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Abstract 

The famous Black-Sholes (BS) and Cox-Ross-Ru- 
binstein (CRR) formulas are basic results in the mod- 
ern theory of option pricing in financial mathemat- 
ics. They are usually deduced by means of stochas- 
tic analysis; various generalisations of these formu- 
las were proposed using more sophisticated stochastic 
models for common stocks pricing evolution. In this 
report, we argue that classical BS and CRR formulas 
can be actually obtained as a part of the theory of 
nonexpansive maps, which constitute now one of the 
most popular object of investigation in (max,+) al- 
gebra and its applications to Discrete Event Systems. 
This framework leads to another type of generalisa- 
tions of BS and CRR formulas characteraised gener- 
ally by more rough assumptions on common stocks 
evolution, which are therefore easier to verify. 

1 Introduction 

In (max,+)-algebra, the nonexpansive homogene- 
ous maps are defined as the operators i? on, say, R”, 
such that IBf - Bg] 2 ] f - g] for all f, g with respect 
to theuniformnorm IfI =max{]fj],j = l,...,n} and 
f3(a + f) = a + Bf for any constant a. The the- 
ory of such mapings is fast developing right now, see 

e.g. [41,[51, [71 d f an re erences therein. It was proven 
for instance in [5] that any such map can be pre- 
sented as the Bellman operator of some (stochastic) 
game with a value, and in particular, it is constructed 
by means of extended idempotent algebra with op- 
erations max, min, f, X. The theory of nonexpan- 
sive maps is devoted mostly to the study of the it- 
erates f3”, and their asymptotic behavior as k -+ o;), 

which in turn is governed by the solutions of the 
“generalised eigenvalue problem” (GEP) Bf = a + f, 
f E Rn, a E R. We shall show now, how this prob- 
lem appear in the theory of option pricing. We con- 
sider first the CRR model and its natural modifica- 
tions with more rough assumptions on the possible 
behavior of underlying common stocks, in particular 
without any probabilistic assumptions, which are usu- 
ally presented in this model. Then we discuss in this 
framework the options depending on several common 
stocks, continuous limit, and the possibility of includ- 

ing additional boundary conditions, which seem to be 
natural in realistic models. 

2 Generalised CRR model 

Consider a simplest model of financial market con- 
sisting of two securities: the risk-free bonds (or bank 
account) and common stocks. The prices of the units 
of these securities, B = (Bk) and s = (Sk) respec- 
tively, change in discrete moments of time k = 0, 1, . . . 
according to the recurrent equations 

Bk+l = @I,, 

where p > 1 is a fixed number, and 

(1) 

Sk+1 = ‘tk+lSk, (2) 

where & is an (a priori unknown) sequence taking 
value in a fixed compact set M E R. We denote by u 
and d respectively the exact upper and lower bounds 
of M (u and d stand for up and down) and suppose 
that 0 < d < p < u. We shall be interested especially 
in two cases: 

(i) M consists of only two elements, its upper and 
lower bounds u and d, 

(ii) M consists of the whole closed interval [cl, u]. 

No probability assumptions on the sequence & are 
specified. Case (i) corresponds to the CRR model and 
case (ii) stands for the situation when only minimal 
information on the future evolution of common stocks 
pricing is available, namely, the rough bounds on its 
growth per unit of time. 

As usual, an investor is supposed to control the 
growth of his capital in the following way. Let X&i 
be his capital at the moment k - 1. Then the investor 
chases his portfolio defining the number yk of com- 
mon stock units held in the moment k - 1. Then one 
can write 

xk-1 = ‘Yksk-1 + @k-l - yksk-l), (3) 

where the sum in brackets correspond to the part of 
the capital laid on the bank account (and which will 
thus increases deterministically). All operations are 
friction-free. The control parameter T,$ can take all 
real values (which is a commonly used assumptions in 



the class of models considered), i.e. short selling and 
borrowing are allowed. More general situations can 
be also included in our framework, which we discuss 
in the last section. In the moment k the value & 
becomes known and thus the capital becomes equal 
to 

xk = ‘yktksk-1 + @k-l - ‘-fkSk-l)p. (4) 

The strategy of the investor is by definition any se- 
quence of numbers I = (71, . . . . m) such that each yj 
can be chosen using the whole previous information: 
the sequencies Xe, . . . . X,-i and Se, . ..Sj-1. It is sup- 
posed that the investor, selling an option by the price 
C = Xe should organise the evolution of this capital 
(using the described procedure) in a way that would 
allow him to pay to the buyer in the prescribed mo- 
ment n some premium f(S,) depending on the price 
s 12’ The function f defines the type of the option 
under consideration. In the case of the standard Eu- 
ropean call option, which gives to the buyer the right 
to buy a unit of the common stock in the prescribed 
moment of time n by the fixed price K, the function 
f has the form 

f (Sn) = max(S, - K, 0). (5) 

Thus the income of the investor will be X, - f(&). 
The strategy 71, . . . . yn is called the hedge, if for any 
sequence &, . . . . & the investor has the possibility to 
meet his obligations, i.e. X, - f (S,) > 0. The mini- 
mal value of the initial capital Xe for which the hedge 
exists will be called here the hedging price Ch of an 
option. The hedging price Ch is called correct (or 
fair), if moreover, X, - f (&) = 0 for any hedge 
and any sequence &. The correctness of the price is 
equivalent to the impossibility of arbitrage, i.e. of a 
risk-free premium for the investor. That is why in 
ideal models of a market one wants the prices to be 
correct. It was in fact proven in [2] that for case (i) 
the hedging price Ch exists and is correct. In [2] some 
additional assumptions on probability distribution of 
the sequence & were used and the result was obtained 
by the martingale theory. Let us show that both for 
cases (i) and (ii) the hedge exists, is the same for both 
cases, and is expressed in term of the iterations of a 
certain nonexpansive map. 

When calculating prices, one usually introduces 
the relative capital Yk defined by the equation Yk = 
Xk/Bk. Since the sequence Bk is positive and de- 
terministic, the problem of the maximisation of the 
value X, - f (Sn) is equivalent to the maximisation 

of K - f (&d/B,. C onsider first the last step of the 
game. If the relative capital of the investor at mo- 
ment n - 1 is equal to Y,-1 = Xn-l/Bn-l, then his 
relative capital at the next moment will be 

= G-1 + 77% B ?& - P> - $f KnSn-1) 

Therefore, it is clear that the guaranteed income (in 
terms of relative capital) in the last step can be writ- 
ten as 

K-l - &W-d, (6) 

where the Bellman operator B is defined by the for- 
mula 

@f)(z) = jmFg$f(&) -yz(J - p)]. (7) 

Clearly, pi3 is a nonexpansive homogeneous map. We 
suppose further the function f to be nondecreasing 
and convex (perhaps, not strictly), having in mind 
the main example, which corresponds to the stan- 
dard European call option and where this assumption 
is satisfied. Then the maximum in 7 is evidently at- 
tained on the end points of M and thus (Bf)(z) is 
equal to 

jmFmax[f(dz)-rz(d-p), f(w)-yz(u-p)]. (8) 

One sees directly that for y > yh (resp. y 2 rh), 
the first term (resp. the second) under max in 8 is 
maximal, where 

yh =qyz,[f]) = f(y;y). (9) 

It implies that the minimum in 7 is given by y = yh, 
which yields 

(Bf)(z)= ; [~f(uz)+~f(cW] . (10) 

The mapping i3 is a linear operator on the space of 
continuous functions on the positive line that pre- 
serves the set of nondecreasing convex functions. Us- 
ing this property and induction in k one gets that the 
guaranteed relative income of the investor to the mo- 
ment of time n is Ye - BO’ (B” f) (So), and thus his 
guaranteed income is equal to 

P”(X0 - Wf)(So)). (11) 

The hedge strategy (the use of which guarantees him 
this guaranteed income) is Ih = ($, . . ..$). where 
each 7: is calculated step by step using formula 9. 
The minimal value of X0 for which this income is not 
negative (and which by definition is the hedge price 
Ch of the corresponding option contract) is therefore 
given by the formula 

ch = (Bnf)(SO). (12) 

Using 10 one obtains that this Ch is equal to (CRR 
formula [2]) : 



where (2’2 are standard binomial coefficients. One sees 
therefore that the hedge price of an option is given 
simply by the iteration of a nonexpansive map. 

If the hedge strategy I? = ($, . . . . 72) is used by 
the investor, then the two terms under max in expres- 
sion 8 are equal (for each step j = 1, . . . . n). Therefore, 
in the case (i) (when the set M consists of only two 
elements), if Xc = Ch, the resulting income 11 does 
not depend on the sequence &, . . . . &, and vanishes al- 
ways, whenever the investor uses his hedge strategy, 
i.e. the prise Ch is correct in that case (Cox-Ross- 
Rubinstein theorem). 

In general case it is not so anymore. Let us give 
first the exact formula for the maximum of the possi- 
ble income (surplus value) of the investor in the gen- 
eral case supposing that he uses his hedge strategy. 
Copying the previous arguments one sees that this 
maximal income is given by the formula 

where 

P”W0 - um(So>>, (14 

vm4 = ; ~$W - r4E - p)]l,+ (15) 

Thus, in the case of general M, the income of the in- 
vestor playing with his hedge strategy will belong to 
the interval with the bounds given by formulas 11 and 
14 and the fair price should be fixed somewhere in the 
interval [(@f)(Ss), (B”f)(Se)], though it would not 
be more a risk-free price. When no other informa- 
tion is available, it is difficult to say something more 
precise. Moreover, unlike Bnf, the expression @f is 
rather difficult to calculate. We present now a rea- 
sonable estimate for @f for the case (ii) and then 
give an approximate formula for a fair price using 
small additional assumption on common stock price 
evolution. 

For any convex f, the minimum in 15 should be 
given by some < lying in the interval [d, u]. To get a 
simple estimate for this minimum, let us take E = p, 
which yields (@“f)(z) 5 p-‘f(pz) and therefore by 
induction 

om) (2) 4 P-nfbnz). 

Looking at the evolution of the capital XI, as at the 
game of the investor with the nature (ok ans & are 
their respective controls) one can say that (assuming 
that the investor uses his hedge stratetgy) the na- 
ture plays against the investor, when its controls & 
lie near the boundary [C&U] of the set M (then the 
investor gets his minimal guaranteed income 11) and 
conversely, it plays for the investor, when its controls 
& are in the middle of M, say, near p. If it is possible 
to estimate roughly the probability p that & would be 
near the boundaries of M, one can estimate the mean 

income of the investor (who uses his hedge strategy) 

bs 

PTO - (@%rLenn)nf)(So)), 

where 

&,,?l f)(z) = P@f)b) + (1 +bd 
=- ; [ Pf+w + 0 - P)f(W) fP of] > 

(16) 
which gives for fair price the following approximation 

c = (u%rmn)“f)(So). (17) 

In order to write it explicitly, let us denote by Cz the 
coefficients in the polinomial development 

(El + 62 + Eg)k = c c$~-i-i~;~. 
ifj<k 

Then for 17 one gets the following representation: 

. 
(wm?an )“f)(So) = -$ .-g CM pz n--2--3 

2+3$l ( > 

’ f(c~‘-~-~~~u%‘~). (18) 

3 Option contracts on several 
common stocks 

Suppose now there is a number, say I, of common 
stocks whose prices Si, i E I, k = 0, 1, . . . . satisfy the 
recurrent equations Sk = [$S~-,, where $ take val- 
ues in compact sets iV& with bounds c& and ui respec- 
tively. The investor controls his capital by chasing in 
each moment of time k - 1 his portfolio consisting of 
7: units of common stocks of the type i, the rest of 
the capital being laid on the risk-free bank account. 
His capital XI, at the next time k becomes therefore 

-y;$$-, + ... + &,$rF-1 

+p(xk-1 - ‘-#;-l - . . . - ‘-&&)- 
The premium to the buyer of the option at a fixed 
time n will be now f(Si, . . . , S$, where f is a given 
nondecreasing convex continuous function on the pos- 
itive octant R;. For instance, the analog of the 
standard European option is given by the function 

fkl, “‘, ~1) of the form 

max(max(O, 21 - Ki), . . ..max(O. zI - KI)), (19) 

which describes the option contract that permits to 
the buyer to perchase one unit of the common stocks 
belonging to any type 1, . . . , I by his choice. 



To simplify formulas, we reduce ourselves to the 
case of two types of common stocks, i.e. to the case 
1 = 2. The arguments similar to those of section 2 
will give a similar formula to the guaranteed relative 
income of the investor in the last step of the game 
starting from the relative capital Y,-i at the time 
n - 1, namely 

K-l - & (~fH$4> sL>, 
n 1 

where the Bellman operator a has the form 

1 
(af)(zi, ~2) = - min max 

p Y1,-? c?EMlL=EM* 
[f(h 7 t”z2) 

-YIZ1(J1 -P> - Y222K2 -PI]. (20) 

In order to give an explicit formula for this operator 
(similar to lo), one should make additional assump- 
tions on the function f. We say that a nondecreasing 
function f on R: is nice, if the expression 

f(&R,uzzz) + f(w1, d2z2)- 

f(dlZl,d222) - f(w1,uzzz) 

is nonnegative everywhere. One easily sees, for in- 
stance, that any function of the form f(zi,~~) = 

max(flh),f2(Z2)) is nice for any nondecreasing func- 
tions fi, f2 and any numbers cLi < ui, i = 1,2, and in 
particular, function 19 is nice. Clear the nice func- 
tions constitute a linear space and the set of contin- 
uous nondecreasing convex nice functions is a convex 
subset in this space, which we denote NS (nice set). 
Furthermore, let 

/C= 
(u1u2 - dld2) - p(u1 - dl + u2 - d2) 

(Ul - h)(uz - d2) 
. (21) 

Lemma. If f E NS and R 2 0, then 

(Bf )(a, 22) = if (421, d2z2) 

+- :, [~fbm&d + ~f&ww~)] 

and the yhl ,yh2 giving minimum in 20 are equal to 

yhl _ f(ula,bz) -f(dm,d222) 
- 

21 (Ul - 4) 
> 

,+2 _ f(dlzl,u2z2) -f(dlzl,d2%) 
- 

z2(u2 - 4) ’ 

If n 5 0 (and again f E NS), then 

(Bf)(Zl,Z2) = ~f(U121 u222) 
P ’ 

+- ; [~f(dmud +~f(,,.,,c~~z~~] , 

hl _ f (ulzl, a24 - f (dlzl, 11222) 
Y - 

a(~1 - 6) 
, 

h. _ f (wa, um) - f (ula, c&a) 
Y - 

a(~:! - 4) 

The proof of this lemma uses only elementary ma- 
nipulations. It follows that the operator B preserves 
NS and by the same induction as in the previous sec- 
tion one proves that if the premium is defined by a 
function f E NS, then the hedge price for the option 
contract exists and is equal to 

ch = (B”f)($,$). (22) 

One can write down a more explicit expression (analo- 
gous to 13). For instance, for the simplest case yi = 0, 

ch=L&; 
pn k=O 

k 

p-d2 n-k 
X- 

( ) u2 - d2 
f (dy-“&l) d,u k ;-k~2). (23) 

For the most important particular case, when the 
function f is of form 19, one can rewrite 23 more 
explicitly [6]. 

Formula 23 for ch is very similar to 13. However, 
even if each Mi consists of only two points, this hedge 
price will be not correct. As in the previous section, 
one can represent the maximal income of the investor 
who uses his hedge strategy by the formula 

P”(X0 - (~;“f,(S,‘, SIT>> 

with 

1 
(Bf )(zi ,z2) = - min p EIEMl g; [f (E’%t2z2) 

2 

-Y1.& -P> - Y2Z2K2 - p)]lyl+++‘2. 

To estimate the fair price of the option, let us follow 
the arguments of the previous section. Suppose that 
one can estimate the probability p of the numbers [i 
to be near the boundaries of the corresponding sets 
Mi (the case when this probability is different for each 
type of common stocks can be evidently covered in 
the same way). Then one gets for the fair price the 
following estimate 

c 22 ((~me.n)“f>(S,1,S,2), 

where (when supposing K = 0 as above) 

(&Lmf > (a, 22) = $yf (Pa, pa) 



+~f(dm.wd] . 

The explicit formula for 24 is similar to 18. 

4 Continuous-time limit 

As was shown in [2], the binomial CRR formula for 
option prices 13 tends to the Black-Sholes formula un- 
der apropriate limit procedure. Similar limits can be 
obtained for the formulas of the previous section. Fol- 
lowing our metodology we make it in a simplest way 
ruling out all probability theory. The only “trace” 
of the geometric Brownian motion model of Black- 
Sholes will be the assumption that the logarithm of 
the relative growth of the stock prices is proportional 
to fi for small intervals of time r. More exactly, if 
r is the time between the successive evaluations of 
common stock prices, then the bounds (li,ui of Mi 
are given by the formulas 

1OgUi = CiJF f p$T, logdi = -ai& + /QT, (25) 

where the coefficients pi > 0 stand for the systematic 
growth and the coefficients ffi (so called volatilities) 
stand for “random oscillations”. Moreover, as usual, 
log p is proportional to 7, i.e. logp = rr for some 
constant r 2 1. Let f3, denote the corresponding 
operator 20, and at = limn+co a:, where r = t/n. 
Under these assumptions, the calculation of the coef- 
ficient K from 21 for small r yields 

1 
K.=- - 

( 

01 + g2 + p1 - 7. + /.b - T - 

2 2 Ul 
y-- 

) 

J; + O(T3/“), 

and aking the limit as n + 03 one easily gets (see 
e.g. [S]) for details) that the function F(t, ~1,~s) = 
(Bt) f (zi , zs), satisfies the equation 

L3F 1 2 ,a2F 1 2 ,a2F 
at = ,Wl azp+y222 &,$ --+r(z~g+zzg-F) 

2 

(26) 
with initial condition F (0, zl, ~2) = f (zl, 22). Rewrit- 
ing this equation in terms of the function R defined 
by the formula 

F(t, ZI, ZZ) = eeTtR(t, rt + log .zl, rt + log z2) 

one gets the standard heat equation 

Consequantly, one can write the solution of the Cau- 
thy problem for 26 explicitly, which yields the two- 
dimensional version of the Black-Sholes formula for 
hedging option price in continuous time: 

s 
f(gl,gdexp{-(UT +u~)P}duldu~, 

R= 

where 

gj = S{ eXp{UjUjl/i + (T - C$/2)t}, j = 1,2. 

The same procedure for the continuous limit of 13 
gives the standard Black-Sholes formula 

Ch = eert(2n)-l12 
s 

O” exp{-u2/2} 
-ccl 

x f (So exp{uo& + (r - a2/2)t}) du. 

When the volatility (T is unknown and only its up- 
per bound (which will be denoted by the same c) is 
available, the hedge price ch is surely not correct. 
The continuous limit of the estimates 17 and 24 of 
the option prices for corresponding discrete models 
can be found in the same way as above. Let us re- 
turn for simplicitly to the most important case of only 
one type of common stocks. Using similar limit pro- 
cedure for operator 16, one finds (in the same seting, 
i.e. under assumptions 25 on the stocks prices evolu- 
tion) for the function 

F(t,z) = (K,,,f)(z) = $nm(Gnn(7-)f)(Z), 

with r = 5, the standard Black-Sholes equation 

L3F 1 2 ,d2F 
at = ZP” ’ &JF +rzE-F aZ ) 

but with volatility fia instead of g. Thus the esti- 
mate for the fair price is given by the Black-Sholes 
formula with volatility fig. The same holds for the 
corresponding limit of 24. 

5 Discussion and problems 

It was shown by many investigations that the basic 
assumptions of the Black-Sholes model, especially the 
constancy of the volatility, are not fulfilled for real 
securities (see e.g. discussion in [l]). Recently there 
appeared many models, where this volatility is de- 
scribed by different types of stochastic processes, see 
e.g. [9], [ll] and references there. The introduction 
of new processes make it always more difficult to es- 
timate their (always changing) parameters on real fi- 
nancial markets. On the other hand, neither of these 
models seems to be able to cover all practical situa- 
tions. This makes it natural just to admit that the 
volatility is unknown and perhaps only some bounds 
on it are available. This asumption leads inevitably 
to the risk-free premium on the hedging strategies 
(arbitrage situations). This idea was discussed in [8], 
where the Black-Sholes model with unknown volatil- 
ity from a fixed convex set was investigated and fair 
prices were estimated through the solutions of rather 



difficult nonlinear partial differential equations. In 
the present paper, simple explicit estimates are given 
for fair option prices starting from a discrete model 
with similar assumptions. 

We have always supposed (which is a commonly 
used assumption) in our models that the number of 
stock units y, which an investor chases in every mo- 
ment of time, is arbitrary (no restrictions are posed, 
this number can even be negative). However, in real- 
ity, the boundaries on possible values of y seem to ex- 
ist either due to the general boundary on the existing 
common stock units (one should suppose then that 
y 2 7s for some fixed ^/o), or due to the bounds on 
the possibilities of an investor to make (friction-free) 
borrowing (one should suppose then the restrictions 
of the type Tk 5 Xk/Sk, say, when no borrowing is 
allowed). In both cases, one proves the existence of 
hedge strategies and the formula of type 11 for the 
hedging price by the same arguments, but the for- 
mula for the corresponding Bellman operator i? would 
be different from 10 and the calculation of its itera- 
tions is a rather complicated task. Surely, one can use 
and develop different numerical methods. However, 
since the Bellman operator B is a nonexpansive ho- 
mogeneous mapping in any case, one can expect that 
the theory of such mappings would allow to calculate 
some reasonable approximations to the iterations B” 
for large n. More precisely, as was mentioned in the 
introduction, the asymptotic formulas for the itera- 
tions of nonexpansive maps are obtained in terms of 
the solutions of the GEP and therefore the problem 
under consideration is essentially reduced to the fol- 
lowing question: under what reasonable assumptions 
on the parameters of the model (say, the range of ‘-j’k), 

the solution of GEP for the corresponding operator B 
exists, or/and when it is unique? The same ques- 
tion arises in other natural realistic complications of 
the model, for instance, when the exchange of market 
securities is not friction free. 
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