DYNAMIC RESOURCE ALLOCATION IN DISCRETE
EVENT SYSTEMS !

Christos G. Panayiotou

Department of Electrical and Computer Engineering

University of Massachusetts, Amherst, MA 01003
panayiot@ecs.umass.edu

Christos G. Cassandras
Department of Manufacturing Engineering
Boston University, Boston, MA 02215
cgc@enga.bu.edu

Abstract

In this paper we develop a controller for dynamic
resource allocation in Discrete Event Systems (DES)
operating in a stochastic environment.. The con-
troller’s objective is to allocate a finite number of dis-
crete resources to a set of users so as to achieve opti-
mal system performance. The derived controller uses
concurrent estimation, a sample path constructability
technique for DES, to obtain estimates of the system’s
performance under a set of hypothetical parameter
settings using only information observed from the real
system. Subsequently, these estimates are used by
an on-line algorithm which reallocates the resources
among the various users to achieve our objective. An
application to a buffer allocation problem is included
along with explicit numerical results illustrating the
use of this dynamic allocation scheme.

1 Introduction

Allocation of discrete resources is a problem en-
countered in many areas. In manufacturing, the Just-
In-Time (JIT) approach has introduced the use of
the kanban, a tag attached to each arriving job in
order to maintain a small work-in-process inventory;
in this case, a fixed number of kanban must be allo-
cated to the various work stations in order to mini-
mize or maxinize some performance measure. Other
classic examples include the buffer allocation problem
in queueing models where a fixed number of buffers
must be allocated over a fixed number of servers,
and the transmission scheduling problem in radio net-
works where a fixed number of time slots forming a
“frame” must be allocated over several nodes.

LThis work was supported in part by the National Science
Foundation under Grant EEC-9527422, by AFOSR under con-
tract F49620-95-1-0131 and by the Air Force Rome Laboratory
under contract F30602-95-C-0242.

In the basic model we will consider, there are K
identical resources to be allocated over N user classes
so as to optimize some system performance measure
(objective function). Let S be the (discrete) set of
feasible resource allocations

S = {[nl, . .‘,nN] Don; € {1, .. .)K’}}

where n; is the number of resources allocated to the
tth user, and by “feasible” we mean that the alloca-
tion may have to be chosen to satisfy some basic re-
quirements, such as ‘stability’ or ‘fairness’. Let L;(n;)
be the class ¢ cost associated with the number of re-
sources n;. The resource allocation problem we con-
sider is formulated as:

N N
(RA) min X; BiLi(ns) st Z;n =K
= =

where f; is a weight associated with user class i.

For many systems encountered in practice, closed
form expressions for the performance measure L;(n;)
are difficult to obtain or are simply unavailable.
Moreover, systems frequently operate in a stochas-
tic environment (e.g., random demand fluctuations)
and therefore, one is forced to resort to estimation
techniques (e.g., Monte Carlo simulation) to obtain
an estimate of the system’s performance [A/i(nl-) over
a specific sample path. In this case, L;(n;) in (RA)
has to be replaced by the expectation of fji(71.i) over
all possible sample paths, i.e., L;i(n;) = E[Li(ns)].
Usually, the actual value of this expectation heav-
ily depends on the distributions that govern the pro-
cesses which characterize the various events of the
system. This implies that the optimal allocation is
also dependent on the statistics of the underlying
stochastic processes, which, in general, are not sta-
tionary. Consequently, the optimal allocation may

change over time. This motivates our objective, i.e., .

to develop a controller that will react to changes in
the underlying processes and will be able to reallo-
cate the resources in a way so that the system perfor-
mance is improved. In this context, Liberatore et. al.
[7] have used Finite Perturbation Analysis {FPA) to
extract the performance of a manufacturing system
over all feasible buffer allocations using only informa-
tion observed from the nominal sample path and by
employing a simple control scheme that switches to
the allocation with the best performance. Our ap-
proach is intended to exploit the special structure of
certain problems and is based on the on-line algo-
rithm proposed by Cassandras and Julka [2]. This is
an iterative algorithm driven by “finite differences”,
and it converges to the optimal allocation for deter-
ministic systems that satisfy some separability and
convexity assumptions. At every step of this algo-
rithm the following information is required in order
to determine the next allocation: (a) Performance of
the system under the current allocation, and (b) Per-
formance of the system under all “neighboring” al-
locations i.e., allocations that differ by +1 and —1
resources in two distinct users. Of course, if a closed
form expression for L;(n;) is unavailable, one is faced
with the problem of obtaining performance estimates
for all the necessary allocations.

It is by now well-documented in the literature that
the nature of sample paths of DES can be exploited
so as to extract a significant amount of information,
beyond merely an estimate of the performance mea-
sure J(#) under some parameter 8 such as dJ/df or
AJ/AB (see [1, 6] where several forms of Perturba-
tion Analysis (PA) are described). Concurrent Es-
timation [3] is a technique through which one can
construct multiple sample paths of the system under
different parameters using only information available
along the given. sample path. Using the information
obtained from the nominal sample path we are able
to obtain estimates of the performance of the system
for all “neighboring” allocations which are then used
by the on-line algorithm to reallocate the resources
to the various users so as to improve the system’s
performance.

The main contribution of this paper is in devel-
oping a dynamic resource allocation scheme for DES
and exploring its applicability on a particular applica-
tion compared to a static allocation approach. This
scheme combines two basic components: («) A dis-
crete optimization algorithm, and (b) An estimation
algorithm which will provide all the information re-
quired by (a).

2 Concurrent Estimation

In this section, we present an approach hased
on “concurrent estimation” (see [3]) for solving the

constructability problem (CO) [5] for general DES.
Specifically, arbitrary lifetime distributions are al-
lowed, unlike the Standard Clock (SC) approach [§]
and the Augmented System Analysis (ASA) [5] which
are two efficient methods for solving the (CO) prob-
lem but are limited to models with exponentially dis-
tributed event lifetimes. The main idea is to observe
the evolution of a sample path of the actual system
under the nominal allocation. As the sample path
evolves, observed data (e.g., event occurrences and
their corresponding occurrence times) are processed
to concurrently construct the set of sample paths that
would have resulted if the system had operated under
a set of different (hypothetical) allocations.

2.1 Sample Path Constructability

L~ Oy —— &)

Figure 1: The sample path constructability problem for
DES

We consider a DES and adopt the modeling
framework of a stochastic timed state automaton
(&, X, I,f,zg) [1]. Here, £ is a countable event set,
A 1s a countable state space, and T'(z) is a set of fea-
sible {or enabled) events, defined for all z € X" such
that ['(z) C £. The state transition function f(z,e)
is defined for all x € X', e € I'(2), and specifies the
next state resulting when e occurs at state z. Finally,
xo 1s a given initial state. In addition, for simplicity
we assume that the DES satisfies the non-interruption
condition, i.e., once an event is enabled it cannot be
disabled; this is not essential to the derivation of our
results however.

Assuming the cardinality of the event set £ is N,
the input to the system is a set of event lifetime
sequences {Vy,---,Vn}, one for each event, where
Vi = {v(1),v(2),-- -} is characterized by some ar-
bitrary distribution. For simplicity, we assume that
this is an iid sequence, though straightforward ex-
tensions are possible. Under some system parameter
fo (e.g., an allocation sg, the output is a sequence
E(6o) = {(ex,tr), k = 1,2,.--} where e € & is the
kth event and ¢, is its corresponding occurrence time
(see Figure 1). Based on any observed &(fg), we can

evaluate L[£(65)], a sample performance metric for
the system. For a large family of performance metrics
of the form J(6g) = E[L[£(80)]], L[€(o)] is therefore
an estimate of J(p). Defining a set of parameter
values of interest {fg,681,---,0a}, the sample patl
constructability problem is stated as: '

For a DES under 8y, construct all sample
paths £(01),---,€£(0ar) given a realization
of lifetime sequences Vyi,---, V and the
sample path &(fo).

2.2 Notation and Definitions

First, let {(n,0) = {e; : j=1,---,n}, with e; € £,
be the sequence of events that constitute the observed
sample path up to n total events. Although &(n,8)
1s clearly a function of the parameter 8, we will write
&(n) to refer to the observed sample path and adopt
the notation é(k) ={é:j=1,---,k} for any con-
structed sample path under a different value of the
parameter up to k events in that path. It is impor-
tant to realize that k is actually a function of n, that
is k = g(n), since the constructed sample path is
coupled with the observed sample path through the
observed event lifetimes; however, again for the sake
of notational simplicity, we will refrain from continu-
ously indicating this dependence.

Next we define the score of an event 7 € £ in a
sequence £(n), denoted by s = [¢(n)];, to be the
non-negative integer that counts the number of in-
stances of event 7 in this sequence. The correspond-
ing score of ¢ in a constructed sample path is denoted
by & = [é ()];. In what follows, all quantities with
the symbol “ 77 refer to a typical constructed sample
path.

Associated with every event type i € £ in é(n) isa
sequence of s} event lifetimes

Vi(n).= {vi(1),---,vi(s?)} forallieé&

The corresponding set of sequences in the constructed
sample path is:

Vz(l”) ={v;(1), -, u(H} foralieé

which is a subsequence of V;(n) with k < n. In ad-
dition, we define the following sequence of lifetimes:
Vi(n, k) = {vi(88 +1),---,wi(sP)} forallie&
which consists of all event lifetimes that are in V;{n)
but not in Vz(k) Associated with any one of these
sequences are the following operations. Given some
Wi = {wi(j)’ Tty fwi(f")};
Suffix Addition:
Wi + {wi(r + 1)} = {wi(5), - -, wilr), wi(r + 1)}
Prefix Subtraction:

Wi — {wi(5)} = {wi(f + 1), -+, wi(r)}.
Note that the addition and subtraction operations are
defined so that a new element is always added as the
last element (the suffiz of a sequence), whereas sub-
traction always removes the first element (the prefiz
of the sequence).

Next, define the set

Al k) ={izi€ & s} > 5} 1)

which consists of all events whose corresponding se-
quence V;(n, k) contains at least one element. Thus,
every ¢ € A(n, k) is an event that has been observed
in £(n) and has at least one lifetime that has yet to be
used in the coupled sample path & (k). Hence, A(n, k)
should be thought of as the set of available events to
be used in the construction of the coupled path.

Finally, we define the following set, which is crucial
in our approach:

M(n, k) = T(&) — (C(&-1) —{&}) (2

where, clearly, M (n, k) € £. Note that é; is the trig-
gering event at the (k — 1)th state visited in the con-
structed sample path. Thus, M (n, k) contains all the
events that are in the feasible event set I'(£;) but not
in ['(2-1); in addition, é; also belongs to M (n, k) if
it happens that é, € I'(Z). Intuitively, M (n,k) con-
sists of all missing events from the perspective of the
constructed sample path when it enters a new state
Zy: those events already in I'(#5-1) which were not
the triggering event remain available to be used in
the sample path construction as long as they are still
feasible; all other events in the set are “missing” as
far as residual lifetime information is concerned.

The concurrent sample path construction process
we are interested in consists of two coupled processes,
each generated by a timed state automaton. This im-
plies that there are two similar sets of equations that
describe the dynamics of each process. In addition,
we need a set of equations that captures the coupling
between them.

2.3 Timed State Automaton Dynamics

We briefly review here the standard timed state
automaton dynamics, also known as a Generalized
Semi-Markov Scheme (GSMS) (see [1, 6]). We intro-
duce two additional variables, t,, to be the time when
the nth event occurs, and y; (n), i € T'(z,), to be the
residual lifetime of event i after the occurrence of the
nth event (i.e., it is the time left until event ¢ occurs).
On a particular sample path, just after the nth event
occurs the following information is known: the state
©, from which we can determine I'(z,), the time t,,
the residual lifetimes y;(n) for all ¢ € I'(z,), and all
event scores s?, ¢ € £. The following equations de-’
scribe the dynamics of the timed state automaton.

step I: Determine the smallest residual lifetime
among all feasible events at state t,, denoted

* .

by 5

*
¥, = min {yl(n)} (3)
1€ (xn
step 2: Determine the triggering event:

€nt1 = aTg 1}11(111 {ys(n)} (4)

step 3: Determine the next state:
Tntl = f(£77-7 6n+1)) (5)
step 4: Determine the next event time:

tn+1 =15+ y:, (6)

step 5: Determine the new residual lifetimes for all
new feasible events 7 € I'(zp41):

; _J wiln) —w; i enq andi€T(2n)
yi(n+ 1)—{ vi(sP +1) ifi=e, orig(e,)

for all i € T(zp41) (7)

step 6: Update the event scores:

s otherwise

S;H-l _ { st +1 ifi=ent1 (8)
Equations (3)-(8) describe the sample path evolution
of a timed state automaton. These equations apply to
both the observed and the constructed sample paths.
Next, we need to specify the mechanism through
which these two sample paths are coupled in a way
that enables event lifetimes from the observed £(n) to
be used to construct a sample path f (k). First, oh-
serve that the process described by (3)-(8), applied
to £ (), hinges on the availability of residual lifetimes
#: (k) for all : € T'(2;). Thus, the constructed sam-
ple path can only be “active” at state &j if every
i € I'(&g) is such that either ¢ € (I'(Zx-1) — {éx}) (in
which case g; (k) is a residual lifetime of an event avail-
able from the previous state transition) or ¢ € A(n, k)
(in which case a full lifetime of ¢ is available from the
observed sample path). This motivates the following:
Definition 1: A constructed sample path is active at
state & after the occurrence of an ohserved event e,
if, for every ¢ € T'(&x), 1 € (T(Zr—1) — {éx}) UA(n, k).

2.4 Coupling Dynamics

Upon occurrence of the {n + 1)th observed event,
en+1, the first step is to update the event lifetime
sequences \7}(71, k) as follows:

Vi(n, k) +vi(sP +1) ifi=enqpq
Vi(n, k) otherwise
)

Vi(n+1,k) = {

The addition of a new event lifetime implies that the

“available event set” A(n, k) defined in (1) may be

affected. Therefore, it is updated as follows:
A(n—{-l,k\ A(ﬂ I.)'{em

]
[25 ot

b o)

Finally, note that the “missing event set” M (n, k)
defined in (2) remains unaffected by the occurrence
of observed events:

M(n+1,k) = M(n, k) (11)

At this point, we are able to decide whether all
lifetime information to proceed with a state transition
in the constructed sample path is available or not. In
particular, the condition

M+ 1,k)CAn+1,k) (12)

may be used to determine whether the constructed
sample path is active at the current state & (in the
sense of Definition 1). The following is a formal state-
ment of this fact.

Lemma 1: A constructed sample path is active at
state & after an observed event e,;; if and only if
Mn+ 1Lk CAn+1,Ek).

Assuming (12) is satisfied, equations (3)-(8) may
be used to update the state Z; of the constructed
sample path. In so doing, lifetimes v;(sf + 1) for
all # € M(n+1,k) are used from the corresponding
sequences V;(n+1, k). Thus, upon completion of the
six state update steps, all three variables associated
with the coupling process, i.e., Vi(n, k), A(n, k), and
M(n, k) need to be updated. In particular,

Vg(n—kl,k-{-l):

\:71-(71—}- LE)—v; (88 +1) forallie M(n+1, (\1)3
Vi(n+1,k) otherwise

This operation immediately affects the set A(n+1, k)
which is updated as follows:

An+1,k+1) = An+1,k) -
{iie M(n+1,k), 1 =57t} (14)

Finally, applying (2) to the new state 2.1,
M(n+1,k+1) = D(&r41) — (T(&) — {€r41}) (15)

Therefore, we are again in a position to check con-
dition (12) for the new sets M(n + 1,k + 1) and
A(n 4+ 1,k + 1). If it is satisfied, then we can pro-
ceed with one more state update on the constructed
sample path; otherwise, we wait for the next event on
the observed sample path until (12) is again satisfied.
Similar to Lemma 1, we have:

Lemma 2: A constructed sample path is active at
state &1.1 after event é,4q if and only if M (n+1,k+
1) CAMn+1,k+1).

The analysis above 1s summarized below In the
form of the following Time Warping Algorithm
(TWA).

Time Warping Algorithm (TWA):

1. INITIALIZE
n:=0,k:=01,:=0,f :=0, &, =g, & =
Zo, yi(n) = v;i(1) for all i € D(z,), sP = 0,8F =
0forallie &, M(0,0):=T(z0), A(0,0):=0

bo

WHEN EVENT ¢, IS OBSERVED:

2.1 Use (3)-(8) to determine e,t1, Zny1,
thy1, yi(n + 1) for all 7 € T'(zp41), s?'"l
forallz € £.

2.2 Update V;(n + 1, k) using (9).

2.3 Update A(n, k) using (10)

2.4 Update M (n, k) using (11).

2.5 IF M(n+1,k) C A(n+ 1,k) then Goto

3. ELSE set n < n 41 and Goto 2.1.
3. TIME WARPING OPERATION:

3.1 Obtain all missing event lifetimes to re-
suime sample path construction at state y:

i (k) = vi(85 +1) forie M(n+1,k)
Gilk) = 9i(k—1) otherwise

3.2 Use (3)-(8) to determine éxy1, Txq1,
tey1, Js(k+1) foralli e F(£k+1)ﬂ(F(;ﬁk)—
{ér41}), 88T foralli € £.

3.3 Update V;(n+1,k+ 1) using (13)

3.4 Update A(n+ 1, k) using (14)

3.5 Update M(n + 1,%) using (15)

3.6 IFMmn+1,k+1)CA(n+1,k+1) then
k< k41 and Goto 3.1. ELSE b« k+1,
n < n+1 and Goto 2.1.

3 On-Line Resource Allocation Algorithm

In this section we present a modified version of the
optimization algorithm on-line in [2], adapted to fit
our purposes, which we use to adjust the resource al-
location vector in order to improve the performance
of the system. This algorithm is designed for static
deterministic resource allocation problems that sat-
isfy the convexity assumption Al
o AI: For all i = 1,---,N, L;(n;) is such that
AL; (TL, -+ 1) > AL,’(TI.,')
where

AL,’(ni) = Li(ni) —Li(ni - 1), n; = l, ey K (16)

Actually, in [2] it is proved that for this class of sys-
tems the on-line algorithm will always converge to
the optimal allocation in a finite number of steps.

Often, however, systems operate in stochastic en-
vironments. When no closed-form expressions for the
performance measure are available, in any on-line op-
timization technique the expected cost is estimated
by direct measurements made on the system. In this
case we want to emphasize that the performance es-
timate IA%T () is a random variable which depends on
the length of the observation/simulation interval .
It turns out that the original deterministic on-line
algorithm can be modified to work with stationary
stochastic systems and it has been shown in [4] that
it converges in probability to the optimal allocation as
7 = 00. In what follows, we wish to consider the case
where the underlying distributions are not stationary;
for example, tasks are submitted to a computer sys-
tem at random instants in time and require process-
ing for a random period, but it is expected that the
task arrival rate varies with the time of day. Clearly,
in the case of such dynamic resource allocation prob-
lems we cannot allow 7 to go to infinity, since waiting
for long periods of time before we obtain performance
estimates prevents us from reacting to changes in the
system and hence making timely resource realloca-
tions. Consequently, it is possible that the system
will end up operating with poor allocations for long
periods of time.

Following is the on-line algorithm in [2], modified
to enable the system to be “adaptive” in the sense
that it reacts to changes in the underlying event pro-
cesses.

ALGORITHM: Dynamic Resource Allocation

1.0 Initialize: s(®) = [ngo), e n.g\e)];
CO={1,---,N}; k=0.

1.1 Evaluate
DE@®, . al)) = (AL D), ., ALL ()]
2.1 Set i* = arg maxje c () [ﬁ(k)(ngk)’ . ng\’;))]

2.2 Set j* = aryg miniec(k)[f)(k)(ngk), e ,ng\l‘;))]

2.3 Evaluate
DERM, a1, el 1, nl)
2.4 M ALL (0S4 1) < ALL (n¥)) Goto 3.1
ELSE Goto 3.2

3.1 Update allocation:
nz(-f"'l) = ngf) - 1;ng-lf+l) = ng-lf) + l;n#f"'l) =

n$) for all m € C*) and m #1i*,5%
Set ke k+1
Reset C*) = {1,..., N}, and Goto 2.1

3.2 Replace C*) by CF) — {5*1;
IF |C®)] = 1, Reset C*) = {1,..., N}, and
Goto 2.1 ELSE Goto 2.2

4 An Application to Buffer Allocation

Figure 2: Queueing system with N parallel servers

The Dynamic Resource Allocation algorithm to-
gether with the concurrent estimation scheme, have
been applied to the queueing system shown in figure
2 where each server represents a user and each buffer
slot represents a resource to be allocated to a user (it
is assumed that buffers can be freely reallocated from
one server to another). Jobs arrive at the system at
a rate A and are routed to one of the N users with
some probability p;,i = 1---N. Each of the users is
servicing jobs at a rate p;,¢ = 1,- .- N. Jobs that are
routed to a user with a full queue are lost and in this
case we would like to allocate all K available buffer
slots to each one of the users in order to minimize
the sum of the probabilities of losing a job from each
individual queue due to an overflow.

012

0.1

Loss Probablity
° °
2 [

°
2

0.02- - :)
___Fixed Aiocation

...Dynamic Allocation

s L ' ' L . s
[} 0.2 04 08 08 1 12 1.4 16 ie 2
Time Units 5

x 10
Figure 3: System performance under the dynamic allo-

cation scheme vs. a fized resource allocation
vector

We consider a system with N = 4 and K = 16
when the arrival rate A = 1.3 and all service rates
pi=1.0foralli=1,---,4. We also assume that the
routing probabilities are not stationary and that they
change every 50,000 time units as shown in Table 1.
In figure 3 we plot the performance of the Dynamic
Resource Allocation scheme against the performance
of a system with a fixed allocation s; = [4,4,4,4].
Note that s; is the optimal fized allocation over the

interval (0—20, 000) due to the symmetry of the rout-
ing probabilities.

| From - To | distribution |
0- 50,000 | p; =[0.7,0.1,0.1, 0.1]
50,000 - 100,000 | ps = [0.1,0.7,0.1,0.1]
100,000 - 150,000 | p3 = [0.1,0.1,0.7,0.1]
150,000~ 200,000 | ps = [0.1,0.1,0.1,0.7]

Table 1: Routing Probabilities

5 Conclusions

In this paper we have developed a control scheme
to dynamically reallocate discrete resources in DES
in order to improve performance. The scheme con-
sists of two parts: (a) Concurrent Estimation, which
is used to estimate the performance of the system
under a set of different allocations in order to eval-
uate the finite differences required by the Dynamic
Resource Allocation algorithm, and (b) The Dynamic
Resource Allocation algorithm, which uses the finite
differences to make the reallocation decisions. This
control scheme can be applied to DES with separable
convex objective functions.

References

[1] Cassandras C.G.,“Discrete Event Systems,
Modeling and Performance Analysis”, IRWIN,
(1993).

[2] Cassandras C.G. and Julka V. “Descent Algo-
rithms for Discrete Resource Allocation Problems”,
Proc. 88rd IEEE Conf. Decision and Control, pp.
2639-2644, (1994).

[3] Cassandras C. G. and Panayiotou C. G., “Con-
current Sample Path analysis Of Discrete Event Sys-
tems”, Proc. of 35th IEEE Conf. Decision and Con-
trol, pp. 3332-3337, (1996).

[4] Cassandras C. G., Dai L., and Panayiotou C.
G., “Stochastic Optimization for Discrete Resource
Allocation”, subm. to 86th IEEE Conf. Decision and
Control, (1997).

[6] Cassandras C.G. and Strickland S.G., “Observ-
able Augmented Systems for Sensitivity Analysis of
Markov and Semi-Markov Processes”, IEEE Trans-
actions on Automatic Control, Vol. AC-34, pp.1026-
1037, (1989).

[6] HoY.C.and Cao X., “Perturbation Analysis of
Discrete Event Systems”, Kluwer, Boston, 1991.

[7] Liberatore G., Nicosia S. and Valigi P., “Dy-
namic Allocation of Buffer Capacity in Discrete Event
Systems”, subm. to Journal of Intelligent Automation
and Soft Computing, (1996).

[8] Vakili P, “A Standard Clock Technique for

Efficient Simulation”, Operations Research Letters,
Vol.10, pp. 445-452, (1991).

