, vol. 7, no. 6, pp. 897-928, 1990.

[3] P. Chiacchio, S. Chiaverini, L. Schiavicco, and
B. Siciliano, “Closed-loop inverse kinematics

schemes for constrained redundant manipulators
with task space augmentation and task priority
strategy,” International Journal o,f Robotics Re-

search, vol. 10, no. 4, pp. 410-425, 1991.

[4] R. Colbaugh, H. Seraji, and K. Glass, “Obstacle
avoidance for redundant robots using configura-
tion control,” Journal of Robotic Systems, vol. 6,
no. 6, pp. 721-744, 1989.

[5] F. G. Pin and F. A. Tulloch, “Resolving kine-
matic redundancy with constraints using the fsp
(full space parameterization) approach,” in In-
ternational Conference on Robotics and Automa-

tion,, (Minneapolis, Minnesota), pp. 468-473,
April 1996.

[6] L. Scales, “Introduction to non-linear optimiza-
tion,” in Springer-Verlag, (New York), 1985.

[7] A. R-Cherif, V. Perdereau, and M. Drouin,
“Inverse kinematic resolution using neural net-
work,” in IASTED International Conference on

Robotics and Manufacturing, (Cancun, Mexico),
pp. 170-172, June 1995.

[8] J. Baillieul, “Kinematic programming alterna-
tives for redundant manipulators,” in IEEE In-

ternational Conference on Robotics and Automa-
tion, (St Louis), pp. 722-728, 1985.

[9] H. J. Sira-R amirez and S. H. Zak, “The adap-
tation of perceptrons with applications to in-
verse dynamics systems,” IEEE Transaction on

Systems, Man and Cybernetics, vol. 21, no. 3,
pp. 634643, 1991.

[lo] A. R.-Cherif, V. Perdereau, and M. Drouin,
“Penalty approach for a constrained optimiza-
tion to solve on-line the inverse kinematic prob-
lem of redundant manipulators,” in Proc. Qf

ICRA’97, (Minneapolis, USA), Apr. 1996.

Figure 1: The proposed inverse kinematic scheme

Figure 2: avoiding obstacle

2.5

2

1.5

1

0.5

0
-1 0 1 2 3

Figure 3: Arm configuration using @p(q) without con-
straints

3

2.5

2

1.5

1

0.5

0
-1

Figure 4: Arm configuration using Q(q) with con-
straints

Figure 6: Arm configurations using Q(q) without con-
straints

Figure 7: Arm configuration using Q(q) with con-
straints

Figure 5: End-effector motion on the environment
surface

