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Abstract
Numerical operations on and among rational matrices

are traditionally handled by direct manipulation with their
scalar entries. A new and sometimes numerically attrac-
tive alternative is proposed here that is based on interpola-
tion. The procedure begins with evaluation of the rational
matrices in several complex points. Than all the required
operations are performed consecutively on constant ma-
trices corresponding to each particular point. Finally, the
resulting rational matrix is recovered from the particular
constant solutions via interpolation. It may be computed
either in polynomial matrix fraction form or as matrix of
rational functions. The operations considered include ad-
dition, multiplication and computation of polynomial ma-
trix fraction form. The standard and the two interpolation
methods are compared by experiments.

1 Introduction

Rational matrices (such as transfer matrices of linear
multivariable systems) are often expressed in the form of
polynomial matrix fractions, i.e.

H(s) = W�1

L (s)VL(s) = VR(s)W
�1

R (s)

where H(s) is a rational matrix and WL(s); WR(s);

VL(s); VR(s) are polynomial matrices.
The polynomial matrix fractions are natural generaliza-

tion of scalar polynomial fractions describing single-input
single-output (SISO) systems. They make it possible to

use all algebraic methods developed originally for SISO
systems. However, they also have several disadvantages:

� Individual transfer functions between particular in-
puts and outputs are not directly visible.

� Even very basic operations, such as addition or mul-
tiplication of rational matrices, appear to be rather
complicated when expressed via polynomial matrix
fractions.

� The degrees resulting in the polynomial matrix frac-
tion are usually much higher than degrees encoun-
tered in the original rational matrix. For this reason
numerical problems may often arise.

To illustrate the last item, consider a 3� 3 transfer ma-
trix having all its fractions coprime with mutually coprime
denominators of degree 2. Such a transfer matrix belongs
to a system of order 3 � 3 � 2 = 18. The resulting poly-
nomial matrix fraction consists generically of polynomial
matrices with degrees 6.

To avoid this degree blow up during numerical compu-
tation with rational matrices, it may sometimes be conve-
nient to deal with the original description using the matrix
of rational functions, when the rational matrix

H(s) =

�
nij(s)

dij(s)

�

is stored via other two polynomial matrices the matrix of
denominators D(s) = [dij(s)] and the matrix of numer-
ators N (s) = [nij(s)]. When employing interpolation
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technique each of the two representations above can be
achieved.

2 Interpolation

Let us briefly summarize the idea of polynomial and ratio-
nal matrix interpolationpioneered by Antsaklis and Gao in
[1]. Let us recall, that the interpolation of scalars runs as
follows: we chose the sufficient number of interpolation
points sj , then we evaluate the interpolated object in these
points and finally recover it from both series of values. To
generalize this procedure for matrices, we moreover post-
multiply the evaluated matrices by some vectors aj. This
simplifies the interpolation of polynomial and rational ma-
trices.

Let us denoteS(s) := blockdiag [1; s; : : : ; sdi ]T where
di; i = 1;m; are non-negative integers and let aj 6= 0 and
bj be (m � 1) and (p� 1) complex vectors, respectively,
and let sj be complex scalars.

Theorem 1 (Polynomial matrix interpolation) [1]:
Given interpolation (points) triplets (sj ; aj; bj); j = 1; l;

and non-negative integers di with l =
P

di+m such that
the (

P
di +m) � l matrix

Sl := [S(s1)a1; : : : ; S(sl)al]

has full rank, there exists a unique (p � m) polynomial
matrixQ(s), with i-th column degree equal to di; i = 1;m

for which
Q(sj)aj = bj; j = 1; l

Q(s) can be written as

Q(s) = QS(s)

whereQ (p� (
P

di+m)) contains the coefficients of the
polynomial entries. Q must satisfy

QSl = Ul

where Ul := [b1; : : : ; bl]. Since Sl is non-singular, Q and
therefore Q(s) are uniquely determined.

For p = m = 1, Sl is called Vandermonde matrix. In
the multidimensional case, we shall call it block Vander-
monde matrix.

Quite naturally, rational matrix interpolation can be
handled as a special case of polynomial matrix interpola-
tion.

Theorem 2 (Rational matrix interpolation) [1]: Assume
that interpolation triplets (sj ; aj; bj); j = 1; l, where sj
are complex scalars and aj 6= 0; bj complex (m�1); (p�
1) vectors respectively, and non-negative integers di; i =
1; p + m, with l =

P
di + m are given such that the

(
P

di + (p+m)) � l matrix

Sl := [S(s1)c1; : : : ; S(sl)cl]

where cj = [aTj ; b
T
j ]
T , has full column rank. There ex-

ists a unique (p � m) rational matrix H(s) of the form
H(s) = W�1

L (s)VL(s) where WL(s); VL(s) are (p � p)

and (p�m) polynomial matrices respectively and the col-
umn degrees of the polynomial matrix [VL(s);�WL(s)]

are di i = 1; p+m, with the leading coefficient matrix of
D(s) being Ip (non-singular), which satisfies

H(sj)aj = bj j = 1; l

The solution can be determined by solving the equation

[VL;�WL][Sl; P ] = [0; R]

where [VL(s);�WL(s)] = [VL;�WL]S(s) with S(s) :=
blockdiag [1; s; : : : ; sdi ]T i = 1; p + m. Equations
[VL;�WL]P = R expresses the additional constrains on
the coefficients.

3 Computing polynomial matrix
fractions

The first task to be discussed is the calculation of left1

polynomial matrix fraction

W�1

L (s)VL(s) = H(s)

to a given rational matrix H(s).
Traditional procedure [3] consists in putting in each row

all the fractions to their least common denominator di =

lcm(dij) that, in fact, generically equals to their product.
Then the matrix WL(s) = diagfdig together with VL(s)
computed accordingly form a left polynomial matrix frac-
tion description of H(s). Moreover, this fraction is gener-
ically coprime.

Alternatively, the interpolation can be employed as in
Theorem 2. From the computational point of view, the crit-
ical step in this algorithm appears to be the inversion of the
block Vandermonde matrix (Sl in Theorem 2). This matrix
is even worse conditioned than the classical Vandermonde
matrix and its dimension grows very quickly. Its condition
number depends heavily on the choice of the interpolation
points.

As experiments reveal, the choice of real numbers with
magnitudes depending on the coefficients of theH(s) that
are balanced around zero with even distances improves the
condition number considerably. To be more specific, a ra-
tional matrix interpolated at unbalanced points has typi-
cally the same condition number as a rational matrix with
twice higher degrees interpolated at balanced points.

This procedure for computing polynomial matrix frac-
tion works well for a rational matrix of dimension (2� 2)
with element numerators and denominators of degree 4 for
which the resulting polynomial matrix denominator has

1The dual case of right fraction can be handled similarly.



degree 4. The corresponding block Vandermonde matrix
is (34�34) and exhibits conditionnumber about 1010. The
computation takes2 3 seconds and its relative accuracy of
the result is about 10�8.

When Theorem 2 is applied to interpolate scalar ratio-
nal functions, then degrees up to 20 can be efficiently pro-
cessed.

In the generic case of all fractions in H(s) coprime and
all their denominators of the same degree and mutually co-
prime, the resulting polynomial matrix fraction is coprime.
If this is not the case, none of the two procedures men-
tioned above guarantees directly that resulting polynomial
matrix fraction is coprime. In the standard procedure, co-
primeness can only be accomplished by additional oper-
ations of computing and then extracting the greatest com-
mon left divisor of polynomial matrices VL(s) andWL(s).
This step does not exhibit good numerical properties3.
When using interpolation, however, coprimeness depends
on our ability to estimate the lowest existing degree of
the denominator polynomial matrix WL(s), for which of
course, the fraction is coprime. The following procedure
is recommended to obtain the coprime polynomial matrix
fraction:

1. Determine the highest possible degree of the resulting
matrix fraction and interpolate it;

2. Then decrease the estimated degree and compute the
new matrix fraction.

3. Check (e.g. by evaluating the rational matrix and the
resulting matrix fraction), if the result is correct. If it
is, continue by step 2.; if it isn’t, take the last correct
matrix fraction.

This procedure consists of several runs and just the last but
one of them is finally used. The number of its predecessors
have therefore no impact on final precision of the result.

The problem is, that we have to estimate the degree of
each column of matrix fraction. So the procedure men-
tioned above gives the coprime matrix fraction only if all
columns have the same degree. If this is not the case, the
procedure degree cutting becomes heuristic one.

Numerical experience with the traditionalmethod based
on the least common multiples of denominators in each
row are as follows: If the result need not be coprime ma-
trix fraction, this procedure has no numerical limitation
but the resulting degrees become out of control. When a
coprime matrix fraction is desired, some limitations arise
by computing the greatest common divisors. By its nature,
the procedure is relatively slow. For the example consid-
ered above, this simple method transfers that rational ma-
trix in about 6 seconds with higher relative accuracy (about
10
�13).

2All computing mentioned throughout the paper was made on a rela-
tively slow PC with Pentium 65 MHz 16MB RAM and MATLAB 4.1.

3The well-known problem of “almost common factors”.

The comparison of the two algorithms for computing
can be summarized as follows: For relatively small ra-
tional matrices (up to (2 � 2) with elements of degree 4)
the interpolation method is quicker and sufficiently accu-
rate. For larger matrices and/or higher degrees, interpola-
tion brings no particular advantage when compared to the
traditional method.

Let us now illustrate the use interpolation on a simple
MATLAB session4.

Example 1:

% The 2 x 2 rational matrix H with degrees
% 2 is expressed by the matrix of its
% numerators

N =

11 0 -7 0 2 -15 2
6 3 16 17 8 -8 0
0 0 0 0 0 0 NaN

% and the matrix of its denominators

D =

12 5 -2 -13 -1 -8 2
-7 -4 -14 9 -8 8 0
0 0 0 0 0 0 NaN

% To get the left polynomial matrix
% description WLˆ{-1}*VL,
% we run the macro ’rinter’

>> [WL,VL]=rinter(N,D)

WL =

Columns 1 through 4

7.5000 0.0000 -20.7500 0.0000
0.0000 -0.4375 0.0000 0.1094

0 0 0 0

Columns 5 through 8

-9.3750 0.0000 3.6250 0.0000

4Here the Polynomial Toolbox [2] is employed. It uses the following
polynomial matrix format: A polynomial matrix N(s) = N0 +N1s+
� � �+Nnsn is stored by the block row of the matrix coefficient and an ex-
tra row of and column zeros having the degreen in the upper right corner
and NaN in a single Matlab element N given by

N =

2
6666664

n

0

N0 N1 � � � Nn

...

...
0

0 � � �0 0 � � � 0 0 � � � 0 0 � � � 0 NaN

3
7777775



0.0000 2.3437 0.0000 2.8750
0 0 0 0

Columns 9 through 11

1.0000 0 4.0000
0 1.0000 0
0 0 NaN

VL =

Columns 1 through 4

6.8750 0.0000 -22.2500 0.0000
0.3750 0.3281 0.1562 2.5156

0 0 0 0

Columns 5 through 8

1.6250 -22.5000 3.7500 3.7500
-2.5000 3.2187 -3.1250 0.3750

0 0 0 0

Columns 9 through 11

-2.0000 1.8750 4.0000
-1.0000 -1.0000 0

0 0 NaN

4 Sum of rational matrices

For sum of two (or more) rational matrices, three algo-
rithms are considered: standard element-wise procedure
and two modifications of the interpolation (the whole ma-
trix interpolation or elementwise one).

In the first method, the sum

F (s) = G(s) +H(s)

is achieved by adding the particular scalar elements

nG;ij

dG;ij
+
nH;ij

dH;ij
=

nG;ijdH;ij + nH;ijdG;ij

dG;ijdH;ij
:

The second method, the whole interpolation, runs as
follows: At first,

np = m +

m+pX
i=1

di

of interpolationpoints is chosen where p andm is the num-
ber of rows and columns in F (s), respectively while di
is the estimated degree of i-th column in the composite
polynomial matrix [VL WL] describing F (s). Then, for
j = 1; : : : ; np, the points are substituted and the resulting
constant matrices are added

F (sj) = G(sj) +H(sj); j = 1; np

Finally, the desired sumF (s) is recovered by interpolation
as in Theorem 2. The rational matrix resulting from the in-
terpolation can, in fact, be obtained in two different forms:
either in the form of polynomial matrix fraction (Theorem
2) or as a standard rational matrix. However, the former
can only be used for very small matrices with low degrees
while the latter handles well quite large degrees and, by na-
ture of the matrix addition, is completely independent of
the matrix dimensions.

The reason can be easily explained. The maximum size
of the block Vandermonde matrix resulting from addition5

one can ‘invert’6 is about 20� 20. This size corresponds
to a 2�2 rational matrix with degrees 2, that is, the sum of
two 2� 2 rational matrices with degrees 1! Although the
conditioning can slightly be improved by using Tcheby-
chev polynomial bases, this does not qualify the methods
for larger matrices.

This is why we prefer the third method: Interpolation
element-by-element consists of a series of scalar rational
interpolations where the corresponding elements of G(s)

and H(s) are separately evaluated, added

fij(sk) = gij(sk) + hij(sk); k = 1; np;

and finally interpolated. Here the resulting degree can be
estimated separately for each particular element.

By this procedure, one can interpolate a rational matrix
with degrees 18. This corresponds to the sum of two ra-
tional matrices of arbitrary dimension with degrees 9. The
resulted rational matrix is in the form of the matrix of nu-
merators and the matrix of denominators. It can be shown,
that the computation takes the same time for both interpo-
lation methods.

To compare relative accuracy and time consumed by
computation for the last two described methods (element-
wise interpolation and definition based method), let us the
sum of two (2� 2) rational matrices with elements of the
degree 9. The interpolation method computes the result in
25 seconds with relative accuracy 10

�7, the on definition
based method computes the result in 45 seconds with rel-
ative accuracy about 10�13.

Let us summarize advantages and disadvantages of the
proposed method for the sum of rational matrices. We
have studied only the case, when the rational matrices are
originally given element by element. The interpolation
giving the resulted rational matrix in the form of poly-
nomial matrix fraction is useful only for relatively small
matrices (up to (2 � 2) with elements of degree 4). To
add larger matrices and/or higher degrees, we recommend
to employ the interpolation giving the sum element by
element or the traditional method. The former is much
quicker, but its relative accuracy is a little lower and de-
gree is limited. The latter has limitation neither on dimen-
sion nor on degrees. If reduced form of rational matrix is

5It is usually worse conditioned than for a randomly generated ratio-
nal matrix.

6Despite the balancing mentioned above.



required, the interpolation is namely convenient if one is
able to estimate the degree of each element correctly.

Let us now illustrate the interpolation resulting in poly-
nomial matrix fraction on a simple MATLAB session.

Example 2:
% The 2 x 2 rational matrix G with
% degrees 1 is expressed by the matrix
% of its numerators

NG =

11 11 6 -2 1
-11 -8 8 5 0

0 0 0 0 NaN

% and the matrix of its denominators

DG =

-2 -11 14 2 1
5 -8 -7 -16 0
0 0 0 0 NaN

% The 2 x 2 rational matrix H with
% degrees 1 is expressed by the matrix
% of its numerators

NH =

-11 12 4 3 1
-5 8 -13 3 0
0 0 0 0 NaN

% and the matrix of its denominators

DH =

-5 -3 9 1 1
-8 9 11 4 0
0 0 0 0 NaN

% To get the left polynomial matrix
% description WLˆ{-1}*VL of the sum
% F=G+H, we run the macro ’raddint’
% (using the interpolation)

>> [WL,VL]=raddint(NG,DG,NH,DH)

WL =

Columns 1 through 4

-1.1187 0.0000 9.9791 0.0000
0.0000 0.5844 0.0000 -0.1932

0 0 0 0

Columns 5 through 8

-15.2021 0.0000 1.0000 0.0000

0.0000 -2.3198 0 1.3084
0 0 0 0

Columns 9 through 11

1.0000 0 4.0000
0 1.0000 0
0 0 NaN

VL =

Columns 1 through 7

3.6916 5.5933 9.9588 -47.2852
-0.9205 1.1039 0.8912 -1.9351

0 0 0 0

Columns 5 through 8

-13.8209 53.5959 0.7446 23.0000
4.2451 -0.7786 -3.6006 1.5412

0 0 0 0

Columns 9 through 11

0.8730 2.0000 4.0000
-2.3247 0.4375 0

0 0 NaN

5 Product of rational matrices

For multiplicationof two (or more) rational matrices are
considered the same type of algorithms as in the case of
their addition are considered, i.e. standard (on definition
based) procedure, interpolation of the whole matrix and
element-wise interpolation. We assume again that rational
matrices to be multiplied are originally given element by
element.

For computing the product

F (s) = G(s) �H(s);

the first method follows the definition so that

fij =
X
k

gik � hkj;

where the sums and products are computed in common
way.

Alternatively, interpolation method can be used in two
different ways as we have seen in the previous chapter.
The first procedure, the whole matrix interpolation, returns
the resulting rational matrix in the form of polynomial ma-
trix fraction

F (s) = G(s) �H(s) = W�1

L VL:



is achieved in the following steps: At first,

np = m +

m+pX
i=1

di

of interpolationpoints is chosen where p andm is the num-
ber of rows and columns in F (s) respectively while di is
the estimated degree of i-th column in the composite poly-
nomial matrix [VL WL]. Then, for j = 1; : : : ; np, the
points are substituted and the resulting constant matrices
are multiplied to get

F (sj) = G(sj) �H(sj); j = 1; : : : ; np:

Finally, the desired polynomial matrices WL and VL are
recovered by interpolationas in Theorem 2. Practically,the
procedure can only be used to multiply scalar rational
functions (say both with degrees up to 8). Multiplication
of two2�2 rational matrices with degrees 1 corresponds to
polynomial matrices WL and VL with degrees 8. For their
interpolation, the the corresponding block Vandermonde
matrix is 34� 34 and its condition number 1019 does not
guarantee a correct result.

The second interpolationprocedure returns the resulting
rational matrix element by element: At first,

np = 1 + max
i;j

(deg(nF;ij) + deg(dF;ij))

of interpolation points is chosen. Then, for j = 1; : : : ; np,
the points are substituted and the resulting constant matri-
ces are multiplied

F (sj) = G(sj) �H(sj); j = 1; np:

Finally, each element fij of the product F (s) is recovered
separately by scalar rational function interpolation follow-
ing Theorem 2. Here the resulting degrees can be esti-
mated separately for each particular element. This algo-
rithm allows to multiply two 2 � 2 rational matrices with
elements of the degree 4.

To compare multiplication by definition with element-
wise interpolation, consider the product of two 2 � 2 ra-
tional matrices with degrees 4. The method based on def-
inition gives the result with relative accuracy about 10�14

and the computation takes 15 seconds. The interpolation
method performed element by element achieves the rela-
tive accuracy about 10�8 and its computation takes 8 sec-
onds. If rational matrix with coprime fractions is required,
interpolation is efficient if one is able to estimate the de-
gree of each element correctly. Otherwise, both the meth-
ods will require computation and extraction of greatest
common divisor in each element.

Let us now summarize our experience with rational ma-
trix multiplication. We have considered the case of ratio-
nal matrices originally given element by element and ex-
ercised three different algorithms to get their product. The
whole matrix interpolation appears unsuitable for rational

matrices matrices. The procedure based on definition can
be used for arbitrary dimensions and degrees of rational
matrices to be multiplied, but its very slow. The interpo-
lation performed element by element is fast and useful for
small matrices and/or low degrees.

6 More complex operations with
rational matrices

More complex operations on and among several ratio-
nal matrices are currently being tested such as inverse
(F�1(s)), closed-loop transfer matrix (G(s)H(s)(I �
G(s)H(s))�1), sensitivity and complementary sensitivity
functions and alike. It is expected, that the more opera-
tions can be performed within constant matrices, the rel-
atively less important become possible difficulties arising
during interpolation of their final result.
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