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Abstract 
In t.his pa.per we develop a controller for dyminic 

resource a.lloca.tion in Discret,e Event Systlelns (DES) 
operating in a stocha.st,ic environment.. The con- 
troller’s objective is t(o a.llo&e a finite number of dis- 
crete resources to a set of users so a.s to achieve opti- 
1na.l system performance. The derived colkoller uses 
C~~ZCZI~-W~Z~ estimdion~, a sa.niple pa.th construct~abilit~y 
technique for DES, to olhin est,imat8es of t,he system’s 
performance under a set of hypot,hetical pa.ra.meter 
settings using only infornmtion observed from t,he real 
system. Suhsequent,ly, these est,ima.tes a.re used by 
an on-line algoritliin which realloca,tes the resources 
among the various users t.o a.chieve our objective. An 
applicakion to a buffer a.lloca.tion problem is included 
a.long wit,li explicit numerical results illustra.t.ing the 
use of this dymmic alloca.tion scheme. 

1 Introduction 

Alloca,tion of discrete resources is a problem en- 
countered in many a.rea.s. In manufacturing, the Just- 
In-Time (JIT) approa.ch has introduced t.he use of 
the kanban, a. tag a.ttached to ea.& a,rriving job in 
order to nmint,ain a sma.ll work-in-process inventory; 
in this case, a fised number of ka9h92 nmst be allo- 
ca.ted to the various work stations in order to mini- 
mize or nia~siniize some performance niea.sure. Ot,lier 
classic emmples include the buffer a.llocation problem 
in queueing models where a fised number of buffers 
must be a.lloca.ted over a fixed number of servers, 
and the transmission scheduling problem in radio net- 
works where a fixed number of time slots forming a 
“frame” must be allocat,ed over severa. nodes. 
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In t.he basic model we will consider, there a.re K 
identical resources to be a.lloca.ted over N user cla.sses 
so as t,o optimize some system perforimnce inea.sure 
(objective funct.ion). Let, S be the (discrete) set of 
fea.sible resource a.llocations 

s= {[nl,...,n~r]: 9l.j E {l;..,K}} 

where n.i is the number of resources a.lloca.ted t,o the 
it11 user, and by “fea.sible” we mean tlmt t,he a.lloca- 
tion may hve t,o be chosen to sa.tisfy some Imsic re- 
quirenients, such as ‘stability’ or ‘fa.irness’. Let Li (ni) 
be the class i cost a.ssocia,ted with t,he number of re- 
sources 9ai. The mso’zme dlocation problem we con- 
sider is formula.ted a.s: 

(R-4) lll:l fJ3iLi(9?,i) S.t. 29l’ - Ii 2 - 
i=l i=l 

where /3i is a, weight a.ssocia.ted with user chss i. 
For many systems encountered in pra.ctice, closed 

form expressions for the perfornmnce measure Li (7~) 
a.re difficult to obt,a.in or a.re simply unava~ilable. 
Moreover, systems frequently operat,e in a stoclms- 
tic environment (e.g., random demand fluct,ua.tions) 
and therefore, one is forced to resort to estinmtion 
techniques (e.g., Monte Ca.rlo simulation) to okkin 
an est,iinate of the system’s performance ii (71.i) over 
a specific sample pa,th. In this ca,se, Li(IZ<) in (RA) 
has to be replaced by the expechtion of Li(?li) over 
all possible sa.inple pa.tlis, i.e., Li(?Zi) = E[Li(ni)]. 
Usually, the act,ual value of this expecta.tion heav- 
ily depends on t#he distributions that govern t,he pro- 
cesses which chracterize the va,rious events of the 
system. This implies tha.t the optin1a.l alloca.tion is 
a.lso dependent on the statistics of the underlying 
stochastic processes, which, in genera,l, are not sta- 
t,iona.ry. Consequently, the optima.1 a.llocation may 



cha.uge over time. This motivates our objective, i.e., 
to develop a colkoller that will rea.ct to changes in 
the underlying processes a.ud will be a.ble t*o reallo- 
cate t,lie resources iii a. way so t1ia.t the syst,ein perfor- 
&uce is improved. In this coutext, Libera.tore et. al. 
[i] ha.ve used Fiuit,e Perturbation ilualysis (FPA) to 
estra.ct the perforumiice of a. inanufa.cturiug system 
over a.11 fea.sible buffer alloca.tious usiiig only iiiforina.- 
tiou observed from t(he nominal sa.mple path and by 
eniployiiig a simple coiitrol scheme that switches t,o 

t,lie a.lloca.tiou wit,11 the best performance. Our ap- 
proxh is iuteuded to exploit t,he specia.1 st,ruct,ure of 
certain problems and is ba.sed ou t,he o&ne a.lgo- 
rit~hin proposed by Cassandra.s and Julka [a]. This is 
an iterative algorithm driven by “finite differences”, 
a.nd it converges to the optimal alloca.tion for deter- 
iniuistic systems tha.t satisfy some separabilit,y a.ud 
couvesity assuinptioiis. At every step of t,liis algo- 
rithm t,he following iuforination is required in order 
t,o deternnue the next a.lloca.tiou: (a) Performaxe of 
t,he syst,ein under the curreut allocation, aad (1?, Per- 
formance of t,he system under a.11 “neighboring” a,l- 
locations i.e., a.lloca.tious that differ by $1 and -1 
resources in two distiuct users. Of course, if a. closed 
form expression for Li (1l.i) is uuava.ila.ble, oue is faced 
with the problem of obta.iniug performance est,inmtes 
for all the iiecessa.ry a.lloca.tious. 

It is by uow well-documented in the lit,era.ture tha.t 
t,he uature of sa.inple pa,& of DES ca.n be exploited 
so as t,o extract a significant a.inouiit of inforina.tioii, 
beyond merely a,u est,ima.te of t,he performauce mea- 
sure J(Q) under some pa.ra.meter 0 such as clJ/dB or 
AJ/Ad (see [l, G] where several forms of Perturba- 
tiou Analysis (PA) a.re described). Concurrent Es- 
timation [3] is a techiiique through which one caii 
construct multiple sa.mple pa.ths of the system uuder 
differeut paralneters using 09x1~ information uvailable 
crloizy the yiven sample path. Usiug t&he iiiforinat~iou 
obtained from the noiniual sa.mple pa.th we are able 
t.0 obta.iii estimates of the perforinaace of the syst,ein 
for all “neighboring” a.lloca.tions which a.re then used 

by the online a.1gorithn-i to rea.lloca.te the resources 
to the va,rious users so a.s to improve the system’s 
perfornia~iice. 

The inaiu contribution of this pa.per is in devel- 
oping a dynukc resource a,lloca.tiou scheme for DES 
aud exploring its applicability ou a particular a.pplica- 
tion conzpa.red to a static allocatiou a.pproa.ch. This 
scheme combines two basic components: (a) A dis- 
crete opt,iinizatiou algorithm, and (b,) An estiinatiou 
algorithm which will provide all the inforination re- 
quired by (a). 

2 Concurrent Estimation 

In this section, we present au a.pproach based 
on “concurrelit estimation” (see [3]) for solving the 

constructability problem (CO) [5] for general DES. 
Specifically, a.rbitra.ry lifetime dist,ributions a,re al- 
lowed, unlike the Stmdard G’lock (SC) a.pproa.ch [8] 
a,ud the Augmented System ilnulysis (AX4) [5] which 
are t,wo efficient methods for solving the (CO) prob- 
lem but are lin&ed to models wit,11 exponentially dis- 
t,ributed eveut lifet8imes. The ma.in idea, is to observe 

t(he evolutioii of a sample pa,tli of the a.ctual syst,ein 
uuder t,he uonliual allocation. As the sample pa.th 
evolves, observed da.ta (e.g., eveut occurreuces aud 
t,heir corresponding occurreuce times) a.re processed 
t,o coucurreiitly coiistruct the set of sa,inple paths that 
would ha.ve resulted if the system had opera.ted uuder 
a set of differeut (hypothetical) alloca.tions. 

2.1 Sample Path Constructability 

--------- ------------ +---------, 

Figure 1: The sample path const,ruct&iliby problem for 

DES 

We cousicler a DES and a.dopt t,he modeling 
fra.inework of a stochastic timed state automaton 
(E,k’,r,f~~) [l]. H ere, c is a. couut,able eveut set, 
6%’ is a. couut,able sta.te spa.ce, aud F(x) is a, set of fea- 
sible (or enabled) eveins, defiuecl for a.11 x E .Y such 
t.ha,t I’(Z) c E. The st,at,e t,ransition funct.ion .f(z, e) 
is defiued for all x E X, e E I’(x), aad specifies t,he 
nest. sta.te resultiug when e occurs a.t st,a.te 2. Finally, 
20 is a giveu initial skte. In a.ddition, for simplicity 
we assume tha,t the DES sa.tisfies the non-int,errupt,ion 
condition, i.e., ouce a,u eveut is enabled it caunot be 
disabled; this is uot essential to the deriva.tioa of our 
results however. 

Assuming the ca.rdinality of the event set C is N, 
the iiiput to t,he system is a set of event lifetiine 
sequences {VI, . . . , V,}, one for each event, where 
vi = {Vi(l), Vi(a), . . .} is cha.ra,ct,erized by seine a.r- 
bit,ra,ry distribuGou. For simplicit,y, we a.ssuine tha.t 
this is au iid sequence, though stra.ightforward ex- 
teusious a.re possible. Uuder some systein para.meter 

00 (e.g., a,n a.lloca.tion so, the output is a sequeiice 
((&J) = {(ek, tk), k = 1,2, .. .} where ek E 8 is the 
Kth eveut aad tk is its corresponding occurrence tkle 
(see Figure 1). Based ou any observed <(Qa), we ca.u 



evalua.te L[J(&)], a sample performance metric for 
the system. For a. la.rge fa.mily of performance met,rics 

of the forin J(&) = E[L[J$(&)]], L[[(&J)] is therefore 
an est.ima.te of J(&). Defining a, set, of pa.ra.meter 

values of interest { Bo,&, . . , 6~4 }, the sa.niple pa.tli 

coiistructlability problem is sta.ted a.s: 

For (I: DES under 00: construct all sample 
path [(Q,), . . . , c(&) giuen a realization 

of lifetinze sequences VI, . . . , VN and the 

sample path 5 (6,) . 

2.2 Notation and Definitions 

First, let ((72., 6) = {ej : j = 1,. . ., ?I}, with ej E E, 
be t,lle sequence of events t,ha.t coustitut,e t,he observed 
sa,mple path up t,o 72 totma evenk. AltShough c(?a, 0) 
is clea.rly a functioii of the pa.ra,nieter 8, we will w&e 
((11) t-0 refer to the observed sample pa.th a.nd a.dopt 

the iiot,a~tioii i(k) = {ej : j = 1, . . . , k} for any con- 
structed sample path uuder a different value of the 
pa,ra,nieter up to k events iii that pa.tli. It is iinpor- 
hit. to realize tht k is a.ctually a function of 72, that 
is k = y(fz), since the constructed sa.mple path is 

coupled with the observed sample pa.th though the 
observed event lifetimes; however, agaiu for the sake 
of not.at,ioual simplicity, we will refra.in from continu- 
ously iudicating this dependence. 

Nest we define the score of an event i E 8 in a 
sequeuce <(l,), deuoted by sr = [[(la)]i, to be the 
non-nega,tive iiiteger t1ia.t couuts t,lie uuinber of in- 
stances of event i in this sequence. The correspond- 
ing score of i in a. const,ructed sample path is deuot,ed 

by S” = [@)]i. I ii wht follows, a.ll quantities wit,11 . 

the symbol “ Y ” . lefer t,o a typical constructed sa.mple 
path. 

associa.ted with every eveut type i E I iu E(n) is a 

sequence of ST event lifetimes 

Vi(n).= {7~i(l),‘...,vi(s~)} for all 1: E E 

The corresponding set of sequences in the constructed 
sa.inple pa.tli is: 

Vi(k) = {~i(l),.~.,~i(.$)} for a.11 i EE 

which is a subsequence of Vi(n) with k < IL In ad- 
dition, we define t,he followiug sequeuce of lifetimes: 

V;(n,k) = {Vi($ + l),...,Vi(sr)} for all i E E 

which consists of all event lifetimes t1ia.t a.re iii Vi(n) 

but uot in qi(k). A- ssocia,ted with any one of these 

sequences are the following opera.tions. Given solne 
wi = {ILli( . . . ) l&(1’)}, 
Suffix Addition: 

Wi + {ZUi(Y+ 1)) = {Wi(j),‘.‘,Wi(l’),Wi(l’+ 1)) 
Prefix Subtraction: 

Wi - {2Oi(j)} = {‘U’i(j + l), ” ‘, ‘Wi(?‘)}. 
Note tl1a.t the addition and subtra.ction operahons a.re 
defined so t,ha.t a. new element is a.lwa.ys a.dded a.s the 
last elenieut (the sufia: of a. sequence), whereas sub- 
tractSion a,lways removes the first eleineiit (the prefix 

of the sequence). 
Next, define t,lle set 

A(n, k) = {i : i E I, sy > 8;) (1) 

which consists of a.ll events whose corresponding se- 

quence 9, (la, k) cohaius a.t lea.st, oue element,. Thus, 
every i E A(n, k) is a.11 event t,ha.t 1la.s been observed 
in E(n) and 1la.s a.t least oue lifetime tl1a.t 1la.s yet t,o be 

used in t,he coupled sample pa.th g(k). Hence, A(??., k) 
should be thought, of a.s t,he set of azrdable events to 
be used in the constructiou of the coupled pa.th. 

Fhlly, we define the following set, which is crucial 
iii our a.pproa.cli: 

M(?l, A) = ryik) - (ry2k-1) - {&}) (2) 

where, clearly, M(n, k) E C. Note t1ia.t e^k is t,lie trig- 
geriug event. at the (k - l)tll sta,te visited in t.he cou- 
strutted sa,mple pa&. Thus, M(n, k) contains all t,he 
events tht a.re in the fea.sible event set l?(Li’k) but not 
in l?($k-1); in addition, e^k also belongs to M(f?., k) if 
it lia.ppens t,ha.t C& E r(iq. Iut,uit,ively, M(n, k) con- 
sish of a,11 nlissirig eveiits from the perspective of t,lie 
construct,ed sa.mple pa.01 when it, ent,ers a new state 
kk: those events a.lrea.dy in I’(:ik-1) which were not 
t,he triggering event renkn a.vailable t,o be used in 
t,lie sa.mple pa.tli construct,ion a.s long as t,liey are still 
fea.sible; all other eveuts in the set a.re “missing” a.s 
far as residual lifethe informa.tion is concerned. 

The concurrent sample pat,11 construction process 
we a.re interested in consists of two coupled processes, 
each genera,ted by a t,imed st(ate a.utSoma.ton. This im- 
plies t1ia.t there are two siini1a.r sets of equatioiis t,lia.t 
describe the dynamics of each process. In addition, 
we need a. set, of equa.tions t,ha.t ca.ptures t,he coupling 
between them. 

2.3 Timed State Automaton Dynamics 

We briefly review here t,he shndard timed st,a.te 
a.ut,omaton dynamics, also known a.s a Genera.lized 

Semi-RIa.rl;ov Schenle (GSMS) (see [l, G]). We intro- 
duce two a.dditi0na.l variables, t, to be the time when 
the n.t.11 eveut occurs, a.nd Yi (n), i E I’(z,), to be the 
residua,l lifethe of event i after the occurrence of the 
n.tli event (i.e., it. is t,lie the left until eveiit i occurs). 
On a. pa,rticular sa.niple path, just a,fter the lath event 
occurs t,lie followiiig iiiforinat,ioii is l~nown: t,lie sta.te 
2, from which we call determine I’(x’n), the the t,,, 
the residual lifetimes pi for all i E I’(xn), and a,11 
event scores sl, i E &. The following equa,tions de-. 
scribe the dynamics of the timed sta.te a.utomaton. 



step 1: Det,ermine the sma.llest residual lifetime 
alllong a.11 fea.sible events a.t st,at,e x,,,, denoted 

by Y;: 
Yi = i$F jIYi(72)l (3) 

. R 

step 2: Determine t,he triggering event: 

en,+1 = cwg &!$~ IIYi(71,)) (4) 
. n 

step 3: Deterlnine the nest st,a.te: 

x,+1 = f(h, e,+l) (5) 

step 4: Det,erlnine the nest eveut time; 

h+1 = in + YE (6) 

step 5: Determine the new residual lifetimes for all 
new fea,sible events i E r (xn+l) : 

Yi/i(?l+ I)= 
Yi(?l) - Yz if i # e,,+l aad i E r(xn) 
wi(sT + 1) if i = e, or i $ r(z,) 

for all i E r(xntl) (7) 

step 6: Upda.te the event scores: 

sy + 1 if i = e,,+l 

SY otherwise (8) 

Equa.tions (3)-(8) d escribe the sa.mple pa.th evolution 

of a. timed state a.ut,oma.ton. These equa.tioas a.pply t.o 
hot,11 the observed and the cohructed sa.mple pa.ths. 
Nest, we need to specify t,he mechanism through 
which these two sa.mple pa& a.re coupled in a way 
that embles event lifet,imes from t,he observed J(n) to 

be used to construct a sa.mple pa.th i(k). First, ob- 
serve tl1a.t the process described by (3)-(8), applied 

t*o c(k), hinges ou the akailability of residual lifetimes 
&i(b) for a.ll,i E r(;i.k). Thus, the constructed sam- 

ple path can only be “active” a.t shte ?k if every 
i E r&) is such t1ia.t eit,lier i E (r(gkml) - {&}) (in 
which case $ (k) is a residual lifetime of an event a.vail- 

able from t,he previous sta.te transition) or i E A(n, I;) 
(in which case a full lifetime of i is a.vaila.ble from the 
observed sa.mple pa,th) This motivates the following: 
Definition 1: A constructed sa.mple path is active a.t 

state Zk a.fter the occurrence of a.11 observed eveut e,, 
if, for every i E r(Zk), i E (I’(;i.k-1) - {&}) uA(n, k). 

2.4 Coupling Dynamics 

Upon occurrence of the (n + l)th observed event, 
e,+l, the first step is to upda.te t,he event lifetime 
sequences Vi (12, k) as f0110WS: 

vi(71+1, k) = 
i 

vi(n, k) + Wi(S!/ + 1) if i = e,+l 
+i(71, k) otherwise 

The a.ddition of a. new event. lifetke implies tht t,he 
“available event set” il(?z, k) defined in (1) may be 

a.ffected. Therefore, it is upda.ted as follows: 

A(72 + 1, k) = A(n, k) U {e,+l} (10) 

Fiaa.lly, uote that the ‘hlissing event, set.” M(?x, k) 
defined in (2) renmins unaffected by the occurrence 
of observed eveut,s: 

M(n + 1, h) = M(72., It) (11) 

At this point, we a.re able t,o decide whet,her all 
lifetime iufommtiou to proceed with a. st,ate transit,iou 
in t,he constructed sa.mple pa.th is ava.ila.ble or not. In 
particula,r, the condit,iou 

M(n + 1, k) c A(n + 1, k) (12) 

may be used to det~ermine whether the constructed 
sample pa,th is active a.t the current state ?k (iu the 
seuse of Dehitiou 1). The following is a forn1a.l sta.te- 
inent of t,liis fact. 

Lemma 1: A constructed sample path is active a.t 
shte 3k a,fter an observed event e,+l if a,nd only if 
M(72 + 1, k) G A(n + 1, k). 

Assuming (12) is satisfied, equa,tious (3)-(8) may 
be used to upda.te the shte ?t of the constructed 
sa.mple pa.th. In so doing, lifetimes vi(sF + 1) for 
all i E M(~J + 1, k) are used from the corresponding 
sequences Vi (77. + 1, k) . Thus, upon completion of the 
six st,at.e upda.te steps, all t,llree varia,bles a.ssociated 
wit,11 the coupling process, i.e., Gi(~z, k), A(??., k), and 
M(n, k) ueed to be updated. In particular, 

Vi(?Z+l,k+l) = 

{ 

Vi(I2. + 1, k) - ~ii($ + 1) 

Vi(?l$ 1, k) 

for all i E A/i(n + 1, f'1)3) 

ot,herwise 

This opera.tion hnedia.tely a,ffect.s the s.et A(” + 1, k) 
which is upda.ted a.s follows: 

A(n+l,k+l) = A(n+l,k)- 

{i : i E Ad(n + 1, A), ifs1 = sr”} (14) 

Finally, arplyiug (2) to the new statme $k+l, 

~(72 + 1, k + 1) = r(ektl) - (r(.zk) - {e^ktl)) (15) 

Therefore, we are a.ga,in in a. position to check con- 
dition (12) for the new sets Al(n + 1, k + 1) and 
A(n + 1, b + 1). If it is sa.tisfied, theu we ca,n pro- 
ceed with oue more sta.te upda.te on t,he constructed 
sa.mple pat.11; otherwise, we wit for he next event ou 
the observed sample pa,th uut,il (12) is a.ga.in sa,tisfied. 
Similar to Lemma 1, we lmve: 

Lemma 2: A constructed sample pat,11 is a,ctive a.t 
state Zk+l a.fter eveut e^k+.l if and only if Af(?z+ 1, k + 
1) c A(” + 1, k + 1). 



The analysis above is summa.rized below in the 
form of the following Tinze Wu+?zg Algorithm 
(TK4). 

Time Warping Algorithm (TW4): 

1. INITIALIZE 

?l:=0,X::=0,tn:=0,~~:=0,2,:=2~,~~= 

Pa, yi(7z) = vi(l) for all 2: E qxn), SF = O,.$ = 

0 for a.11 i E Z,, M(O,O) := r(xO), ;4(0,0) := 0 

2. WHEN EVENT e, IS OBSERVED: 

2.1 Use (3)-(s) t,o determine e,,+i, x,.+1, 
t n+l, yi(?l + 1) for all i E IY(2,7,+1), .srt’ 
for a.11 i E E. 

2.2 Upda,te V~(IX + 1, k) usiug (9). 

2.3 Update A(n, k) usiug (10) 

2.4 Upda.te M(?z, k) u&g (11). 

2.5 IF Al(?z + 1, k) C -4(7x + 1, k) theu Got,0 
3. ELSE set 72. t n + 1 aud Got.0 2.1. 

3. TIME WARPING OPERATION: 

3.1 Obtain all missing event lifetimes t,o re- 
sume sa.inple pa.th coiist~ructioii a.t st,a.te kk: 

$i(k) = 
wi(Sf + 1) for i E Ad(n + 1, k) 

$(k - 1) otherwise 

3.2 Use (3)-(g) to determiue &+I, ;i.k+i, 

&+I, &(k+1) f or alli E r(ikt,)n(r(q- 

{&+I}), $+I for a.11 i E E. 

3.3 Upda,te Gi (72. + 1, k + 1) using (13) 

3.4 Upda.te ;4(72 + 1, k) using (14) 

3.5 Upda.te M(n + 1, k) using (15) 

3.6 IF A4(1~+1,k+l) C A(?z+l,k+l) t,heu 
k t k+l andGot, 3.1. ELSE k t k+l, 
n t II + 1 aud Goto 2.1. 

3 On-Line Resource Allocation Algorithm 

In this section we present a modified version of the 
optimiza.tiou algorithm on-line in [2], a.da,pted to fit 
our purposes, which we use to adjust the resource a.l- 
location vector in order to improve the perfornmuce 
of the system. This algorit,hm is designed for st,a.tic 

determiuist,ic resource alloca.tiou problems that sa.t- 
isfy the convexity a.ssumption Al. 
l Al: For all i = 1, . . ..N. Li(?Zi) is SUCll that 

ALi(ni + 1) > ALi 
where 

ALi = Li(?Xi)-Li(??,i-l), ni = l;.*,K (16) 

Actua.lly, in [2] it is proved t,hat for this class of sys- 
tems the o?i-li?ze algorithm will alwa.ys coiiverge to 
t,he opt8imal a.lloca.tiou in a fiuite uumber of steps. 

Oft.eii, however, s;st,eins opera.te in shocha.stic en- 
vironments. Wheu 110 closed-form espressious for the 
perforinaiice niea.sure a.re ava,ila.ble, iii any on-line op- 
t,imiza.tiou t,echuique t,he expected cost is estinmted 
by direct mea.suremeuts made ou the syst8em. In this 

ca.se we want to emphasize t1ia.t t,lie performance es- 
tinmte i[ (.) is a. random vaxiable which depeuds ou 
the leiigt,li of the olxerva.tion/siunila.tiou iiitmerva.l T. 
It turus out tha.t t,he origina. deterministic on-line 
a.lgorit,hin can be modified to work with sta.tiouary 
stocha.st,ic system and it, has been showu in [4] tha,t 
it converges iii probability to t,lie optimal alloca.tiou a.s 
T + ~co. In what follows, we wish to consider the case 
where t,he uuderlyiug distribut,ious a.re not st.a.tiona.ry; 

for esa.mple, t,asks a.re submit,ted to a. comput,er sys- 
tem at random iustauts in time and require process- 
iug for a. random period, but it is expected t#ha.t the 
ta,sk arriva.1 rate va.ries with the time of da.y. Clea.rly, 
in t,he case of such cly?zu?~?.ic resource a.lloca.tiou prob- 
lems we ca.uuot allow T t,o go t,o iiifiiiit,y, siiice waiting 
for loug periods of t,ime before we obta.iu performance 
est,iina.tes preveiit,s us from rea.ctiug t#o chaiiges iii the 
system aud hence malting timely resource rea.lloca- 
t,ious. Consequently, it is possible t,ha.t t,lie system 
will cud up opera.tiug with poor alloca,tious for loug 
periods of time. 

Followiug is the on-line a.lgorithin in [2], modified 
t,o emble t,he system to be “ada.ptive” in t,he sense 
t,ha.t it rea.cts to chauges in the underlying event pro- 
cesses. I I 
ALGORITHM: Dyrzamic Resource Allocation 

1.0 Iiiit%ia.lize: s(O) = [7x?), . . ,72,;)]; 

c(O) = { 1, . .) Iv}; k = 0. 

1.1 Emluate 

Jy”)($-1, . . . ,I$)) E [Ai;(72,9 , . . . , A~&(I$‘)] 

2.1 Set i’ = u.~gina~eC(k) [15(k)(~2.y), . . . , IZ$))] 

2.2 Set j* = arg iniiiiec(‘;) [l5(“)(ny), . . . , ~iti’)] 

2.3 Evaluate 
ljqnl”), . . .,72,i(y - 1,. . .,p + 1,. . .,71y) 

2.4 If Ai;. (n;li) + 1) < Ai;, (723 Goto 3.1 
ELSE Goto 3.2 

3.1 Update a.lloca.tiou: 
“i(y) = ?&f) _ 1. 72,!“+1) - 72;t) + 1. 71w) = 

l - 

72:) for all m E C;“)7a.ud m # i*,j*; ’ 

m 

Set k t k + 1 

Reset C(“) = {l,...,N}, aud Goto 2.1 

3.2 Repla,ce C (k) by Cc”) - {j*}; 

IF ]C(“)] = 1, Reset C(“) = (1,. . ., N}, and 
Goto 2.1 ELSE Goto 2.2 



I ’ 4 An Application to Buffer Allocation 

Figure 2: Queueing system with N parallel servers 

The Dynamic Resource Alloccrtiolz a.lgorithm to- 
gether with the co9zcurrent estimation scheme, have 
been a.pplied t,o the yueueing system shown in figure 
2 where exh server represenk a user and each buffer 

slot represents a resource to be allocat#ed t,o a user (it 
is a.ssumed that buffers can be freely rea,llocated from 
one server to another). Jobs a.rrive a.t the system a.t 
a. rate X and are routed to one of t,he N users with 
some proba.bility pi, d = 1 . . . N. Each of the users is 
servicing jobs at a. rate ,~i, i = 1, . . N. Jobs tl1a.t a,re 
routed to a user wit,11 a full queue are lost a,nd in t,his 
ca.se we would like to a.1loca.t.e a.11 K aamilable buffer 
slots to each one of t,he users in order to minimize 
the sum of the proba.bilit,ies of losing a job from each 
individua.1 queue due to an overflow. 
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Figure 3: System performance under the dynamic allo- 

cation scheme vs. a fixed resource allocation 

vector 

We consider a. system with N = 4 and Ii = 16 
when the arrival rate X = 1.3 aad all service rates 
pi = 1.0 for all i = 1, . . . ,4. We also assume that the 
routing probabilities are not st,a.tiouary aad that they 
change every 50,000 time units a.s shown in Table 1. 
In figure 3 we plot t$he performance of the Dy9zam.k 
Resource Alloc~fion scheme aga.inst the performance 
of a system with a fixed a.llocatiou sf = [4,4,4,4]. 
Note tl1a.t sf is the optima.1 fixed allocation over the 

interval (0 -20,000) due t,o the symmetry of the rout- 
ing proba.bilit,ies. 

From - To distribut8iou 

I/j// 
50,000 - 100’000 p2 = [O.l’ 0 i’o:l’o.l] 

100,000- 150,000 p3=[0.1,0.1,0.,,0.1] 

150,000 - 200,000 pa = [0.1,0.1,0.1,0.7] 

Table 1: R,out,ing Probabilities 

5 Conclusions 

In this pa.per we have developed a cont,rol scheme 
to dyna.mica.lly rea.lloca.te discrete resources in DES 
in order t,o improve perfornmnce. The scheme cou- 
sists of t,wo parts: (al Concurreut Est,iina.tioii, which 
is used to estimate the performance of the system 
under a. set of different, a.lloca.tions in order to eval- 
uate the finite differences required by the Dynamic 
Resource AIlocotio91 a.lgorit,hm, and (1?, The Dy9zami.c 
Resource AlZocutio9z a.lgorit.hm, which uses the finite 
differences to ma.l;e the reallocat,ion decisions. This 
cout,rol scheme can be a.pplied to DES with sepa.rable 
coiivex object,ive functions. 
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