
Robust Stability of Non-Linear Time-Varying Systems 
Ezra Zeheb 

Department of Electrical Engineering 
Technion - Israel Institute of Technology, Haifa 32000, Israel 

zeheb@ee.technion.ac.il 

Abstract 

Systems with time-varying non-linearity confined to a 
given sector (Lure type) and a linear part with uncertainty 
formulated by an interval transfer function, are consid- 

ered. 
Sufficient conditions satisfying the Popov criterion for 

stability, which are computationally tractable, are derived. 
The problem of checking the Popov criterion for an in- 

finite set of systems, is reduced to that of checking the 
Popov criterion for a finite number of fixed coefficient sys- 
tems, each in a prescribed frequency interval. 

1 Introduction 

A large group of “real life” engineering systems, which 

are non-linear and (possibly) time-varying, can be clas- 
sified as Lure type systems. This class of systems will 
be defined formally in the next section, but it is a well 
known one and extensively treated in the literature for 

many years. Essentially, the (single input single output 
case) system is composed of a single non-linear and (pos- 
sibly) time varying element, in cascade, or in the feedback 
path, of a linear system. 

The non-linear element, although constrained by some 
conditions, is of a very broad nature and allows a large 
class of non-linearities, so that uncertainties and ignorance 
about the exact type of non-linearity are taken care of, and 
do not impair stability analysis of the system. On the other 
hand, with a few exceptions [ I]-[6], the linear part of the 
system is assumed, in the vast majority of publications on 
the subject, to be exactly known and precisely modeled 
by its transfer function or state-space description, with no 
uncertainties. This is obviously not a realistic assump- 
tion, even if the model is precise with no neglected dy- 
namics, since the physical parameters of the system are 
never known exactly and, in addition, they are subject to 
changes. 

In [l]-[4], continuous-time systems are considered, 
whereas in [5]-[6] discrete-time systems are considered. 
In [ l]-[2] parameter uncertainties in the linear part of the 
system are assumed, and su#icient conditions for the exis- 
tence of the Popov stability criterion [7] are derived. Note 
that the Popov stability criterion is itself only a sufficient 
condition for stability, but not a necessary one. In [3], pa- 
rameters uncertainties in the linear part of the system are 
again assumed, and a necessary and sufficient algorithm 

is derived for the existence of the Popov stability crite- 

rion. The price is in the computational complexity of the 
algorithm. The results in [4] pertain to uncertainty in the 
frequency response of the linear part of the system, which 
is a non-parametric form of uncertainty. 

In this paper, we consider the parametric form of un- 
certainty. We use some recent results [8] on the tight 
envelopes of the frequency response of a family of inter- 
val coefficients transfer function of a continuous-time sys- 
tem. These results allow us to obtain sufficient conditions 
satisfying the Popov criterion, which are computationally 
tractable. In fact, checking stability of the entire (infinite) 
family of systems, is reduced to checking the Popov con- 
dition for a finite number of systems, each with a fixed 
coefficient linear part, and each in a prescribed frequency 
interval. 

The structure of the paper is as follows: In Section II, 

some preliminary derivations are presented and the prob- 
lem is stated formally. The main results are presented in 
Section III, and the paper is concluded in Section IV. 

2 Preliminaries and Statement of 
the Problem 

Consider a single-input single-output Lure type contin- 
uous time system, as described in Fig. 1 and formulated 
by its state space representation: 

k=Ax+bF(y,t) , y = cx (1) 

where 

x = x(t) E R” , A E IR”‘” , b E RnX1, 
yElR, cERIXn (2) 

and F is a non-linear (possibly time-variable) continuous 
function from R to R satisfying the following sector con- 
ditions: 

F(O,t) = 0, F(Y, t) 0 < KI < - <Kz<co fory#O 
Y 

(3) 

The relationship between the state space representation 
and the transfer function G(s) of the linear part of the sys- 
tem, from input z to output c = -y, is given by 

G(s) = c(sl- A)-% (4) 



0 Y z 
F(y,O Kharitonov [lo] polynomials withJLixed coefficients have 

all their zeros in the open left half complex plane: 

Figure 1: Lure type continuous-time (possibly time- 
variable) system. 

If the system is not time-variable, i.e. F(y, t) E F(y), 
then it was shown by Popov [7] that such a system is sta- 
ble (the equilibrium x = 0 is asymptotically stable in the 
large) for every non-linearity as in (3), if the linear part of 
the system (the transfer function G(s) or the matrix A) is 

stable and, in addition, there exists a real number q such 
that 

(5) K2 !! K1 + Re [(I + jwq)G(jw)] 

’ K2T~1 IG(jw)12 > 0 VW 2 0 

The time-variable case has been considered in [9], where 
it was shown that the system is stable for every non-linearity 
as in (3), if the Popov criterion is satisfied with q = 0. It 
can be verified that imposing q = 0 in (5) yields the con- 

dition 
Re 1+ K&&J) 

1 + KlG(jw) 
>o VW20 (6) 

Bl(S) = b,sn +&&--l + l&J+-2 

+b,-3P-3 + &-‘jsn--4 f. * * 
&(S) = &sn + bn-lF1 + bne2#--2 

+&!,_3sn-3 + TJn-42-4 f.. . 

B3(S) = l&P +&&P--l + Tln-2sn--2 

+b,-3F-3 + &n--4Sn-4 + . . . 

B4(S) = l&P +b,-ls-l +b,-&--2 
+bnm3P3 + tlnv4sn-4 +. . . (9) 

Turn now to the second stability condition, namely (6). 
It can be verified that its geometrical interpretation is that 
there is no intersection between the locus of G(jw) and 
a circle whose center is at (d, 0) and whose radius is r, 
where 

d=-i ($+&) , r=i (k--k) (10) 

Thus, condition (6) can be re-written as 

Suppose now that the uncertainty is not only with re- 
gard to the non-linear part of the system, expressed in (3), 
but there is also parametric uncertainty with regard to the 
linear part of the system namely, the numerator and de- 
nominator of the rational transfer function G(s) are inter- 
val polynomials. In other words, their coefficients are not 
known exactly, but only known to take on values in given 
intervals. It will be shown in the next section how to check 
the above stability conditions, in this uncertainty case. 

3 Checking Stability in the Case of 
Uncertainty 

Let 

(7) 

A(s) = 2 aisi , B(s) = =& bjsj 03.1) 
i=o j=o 

CZi 5 ai 5 Ei (i=O,...,m) 
& 5 bj 5 bj (j = 0,. . . , e) (8.2) 

The first stability condition is to ensure the stability of 
the family of linear systems (7), (8). To this end, it is only 
necessary (and sufficient) to check that the following four 

I-d+G(jw)l>r Vw>O . (11) 

Substituting (7) in (11) yields 

I&w) - dBbJ)I > r 

IW-4 I 

vw > o 

- (12) 

where the coefficients of A( jw) and B( jw) take on values 
in the intervals (8.2). 

Let 

ci = ai - dbi , i = O,l,. . . , ma44 m) (13) 

where it is understood that ai = 0 for i > m or bi = 0 for 
i > e. 
Then, a sufficient condition to ensure (12) is that at each 
frequency w, 2 0, the ratio between 

Min Cr$e’“’ Ci(jWO)i 1 

over ai - d& 5 ci 5 ai - d& 
(14) 

and 

Mu ICf=, bd+-4il 

over bi 5 bi 5 bi 
(15) 

is greater than r . 
Remark 1 This condition is suficient but not necessary 
since bi and ci were assumed to be independent inter- 
val coeficients, even though there is a dependency of the 
value Of ci on the value of bi. 

Remark 2 The intervals of Ci in (14) were determined 
taking into account the fact that d < 0. 



The results in [8] are particularly applicable to carry out 
(14) and (15). It is shown in [S] that (14) must coincide, 
at each frequency w, 2 0, with one of the following nine 

possibilities: 

{ICl(jw)l, IC2(jw)l, IC3(jw)I, IC4(jw)I, IRe[Cl(jw)ll, 

IRe [C4(jw)ll, Pm [C2(jw)lI, IJm [C3(jw)lI, 01 

(16) 
whereCi(s), i=l,..., 4 are the four Kharitonov poly- 

nomials associated with the family 

max(&n) 

C(S) = C CiSi (17) 
i=o 

Moreover, the frequencies where the minimum in (14) 
“jumps” from one expression in (16) to another expression 
in (16) are given by the real roots with odd multiplicity, of 
the following four equations: 

Re[Cl(jw)] = 0 (18.1) 

Re[Cq(jw)] = 0 (18.2) 

iIm[&(jw)] = 0 (18.3) 

tIm[C+(jw)] = 0 (18.4) 

The various expressions in (16) which coincide with (14) 

are chosen according to the following Table. 
Also, (15) must coincide, at each frequency w, 2 0, 

with one of the following four possibilities 

{lBl(.G)l, IB2@)l, IB3h)l, lB4(jw)l> (19) 

whereBi(s), i = l,..., 4, are defined in (9). More- 

over, the frequencies where the maximum in ( 15) 
“jumps” from one expression in (19) to another expression 
in (19) are given by the real roots with odd multiplicity, of 
the following two equations: 

bg - b;w2 + b;w4 - b;w6 + ... = 0 (20.1) 

by - b;w2 + b;w4 - b;w” + . . . = 0 (20.2) 

where 
b; = bi + & , i = 0,. . . , C (21) 

Furthermore, since the polynomials Bi(s), i = 1, . . . ,4 
are required to be Hurwitz polynomials by the first stabil- 

ity condition, so is the polynomial 

B’(s) = & bfsi (22) 
i=O 

However, for this special case, it is shown in [8] that (19) 
can be more explicit: In the interval between w = 0 to the 
next “change frequency” (the smallest positive w which 
is an odd multiplicity root of (20)), (15) coincides with 
I B1 (jw) I. At each consecutive frequency interval, created 

by the “change frequencies”, the order of expressions co- 
inciding with (15) is given by the cycle: 

lBl(.iw)l * IB3(;BW)~J=+-~llB~~.?w)l * IB2b)I * 

1 'w . . . 

(23) 
To conclude this section, it is clear from the above dis- 

cussion that to ensure stability of a system as described in 
Fig. 1, with uncertainty in the linear part as formulated in 
(8), it is sufficient to: 

1. Check Bi(s), i = 1,. . . ,4, in (9), to be Hurwitz 
polynomials. 

2. Solve Eqns. (18) and (20) to find their real positive 
roots with odd multiplicity. It can be shown that 
the maximal number of such roots is (n - 1) for 
Eqns. (20) and 2(n - 1) for Eqns. (18). 

3. Divide the positive frequency axis into a finite num- 
ber of intervals created by the roots found in step 2, 
and choose an arbitrary frequency wi in the interior 
of each of these intervals. 

4. Determine which of the expressions in (19) coin- 
cides with (15) at each wi (and hence, at each inter- 
val associated with wi) by the sequence (23). De- 
termine which of the expressions in (16) coincides 
with (14) at each Wi (and hence, at each interval as- 
sociated with wi) by Table 1. 

5. For each interval created in step 3, check if thefued 
coejicient expressions determined in step 4 satisfy, 

at each frequency w 2 0: 

(14) 
(15) > r 

(24) 

4 Conclusion 

A non-linear time-varying system is considered, 
where both the non-linear part and the linear part are only 
partially known. There is a lot of uncertainty about the 
behaviour of the system which, presumably, makes it very 
difficult to analyze the system, even just for stability. Nev- 
ertheless, sufficient conditions, for the parametric type un- 
certainty of the linear part and Lure type uncertainty of 
the nonlinear part, which ensure stability of the system 
and which are computationally tractable, are presented 
here. These conditions are based on some recently de- 
rived results on the frequency response of continuous-time 
systems with uncertainties formulated by interval transfer 
functions. Using these results, we are able to reduce the 
necessity to check the Popov condition for an infinite set 
of systems, to checking the Popov condition for a finite 
number of fixed coefficients systems, each in a prescribed 
(calculated) frequency interval. 



+ + 0 
Table 1: “Sign rule” to choose the pertinent expression for (14). 

A final remark concerns the sufficiency of the condi- 

tions. Since necessary and sufficient conditions for sta- 
bility of a Lure type non-linear system do not exist even 
for the standard case of a completely specified and exact 
linear part and time-invariant non linear part, it would be 
too ambitious and non-realistic to expect such for the case 
with uncertainty. 

[71 

PI 

Acknowledgement 191 

This work was supported by the fund for the promotion of 
research at the Technion. UOI 

References 

[l] D. Siljak, “Parameter analysis of absolute stability”, 

Automatica, Vol. 5, 1969, pp. 385-387. 

[2] D. Siljak, “Polytopes of nonnegative polynomials”, 
Proc. of the American Control Conf (ACC), 1989, 
Pittsburgh, PA., pp. 193-199. 

[3] G. Fruchter, “Generalized zero sets location and 
absolute robust stabilization of continuous nonlin- 
ear control systems”, Automatica, Vol. 27, 1991, 
pp. 501-512. 

[4] A.M. Kerbelev, “A circle criterion for robust stability 
and instability of nonstationary nonlinear systems”, 
Automation and Remote Control, Vol. 54, No. 12, 
1993, pp., 1820-1823. 

[5] G. Fruchter, U. Srebro and E. Zeheb, “An analytic 
method for design of uncertain discrete nonlinear 
control systems”, Proc. of the 15th Conference of 
IEEE in Israel, Tel-Aviv, Israel, 1987. 

[6] G. Fruchter, U. Srebro and E. Zeheb, “Stability of 
discrete nonlinear control systems”, IMA J. ofMath. 
Control and Information, In Press. 

V.M. Popov, “Absolute stability of nonlinear systems 
of automatic control”, Translated from Automatika i 
Telemekhanika, Vol. 22, 1961, pp. 961-979. 

A. Levkovich, E. Zeheb and N. Cohen, “Fre- 
quency response envelopes of a family of uncertain 
continuous-time systems”, IEEE Trans. Circ. and 
Syst. I, Vol. 42, 1995,~~. 156-165. 

E.N. Rozenvasser, “The absolute stability of non- 
linear systems”, Translated from Automatika i Tele- 
mekhanika, Vol. 24, 1963, pp. 304-313. 

V.L. Kharitonov, “Asymptotic stability of an equi- 
librium of a family of system of linear differential 
equations”, Differential Equations, Vol. 14, 1979, 
pp. 1483-1485. 


