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Abstract 

Because of their relatively good performance, large 
&AM constellations are being used in many current 
communication applications. One of the problems as- 
sociated with the use of large &AM constellations is 
that of carrier acquisition, which for efficiency reasons 
must often be done without the use of a preamble. 
The problem is further complicated for cross constel- 
lations, for which the high SNR corner points used by 
some simple carrier phase estimators are not avail- 
able. In this paper we derive simple algorithms for 
carrier phase acquisition that can be used for both 
square and cross constellations, and compare their 
performance to that of the 4-th power estimator. The 
introduced algorithms convert the problem of carrier 
phase estimation into one of estimating the mode of 
an underlying distribution. 

1 Introduction 

The problem of carrier acquisition in radio-frequency 
(RF) communications has been well studied for many 
years, both for phase-shift-keying (PSK) and quadra- 
ture amplitude modulation (&AM) systems. &AM is 
particularly attractive for high throughput efficiency 
applications, because of its better performance com- 
pared to PSK as the size of the constellation increases. 

With the development of high speed systems that 

will carry for example digital TV signals, the problem 
of fast carrier acquisition has become even more im- 

portant, as larger and larger constellations are used 

for improved efficiency. Systems using &AM constel- 
lations of size 128, 256, 512 and even 1024 are being 
considered [l, 21. For these large signal constellations, 
carrier synchronization is critical, a fact that imposes 
stringent constraints on the quality of the carrier ac- 
quisition algorithms to be used. This fact, coupled 
with the high data rates at which these systems op- 
erate, implies that not only the algorithms must per- 
form well, but they must at the same time be simple 
to implement. 

Carrier acquisition involves acquisition of both fre- 
quency and phase. In practical systems, frequency 
acquisition is performed first, leaving a signal constel- 

lation which is not rotating (or that rotates at a rate 
which is slow compared to the signaling rate) but has 

a constant phase offset that needs to be corrected by 
the phase synchronizer. The phase synchronization 
problem is invariably divided into an acquisition and 
a tracking part. In many practical systems, tracking 
is done simply and efficiently in a decision-directed 
(DD) mode [3, 41, and it is the acquisition problem 
that is more problematic, especially in applications 
where no preamble is allowed. The problem is even 
more complicated for cross constellations (i.e., with 

sizes 22m+1, m = 2,3,. . a) which do not have the 
corner points on which some simple carrier phase ac- 
quisition algorithms are based, and which contain sig- 
nificant phase information. 

In this paper we look at the problem of carrier 
phase acquisition for both square and cross &AM con- 
stellations. Since &AM constellations are rotationally 
invariant to rotations by multiples of ninety degrees, 
we assume (which will be the case for any practical 

system) that data are differentially encoded. Thus, 
only phase estimates modulo n/2 need be extracted. 

In Section 2 we introduce the 4-th power estimator 
and a modified version of it that focuses on a reduced 
constellation for better performance. We then use the 
maximum-likelihood (ML) phase estimator to moti- 
vate two suboptimal estimators, whose performance 
is studied in Section 3. Section 4 concludes. 

2 Algorithm Development 

In the following, we assume that the system is already 

equalized, frequency synchronized, and both timing 
recovery and relative gain control have been estab- 

lished. Our focus in this paper is on carrier phase 
acquisition. Under the above assumptions, the baud- 
rate samples of the output of a matched filter are 
described by 

rk = dkej4 + nk, k= 1,2,.‘.,L,..., (1) 

where dk (a complex number) is the &AM symbol 
transmitted at time kT, l/T is the signaling rate, 
and 4 demotes the unknown phase-offset to be esti- 

mated; the nk are complex, independent, identically 
distributed (i.i.d.), zero-mean, Gaussian random vari- 
ables with independent real and imaginary parts hav- 
ing variance u2, modeling the effects of noise in the 

system and channel. Without loss of generality, we 
assume that E[d$ = 1 (i.e., a unit average energy 



constellation), in which case the signal-to-noise ratio 
per symbol is SNR = 1/2a2. 

The maximum-likelihood (ML) estimator is well 
known for this problem, but it is hopelessly com- 
plex for any practical implementation. In the limit 

es the SNR goes to zero, it’s been shown that the 
ML phase estimator reduces to the non-data aided 
(NDA) P-th power estimator for BPSK (P = 2) and 
QPSK (P = 4) constellations [7, 81, and extended 
to arbitrary M-PSK constellations (P = M) in [9]. 
The P-th power synchronizer was recently shown by 
Moeneclaey and de Jonghe [5] to be optimal (in the 
sense of ML) in the limit of small SNR’s for arbi- 
trary two-dimensional, rotationally symmetric con- 
stellations, such as, for example, &AM constellations 
(for which P = 4). The P-th power phase estimator 
produces a phase estimate according to 

1 

L k=l A 

Simulation results for the performance of the 4-th 
power estimator in (2) are presented in Figure 1 for 
128-&AM and 256-&AM. Also plotted in the figure 
are the approximate analytical results, and for com- 
parison later in the paper the performance of two al- 
gorithms introduced next. The results illustrate the 
significantly worse performance of the power law es- 
timator for cross-constellations, and the fact that in- 
creasing SNR above some practical level has only a 
minor effect on performance. 

Next, we derive a suboptimal phase estimator which 
has good acquisition performance even for cross con- 
stellations. The log-likelihood function can be easily 
derived and shown to be 

IrkI - I+@‘+ed-“k) 2 II 
(3) 

where @d is the argument (angle) of &AM symbol d 
and wk is the argument of Pk. 

If we concentrate on the inner sum in (3), we ob- 
serve that for large SNR’s (such as those expected in 
practical systems), only terms for which the quadratic 
exponent is small are significant. For a given time- 

index k, the significant terms correspond to the sym- 

bols d for which the quadratic term is minimized. 
Towards minimizing the quadratic term, we have the 
following inequality 

IrkI - Idld(4ted-wk) 2 2 [Irk1 - Id/l2 1 min [Irk] - ldl12, 
d 

(4 
where equality in the first inequality is achieved if and 
only if 

4 + dd - wk = 0, (5) 

and in the second (in addition to the condition in 
(5)) for symbols d whose magnitude is closest to the 
magnitude of Pk. Thus, at high SNR’s, only symbols 
d whose amplitude most closely matches the ampli- 
tude of the received data rk need be considered. It 
can be shown that the optimum amplitude detector 
makes independent amplitude decisions (no need for 
observing a block of data) and that in the limit as 
the SNR goes to infinity, the optimum thresholds for 
amplitude detection tend towards the midpoint be- 

tween adjacent amplitudes. Even though the opti- 
mum thresholds can be computed easily for any SNR, 
in the sequel, for simplicity, we will use the midpoint 
thresholds to detect amplitudes. These were seen to 
be close to the optimum for practical SNR levels. 

Let the symbols d that minimize the right-hand 
side of (4) be denoted by dk, and let Z)k be the set 
containing these symbols. For &AM constellations 
(square or cross), the number of symbols, ]z)I, 1, in Z?k 

is a multiple of four, with y of them in each of the 

four quadrants. Let the subset of y symbols & in 
the first quadrant be denoted by &. Then, the re- 
maining symbols can be obtained by rotating symbols 
in & by n. ;, for n = 1,2,3. Let ok represent the 

angles of the 9 symbols in the first quadrant. Then 

the angles of all the symbols & can be expressed as 

06 = ak + n * 5, n = 0,1,2,3. 

Figure 2 illustrates the above definitions for 64-&AM. 

With the above approximation, we have so far suc- 
ceeded in reducing significantly the number of terms 

in the inner sum in the log-likelihood function. This is 
a significant improvement, but still a nonlinear max- 
imization problem must be solved to obtain a phase 
estimate, which is impractical for most applications. 

Let’s assume for a moment that we are interested in 
a phase estimate based solely on the single data Pk. 
Then, the condition for equality in (5) can be used 
to yield the following expression for the estimates (as 

many 2~3 /Dkl) 

Jk = wk - ek = Wk - Qk - n .;, n=0,1,2,3. (6) 

Since we are only interested in phase estimates mod- 

ulo n/2, only the y angles ok in subset Ak need 
be considered. Thus, 

& = (wk - ct!k) mod (X/2). (7) 

Clearly, based on a single data Pk all we have achieved 
is narrow down the actual phase offset to be in the 

vicinity of one of the y estimates produced by (7). 
This ambiguity can now be resolved in time by ob- 
serving more data. Assuming that the phase offset is 
constant over a number of symbols, we expect that as 



sets of estimates are produced according to (7) there 
will be one phase estimate that will be common to all 
(not exactly the same, of course, due to noise). All 
that is needed then is a way to determine this com- 
mon phase estimate. We do this by quantizing the 
first quadrant into N angles centered within equally 
spaced angular subintervals. These subintervals are 
indexed by an index j = 1,2, . . . , N, and a counter Cj 
is associated with each. The corresponding angle at 
the center of the subinterval we denote by @j . When- 
ever a phase estimate is produced (using (7)) falling 
within the j-th subinterval, counter Cj is incremented 
by one. This is repeated for a number of symbol in- 

tervals, and when sufficient data is processed to yield 
a reliable estimate, one is produced according to 

8= @I, 

where 
I=&l+g lTlZlX Cj. 

j 

Summary of the Algorithm 

(8) 

(9) 

1. Given the received sample rk, compute its mag- 
nitude Irk 1 and angle wk. 

+ sin(z)eBY co82(Z) , 0 5 z 5 r/2, 1 
where AB is the set of all (distinct) differences be- 

tween the angles of symbols having magnitude IdI in 

the first quadrant, which can easily be determined 
given the constellation. Figure 3 compares this den- 
sity function for 32-&AM to histogram data obtained 
through simulation for various sequence lengths. Clearly, 
as the number of data observed increases, the his- 
togram converges to the derived density function. 

2. Use Irk] to find the (most likely) amplitude of 
the transmitted &AM symbol, i.e. the ampli- 
tude that minimizes [Irk] - ]d]12. This deter- 

mines 9 symbols ( v = 2 in the example 
in Figure 2) in the first quadrant that match 
the amplitude, and their corresponding angles 

ak. 

3. Produce the y phase estimates according to 
L 
$hk = (f& - Qk) mod (r/2). 

The problem of estimating the mode of a distribu- 
tion from data is a classical one and has been well 
studied in the statistics literature [ll, 12, 13, 141. In 
general, partitioning the data into a number of dis- 
crete bins is not desirable, since the process results 
in loss of information. There are in the literature a 
number of algorithms which perform better in esti- 
mating the mode than constructing a histogram, but 

they typically require more complex processing. One 
such algorithm which is non-parametric is pursued 
below, and proceeds as follows [14]: 

4. Use the $k to increment the counters (initially 1. Construct a vector x whose elements are in in- 

set to zero) corresponding to the quantization creasing order the angle estimates obtained through 

intervals they fall in. (7). 

5. Repeat for the next sample until enough data 
is collected. 

2. For some integer J 2 3 compute 

6. When enough data is collected, find the counter 
with the largest number of counts. The an- 
gle @j corresponding to this counter is the pro- 
duced estimate. 

Z = arg min(ci+J - zi). 
i 

3. Declare as the estimate of the mode (and thus 

the estimate of the rotation angle) the angle 

In the sequel, we will refer to the above algorithm 
as the Histogram Algorithm (HA). A moment’s reflec- 

tion, indicates that what the HA does is to produce in 
time and as data arrive an estimate of the probabil- 
ity density of the rotation phase 4, averaged over all 
data symbols and additive noise. The HA then finds 
the mode of this density function as the best estimate 

of the rotation phase. An exp;ession for the density 
function of the rotation angle, 4, of the received data, 

as a function of the rotation angle 4 has been derived 
and for 32-&AM is given by 

g(@) = +I{ Eas [4(8 - 4) + he, ld12sNR]]} ) 

(10) 

45Y) = 
2eBy 
-+ f 

T J-r 
cos(z)esy sina(Z)erf [& cos(c)] 

+ sin(Z)e- y cos2(m)erf [& sin(Z)]] 

The optimum value of J is a trade-off between reduc- 
ing estimator bias and variance, with smaller values of 
J reducing bias and larger reducing variance. In sim- 
ulations for 128-&AM, it was found that for L 2 10 
the optimum value of J was approximately (7+ 0.2L), 
0.275L, and 0.375Lfor 20dB, 25dB, and 30dB respec- 
tively. We will refer to the algorithm that estimates 



the mode as above as the modified histogram algo- 
rithm (MHA). 

For the HA algorithm, the number of bins that 
partitions the first quadrant is a parameter to be op- 
timized. This is a classical problem in statistics, with 
a larger number of bins reducing estimation bias, and 
a smaller number reducing estimation variance. Since 
the MSE is the sum of the variance and the square 
of the bias, an optimum value for the number of bins 
exists which is a function of the SNR and the length 
of the observed sequence. Figure ?? shows the per- 
formance of the HA for 128-&AM as a function of 
the number of bins for various sequence lengths and 
SNR’s. The optimum value of the number of bins 
wss seen empirically to be proportional to a, and 
it is approximately equal to fi for 20dB and 4& 
for 25dB for 12%&AM. For 256-&AM, the optimum 
number of bins are approximately 0.54 for 20dB 
and 5.3fifor 30dB. 

The performance of the HA and MHA is illus- 
trated through simulations in Figures 4 and 5 re- 
spectively for 128-&AM and 256-&AM. Results for 
other constellations were also obtained and show sim- 
ilar trends. For the MHA, the approximate optimum 
values of J were used, and for the HA the first quad- 
rant was partitioned into 45 bins. As can be seen, 
the MHA performs significantly better than the HA, 
but for acquisition purposes the inferior performance 

of the HA may be adequate, providing a good trade- 
off between performance and complexity. At 30dB, 
the MSE for the HA quickly reaches the quantization 
limit. 

Other results for the HA and MHA algorithms are 
shown in Figure 2 for 128-&AM and 256-&AM. 

3 Performance Comparisons 

From the results presented in this paper, and other 
that were not included for brevity, we draw the fol- 
lowing conclusions regarding the relative performance 
of the various algorithms: 

l The performance of the histogram and modi- 
fied histogram algorithms is significantly better 

than that of the power law and modified power 
law algorithms for moderate to high SNR’s. This 
is especially so for cross-constellations, where 
the power law algorithms require an inordinate 
amount of time to acquire compared to either 
the HA or the MHA (50 symbols vs more than 
10,000 symbols). 

l The power law algorithms perform much better 
for square constellations, but are still signifi- 
cantly inferior to either the HA or the MHA 

(300 symbols for the power law algorithms vs 

50 symbols for the HA or MHA) for moderate 
to high SNR’s. 

l For square constellations and low SNR the power 
law algorithms start performing better than the 
HA. For example, as seen in Figure 2, at 20dB 
and 256-&AM, the HA is significantly inferior 
to the power law algorithm. 

l For cross constellations, the power law algo- 
rithm is not viable for practical implementation 
due to its poor performance. 

4 Conclusion 

Starting from the likelihood function, we have derived 
two new algorithms for carrier phase acquisition, ap- 

plicable to both square and cross &AM constellations. 
The algorithms were shown to reduce the problem 
of carrier phase estimation to one of estimating the 
mode of a distribution, an analytical expression for 
which was also obtained. These algorithms are simple 
to implement, and perform well for moderate to high 
SNR’s for both square and cross constellations. Com- 
parisons were made to the 4-th power estimator. The 
introduced algorithms were seen to significantly out- 
perform the 4-th power algorithm for practical SNR 
levels and cross constellations, to outperform them for 
moderate to high SNR’s and square constellations, 
but to perform worse for square constellations and 
low SNR’s. 
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Figure 1: The performance of the 4-th power estima- 
tor for 128 and 256 &AM compared to that of the 
HA and MHA. 
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Figure 2: Illustration of sets z)k and & for 64-&AM. 
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Figure 3: The histogram versus the analytical density 
function for various data lengths and for 32-&AM. 
The phase offset is 22.5 degrees. 
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Figure 5: The performance of the HA with a 45-bin 

partition and the MHA for 256-&AM. 

Figure 4: The performance of the HA with a 45-bin 
partition and the MHA for 128-&AM. 


