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Abstract 

The stability margin of 2-D (two-dimensional) Linear 
Shift Invariant causal single-input single-output 
discrete systems is investigated. A new method to 
compute the stability margin of 2-D continuous 
systems is considered. Illustrative examples are also 
included. 

1 Introduction 

A linear shift-invariant causal single-input single- 
output 2-D system is described by the following 
transfer function: 

(1) 

where A( 4,~~ and ) B(z,,z,) are coprime 

polynomials in the independent complex variables z1 

and z2. It is assumed that there are no nonessential 

singularities of the second kind on the closed unit 

bid&, i.e. there are no points z1,z2 ( ) with lzliIl 

and 1z21 I1 such that A(z,,z2)=B(z,,z2)=0. 

The system (1) is (Hurwitz) stable if and only if 

for I I z2 I1 (2.1) 

for I I Zl 51, 1z21=1 

(2.2) 

One should note that condition (2.1) is relatively easy 
to check using any 1-D stability test. However, 
condition (2.2) is more difficult since it includes two 
variables. We denote: 

B(z,,z,) = c ~bjljzz~z~ 
il=Oi2 =0 

The polynomial B(zI,z2) is said to be (Hunuitz) 

Stable if and only if (2.1) and (2.2) are fulfilled. 
Several algebraic methods for testing the stability 

of 2-D discrete systems or, equivalently, checking the 
Hurwitz character of 2-D polynomials already 
exist[l]. 

However, we are interested not only in whether 
the system is stable but also whether the system will 
remain stable in the presence of system parameter 
deviations. 

So, for a stable 2-D (discrete) system, the 
following definitions have been introduced [3]: 
Definition 1: Given a 2-D discrete system described 
by the transfer function (l), we call stability margin 

o1 the supremum (i.e. the lower upper bound) of the 



positive real numbers for which B( (1 + CJ,) -z~ ,z2) 
is a (Hwwitz) Stable Polynomial. 

DejGzifion 2: Given a 2-D discrete system described 
by the transfer function (l), we call stability margin 

(52 the supremum of the positive real numbers for 

which B(z,,(l+o,) -z~) is a @hwitz) Stable 

Polj,momial. 

Dejinifion 3: Given a 2-D discrete system described 
by the transfer function (l), we call stability margin 
r~ the supremum of the positive real numbers for 

which B((l+o)~z,,(l+o)~z,) is a (Hurwitz) 

Stable Polynomial. 

Note that the special case where the stable system 
has nonessential singularities of the second kind on 
the closed unit bidisk is excluded, since all three 
stability margins will be zero. For the evaluation of 
the stability margin several methods already exist [3t 
81. In this paper, a new method is proposed. It is 
based on a recently proposed method for checking the 
stability of a 2-D system via imrers determinants [9]. 

2 Computation of the stability 
margins for a 2-D (discrete) system 

In this session, a method of computing the 
stability margins of 2-D systems is presented. We 
introduce the notation 

4 = l+o, (3) 

The method is based on checking the inners matrix of 

the characteristic polynomial B(z,,z,) of a stable 

system described by (1). For a stable 2-D discrete 

system, we recall that the polynomial B( zr , zZ) is a 

(iyunvitz) Stable Polynomial if and only if: (2.1) 

holds and the inners matrix AzN1 (z2) associated 

with zfT’B zc1,z2 ( 1 is positive innerwise for all zZ, 

zz = ,j+2 and & ~[O,27c], [9]. Therefore 

B( k,z,,z,) remains (iyurwtz) Stable Polynomial if 

and only if (2.1) holds and the imrers matrix 

A2Nl (4 ,zZ) associated with zINIB l&z1 ,zZ ( -l 1 

remains positive innerwise for all zZ, zZ = ejo2 and 

$2 +m4 However, because of the assumed 

stability of the considered system, (2.1) holds 

independent of kl. (Note that (2.1) does not contain 

zr, consequently it does not contain k,). Thus, 

%l%z,) remains (iyurwitz) Stable Polynomial if 

and only if the imrers matrix Azy ( kl, z2) associated 

with zpB(k;z;‘,z,) remains positive innerwise for 

all z2, zZ = eje2 and & 40,274. 

Considering the inners matrix A2NlkJ2) 

associated with zlNIB &zr ,zZ , we obtain that for ( -l 1 

the supremum of kr for which B( k;z,,z,) is 

(I-lurwitz) Stable the inners matrix AzN1 (k,,z,) will 

be singular i.e. detA,, l(h,z2)=0 (for some z2, 

zz = ej4, and $Z E [0,2n]). For a detailed 

justification see Appendix. Therefore, the supremum 

of kI for which B( kzl,z2) is @hwitz) Stable is 

simultaneously the minimum of all kl with 

detAZNI (k, ,zz)=O (for some zZ, zZ = eje2 and 

& 40,234). Thi s implies that the computation of 

kl can be achieved by solving the following 

minimization problem 

min kl 

under the constraint 

(4.1) 

detAzNl(~,z2)=0 (4.2) 



where 8,, (k,,z,) is the inners matrix associated 

with zlNIB ( -l ) k;z, ,z2 In the sequel, we easily obtain 

<rl from Equation (3). 

By interchanging the roles of the variables z, and 

z29 a completely analogous method for the 

computation of (TV is obtained. 

Analogously, for the computation of CY we denote 

k=l+o (5) 

Here, instead of (2.1) and (2.2), we use the equivalent 

condition B(z,,z,) # 0, for lzll 21, 1z21 21, 
[ 11. So, k is the supremum of the real numbers (2 1) 

for which B(kz,,kz,);tO, for lzIiIl, Iz21<1. 

Varying only z2, one can obtain that this condition is 

equivalent to 

B(kz,, kz,) z 0, for lzll I 1, 1z21 = 1. This latter 

equation is analogous to Equation (2.2). Therefore, 
following exactly the same steps as in the case of the 

stability margin or, we formulate the following 

method for the stability margin 0. 

min k (6.1) 

under the constraint 

(6.2) 

where &I, (k, ~2 ) is the imrers matrix associated 

with zfr’B kzcl, kz2 . The following example ( 1 

illustrates the implementation of this method. 

Example 1 [3+8]: Consider the general first order 
characteristic polynomial of a stable system 

B(q,z,) = 1 + az, + bz2 + cz1z2 (7) 

where a, b, c are real numbers. It is always assumed 
that the corresponding 2-D system has no 
nonessential singularities of the second kind. For the 

computation of the stability margin (rl , one forms the 

inners matrix of z?B hzI ,z2 ( -l 1 (here Nl = 1). 

This is 

b+cz,)k, = 
l+b& (8) 

where z2 = eje2 and & E [ O,27c] and the overbar 

denotes complex conjugate. Then 

detA2N,@13z2) = 

= (a2 +c2 +2acx)kf -(l+b2+2bx) (9) 

where x = cos $2 (X E [-1, 11). One obtains that 

detA2yblJ2) . . 1s linear in X. So, for a certain kI 

the minimum value of detAzN, (k,,z,) is obtained 

for x=-l (if ackf-blo) or for x=+1 (if 

ackf -b CO). Thus, for the minimum kI with 

detAzN,(%,z2)=0 the determinant detA2,(k,z2) 

will be zero for x = +l. Therefore, for the minimum 

k,, we obtain: 

(a2 +c2 +2ac)kf -(l+b2+2b)=o (10.1) 

or 

(a” +c2 -2ac)kF -(l+b2 -2b)=o (10.2) 

Solving (10.1) and (10.2), we 

1;1 =min[H,H].Fromwhich 

find 



or 

o1 =min[H,H]-1 (11) 

Consequently, interchanging the variables zr and z2, 

one evaluates 

o2 = min[B,H]-1 (12) 

The results agree with those of [3]+[8]. Note that here 
they derived in a very simple manner. 
Let us also compute 0. We form the inners matrix of 

z?B kz[l,kz, . This is ( ) 

ak + ck2z2 1+ bkz, 
= 

l+ bk& 
- 

ak + ck2zz 1 (13) 

Then 

det&,(k,z,) = 

=k2(a2 +c2k2 +2aclac)-(1+b2k2 +2bk) 

(14) 

where x = cos&. One also obtains that 

d4.Nl( k z j 2) IS also linear in X. So, for a certain k 

the minimum value of detAN2 (k,z,) is obtained for 

x = fl. Thus, for the minimum k with 

detAzN, (k,z,) =0 the determinant detAZN1 (k, z2) 

will be zero for x = +l. Therefore, we obtain for the 
minimum k: 

k2(a2 +c2k2 +2ack)-(1+b2k2 +2bk) =0 

(15.1) 

k2(a2+c2k2-2ack)-(1+b2k2-2bk)=o 

(15.2) 

Solving (15.1), (15.2) we find k = minimum of the 
real positive values of the set 

1 a+bk 47 (a+b) -4 -a+b+J~ 

2c 
> 

2c 
2 

a-b+ (a-b) +4c -a-b+ (-a-b) -4c 7 7 

2c 
? 

2c 1 

From which c~ = k - 1. All the results agree with 
those derived in [3]+[8], but here they derived in an 
easier manner. 

Example 2 [6]: Consider B( zl, z2) = 3 - zI - z2 . 

Following the above procedure we obtain 

oI=1,~2=1aswellaso=0.5.Thelattercanbe 

obtained from (15.1) and (15.2) if we put 
a=b=-l/3 and c=O. 
Remark: An interesting genaralization of the 

Definitions of or, cam, c~ could be the following: 

De$nition of the stability margin o with weights 

h,, h, (h, + h, = 1, h, 2 0 & h, 2 0) Given a 2- 

D discrete system described by the transfer function 
(l), we call stability margin (J the supremum of the 
positive real numbers for which 

B((l+h,o)-z,,(l+h,cr)-z,) isa(Hurwitz)Stable 

Polynomial. 

Taking into account this definition, we can 
consider Definitions lt3 as special cases of the 
previous definition (Definition 3 needs a slight 
modification). Moreover, modifying the above 
method, one can easily derive a general algorithm for 
evaluating the stability margin 0 with weights 

h,&. 



3 Conclusion 

The stability margin for 2-D discrete systems has 
been considered. A new method for computing the 
stability margins have been proposed. The method is 
based on a constrained optimization problem of a real 
positive parameter. Since the formulation of the 
imrers determinant [9] is more “direct” than the 
formulation of the Schour-Cohn matrix [l], [12], the 
method offering a more direct computation of the 
stability margin, is better than the method of [3]. 

The significance of the proposed computational 
method and the improvement with respect to previous 
work in [3]+[8] is, first, that we use the inners 
determinant instead of the method of Schur-Cohn 
which is used in [3]. The method of the inners 

determinant has the same multiplexity as the method 
of the Schur-Cohn ([9]) but it is actually an essential 
simplification of the Schur-Cohn method as far as the 
formulation of the various matrices is concerned [9], 
[12]. For this reason the proposed method is better 
than that of [3]. 

Work is in progress by the author in the area of 2- 
D stability margin formulating analogous methods for 
2-D continuous systems. Other recent results can also 
be found in [2]. 
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Appendix 

Consider the mapping 6: kl + 6(k,) where 

‘@I) = A2Nl(k19z2). This is a continuous mapping 

since the matrix AZ,,,, ( kl, z2) consists of 

polynomials in 4, z2. Also, consider the mapping 

det : 6( k,) + det 6(h). This is also a continuous 

mapping. 

Therefore, their synthesis det 6: 4 + det 6(k,) is 

also a continuous mapping. We denote S, the set S = 



{o- 0 I 6 kl wth& kl > 0 , where > denotes positive 

innerwise for all z2 with z2 = eie2 and 

$2 E [ O,27(;], [9]. We also denote det{S} the subset 

of the real numbers which consists of all the 

determinants of 6(h) that belong to S. Evidently, 

det{S} is the set of all the (strictly) positive real 
numbers. Thus, the only limit point of det{S} is the 
0. 
S is an open set and because of the continuity of the 

mapping 6 , the corresponding set of k, will also be 

open (see any standard textbook of Real Analysis or 

Topology, [ll]). Thus, the supremum of kl is a limit 

point of this set and because of the continuity of the 

mapping 6 , for this k,, 6( 4) is also a limit point of 

S. Furthermore by the continuity of the mapping 

det: 6(k,) +deth(h), det6(k,) is limit point in 

the set det{ S}, for this kl. Since the only limit point 

of det{S} is the 0, we conclude that for this k,, we 

have de@ h) =O. As a result, we obtain that for the 

supremum of kl for which B(i$z,,z,) is (iF-rurwitz) 

Stable, the imrers matrix AzN, (k,,z,) will be 

singular (for some z2, z2 = e j92 and & 40,274). 

A brief biography of the author is given in the 
paper: “New Stability Test For 2-D Systems” which is 
also presented in these Proceedings. 


