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Abstract

In adaptive control design for discrete-time output-
feedback nonlinear plants, the main obstacle is the
lack of effective ways to design estimators for the un-
measured states and the unknown parameters. Since
these quantities appear as arguments of arbitrary non-
linear functions, traditional estimation methods can
not be used. To resolve this problem, we propose a
new systematic methodology by which one can re-
cover all the necessary information about the un-
known part of the system in finite time, so that con-
trol schemes for global stabilization and tracking can
be designed for such plants.

1 Introduction

In recent years, a great deal of progress has been
made in the area of adaptive control of continuous-
time nonlinear systems [1, 2]. For their discrete-time
counterparts, on the other hand, very few results ex-
ist. With the exception of our recent solution [8]
for the strict-feedback problem, the other existing
results [3, 4, 5, 7] either require restrictive growth
conditions on the nonlinearities or only deal with a
scalar nonlinear system which contains a single un-
known parameter.

In discrete-time, backstepping amounts to simply
“looking ahead” and choosing the control law which
forces the states to acquire their desired values after
a finite number of time steps. In the presence of un-
known parameters, however, it is impossible to calcu-
late these “look-ahead” values of the states. Further-
more, since these calculations involve the unknown
parameters as arguments of arbitrary nonlinear func-
tions, no known parameter estimation method is ap-
plicable, as all of them require a linear parameteriza-
tion to guarantee global results. The main contribu-
tion of [8] is the introduction of a novel uncertainty
identification scheme which, in a finite number of time
steps, computes the projections of the unknown vec-
tor parameter along the basis of a subspace gener-
ated by the nonlinear vector fields of the plant. Once
these projections are known, the control law becomes
a straightforward “look-ahead” design. However, the
computation of these projections relies on the mea-
surement of all the state variables. If some of these

variables are not measured, the corresponding projec-
tion information is lost.

In this paper we introduce a new systematic method
for recovering the lost projection information. The
available projections are computed through simple
linear operations from a set of measured vectors which
are first decomposed into orthogonal subspaces. To
ensure that all the necessary information is obtained,
we use the control input to drive the measured output
to values which provide measurements of the projec-
tion of @ along linearly independent directions.

In Section 2 we first examine the difficulties raised
from the design of a “look-ahead” controller for discrete-
time output-feedback nonlinear systems. To resolve
these difficulties, we then introduce the projection re-
covery technique in Section 3.

2 Problem Formulation

In this section, we will first describe the problem in
detail and then analyze the obstacles that must be
overcome in order to solve it.

Let us consider the following second-order discrete-
time nonlinear system

T = Yo+ 0 p(x) (2.1)
Yi+1 = Ut+9T¢(-’Et)7 (2.2)

where § € IRP is the vector of unknown constant pa-
rameters and only the state z; is available for mea-
surement. We denote ¢; = ¢(z;) and vy = ¥(xs),
with ¢(-) : R — IRP and %(-) : R — IRP known
functions. This system is in output-feedback form,
because its nonlinearities depend only on the mea-
sured output z;.

At each time ¢, our objective is to pre-compute the
following projections of system (2.1)—(2.2):

0 p(z)  6Tp(2ir1)
0T (xs)

As we stated in [8], one of the applications of these
pre-computed projections is to implement a “look-
ahead” controller which stabilizes the system and reg-
ulates x; to zero. This is because if all the terms of
(2.3) were known, then we could choose:

uy = —0T(z:) — 0T p(ze41)
=07 [ip(ze) + (e + 6% (1)), (24)

(2.3)



from which we obtain

Tipz = Ypr1 + 0T o(Te1)
up + 07 [9h(z) + @(y: + 0T p(z1))]
0. ) (2.5)

Let us now review the method proposed in [8] for
pre-computing the projections of (2.3} at time ¢, and
examine the difficulties in achieving this goal.

The main idea of [8] can be summarized as follows:

¢ First, using the fact that ¢ and ¢ are known,
we compute off-line a basis for the span of these
vector fields over all values of z and y. The
dimension of this basis is at most p, where p is
the number of unknown parameters. In order to
pre-compute the projections given in (2.3), we
use the control input to drive the state vector
to points which correspond to the basis vectors.
Since we can measure the states z;,y:, we can
compute the terms z; —y;—1 = 8 ¢;_1 and y; —
ug—1 = 0T9p;_; at various times ¢; by driving the
state to values which render ;1 and 1;_; basis
vectors, we obtain the projections of 8 along
the corresponding basis. This phase is finite in
duration for any finite-dimensional system with
a finite number of unknown parameters.

e Once all the projections of 8 along the above
basis vectors are collected, we use them to pre-
compute all the terms appearing in (2.3) by
expressing ¢(z) and ®(z,y) as linear combi-
nations of these basis vectors and then using
the same coefficients to compute §%T4(z) and
8T p(zx,y) as linear combinations of the projec-
tions.

This two-stage process depends critically on the fol-
lowing fact:

Contrary to their continuous-time coun-
terparts, discrete-time nonlinear sys-
tems can not exhibit the finite es-
cape time phenomenon. This implies
that we can afford to postpone closing the
loop with a controller for a finite time pe-
riod.

This approach is very different from traditional cer-
tainty equivalence approaches, which replace the un-
known 6 with an estimate 6. Equation (2.4) shows
that any such attempt would be stifled by the fact
that 6 appears inside the nonlinear function ; this
becomes a nonlinear state and parameter estimation
problem, for which no global methods are available.

Returning to the output-feedback case where y; is
no longer measurable, we have the additional diffi-
culty that neither 67,1 = 74 — y¢—1 nor 6T¢p,_; =

yi — ug—1 can be computed individually. Instead, at
time ¢ we can only obtain

Tt —Ut—2 = GT(‘Pt—l +Pi2). (2.6)

To pre-compute each term in (2.3), however, we still
need to be able to compute the projections of  along
 and 9 individually. Hence, if it so happens that the
subspace spanned by ¢(z)+(Z) is of lower dimension
than the subspace spanned by ¢ and 1, then measur-
ing x; — uz_o can only give us all the projections of
along a basis of the subspace spanned by ¢(z)+¥(Z).
But to pre-compute each term in (2.3), we need all the
projections of 8 along a basis of the subspace spanned
by ¢ and 1. To recover those missing projections, one
might try reconstructing the unmeasurable state y;.
However, equation (2.4) shows that replacing y; with
an estimate §; would again raise the nonlinear esti-
mation problem which we discussed in the context of
replacing 6 by an estimate 6.

To overcome this seemingly insurmountable prob-
lem, during the identification phase we will select u in
such a way that if ¢); is linearly dependent on a set of
(known) linearly independent vectors from the set of
past values of 1, i.e., from the set {to,¥1,... ,%t-1},
then its decomposition along those vectors does not
coincide (i.e., does not have the same coefficients)
with the decomposition of ¢, along the correspond-
ing vectors from the set {¢1,¢2,...,¢:}. Achieving
this “independence” will allow us to recover 0T<pt_|_1
and 6T, from 0T (141 + 1) by simple linear opera-
tions.

3 Projection Recovery

As we have seen in the above discussion, pre-computing
each term in (2.3) requires knowledge of the projec-
tions of @ along the vectors which constitute a basis
of the subspace spanned by ¢ and 7. On the other
hand, (2.6) shows that measuring z; can only pro-
vide us with the projections of # along the vectors
which constitute a basis of the subspace spanned by
p(x) + ¥(Z). Therefore, in this section we develop a
systematic method to recover those missing projec-
tions.

Notations: For brevity, we define

Se = span{p(z)}[ ) span{y()},
z€lR ze€lR (3_1)

which implies that we have the direct sum decompo-
sitions

wan{p@) = 5,PS%s (2

Se P S (3.3)

span{y(z)}
z€lR



where S, and Sy are the corresponding orthogonal
complements of S, with respect to the subspaces
span,cr{y(z)} and span, g {¢(z)}.

Using these direct sum decompositions, we then
decompose
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of each term in (2.3) requires all the prOJecmons of
6 along the directions which constitute a basis for
S = span,, zcr{p(z),?¥(%)}. For clarity and without
loss of generality, we assume S, 4 = {0}. The gen-
eral case of Sy y 76 {0} requires some stralghtforward
but tedious modifications of the following procedure,
which would further complicate the task of introduc-

ing it to the reader.

3.1 Decomposition procedure

We start by describing the decomposition procedure,
which is to be implemented at every step of the iden-
tification phase.

Measure the state z; and then evaluate ¢, at
each step. Using (2.1)-(2.2), all the measurements
can be expressed as follows (here we assume for sim-

plicity that up = - - = uz—_2 = 0):
0T (o1 + o) Z2
: = | : | ©5
0T (pr—1 + hr—2) Ty

The objective now is to rewrite these measurements
in a way that can be used for choosing u:. To this
end, we employ the following procedure:

1. e Find abasisfor Ss,_, = span{e1,... ,pt—1}.
This basis should consist of linearly in-
dependent vectors from the set ®;_; =
{¢1,-.- ,t-1}, and its dimension is de-
noted by ke + 1 with ks <t — 2.

o Express each of the remaining t — ky — 2
vectors from the set ®;_; as linear com-
binations of this basis, say ¢; = ¢j,101 +

- + Cj ko+1Pky+1- Here, without loss of
generality, we assume that ©1,... ,@r,41
form a basis for Ss,_,.

¢ For each of these t— ks —2 vectors, subtract
from the corresponding measured projec-
tion 0T (p; +9j—1) with 1 < j < ks +1
the same linear combination of the projec-
tions corresponding to the basis vectors of

Sg,_,, to obtain a new computed projec-

tion:

- A
0 i1 = 0T [hj—1 — i %o — - — Cjhgr1¥ks)
+07 (05 + ¥i—1) — [¢16T (01 + %o)
+ o4 Ciokpt10” (Phar1 + Yky)]
Tjt1 = [€j1%2 + -+ + Cjkp1Tky+2]

I

o These operations transform ( 35) into the

followmg set of projections:

gt (<P1 + %) ] [ 1y ]
6T (S"kz+1 + g, ) $k;+2
= ~ . (3.7
6T 1/)k2+1 Zhyts (3.7)
| 0T'¢)~t—2 i B

o From the set {¥,41,...,%:—2} we select
a basis for the subspace spanned by ¢k2+1,
oy Ppg. Without loss of generality, we
assume that {r,11,---,%k,} with k3 <

t — 2 is such a basis.

2. Repeat the operations of Step 1 with respect to

‘I’k3+1 = {Qﬁo, ";bkz:'(pkz-{-la . )’(/)ka} FlI‘St
find a basis of dlmensmn k3 + 1 — k;. Here,
we require this basis to include all the vectors
of ¢k2+1, . ,1/)k3 Without loss of generality,
we assume that {0, ... , Wy Vkot1s++. » Vs }
constitute this basis. Then, following 1, express
the remaining k; vectors as linear combinations
of these basis vectors, and subtract the corre-
sponding projections.

. The assumption S, 4 = {0} and the linear in-

dependence of {¢1,...,¥,+1} guarantee that
any nonzero vector formed by arbitrary linear
combinations of {¢1,...,¥k,+1} does not be-

long to Sy. Hence, we can arrange the result-
ing new projections, along with the remaining
k2 — k1 of the original projections which were
not affected by Steps 1 or 2 in the following way:

[ 0T¢1 i [ o T
T eT"Pkl :ik1+1
6 (‘Pk1+1 + Yr, ) Tky42
: = : . (3.8)
T (‘Pk2+1 + Pr,) Thyto
6T 1/)k2+1 Zky+3
L HT"/;ks A L jk3+2 _

Tiy1- (3.6)



From the above procedure, it should be clear that the
following properties are true:

ra,nk{z/;kl PR 7¢k21"$k2+17 ce ’¢~k3}

= I'a,Ilk{’l/)(), oo 7¢t—2} (39)
rank{c[)l, s 7¢k1)(10k1+17 e a‘pk2+1}

= ra,nk{cpl, ey Sot—l}- (310)

Furthermore, {¢k,,. .. Wk s Vot 1, - - - ,7,Zk3} and {@1,

cevs PhysPhi+1, - -+ > Phg1} are both sets of linearly

independent vectors. This completes the decomposi-
tion procedure.

3.2 Basis identification

From the above procedure we see that, at each time ¢,
@j € Se,_, C S, and Y; € Sy,_, C Sy. Hence, (3.8)
shows that in order to complete the task of computing
the projections of 8 along the vectors which constitute
bases for the subspaces Sy,_, and Sg,_,, we still need
to find a way to compute the projections 8Ty, 41,
ey 0T 0ppt1, 0Tk, - .., 0T1h,. This is because all
the other projections in (3.8) are already either in .S,
or in Sy. To obtain these remaining projections, we
note that the subspaces S, and Sy, are invariant with
respect to time and are finite dimensional. Hence, if
we keep u; = O for each t, measure the state z;io
and evaluate ;42 and syq, then there must exist
t1 > 0 such that 91,11 € Sy, _,; in fact, we will have
O<t1 < dimS¢.

At this time (¢ = ¢; + 1), we perform decomposi-
tion procedure of the previous subsection and obtain
equation (3.8). Since 9,41 € Sy, _,, we can find
constants Cg; 41,y .- » Cty-+1,ks tO €XPress ¢y, 1 as

Ytr+1 = Coit1,kaWhy + o0 F Gt k2 Uk
Cty+1,ka+1Pka+1 + ** + Coypd ks WPhs - (3.11)
From the equation (3.8) the projections of 6 along the
vectors ¥r, 41, . . . , Pk, are already known. Therefore,
at time ¢t = t; + 1 we can select the control input
Ut 41 = —Ct1+1,k2+19T1/Jk2+1 — T Gy kg 9T¢k3
= —Ciyt1, kgt 18k 43 — "0 — Cty41, ks Thg 2 (3.12)
to eliminate the projections of § along those known
directions at the next step. Then, at time ¢t = ¢; +
2 we measure T4 42 and use it to evaluate ¥y, 12 =

Y(zt,4+2) and @y 42 = @(Ts,42). Now we have to
distinguish between the following two cases:

Case 1 |¢4,42 & Sw,,_, OF pt,42 & Se,,_, |: Then,
at least one of the following equalities must be valid:

rank{¢t1+2’ liibkl yeee a¢k2a¢k2+1: .. aqj}ks}
rank{t,, .. , kg, Vkot1s--- Vst +1  (3.13)
rank{ws, 12, P1y- -+ » Pryr Phatis- - - » Pha+1}
rank{gél, e ,gbkl,gokIH, . ;‘sz-i-l} + 1. (314)

In this case we just apply the decomposition proce-
dure again. Recall that the subspaces S, and Sy, are
invariant with respect to time and finite dimensional.
Therefore, after a finite number of steps (at most p)
both s 2 € Sy, and ;49 € Sp, must be valid.

Case 2 'l,[)t1+2 S S\I:tl_l and Yt 42 € S‘I’tl—l : Then,

we can find constants ¢z 1ok, ,. .- ;Cty+2,ks> Bt1+2,15
-+ > 8t 12, ko1 tO €XprESS

Pit2 = Coya2,kWhy + -0 + Ctyt2, ks Uk
+Cti+2 kot 1Pkt + - - F Ctr+2,ks Vs (3.15)
Pti+2 = Aty 42191 + - -+ diy 2,5, Pry
iy 42,k 419k +1
+ o0 Ay 42,k 1Pk 41 - (3.16)

Therefore, at t = t; + 2 we can compute the value of

eti+2 = |dty4+2,k4+1 — Cor41,ky |
+ oty 2,kp 1 — Coig1 k|, (3.17)

which indicates whether the decompositions of %4, 41

along {¢k1 PR '(pkz} and of Pti+2 along {on1+1, ey
Pk,+1} have the same coefficients. Depending on the
value of e;, 2, we further divide the procedure into
the following two subcases:

Subcase 2.1 : In this subcase, using (3.11),
(3.12) and (3.16), at t = t; + 3 we can measure

Tty 43 = Uty 1 + 07 (Pry 42 + Yry41)

= —Cty+1,ke+1Tka+3 = * 10 — Ctyt1 ke Ths+2
T
+0° (t+2 + Yiy41)
_ T, 7 T 7,
= —Ctit1,kp+10 Yhpt1 =+ — Coy 41,550 Vs

+diy 12107 @1+ + dyy 2,1, 0 Pry

+dty 42,51 +10 PRy 01 F e+ iy 42,5410 Phyt1
ety 41,0, 0 Wy + -+ 1,82 0T Pk

FCty+1, k10T Vhg1 + -+ Cty 1 150" Vs

= (dgy42,k1+1 — Cert1,k0 )0 Phy41

+ oot (i ,ka 1 = Ctyi1,k)0 Phpg1

FCtr41,k: 0 (Yry + Pryt1)

o Gy k07 (Y + Pryr)

tdiy 4210 @1+ F diy 0k, 0 Bk, - (3.18)

Hence, we have

(doy+2,k141 = Ct141,50 )07 Pry 41
+ o (B 2,ka 1 — Cort1ke )0 Phatt
= Tty 48— Coy 41,107 (Vky + Pkyt1)
— = 1 ka0 (Yiy + Phigtr)
—diy 1210731 — - = dyy 20, 0 B,
= Tta43 — Cta+1,k1 Thi+2 — *° " 7 Cty41,ko Thot2
—diy 42,182 — - = dgy 2.k, Epy 41 - (3.19)



Therefore, we obtain a projection of § along the vector

A
U= (de 2kt — Ctabik )Pha1 T
+(dtr+2,k041 — Cti4+1,k2)Phot1 € Sy (3.20)
which is linearly independent of {@1,... ,P%, } since
@1y 3Phys Phy+1s- -+ > Phot1 are linearly independent.

Using the fact that e, 12 7 0 implies that |dy, 12 ;—
ct+1,5] # 0 for some k1 +1 < j < ks, we define the
vector

(d#_,L“) L.1 — Cr. L1 1._\
w —_ /lp'_l + ANTTU] T &yiv] T A "lTJ-)"'l/,Qbk
! (dty+2,5 — Cty+1,5 '
(dt+2,5-1 — Ct1+1,j—2)¢_ \
-
(dty+2,5 — Cta+1,5)
(dty+2,4+1 — Ctav1j)
(dty+2,5 — Ct1+1,5)
dt,42,k3+1 — Cty+1,k
( t142,k2+ 1+ 2)1/ch2 (321)
(dtr+2,5 — Ctr+1,5)

+ o

+

+...+

which is linearly independent of {Dryt1,--- >Prs } since
YVeys- o s Vhsy Yha+1, - - - » Yhg arelinearly independent,
and rewrite (3.20) as
_ 1 _ (dt1+2,k1+1 — ct1+1,k1)
(42,5 — Ctr+1,5) (dty 42,5 — Ctit14)
_ (@1 —Ctip15-2)
(diy 42,5 — Ctrv1,5)
(dey+2,5+1 — Cti+1,5)
~d N Pi
(dey+2,5 — Cta+1,5)
_ (dty 42,8041 = Ct141,k,)
(dt42.5 — Ct14+1,5)

Combining (3.19), (3.21), (3.20) and (3.22) we com-
pute

©j Plr+1

Pi-1

Phat1 - (3.22)

6w 2 67 [,y + (dey 2,81 41 — Ct1+1,lc1)¢k1
(der+2,5 — Ctr+1,5)
(dés+2,j—1 — Ct1+1,5-2) "
(dritzg — Cuarg) °
(dtr+2,4+1 — Cta41,4)
(deyi2,5 = Ctt13)
(dtr+2,k2+1 = Ctit1,ks)
)
(dt1+2,5 — Cti+1,5)
T 1
=0 W1t eg) = (dtr+2,5 — Ctr+1,5)
(dty+2,k1+1 — ct1+1,k1)9T(
(dt1+2,5 — Ctat1,)
(A1 +2,j-1 = Cti+1,j-2) g1
(dtr+2,5 — Cta41,5)

+---+

+

+ .- 4

k2

6Ty

+

¢k1 + (pkl-l-l)

+...+

(Yj—2 + @j-1)

(diy 42,541 = Ct141,5) 4T
+ : 220 (¥ + i1
(dty+2,5 — Ctat1,5) Wi +in)
(dt1+2,k2+1 - ct1+1,k2)

6T ke T Pk
(dty+2,5 — Ct1+1,5) (Wt + Phr1)

4.4

1

(dty 42,5 = Cty+1,5)
=t = Oty 41,k Thor2 = diy 12,182

Tjt1 — {Tt143 — Cty 41,8, Ty 42

= —dyto,k Ery 41}
(dty+2,k11 = Cty+1,k1)
(dty 42,5 — Ct1+1,5)
(dey2,5-1 = Ct1,j-2)

(dty2,i — Ct14+1,5)
(der+2,5+1 = Cryt1,5)
] - N Lj+2
\Gt142,5 = Ct14+1,5)
(dty+2,k2+1 = Ctit1,k,) (3.23)

+

Try42

+...+

+

ot Thyta-
(dtr+2,5 — Cti+1,5)
is linearly independent of {t)g,41,. .. , %k, } since ¢z, ,
ooy Yhys Yhgtt, - - -5 Py are linearly independent.

Therefore, we have recovered the projections of 4
along v € Sy and w € S,. Hence, we have reduced
the number of the projections needed to be recovered
in both subspaces S, and Sy.

Subcase 2.2 : If we have already col-

lected all the projections of 8 along the vectors which
constitute a basis for the subspace S, then we have
obtained enough information for pre-computing the
terms in (2.3). Otherwise, since e;, 42 = 0, at ¢t =
t1 + 2 we can pre-compute the state z;, .3 as (com-
pare to (3.18) with ez, +2 = 0)

Tt3 = Coytr1 k07 (ks + Ohita)
+ oot etk 0T (Prg + Pratr)
+diy 42,107 G1 + -+ diy 2,8, 0T Pry
= Cti+1,kTky+2 + 0+ Cty 41 ko Tho+2
+dyy 2182 + -+ Ay o,k Frg b1, (3.24)

and hence we can pre-compute the values of ¥, 13
and @i, 3. I 9y, 43 € Sw,, or 1,43 & Sa,,, then we
are back to Case 1. If ¢4, 13 € Sy,, and ¢, 13 € Sa,,,
then at ¢ = ¢; + 2 we can find constants ¢, 4+3,k,,-- -,

Cty+3,kgs Bty+3,15- - » At 4+3,k,+1 Such that

Pt1+3 = Cty4+3,ks WPk + 0+ Cty 43,k Wky
FCti+3, ka1 Vhp b1 + -+ oyt ks Vks (3-25)
Pty+3 = gy 43101 + - + diy 43,5, Pry
+dty 43,k +1Pky +1
+ ot diy 43,k 1 Pha 1 (3.26)

from which at ¢ = ¢; + 2 we pre-compute

€43 = ldt1+3,k1+1 - ct1+2,k1|
+- |dt1+3,k2+1 - Ct1+2,k2| . (327

If e;,+3 # 0, then we are back in Subcase 2.1. Oth-



erwise, at t = £; + 2 we choose

U142 = O = Cty42,k1Tkr+2 — °°° — Cty+2,k2 Tho+2
—dg 43182 — - — dey 43,85, Thy 41
—Ctr2 k10 Phpr1 — - — Cy2 k50 Pk
= 0= C42k Tha 42 0 T Cird 2,k Thath2
—dy 43,182 — - — Ay 43,8, Ty 41
—Cty+2,ks 1T ko +3 = *** = Cty42,k Tho+2 (3.28)

with a to be determined next. Therefore, at t = t;+2
using (3.15) and (3.26) we can pre-compute

Toya = Ugit2 + 0T (pry 13 + Py 42)

=0 = Cy 42,k Ty +2 — 0 T Cty42,k0 Tho+2
—dp, 43,182 — - — dgy 43,k Thy 41
—ct1+2,k2+1:ik2+3 B Ct1+2,k3{ék3+2 :

+diy 43,107 @1 + -+ diy 43,50 Pry

tdty 13, +10 Py 41 + -0+ diy 43 ko120 Prgt1
ety 2,50 Pk, + o0+ 2,000 Y

by 42,410 T Prgr1 + - F Ctyt2,kg0 Y

=& — Cty 42,51 Thy+2 — ° 7" — Ct1 42,k Tho+-2
—di, 43182 — 0 — dgy 43,6, Thy 41
—Ct1+2,k2+15;7k2+3 —r = Ct1+2,k3§3k3+2

+di43,1%2 + - dey 3,5, Tk 1
+(dby8,k141 = Cort2,51)0 T P41
+-+ (dt1+3,k2+1 - ct1+2,k2)0T90k2+1
+Cti 42,k 0T (‘pk1+1 + 77[)]\71)
et Oy ka0 (Phpt1 + Yy
+ct1+2,k2+1jk2+3 + -+ Ct1+2,k3§:ks+2
= 00— Cty 42, ko +1 %k 43 = — Cty 42,k Ths 42
tCti42, ka1 8k 43 + 000 F Ctrd2 ks Ths 2
=a. (3.29)
This means that a can be chosen to yield

|dt1+4,k1+1 - Ct1+3,k1‘
+eet |dt1+4,k2+1 - ct1+3,k2| 76 0, (3'30)

with dg, 44,8415+ > Gty +4,5,+1 being determined by
Ptrta = ;44,101 + -+ diy 44k, Pry

+dty +4,k1+1Pks+1
+ oo diyta kot 1Pk 41 - (3.31)

It is always possible to satisfy (3.30), because we can
drive z¢, 14 to any value. This brings us back to Sub-
case 2.1.

4 Concluding Remarks

The procedure given in the previous section will con-
tinue until all the projections of § along a basis of S,

and Sy are recovered. Once we have this informa-
tion, we can implement any controller which requires
the computation of 8Ty and §T+. One particular
example is the “look-ahead” controller described in
Section 2, but the same projection information can
be used with any other control design.

The procedure we presented here for the second-
order nonlinear system (2.1)—(2.2) can be generalized
to output-feedback systems (i.e., systems in which the
nonlinearities depend only on the measured output)
of arbitrary order. Obviously, the expressions for the
general case are quite complicated, but the basic idea,
remains the same: the subspace decomposition must
be applied at each step, and the control input must
be chosen so that new directions are added until all
the necessary projections are collected.
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