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Abstract 

The Hz and H, control problems for distributed pa- 
rameter systems with zeroorder hold and sampled 
observation are considered. Distributed parameter 
systems are described by Cc-semigroup in a Hilbert 
space. It is shown that the abstract sampled-data 
system can be rewritten as an extended semigroup 
model with jumps in the state. First the Hz and 
H, results are given for this model and then they 
are interpreted for the original sampled-data system. 
As basic examples a heat equation and a delay dif- 
ferential equation are considered and the H, Riccati 
equation are derived. 

1 Introduction 

The Hz and H, theories for sampled-data systems 
are now well-known and by a certain transformation 
they can be reduced to those of discrete-time systems 
([l]). It is also possible to establish the theories using 
systems with jumps ([4], [6]). Systems with jumps 
in the state were first introduced by Sun, Nagpal and 
Khargonekar [7] when they considered the H, control 
and filtering problems for continuous time systems 
with sampled observation. 

In this paper we take distributed parameter sys- 
tems with zero-order hold and sampled observation 
and consider the Hz and H, control problems. Our 
mathematical model is an infinite dimensional system 
which is described by the infinitesimal generator of a 
Cc-semigroup in a Hilbert space. As in finite dimen- 
sions we can rewrite the sampled-data systems as a 
semigroup model with jumps in the state. We first 
give the generalization of Hz and H, results to the 
infinite dimensional system with jumps. We then ob- 
tain the solutions of the Hz and H, problems for our 
sampled-data system. As basic examples covered by 
our model we take a heat equation and a delay differ- 
ential equation and derive the H, Riccati equations. 

Our semigroup model with jumps can express sys- 
tems with impulsive inputs and sampled-data systems 
with first-order hold. In finite dimensions we have al- 
ready considered the Hz and H, problems for the 
sampled-data systems with first-order hold ([3]) but 
our model also covers the infinite dimensional case as 
well. 

2 The Infinite Dimensional 
System with Jumps 

2.1 The Hz and H, Norms 

Consider the system G: 

2 = Aa: + Bw, 
ih < t < (i + l)h, h > 0, 

x(ih+) = AdZ(ih) + Bdwd(i), (1) 
zc = cx, 

zd(i) = Cdx(ih) + Ddwd(i), 

where x E H, a real separable Hilbert space, A is the 
infinitesimal generator of a strongly continuous semi- 
group S(t) in H, Ad E L(H), the space of bounded 
linear operators on H, x(ih+) is the right limit at 
t = ih, W E w, Wd E wd, Zc E z,, Zd E &j, inpUt 

and output spaces W, Wd, Z,, & are all real Hilbert 
spaces and all operators B, Bd, C, Cd and Bd are 
linear bounded operators in appropriate spaces (i.e., 
B E C(W, H) etc). The solution of (1) for a given 
initial condition and a locally integrable w is defined 
in a piecewise manner as follows: 

x(t) = S(t)x(ih+) + 1; S(t - r)Bw(r)dr, 
ih < t I (i + 1)h. 

It is continuous on (ih, (i + l)h), left-continuous at ih 
and has jumps at ih according to the second equation 
of (1). 

Assume that the system (1) ((A, Ad)) is expo- 
nentially stable. Then G: (w, Wd) E L2(0, 00; W) x 

z2(o, 03; wd) + (Z, Zd) E L2(o, co; z,) x z2(o, co; i&-j) 
is a bounded linear operator. We denote the norm by 

II G Ilm and call it the H,-norm of G. 
Let T,, (respectively T,,,) be the operators from 

W E L2(o, m;w) (reSpeCtiVdy Wd E 12(o, m;Wd)) 

to Z = (.&Zd) E L2(o, OC3; zc) x z2(o, 00; Zd). con- 

sider the impulse response T,J(t - r)ei correspond- 
ing to w(t) = S(t - T)ei, 0 5 T 5 h where {ei} is 
an orthonormal system in W. Let TZwdSksfj be the 
response to Wd(0) = fj and Wd(k) = 0, k L 1 where 
{fj} is an orthonormal system in Wd. We assume 
one of the following conditions: 
(i) B, Bd and Dd are Hilbert-Schmidt operators. 
(ii) C, Cd and Dd are Hilbert-Schmidt operators. 



Then the following norm is well-defined: 

II G 11; = Xi i Jt II T,d(. - T>ei ll$x12 d7 
+ Cj II ~m,bofj ll:zxp 

and is called the Hz-norm of G. Consider 

4, = A*L, + i,A + C*C, 
ih < t < (i + l)h, (2) 

L,(ih-) = A;L,(ih)Ad + C;Cd. 

The operator L, is called a mild solution of (2) if it 
is right-continuous and satisfies 

LO(t)z = Jt” s*(?- - t)C*CS(r - t)zdr 
+S*(s - t)L,(s)S(s - t)q 

ih 5 t I s < (i + 1)h and the jump conditions in 
(2). Since (A,Ad) is stable, there exists a unique 
nonnegative h-periodic solution to (2). It is called 
the observability gramian. We can write the Ha-norm 
II G 112 in terms of L,. Modifying the arguments in 
finite dimensions as in [6] we have the following: 

Lemma 2.1. 

11 G 11; = ; 1” tr.(B*L,(T)B)& 
0 

+tr.(B;L,(O)Bd + D;Dcj). 

For the Ha-norm of G we have: 

Lemma 2.2 II G Ilm< y if and only if the Riccati 
equation below has a nonnegative h-periodic solution 
X such that (A + $BB*X, Ad + BdF) is exponen- 
tially stable: 

-ir = A*x + XA + +XBB*X + c*c, 

ih < t < (i + l)h, 

For simplicity we assume that W and wd are finite 
dimensional. The Hz-problem is then to find a con- 
troller K E K which minimizes II G II2 where G is the 
input-output operator of the closed loop system Gj 
with u = Ky. To give the solution of this problem, 
we need the following result: 

X(ih-) = AzX(ih)Ad + (F*TF)(i), 

where T(i) = y21 - D$Dd - BiX(ih)Bd > 0, F(i) = 
T-l(B;X(ih)Ad + D;Cd). 

Lemma 2.3. (a) Suppose ([A, Ad], [0, B2]) is sta- 
bilizable and ([Cl, 01, [A, Ad]) is detectable. Then 
there exists a unique h-periodic nonnegative (mild) 
solution of the Riccati equation with jumps: 

Definition 2.1. (a) The pair ([A, Ad]@,&]) is 
said to be stabilizable if there exist bounded linear 
operators K and Kd such that (A+BK, Ad+BdKd) 
is exponentially stable. 

-Ii = A*X+XA+C;C1, 
ih < t < (i + l)h, (6) 

X(ih-) = A;X(ih)& - (H*E-lH)(i), 

(b) The pair ([C, Cd], [A, Ad]) is detectable if there which is stable, i.e., (A,Ad + B2F) is stable, F = 

exist bounded linear operators J and Jd such that -E-lH(i), E(i) = dIl + B;X(ih)B2, 

(A + JC, Ad + J&d) is exponentially stable. H(i) = B;X(ih)& 

Now we consider the H2 and H, problems for the 
system Gj: 

j: = Aa:+Blw, ih<t<(i+l)h, 
z(ih+) = A,jz(ih) + B2u(i), 

z-2 = cldt), 

zd(i) = D1249, 

y(i) = Czz(ih) + &u&j(i) 

(3) 

where IC, w, wd, Z, zd and A, Ad are given as for (l), 
21 E U, y E Yd, U, Yd are real Hilbert spaces and all 
other operators are bounded and linear. We assume 
the following: 

(i) DT2D12 = c&l, D21D& = &I, di > 0. 
(ii) ([A, Ad], [Bl, 01) is stabilizable, 

([Cl, 01, [A, Ad]) is detectable, (4 
([A, Ad], [0, B2]) is stabilizable, 
([0, C,], [A, Ad]) is detectable. 

For Gj we allow for feedback controllers ‘1~ = Ky of 
the form 

9 = Ap, t # ih, 
p(ih+) = &p(ih) + By(i), 

u(i) = cp(ih) + fiy(i), 
(5) 

where A is the infinitesimal generator of a semigroup 
in a Hilbert space fi and &, fi, 6 and f, are bounded 
linear operators. 

2.2 Hz Control 

To formulate the Hz-problem for Gj, we introduce 
the following set of controllers. 

K = {K : K is of the form (5) and 
internally stabilizes Gj}. 

(b) If ([A, Ad], [BI, 01) is stabilizable and 
([0, Cz], [A, Ad]) is detectable, there exists a unique 
h-periodic nonnegative (mild) solution of the Riccati 
equation with jumps: 

Y = AY +YA* + ~B~B;, 
ih < t I (i + l)h, (7) 

Y(ih+) = &Y(ih)A;;, - (l+fi-lfi)(i) 



which is stable, i.e., (A,Ad + JCz) is stable, J = 

-(lk+fi-1)(i), j%(i) = da1 + C,Y(ih)C;, a(i) = 
C2Y (ih)A;. 

Consider the stabilizing controller based on the 
feedback gain F and the observer gain J: 

@ = Ap, ih < t < (i+l)h, 
p(ih+) = (Ad + BsF + JCz)p(ih) 

-Jy(i), 
u(i) = Fp(ih). 

(8) 

The solution of the Hs problem is given as follows: 

Theorem 2.1. Consider the Hz-problem for Gj. The 
controller (8) is optimal and 

minKEK ]I G I]$ = i &r.(B;X(r)Br)dr 
+tr.[FY(O)F*E(O)]. 

2.3 H,-Control 

Consider the system Gj and an internally stabilizing 
controller u = Ky. Here we allow for time-varying 
coefficients in (5). We assume that A generates an 
evolution operator ([2]). Other operators can depend 
on i but are assumed to be uniformly bounded. Define 
the input-output operator of the closed loop system 
by G(w,~d) = (z,,zd). The H,-problem is to find 
necessary and sufficient conditions for the existence of 
an internally stabilizing controller u = Ky such that 

II G Ilm< Y- S UC a controller is called y-suboptimal. h 
To give the solution of this problem, we need the 

Riccati equations: 

-A = A*x+ XA+ +XB~B;X 

+CTCl, ih < t < (i + l)h, (9) 
X(ih-) = A;X(ih)Ad - (H*E-lH)(i), 

q = AY +YA* + +YC1*CIY 

+BrB;, ih < t < (i + l)h, (10) 
Y(ih+) = AdY(ih)AT, - (H*E-r@(i), 

Y(0) = 0. (11) 

Define the set of linear causal controllers 

Qr = {Q E L(Z2(0, cq Yd); Z2(0, co; U)) : 
Q is of the form (5) and internally 

stable with ]I Q Iloo< y}. 

A bounded nonnegative solution X of (9) is called 
stabilizing if (Atnzp, Ad - BsE-lH), is exponentially 
stable, Atmp = A + +BrB;X. A bounded nonnega- 

tive solution Y of (10) is called a stabilizing solution 

if (A + +YCTCr, Ad + fi*i!;-rCz) is exponentially 

stable. Following [4], [5] we obtain the solution of the 
H,-problem for Gj. 

Theorem 2.2. Assume the condition (4). 
(a) There exists an internally stabilizing controller 
u = Ky for Gj such that ]I G Iloo< y if and only if 
the following hold: 
(i) There exists an h-periodic nonnegative stabilizing 
mild solution X to the Riccati equation (9). 
(ii) There exists a bounded nonnegative stabilizing 
mild solution Y to the Fticcati equation (10) and (11). 
(iii) p(XY) < y2 - E, ‘t 2 0, for some E > 0, where p 
is the spectral radius of an operator. 
(b) In this case the set of all y-suboptimal controllers 
is given by 

; 
= At+?, ih < t I (i + l)h, 

%(ih+T = Mr?(ih) + May(i) + Mas(i), 
u(i) = Nlg(ih) + Nzy(i) + Nss(i), 

1 
g(i) = T, ’ (i)[-C&(ih) + y(i)], 

s = &a Q E Qr. 

where 

Ml(i) = (Ad - BsE-lH)*(i), 
M2(i) = Ml(i)Z(ih)Cl, 

Ma(i) = $[(F* + BsE-i)V](i), : 

Nr(i) = -E-rH\k(i), 

Nz(i) = Nl(i)Z(ih)Cg, Ns(i) = t[E-iv+](i), 

Z(ih) = (I - $Y(ih)X(0))-lY(ih), 

\k(i) = I - Z(ih)CzT;r(i)C2 

Tl(i) = y21 - E-sHZ(ih)H*E-i, 
Tz(i) = dzl+ C,Z(ih)Ca, 
Rl(i) = E--HZ(ih)Ai, : 

Rz(i) = CsZ(ih)A& 

S(i) = C2Z(ih)H*E-a, 
V(i) = [Tl + S*T,‘S](i), 
F(i) = [V-l(R - S*Tz’Rs)](i). 

3 The Sampled-Data System 

Consider the sampled-data system G,: 

j: = Ax(t) + &w(t) + &G(t), 

z(t) = 

y(i) = Gx(ih) +D2lwd(i), 

where A is the infinitesimal generator of a Ce- 
semigroup S(t) in a real separable Hilbert space H, 
W E w, c E u, Z E 2 X & and y E Yd, w, u, & & 
and Yd are real separable Hilbert spaces and all other 
operators in G, are bounded linear. We assume that 
G is realized through zero-order hold so that 

ii(t) = u(i), ih < t I (i + 1)h. 

Introduce a dynamics for fi regarding u(i) as inputs: 

fi = 0, ih < t < (i+ l)h, 

P(O) = 0, 
p(ih+) = u(i). 



Then G(t) = p(t) and G, can be rewritten as 

[;I = [; :] [;I+ [“b]w7 
[;g$;] = [; ;] [;y+ [;]a 

ZC = [Cl 01 ai;; , [ 1 (12) 

zd(i) = d&u(i), 
x(ih) 

y(i) = [C2 01 p(ih) +D2lWd(i)- [ 1 
The system (12) is a special case of the system (3). 
We assume DT2D12 = I, D2lD& = I and the condi- 
tion (4) for (12). 

3.1 H2 Control 

We assume that W and w,j are finite dimensional 
and consider the Hz problem for (12). We now apply 

Theorem 2.1 to (12). Let X = [$;; ;;;] andY = 

Kl s2 [ 1 yzl 
y22 be the h-periodic stabilizing solutions of 

(6) and (7) respectively, where XII, YII E L(H), X12, 
Y12 E C(U,H) and X22, Y22 E f,(U). Then from (6), 
we obtain 

-x11 = A*Xll + XllA + CfC1, 
-x12 = A*X12 + X11B2, 

-x22 = B,*Xl2 +xl2B2, 

ih < t < (i + l)h, 
Xll(ih-) = Xll(ih) - Xlz(ih) 

x[hl+ X22(ih)le1XT2(ih) 
Xlz(ih-) = 0, X22(ih-) = 0 

The equation (7) yields 

Yll = AYll +&A* + k&B; 

+B2Y;,+Y&B2, 

J52 = A&2 + B2YZ*2, 

62 = 0, ih < t < (i + l)h, 
Yll(ih+) = Yll(ih) - Yll(ih)Cz 

x(1 + C2Y~l(ih)C~)-%‘2Yll(ih) 
Ylz(ih+) = 0, Y22(ih+) = 0 

Note that Y(t) = lim,,,*(t + nh) where P is 

the bounded stabilizing solution (7) with *(O) = 0. 

Since $22 = 0, ?&(ih) = 0 and Y&(O) = 0, we con- 
clude $C22(t) = 0 for all t 2 0. This together with 
J&(ih+) = 0 and Y12(0) = 0 gives $2(t) = 0 for all 

t 2 0. Hence Y12(t) = 0, Yzz(t) = 0 and Y is of the 

form y O [ I o o where Y E L(H) is the solution of 

Y = AY+YA*+;BIBT, 
ih < t < (i + l)h, 

Y(ih+) = Y(ih) - Y(ih)C,* 
x(1-t C2Y(ih)C~)-1C2Y(ih). 

We can write the optimal controller (8) as 

lj = Ap+ B+(t), 
ih < t < (i + l)h, 

p(ih+) = (I + JCz)p(ih) - Jy(i), 
u(i) = Fp(ih), 

(13) 

where F = -(hl+X22(0))-1X21(O), J = -Y(O)C,*(I+ 
CZY(O)C~)-~ and G(t) = Fp(ih), ih < t 5 (i+ 1)h. 
The optimal value is given by 

= ;$$!; f)B )d 

+t:(Fk;O);*(;I + Xz2(0))). 
(14) 

Summing up we have: 

Theorem 3.1. Consider the Ha-problem for G, . The 
controller (13) is optimal and the minimum Hz norm 
is given by (14). 

3.2 H,-Problem for G,. 

Now we consider the Ha-problem for G,. Let X = 

[ ci: $::I and Y = [ 2: z:] be the stabiliz- 

ing solutions of the Rkcati equations (9) and (lo), 
respectively. Then from (9) we obtain 

-x11 = A*XII + XllA + $XI~BIB;XII 

+c;c1, 

-x12 = A*X12 + X11B2 + LX~~B~B;X~2, 
Y2 

-x22 = B,*&2+X;2B2 + 

(15) ih < t < (i + l)h, 

Xll(ih-) = Xll(ih) - Xlz(ih) 

x[hl+ X22(ih)le1X21(ih) 

X12(ih-) = 0, Xzz(ih-) = 0. 

As in the Hz case Y is of the form 
[ 

Y 0 
o o 

Y E C(H) is the solution of 
I , where 

I’ = AY +YA* + +YC,*CIY 
+BlB,*, ih < t < (i + l)h, 

Y(ih+) = Y(ih) -Y(ih)CG _ (16) 
x(1+ C2Y(ih)C,*)-‘C2Y(ih), 

Y(0) = 0. 



The set of all y-suboptimal controllers is given by 

?j = A,p + B,G(t), 
ih < t < (i + l)h, A ^ 1 

p(ih+) = Ap(ih) + Bly(i) + B2s(i), . ,. . 
u(i) = Clp(ih) + Dlly(i) + Dlzs(i), (17) 

g(i) = Q(i) I-Gp(ih> + Y (41, 
S = &a Q E Q-,, 

where A,(t) = A + +&Bf&dt), B,(t) = B2 + 

+BlB;&z(t) 

A(i) 

&(i) ^ 
Bz(i) 
,. 

Cl (9 

&l(i) 

h2 (9 

W> 

W 

Z(i) 

= (I + Z(i)C~C$‘, 

= A(i)Z(i)CG, 

= $A(i)Z(i)X12(0)E-i?+(i), 
= ;Ep1X21(0)A(i), 
= Cl(i)Z(i)C~, 
= LE-iEi(i), 

= [I + C2Z(i)C,*)-+, 
= (I - $Y (ih)Xll(O))-‘Y (ih), 

= y21 - E-iX21(0)A(i)Z(i)X12(0)E-i, 
E = hl+X22(0), 

Qr = {Q E L(Z2(0, co; Rq); Z2(0, co; R”)) : 
Q is of the form (5) and internally 
stable with II Q II< y} 

.)h. and fi = 6$p(ih)+&y(i)+&2s(i), ih < t L (if1 

Summing up we have: 

Theorem 3.2. Assume the condition (4). 
(a) There exists an internally stabilizing controller 
u = Ky for G, such that II G II < y if and only if the 
following hold: 
(i) There exists an h-periodic nonnegative stabilizing 
solution X to the Riccati equation (15). 
(ii) There exists a bounded nonnegative stabilizing 
solution Y to the Riccati equation (16). 

(iii) A [ ~~~~] ) < y2 - E, ‘t 2 0 for some E > 0. 

(b) Under the condition (a), the set of all y-suboptimal 
controllers is given by (17). 

4 Examples 

We give two simple examples covered by the system 
G, and derive the H, Riccati equations for them. 

Example 4.1. Consider the heat equation 

ax 
2% = 2 +h(sMt) +b2(SMtL 

O<s<l, 

where bi, ci E L2(0, 1) and w, ii E R1. For this 
example we take H = L2(0, l), W = U = 2, = Yd = 
R1 and the generator A ([2]) defined by 

Ax = 2, 
D(A) = {Z E L2(0, 1) : 2, 2 are absolutely 

continuous with 3 E L2(0, l), 
2(O) = 2(l) = 0). 

Setting [Xll(t)gl(s) = Jl Xll(t, S, r)drW, 
g E L2(0, 1) etc in (15) and using the definition of A 
we obtain: 

-gw, s, r) = 

~X21ww = 

= 

Xll(ih-, s, r) = 

-g&zw = 

&X12@>0) = 

Xl2(ih-, s) = 

-T&(t) = 

(g? + -%)&1(t,v) 
lar 

+$ Jo Xll(t,%~)h(e~ 

x J)lbl(S)&l(tw)~% 

+cl(s)cl(~), 

gw, L4 

$-~ll(wx 

gw,% 1) = 0, 

Xll(ih, s, ~1 - Xdih, s) 

x[h + X22(il~)]-~X21(ih,7-) 

$+12(t, s> 

+ s,'Xll(t,%~)b2(~)@ 

++ J; Xll(t, s,rk(M- 

x J; h(S)Xdt, s)ds, 

~&2W) = 0, 

0, 

J; b(s)X& SW 

+ J; X21@, sPz(s)ds, 

++ Jo1 &(t, sh(sW 

x J; h (S)Xdt, s)ds 

0. X22(ih-) = 

Similarly from (16) we obtain 

&Y(w-) = ( g2 + &qt, s, r) 

++ J; Y(t, s, r)cl (r)dr 

x ./; cl(s)Y(t, s, r)ds, 
+h(sh(r)> 

iY(t,O,r) = aY(t,l,?-) 
= % 

gv, s, 0) 
= &-Yh s, 1) = 0, 

Y(ih’,s,r) = Y (ih, s, T) 
- Jt Y(ih, s, r)c2(r)dr 

x(l+J~J~Y(ih,s,r) 
q(s)q(r)dsdr)-’ 

x Jb’ c2(s)Y(ih, s, r)ds. 

Example 4.2. Consider the delay system 

21 = Aoxl(t) + Alxl(t - a) 
+Blw(t) + B2iI(t), a > 0, 

Z 
GE1 = 1 I ii ' 

y(i) = C2xl(ih) + ‘u&i), 



where q E R”, w E R”1, U E Rm2, y E RP2and 
Ci E RPlxn. For this example we take the state 

x = (a(t), a(t + s)) in H = R” x L2(-a, o; R”) 
and the generator A ([2]) given by 

A [ $;] = [ f@“],$xc-u)] , 

WI = { ;,’ : x(e) is absolutely 

continuous, 2 E Lz(--a, 0; R”)}. 

NowsetX= [z$ 5: z$],thenXri ERnxn, 

Xl2 E ,C(L2(-a,O;R”);R”), X2, E L(L2(-a,O;R”)) 
Xl3 E Rnxm2, X2s E L(R”2; L2(-a,O;R”)) and 
X33 E Rm2xmz. Using the definition of A we obtain 
from (15) the following: 

-X11 

Xll(ih-) 

- &Xl,(t, s) 

Xl2 (t, -h) 

Xl2(ih-) 

-gx22ct, 5-7 r) 

X22(& s, -h) 

X22(ih-, 3, r) 

a3 (t) 

X13(ih-) 

-&X23(t,S) 

X23(ih-) 

-233 w 

X33(ih-) 

= A&XII + XuAo + Xl&, 0) 
+X21(6 0) + CiG, 

++XllBlqXll, 

= Xll(ih) - X13(h) 

x[hI + X33(ih)]-lX3l(ih), 

= -&&(t, s) + AbXdt, s) 

+x22(6 0, s) 

++XllBlqXl2(t, s), 

= Xn(t)Al, 

= X12(h) - X13(ih) 

x[hI + &,(ih)]-l-&,(ih), 

= -$ + $)X22@, s,r) 

++,,(t, S)BlB;Xl2@, T), 

= X22@, -h, r) = 0, 

= X22 (ih, S, r) - X23 (ih) 

X[hI + X22(ih)lm1X32(ih), 

= 4X13 + X2& 0) + X11B2 

++Xll(t, S)&qX13, 

= 0, 
= -gX,,(t, s) + &)X13(&s) 

+x21 (t, s)B2 

+&x2$, sp31qx13, 

= 0, ’ 
= &Xl,(t) + X31(t)B2 

++X31BlB:X13, 

= 0. 

Similarly from (16) we obtain 

51 = &&l(t) + YdW, 

+AlYk(t, 4) + BIB: 
++Yll(t)C:ClYll(t), 

Y&(ih’) = Yll(ih) - Yll(ih)Ch 

x(I + C2Yll(ih)C4)-1 

XC2Yll(ih), 

&Y,,(t, s) = @i,(t, s) + AbY& s) 
+Al&.(t, -h, s) 
++5Yil(t)C:Clx.2(t, s), 

Yl2@,0) = Y&(t), 

Yis(ih+, s) = Yl2(ih, s) - Yll(ih)C; 

x(I + CzYrr(ih)C;)-r 

xC2Yl2(% s), 

&Y22(t,v) = ($ + ~>Yzz(t,%~), 

++Y2l(t,s)C;GYi2(t,?% 

Y22(&S,O) = Yx(t,s), 

Y22(t,O,r) = Yl2(%T), 

Yz2(ih+7 s, r) = Yzz(ih, s, r) - Yz1(ih, sp; 
x(I + C2Yll(ih)C&)-1 

xCzY12(ih,r). 
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