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Abstract 

An adaptive variable structure control approach for 

robot manipulators is proposed in this paper. The pro- 

posed approach avoids the requirement of the uncer- 

tainty parameter bounds which is adopted in the most 

of robust control methods, and makes the tracking er- 

rors converge to zero exponentially without requiring 

any persistent excitation. In addition, the fast parame- 

ter variations (e.g. payload variation) are allowed, un- 

like the conventional adaptive control method which 

assumed that the parameter variations are slower than 

the adaptive mechanism. 

1 Introduction 

The two main techniques almost universally adopted 

for controlling uncertain systems are adaptive control 

(Craig et al., 1986; Slotine and Li, 1988; Johansson, 

1990), and robust control (Utkin, 1977; Slotine, 1985; 

Spong, 1992). Adaptive control uses on-line identifica- 

tion in which either the plant parameters are identi6ed 

using the prediction errors (indirect adaptive control) 

or, the controller parameters 3..re adjusted using track- 

ing errors (direct adaptive control) in an attempt to 

‘learn’ the uncertain parameters of the system. Adap- 

tive control is applicable to a wide range of parameter 

variations, but is sensitive to the unstructured uncer- 

tainties (Yu et al., 1993b). On the other hand, a robust 

controller is designed to make the system insensitive to 

all uncertainties, and the final controller has a fixed 

structure. Robust control is suitable for dealing with 

small uncertainties (Slotine, 1985; Spong, 1992). 

Adaptive control techniques are further divided into 

“model-based” methods and “performance-based” meth- 

ods (Seraji, 1989). Model-based methods fully use the 

robot system structure properties and guarantees the 

stability of the closed-loop system (Craig et al., 1986; 

Slotine and Li, 1988; Johansson, 1990),. However, the 

transient response, the robustness to external distur- 

bances and unmodelled dynamics and the computa- 

tional burden are three major problems of stability- 

based adaptive control of robot manipulators. Performance- 

based methods, which are also named as decentralized 

methods (Seraji, 1989), are designed under the assump- 

tion that the dynamic terms (functions of the system 

states) are “slowly varying”. The method is systematic 

and simple but for the robot manipulator the stabil- 

ity analysis is not strict since it requires that the in- 

ertia and the coupling terms are slowly-varying. An 

alternative approach is proposed by Stepanenko and 

Yuan (1992) based on a similar control design philos- 

ophy as in Seraji (1989). The adaptive parameters in 

Stepanenko and Yuan (1992) do not include any un- 

bounded states (6, ;i). These unbounded states are 

moved into the regressors. However, the identifica- 

tion parameters in Stepanenko and Yuan (1992) are 

still the complicated state functions (D(q), V,(q), 

and G(q)) although they are bounded from the robot 

properties, that is, the controlled plant parameters are 

time-varying (Narendra and Annaswarmy, 1989). In 

order to overcome the time-varying parameter effect, 

the constant feedback gain must be chosen sufficiently 

large. This results in a high gain control system and 

the closed-loop systems proposed in Stepanenko and 

Yuan (1992) is uniformly stable, not asymptotically sta- 

ble (see Theorem 1 in Stepanenko and Yuan (1992)). 



On the other hand, variable structure control is simple 

and robust to external disturbances, but there are two 

main effects of the conventional variable structure (VS) 

control: 1) control input chattering; 2) the assumption 

of the known uncertainty bounds. The former has re- 

ceived extensive attention. To reduce the control input 

chattering, a boundary layer is introduced in Slotine 

(1985) and Spong (1992), and a continuous function, 

&, is used in Yu et al., (1993a) to replace a switch 

function, sgn(z). However, the closed loop system then 

loses its convergence, i.e. the tracking error no longer 

tends to zero (Yu et al., 1993b). The exponentially sta- 

ble robust controller for robot manipulators proposed 

in Yu et al., 1994) shows a promising solution to the 

problem of control input chattering. 

0 The uncertainty bounds used in Slotine (1985) are a 

function of the joint positions and velocities, so they are 

difficult to select. Recently, robust controllers for robot 

manipulators based on the adaptive control structures 

(Craig et al., 1986; Slotine and Li, 1988; Johansson, 

1990), have been developed in Spong (1992) and Yu et 

al., (1993a, 1994). The uncertainty bounds required to 

derive the robust control laws in Spong (1992) and Yu 

et al., (1993a, 1994) depend orly on the inertia param- 

eters. 

The shortcoming of the approach proposed in Spong 

(1992) and Yu et al., (1993a, 1994) is that the bounds 

of the uncertainty parameters are required to design 

the stable robust control law. In this paper, we use 

the estimated bounds to replace the lower bounds to 

avoid this problem. The proposed adaptive variable 

structure controller has a same control structure as re- 

cently proposed robust control method by Yu et al., 

(1994). Thus the controller proposed in this paper is 

called a adaptive variable structure (AVS) controller. 

Difference between AVS control and VS control is the 

estimated bounds used in the former and the 6xed lower 

bounds used in the latter. This approach does not re- 

quire the assumption that the variation of the param- 

eters is slower than that of the adaptive mechanism, 

which is required by most of the adaptive control meth- 

ods Craig et al., 1986; Slotine :md Li, 1988; Johansson, 

1990). It requires very general structure information 

of robot manipulators. In addition, the tracking errors 

converge to zero exponentially without requiring any 

persistent excitation. Recently, two papers (Su and Le- 

ung, 1993; Koo and Kim, 1994) studied robust control 

with the estimation bounds based on the robust control 

structure proposed in Spong (1992). However, neither 

of them have proved the exponential convergence of the 

tracking errors. 

This paper is organized as follows. In Section 2 we 

briefly discuss the manipulator mode and some funda- 

mental properties used in this paper. An AVS control 

approach is developed in Section 3. Some implement- 

ing considerations are discussed in Section 4, and some 

conclusions are included in Section 5. 

2 Manipulator Model and Main 

Properties 

The dynamics equation of a general rigid link manip- 

ulator having n degree of freedom in free space can be 

written as 

%!)!i + c(% !i)i + G’(q) + Td = T (1) 
where q E R” denotes the vector of generalized dis- 

placements in robot coordinates, T E R” denotes the 

vector of generalized control input forces in robot coor- 

dinates; D(q) E Rnxn is the manipulator inertial ma- 

trix, C(q, i)i E Rn is the vector of centripetal Coriolis 

torque, G(q) E Rn is the vector of gravitational torque, 

and Td is the external disturbance which includes joint 

friction force, input disturbance, and the other unmod- 

elled dynamics. It is assumed that only the joint po- 

sitions and velocities, not accelerations, are available 

from measurements. Some fundamental properties of 

the equations of motion follow Craig et al., 1986; Slo- 

tine and Li, 1988; Johansson, 1990). 

(i) The inertial matrix D(q) is symmetric, uniformly 

positive definite, and bounded above and below, 

i.e., 

0 < am(q 5 D(q) 5 aM(q < 00, Vq E R” 

where 1, is the n x n identity matrix, a,(q) and 

cry~ (q) are scalar positive constants for a revolute 

arm and generally scalar functions of q for an arm 

containing prismatic joints. 



(ii) 

(iii) 

Using a proper definition of the matrix C(q, cj), T&l = hd[civ - PSI + &q, ci>qv + &cd 
D(q) and C(q, 4) satisfy = W(t)b(t) + We(t) (6) 

XT@ - 2C(q, $]X = 0 

where XT is the transpose of X E RnX1, which is 

an arbitrary vector. That is (h - 2C) is a skew- 

symmetric matrix. 

where qr and s are reference velocity and reference error 

vectors [4], respectively, 

cl?- = !id- fi2@ (7) 

S = 4-qT=$+q2QI (8) 

The structure of Eq (1) is linear in terms of a 

suitably selected set of robot and load parame- 

ters, i.e., 

W+i + C(q, 414 + G(q) = W(t)@ + We(t) 

where IV, Ws E Rnxp are matrices composed of 

known functions of q, 4 and 6, and 0 E RPxl is a 

vector containing the unknown manipulator and 

load parameters. 

Tf (t) is a non-linear adaptive feedforward vector which 

complements the robot non-linear part, Tl(t) is a lin- 

ear feedback vector which guarantees the overall system 

stability in Lyapunov’s sense, and P,,, r, Pll E RnXn 

are symmetric positive definite matrices, PI2 = Pc;ll?, 

6 is the estimated values of the uncertainty parame- 

ters, and P(t) and l&(t) are the relevant regressors, 

l%,(t) is “nominal” control vector (Spong, 1992). Note 

the extra control term, -pD(q)s, introduced for proof 

of exponential stability. It is noted that 6(t) is im- 

plemented using estimation algorithms (e.g. gradient, 

least-square algorithms) in adaptive control Craig et 

al., 1986; Slotine and Li, 1988; Johansson, 1990), and 

is implemented using the lower bounds of the uncer- 

tainty parameters, 0, plus a switching-function (or ap- 

proximated switching-function for a continuous input) 

in robust control (Spong, 1992; Yu et al., 1993a). Both 

methods have advantages and disadvantages. Robust 

control proposed in Yu et al., (1994) can guarantee 

an exponentially stable tracking of the joint positions 

and velocities, but requires the knowledge of 0. On 

the other hand, adaptive control can make the track- 

ing errors converge to zero asymptotically without us- 

ing 0. However, the exponential stability of the sys- 

tem requires the persistent excitation condition (Naren- 

dra and Annaswarmy, 1989) which is hardly true in 

the robot control problems. With these considerations 

in mind, we combine the above control philosophies 

and use both advantages of them. This control ap- 

proach is in the spirit of the combined adaptive and 

variable structure control approaches proposed in Yu 

et al., (1993b). The proposed adaptive control law is 

The control objective can be stated as follows: given 

desired trajectories Qd, id, i& E Rnxl which are bounded 

functions of time, determine a control law, T, in the 

presence of parameter and other uncertainties, such 

that q + Qd and 4 + & as t + 00. When the de- 

sired signals are not available, the desired trajectories 

of the robot can be generated from the reference model: 

id + &id + Kpqd = Kr (2) 

where r, qd E Rnxl and K, K,, Kp E RnXn. 

3 Adaptive Variable Structure 

Control of Robot 

Manipulators 

In this section, we consider the case that Td = 0 and 

define the state errors as, 

(3) 
L J L -I 

The proposed control laws are: 

T(t) = Tf(t) + Z(t) (4) 

Z(t) = -(Pzz + P,,I?-l~,,)s + p,,rj 
= -(P,z + Pccr-lPc,)$ - l=jzP;lrcj (5) 

. vvT(t)s(t) 
O(t) = - IlWT(t)s(t)ll + &eLzp(-d2zt) es(t) (g) 

e",(t) = f&(t) = Cl 
II~T(tMt)l12 

I$VT(t)s(t)ll + &esy(-62t) (lo) 

where 61 and SZ are positive constant which are selected 
- - 

by the designer, gs = 0, -8,8 2 I]@]], and cl > 0 is the 



gain of adaptation law. 

Considering Eqs (l), (3-6), the error equation can be 

obtained in the form 

D(a)(j’ + PS) + C(Q, 4)s + (Sz + m--%)s - PCCG 

= W(t)@ - 0) (11) 

Theorem. 1 Consider the closed loop system, Eq (11). 

If the adaptive variable structure control law, Eqs (9) 

and (lo), is used, then all signals in the system are 

bounded and ii(t) tends to zero with at least an expo- 

nential rate which is independent of the excitation. 

The proof of this theorem is divided into two parts. 

First we will prove that all signals in the system are 

bounded. Then we will prove that ii(t) converges to 

zero exponentially. 

Proof: Consider the Lyapunov function candidate 

(12) 

where 

m7) = p,Tkd 

exp(&t) is exponentially conver- 

gent, u > 0, and definitions of other notations are as 

before. The pseudo-state z is first introduced in Yu et 

al., (1994) for the convenience of stability analysis. 

The time derivative of the Lyapunov function Eq (12) 

is 

fi = 5FPP.(q)S + ;~TPaj. + zi + &2?, (14 

By using the error equation (11) and considering Eq (9)) 

the first term is 

[ 

C(Q, 4)(d + Pl2G) + 03, + Pc,r-lPc,)~ + Jwl2q” 

C(q, 4(i + Pl2Q”) + mzdb + s2aj 1 I 
+sT(t)W(t)(6 - 0) 
= -#Pq(q)Z - z%&i 

Il~Tw4t>I12 
- IIWT(t)s(t)ll + &exp(-&t)eS(t) 

-sT(t)W(t)O 

where 

(15) 

Q=QT= Sl + pJ-lpcc elp~;lr 

rp2 e1 rPc;lpj.lPc;lr - I.I~C, 1 
L 

Cd 
and it can be proved that Q is a positive definite matrix 

(Yu et al., 1994). C onsidering Eq (13), the second term 

of Eq (14) is 

&Tp gt = 25” 3(& + BP123 

2 g @‘g@ + P;D(q)Pd) 1 (17) 

The third term is 

zi = -(V + 1)6l(Texp(-&t) 

The fourth term is 

(18) 

- 2 &Il~T(t)s(t>l12 

es0s = IlkVT(t)s(t)ll + &exp(-&t) (19) 

Collecting the above terms, using Property (ii), and 

considering $ > I 10 11, we have 

vl = -/GTPg(q)i? - STQB 

IWT(W>l12 - 
IIWT(t)s(t)II + 61exp(-62t)es(t) - sT(t)W(t)’ 

- (U + 1)61eexp(-62t) + - 
(6 - @ll~T(t>s(t>l12 

IIWT(t)4t)ll + %exp(-S2t) 

5 -pZTPg(q)Z - kTQ5i - v&8exp(-Szt) 

@-- Ilwll~T(~M~)I12 - 
lIWT(t)s(t)II + &ev(--62t) 

- [f510exp(-62t) - 
Il~ll~~~~~~-~2~>Il~T~~~~~~>ll 

IWT(t)4t)ll + bexd--d2t) 
1 

5 -/kZTPg(q)Z - fiTQi - vslfiexp(42-t) < 0 (20) 

Thus we have proved that 2 and $ are bounded. From 

-I 
Eqs (7)-(g), it is easy to prove that qr, s, and 6 are 

ZTPg(q)i = ZT 
D(q)$ + D(q)Pwi 

PT,D(q)i + (Pm + P,T,D(q>Pdi 

= -fT(p W(q” + P123 

P,‘$D(q)(h + P12Q”) 1 + 

also bounded. To prove that 2 converge to zero expo- 

nentially, we choose another Lypunov function as 

(21) 



If s(t) # 0, 31 2 0, such that e,(t) > ~~0~~ W 2 tl from 

Eq (10). Thus, the derivative of Va is 

Ti, = -/.GTPg(q)S - ZTQi 

IlwTw4t)l12 - - 
llWT(t)s(t)ll + &exz4--62t) 

e,(t) - ST(t)W(t)o 

- (U + 1)618exp(--62t) 

5 -IGTPg(q)Z - ZTQ2 - v&gexp(-62t) 

(es - iiwii~T(w)ii2 _ - 
IIWT(t)4t)ll + bexzd-%t) 

- 
- [&Bexp(-S2t) - 

llW~e~d-~2~)ll~T~~)s(~)lll 

IIWT(tJs(t)II + %ev(-~2t) 

5 -l.GTPg(q)Z - fTQH - z&#exp(-6at) W 2 tl 

I -7lvz vt 2 t1 (22) 

where 71 = min{2p, &/(Y + 1)). This implies the ex- 

ponential convergence of Va, i.e. 

Va(t) 5 Va(O)e-nt, V-t > tl (23) 

Putting Eq (24) into Eq (21) gives 

118112 5 t[V2(0)ems’ - (u + I)%exp(-&t)] Vt 2 tl 

(24) 
where CQ, is the smallest eigenvalue of Pg (q). This com- 

pletes the proof of the theorem. 

Remark. 1 It is noted that the lower bounds e is only 

used in the proof of the theorem, and is not used in 

the implementation of the control law, Eqs (5), (fi), 

(9), and (10). The exponential convergent operator 

blexp(--6at) is introduced to avoid the discontinuous 

control law (Yu et al., 1994). This control approach 

only requires very general robot structure information 

and avoids the assumption that the uncertainty param- 

eters 0 are ‘constant’ or ‘slowly changing’. This as- 

sumption is required by the adaptive control methods. 

More importantly, the exponential convergence of the 

tracking errors is obtained. 

4 Practical Considerations 

To reduce the parameter drift (Narendra and An- 

naswarmy, 1989), the following adaptation law may be 

used to replace Eq (lo), 

t!,(t) = d,(t) = -xe, 

+ Cl ]]wT(t)s(t)]] + &exp(-&t) (25) 

where X 2 0. 

Corollary. 1 In Theorem 1, if the adaptation law, Eq (IO), 

is replaced by Eq (25)) and the other conditions are 

same, then all signals in the system are bounded. 

The unmodelled dynamics (such as friction, actuator 

dynamics) can not be avoided in a practical system. 

This kind of disturbances must be reduced in order to 

satisfy the control objective. To overcomes the input 

disturbances, an external control term is required. we 

assume that 

II~AI I d3 + d2ll~ll+ hIMI (26) 

-sTTd = -ST@3 + d2lMl + 4 11411) 

5 llsll(d3 + d2lMl + d2lMl + d&l] 

+ 4 II Wcdl) 

I Cd3 + d2lMl + dlll&)llsll 

+ Ed2 + dlW’~2)lllill IIs + dl ]]s]]2 

= dollsll + d4ll~llllsll + ddlsl12 (27) 

where do = (d3+d2llq~ll+d~l]4~ and d4 = da+d1X(P12). 

The non-linear feedforward adaptive control law is 

modified as 

Tf = w(t)&t) + We(t) + T,(t) 

T,(t) = -&s - & 
S 

llsll + &ew(-~2) 

(28) 

(29) 

2 ‘A 
do = do = cciollsll 
‘, *,. 
4 = 4 = ccz~llsll~ 

(30) 

(31) 

Corollary. 2 If the disturbances, which satisfies the 

assumption Eq (26)) are considered, and the adaptive 

control law Eqs (28)-(31) is used to replace Eq (6)) and 

the other conditions are the same as in Theorem 1, then 

the conclusions in Theorem I are also true. 

Having a single number 8, to estimate the parameter 

uncertainty may lead to an overly conservative design 

and result in an excessive input effort. To reduce this 

problem, we propose the following adaptation law. 

ii = -esi 
lfil + &iLP(-Szit) 

f~i=l,2,...,r 

(32) 



? 8,i = Q Ifi/ + 61i;xp(+t) fm i = l, 2, * * - ) r (33) 
where fi = Cy=, wjisj, for i = 1,2,. . . ,T. 

Corollary. 3 In Theorem 1, if the adaptation law Eqs (9) 

and (IO) is replaced by Eqs (5’2) and (Zl), then the con- 

clusions of Theorem I are also true. 

5 Conclusion 

An adaptive variable structure (AVS) control approach, 

which combines variable structure control with adap- 

tive control, is proposed in this paper. The proposed 

AVS controller has the same control structure as in 

the variable structure controller proposed in Yu et al., 

(1994), but the estimated bounds are used to replace 

the lower bounds used in Yu et al., (1994). The expo- 

nential convergence of the tracking errors are warranted 

using the same priori knowledge of the system as in Su 

and Leung (1993) and Koo and Kim (1994) without 

requiring the persistent excitation. This is main differ- 

ence between this paper and the work in Su and Leung 

(1993) and Koo and Kim (1994). In addition, the as- 

sumption that the variation of the uncertainty param- 

eters is slower than that of the adaptive mechanism is 

avoided. 
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