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Abstract 

The robust and reliable H, output feedback controller 
design problem is investigated for uncertain linear sys- 
tems with actuator failwes within a prespecified subset 
of actuators. The uncertainty considered here is time- 
varying norm-bounded parameter uncertainty in the state 
matrix. The output of a faulty actuator is assumed to be 
any arbitrary energy-bounded signal. An observer-based 
output feedback controller design is presented which sta- 
bilizes the plant and guarantees an &,-norm bound on 
attenuation of augmented disturbances, for all admissible 
uncertainties as well as actuator failures. The construc- 
tion of the observer-based output feedback control law re- 
quires the positive-definite solutions of two algebraic Ric- 
cati equations. The result can be regarded as an extension 
of existing results on robust H, control and reliable iY, 
control of uncertain linear systems. 

Key words Robust and reliable H, control; observer- 
based output feedback control; uncertain linear systems; 
actuator failures 

1 Introduction 

The relationship between H, optimization and robust 
stabilization of uncertain linear systems has been estab- 
lished in [l]. Since then, interests have focused on the 
problem of robust H, control for linear systems with pa- 
rameter uncertainties(see [Z], [4] and [5] for example). 
The objective is to design a controller which stabilizes 
an uncertain system while satisfying an &,-norm bound 
constraint on disturbance attenuation for all admissible 
uncertainties. However, these control designs may result 
in unsatisfactory performances or even unexpected insta- 
bilities in the event of control component failures, e.g., 
actuator failures, sensor failures, etc.. In practice, failures 
of control components are often found in the real world. 
Hence, it should be taken into account when a practical 
control system is designed. Recently, a methodology for 
the design of reliable control systems using observer-based 

output feedback was introduced in [3]. The resultant con- 
trol system provides guaranteed stability and satisfies an 
Hm -norm disturbance attenuation bound in normal condi- 
tion as well as in the event of actuator or sensor failures in 
the system. However, in [3], the system uncertainty is not 
considered when the control system is designed. Hence 
the desired closed-loop behaviors may not be guaranteed 
if the system uncertainty exists in the system under con- 
sideration. 

In this paper, interest is focused on systems with prac- 
tical control environments where both system uncertain- 
ties and control component failures may exist. Especially, 
attention is concentrated on uncertain linear systems with 
time-varying norm-bounded parameter uncertainties in the 
state matrix and actuator failures among various control 
components. The output of a faulty actuator is assumed 
to be any arbitrary energy bounded signal. It is a gener- 
alization for the actuator failure mode in [3], where the 
output of a faulty actuator is assumed to be zero. Robust 
and reliable H, control methodology is developed us- 
ing observer-based output feedback under the assumption 
that all information of the plant state is not available for 
feedback. The approach adopted here relies on the notion 
of quadratic stabilization with an H,-nom bound which 
was introduced in [SJ. An observer-based output feed- 
back control law is constructed by solving two parameter- 
dependent algebraic Riccati equations. This control method- 
ology guarantees satisfactory closed-loopbehavior despite 
the appearance of parameter uncertainties and actuator fail- 
ures, which is an extension of existing results on robust 
H, control [2,4] and reliable H, control [3]. 

2 Systems and Definition 

Consider a class of uncertain linear systems described 
by state-space models of the form 

2(t) = [A + AA(t)] z(t) + h(t) + Gull(t)(W 

(lb) Ilw = Cz(t) + w2(t) 

Z(t) = [ ;[$I= [ 5:; 1 w 



where a(t) E R” is the state, u(t) E R* is the control 
input, g(t) E Rp is the measured output, WI(~) E RT 
and wa(t) E RB am the disturbance inputs which be- 
long to &[O, oc), and z(t) E RQ is the controlled out- 
put. A, B, G, C and H are known real constant matrices 
of appropriate dimensions describing the nominal system. 
AA(-) is a real-valued matrix function representing time- 
varying parameter uncertainty, which is of the form 

AA(t) = DF(t)E (2) 

where D E Rnxi and E E Rjx n are known real constant 
matrices and F(t) E Rixj is an unknown matrix function 
satisfying FT(t)F(t) 5 I with the elements of F(.) being 
Lebesgue measurable. Note that this kind of uncertainty 
structure has been analyzed in [l] and [6], and also used 
in numerous papers (see [4] and [SJ for example). 

The following concept of quadratic stabilization with 
an J&,-norm bound will be essentially used in deriving 
robust and reliable output feedback H, controller for the 
uncertain system (1 ), which was introduced in [5] . 

Definition I 
Let the constant 7 > 0 be given. The uncertain system 

(1) is said to be quadratically stabilizable with an H,- 
norm bound y (via linear output-feedback) if there exist 
a fixed linear time-iwariant proper output-feedback law 
u = K(s)y, where s is a complex variable, and a real 
symmetric positive definite matrix & E Rnxn such that 
the inequality 

.# 

A:(t)& + QA&) + $&B&i? + c:cc c o (3) 

holds for any admissible uncertainty F(.), 
where (A,(t), B,, CJ is a state-space realization of the 
closed-loop system. 

Note that Definition 1 implies the following facts. The 
proof is similar to that of Lemma 2.1 in [5] and thus is 
omitted. 

L.e.mmul 

Suppose the uncertain system (1) is quadratically sta- 
bilized with an Hoe-norm bound y > 0 by linear out- 
put feedback. Then, the closed-loop system is uniformly 
asymptotically stable. Moreover, with the zero initial con- 
dition, l]zllz < 7llwlle for all admissible uncertainty F(.) 
and all nonzero w E L2[0, oo), where w = [u$ wT]’ 
and II - ]/a denotes the usual L2[0, co)-norm. 

We conclude this section by introducing a decomposi- 
tion of a matrix that will be used in the control design. Let 
MbeannxmmatrixandSbeasubsetofthesetU 
constructed to column numbers of M, that is, 

S C_ (1, 2, - - -, m} = U. (4) 

Let S denote the complement set of S, that is, S = U - S. 
We define the decomposition of M for S as follows: 

M=Ms+MS (5) 

where MS and MS are n x m matrices formed from M 
by replacing only columns of M corresponding to S and S 
with null vectors, respectively. Ms(respectively, MS) will 
be called a ‘decomposition matrix of M for S(respectively, 
3)‘. This decomposition has the following properties. 

MsM; = MsM,T = 0. 

Let s be a subset of S. Then 

MsM,T = M,M,T + MS-&~,-, 

and 

M,M,T 5 MsM;. (8) 

Note that the notation M 1 N(respectively, M > N) 
where M and N are symmetric matrices, refers to the fact 
that the matrix M-N is positive semidetite(respectively, 
positive definite). 

3 Problem Formulation 

We classify actuators of a given system into two groups. 
One is a set of actuators susceptible to failures, which is 
denotedbyfi c (1, 2,..., m}. These actuators may fail 
occasionally. This set of actuators is redundant in view of 
the stabilization of the system while it may contribute and 
is necessary to improving a control system performance. 
The other is a set of actuators robust to failures, which is 
denotedby fi = (1, 2, .-., m} - 0. We assume that these 
actuators never fail, and also that !? contains the minimum 
set of actuators required to stabilize a given system. 

The actuators play a role to transmit the controller out- 
puts to the plant. Without loss of generality, the trans- 
fer function of an actuator is assumed to be 1. Gener- 
ally, the outputs of filulty actuators may have arbitrary sig- 
nals different from normal controller outputs, and these 
signals will act on the system as unexpected control in- 
puts. It is desirable that both the effects of failure are re- 
duced to be negligible by control feedback, and the sta- 
bility of closed-loop system is maintained. In this paper, 
the output of a faulty actuator is assumed to be any arbi- 
trary energy bounded signal, that is, the output of a faulty 
actuator belongs to L2[0, cc). The outputs of faulty ac- 
tuators are regarded as disturbance inputs. Attempts are 
made to suppress the signals on the system outputs caused 
by faulty actuators as well as disturbance inputs, below a 
given level. 

Problem 1: (robust and reliable H, output-feedback con- 
trol problem) 

Assume that not all states are available for feedback. 
Let (A, BQ) be a controllable pair, where BQ is the de- 
composition matrix of B for St, and also let (A, C) be an 
observable pair. When a constant y > 0 is given, design a 



tied linear output-feedback controller to stabilize the sys- L is the observer gain, K, is the actuator output estima- 
tem (1) and guarantee the given &,-norm constraint y on tion gain, Ku is the uncertainty estimation gain, and Kd 
attenuation of augmented disturbances including failure is the disturbance estimation gain. 0, p and I& account 
signals, for actuator failures within an actuator set corre- for the actuator output u, the uncertainty F( t)Ex, and the 
sponding to Sz as well as all admissible uncertainties sat- disturbance input WI, respectively. Then the control law 
isfying P(t)F(t) 5 I. becomes 

4 Robust and Reliable Ho0 Controls 

Based on Definition 1, we will solve the Problem 1 for 
the design of a robust and reliable &, controller for the 
uncertain linear system (1) that is robust for parameter un- 
certainties and exogenous disturbances, and is reliable de- 
spite possible actuator failures. Let w c 0 correspond 
to a particular subset of susceptible actuators that actually 
experience failures. When the actuators corresponding to 
w actually experience failures, the control input is repre- 
sented as 

u(t) = l&t) + u;(t). (9) 

where ~$(t) is the normal control input vector only con- 
cerned by normal actuators, whose elements correspond- 
ing to a, which is the set of (1, 2, - . ., m} - w, have 
normal actuator output and the other elements are zero, 
and u:(t) is the abnormal control input vector only con- 
cerned by faulty actuators, whose elements corresponding 
to w have faulty actuator output and the other elements 
are zero, where the superscripts N and F mean ‘normal- 
ity’ and ‘failure’, respectively. The controlled output is 
described by 

= 2$(t) + z,F(t) w-9 

where zg(t) E and z;(t) E ’ [ 1 um - 
Since 2,” (t) is out of closed-ioop system, on&#(t) C&I 
be considered in the closed-loop system. Hence, the sig- 
nals on the system output which should be suppressed are 
z&y(t). 

The output-feedback control law for the uncertain lin- 
ear system (1) is based on a state observer of the form: 

0 = K&, (12) 

P=U (13) 

and 

til = K& (14) 

( = (A + BnK, + DK, + GKd - LC)< 

+B@+Ly Wa) 
U = Kc W) 

where K is the control feedback gain. Let actuators cor- 
responding to any set w G 52 be failed. The control input, 
that is, the actuator output becomes 

u = (KT);C + uz (16) 

where (KT)o is the decomposition matrix of KT for ij. 
Applying the controller (15) with (16) to the system (1) 
gives a closed-loop system of order 2n described by 

ie = Feze + G,wf, z: = Hexe (17) 

where xce = [xT CTIT, TLJ,F = [r.$ wT (u:)~]~, and 

&(KT)$ 
A + Bfi(KT); + BQK~ + DK,, + GKd - LC 1 

(18) 

where (KT)a is the decomposition matrix of KT for n. 
Transforming coordinates of (17) such that the last n state 
variables are the observer error e = < - x, gives 

& = &7& + e,t& zf = ii-&l& 09) 

where 

A + DF(t)E + B,(KT)$ 
{ BQK, + DK, + GKd 

-DF(t)E - Bsw(KT);+, } 

&(KT); 
{A+Bs2Ka+DK,+GKd 

-Bcz-~(K~);-~ - LC } 

e, = -; ; -2 
[ w 1 

tie = (K:); (K”,)$ * 1 (20) 

where (KT)o+ is the decomposition matrix of KT for 
0-w. Now the problem is reduced to selecting K, L, K,, K, 
and Kd in (15) such that the augmented system (19) is 



quadratically stable with an H,-norm bound y. 

Theorem I 
Let a scalar y > 0 be given. Suppose 

K = -BTX, Kc, = $BTX, 

Ku = +DTX, Kd = $@X 

where X > 0 satisfies 

(21) 

ATX + XA - XBfiB,TX + y2 IX(GGT + DDT 

+ BQB;)X + y2ETE + HTH + &I = 0 (22) 

for a positive scalar Sr . Suppose also 

L = y2(W - x>-lcT (23) 

where W > X satisfies 

ATW + WA - r2CTC + -+w(GG~ + DDE 

+ BQB~)W + WBQB,TW + y2ETE 
+iPH+&I=O (24) 

for a positive scalar 62 > Sr. Then for actuator failures 
corresponding to any w C a, the observer-based con- 
troller (15) quadratically stabilizes the system (1) with an 
I&,-normboundyinthe senseof 11~~11~ < 711w,F[12. 

ProojI Consider actuator failures corresponding to w c 
51. With all assumptions in Theorem 1, if we can find a 
2n x 2n matrix X, > 0 such that 

PeTX, + x& + ;;tix&?deTx. + ireTx& < 0, (25) 

the proof will be completed due to Definition 1. 
Substituting (21) into (20) and arranging (20) using (22) 

to (24), we obtain 

where X, is 

yF(t)E - $DTX T 
lDTXl 7 I 

From the assumptions that & < 62 and F(t)F(t) 5 I, 
we conclude that the equation (25) is true. 0 

Theorem 1 gives a method to design a controller for the 
uncertain system (1) which guarantees robust and reli- 
able stability and disturbance attenuation of the closed- 
loop system despite the appearance of actuator failures as 
well as time-varying parameter uncertainties in the state 
matrix. Note that in the event of actuator failures corre- 
sponding to w, the controlled output to be achieved by 
Theorem 1 satisfies 

II412 c rll4112 + II3dTll2~ (26) 

which is due to each element of IL: belonging to 
L2[0, oo). Theorem 1 is an extension of the result for 
a reliable centralized controller design in [3], to allow 
for time-varying parameter uncertainty in the state matrix, 
and soft-type failures as well as hard-type failures studied 
in [3]. 

5 Example 

Consider the following linear system with the parame- 
ter uncertainty in the state matrix 

[ -2 -2 -1 3 -1 0 0 1 -2 0 2 1 -1 -3 2 1 

1 0 1 r 0.01 

1 + 
2 

0 

8 8 F(t) -0.01 O 0.01 O 

.o 1 I L r”ll 0 

ro 01 

Y@> = 
[ 

1 0 0 0 
0 0 1 0 x(t) + w20) 

I 

z(t) = 

T 

Ii x(t) 

1 0 -10 0 0 

00 0 010 xv> 00 0 001 I[ dt> 1 
= 

[ 

[ 1 0 -1 0 ] x(t) 

u(t) 1 . 

WW 

W’W 

where the uncertain matrix F(t) is time-varying as fol- 
lows: 

F(t) = O [ l 
I sin(2t) 0 * 

The nominal open-loop system, which is considered in 
[3], is unstable, since not all poles are in the left-half 
plane. The uncertain matrix F(t) satisfies F(t)F(t) < 



I. Two cases of control designs are compared under the 
same environment. In the first case(Case l), the controller 
is designed assuming that all actuators are well opera- 
tional. In the other case(Case 2), the controller is designed 
where the first actuator failure is taken into account using 
the result in Theorem 1. The simulation environment is as 
follows: 
Design parameter: 

y = 20, Sl = 0.01, 62 = 0.1 

Initial state: 
x(0) = [ 3 -2 2 -3 IT, 

C(O) = [ 0 0 0 0 1’ 

Disturbance input: 

-2 5<t<10 = [2 
Lo 0 

1r 
01 otherwise 

First actuator failure: 

notfailed Ost<5 
m(t) = 2 5<t515 

0 t > 15. 

Figure 1 shows that the control system of Case 1 is un- 
stable in the presence of actuator failure even though it 
is robust for the uncertainties before the presence of first 
actuator failure. On the other hand, Figure 2 shows that 
the control system of Case 2 is robust and reliable for the 
uncertainties and first actuator failure. 

~ 6 Conclusions 

For linear systems with time-varying parameter uncer- 
tainty in the state matrix, this paper has presented a robust 
and reliable H, control design methodology to achieve 
quadratic stability and H,disturbance attenuation, not 
only when the system is operating properly, but also in the 
presence of certain actuator failures. Actuator failures are 
considered as arbitrary energy-bounded disturbance sig- 
nals to the system. A set of actuators considered for re- 
liable control is assumed to be susceptible to failures and 
redundant in view of the stabilization of the system. A 
construction for the desired observer-based output feed- 
back control law is given in terms of the positive defi- 
nite solutions of two parameter-dependent algebraic Ric- 
cati equations. The existence of an appropriate solution 
to the equations is sufficient to guarantee that the con- 
troller tolerates actuator failures within a prespecified set 
of susceptible actuators, and suppresses the effects of ex- 
ogenous disturbance inputs and unexpected actuator out- 
puts by failures under a predefined level. The result of this 
paper provides an unified solution for both robust control 

Figure 1. System responses for robust H, control - Case 

(solid-line: z(t), ui (i); dashed-line: u2 (t)) 
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Figure 2. System responses for robust and reliable H, 
control - Case 2 

(solid-line: z(t) , ui (t); dashed-line: u2 (t)) 

and reliable control. And also the result can be regarded 
as an extension of existing results on robust Ho0 control 
and reliable H, control of uncertain linear systems. 
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