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Abstract

Based upon a condensed Brunovsky form, feedback lin-
earization for both single-input and multi-input nonlinear
systems is derived in a unified manner. The derivation ap-
pears considerably simpler than the known derivations for
the multi-input case. A straightforward characterization of
the coordinate transformation required in the feedback lin-
earization is provided.

1 Introduction
Consider nonlinear systems of the form
t=f(z)+g(x)u, zeR", weR? (1)

where f and columns of g are smooth vector fields on a
neighbourhood M € R™ of 2(0) = zo. Assume that the
columns of ¢ denoted by {g;} are linearly independent on
M.

This paper deals with the problem of finding a coordi-
nate transformation £ = T'(z) on M such that in the new
coordinates

E=A¢+B(a+bu) @)

where A € R™* ™, B € R™*P are constant matrices and
the pair {4, B} is controllable, a = a(T(z)) € RP and
b = b(T'(z)) € RP*P are with elements being functions
of z, and b is invertible on M. It is then trivial to use the
feedback control u = b_l(v — b), where v is a new con-
trol input, to bring the system (2) into a pure linear control
system £ = A¢ + Bu.

This is the so-called feedback linearization problem by
using static state feedback. The above problem formula-
tion appears slightly different from but, of course, is equiv-
alent to the those addressed in [1]-[5].

The feedback linearization problem has attracted con-
siderable attention in 1980s. The problem was posed and
solved in [1] under sufficient conditions for the single-input
case. An appealing solution under necessary and sufficient
conditions was further given in [4]. In [2] and [5], the re-
sults of [1] and [6] were generalized to the multi-input case
and the corresponding necessary and sufficient conditions
were obtained. In the book [7] a set of necessary and suf-
ficient conditions for the feedback linearization are neatly
represented. The reference [8] is an excellent survey on
the feedback linearization and other related problems, see
also comments provided in the bibliographical notes in [7].

Compared with the treatment of the single-input case,
the known derivations of the solution for the multi-input
case are considerably complicated. This prevents a ready
understanding of the multi-input solution compared with
that for the single-input case.

The objective of this paper is to derive the multi-input

D
solution in a manner analogous to the single-input case.

The derivation provides not only insights into the problem
but also a simple procedure for constructing the coordinate
transformation required in the feedback linearization.

A crutial technique in dealing with feedback linearisa-
tion problems is the use of the Brunovsky form of a con-
trollable pair {A, B} as initiated in [9]. The treatment in
this paper follows still this line. But, instead of the original
form, a condensed Brunovsky form is used, which simpli-
fies the essential equation formulation as well as derivation
and expression of the solution considerably.

The notation in this paper is quite standard. Let o € R,
B € R arid v € R™*! be respectively smooth func-
tion, covector field and vector field of real variables x =
[ 21 -+ ], where (-)’ stands for the transpose of
(-)- The Lie derivatives of o, 8 and -y by an n-dimensional
smooth vector field f are Lya = g—‘; fs

bip=1 (L) +02L, adpy= 2052y

The short notation dax = a 2 will also be used. The well-
known Leibniz formula under Lie differentiation is

Ls (B, 7) = (LB, 1) + (B, ads) ©)

where (-, -) denotes the inner product, e.g. (8, v) = B7.
Repeated Lie derivatives of o, 3 and -y by f are defined
by induction: Lo = Lf(L’;_la), Lk = Lf(L'}_lﬂ),

adky = adg(ad’ ') with LYo = o, LY8 = fand
ad ="
For simplicity, the notations L¢cx, L;3 and adyy are,
by abuse, stillused wheny=[ 71 -+ Vm |
1 B
a=| : |, p=| : @
am /Bm .

where «;, 3; and y; are real smooth function, covector fields
and vector fields, respectively. In such circumstances, L s,



L (3 and ad -y are understood as

Liay L¢f
Lia= : » Lgf= :
Lyo, L¢Bm
adgy=[ adpy1 -+ adsym |
and furthermore L. o means
) Ly Lya; -+ L,,0n
La=| : |=| :
Lyam Lyam -+ Ly o;m
At places the notation, e.g., 8 = col.[ B1 -+ B |

is also used to indicate the same 3 as given in (4) to save
space.

2 Condensed Brunovsky form

The coordinate transformation ¢ = T'(z) with feedback
control u = b~!(v—b) preserves controllability of the sys-
tem (1). Hence, a necessary condition for the feedback lin-
earization is that there exists an m-tuple of integers
{k1,- -, km}  with, after  reordering  {g:},
kv > -+ > ky > Oand ) ;v ki = n, such that
rank G(z) = n on M, where

G = [91 adrgr -+ adf g
ad’;”‘_lgm]

is called the controllability matrix and {k1,---,kn} the
controllability indices. A formal proof of the requirement
of nonsingularity of the controllability matrix will be given
in Section 3.

A controllable pair { A, B} with the indices {k1, -+, km }
is said to be in the controllability controllability form [11]
if A = diag (Ay,---, An), B = diag (B1, - - -, By, ), where

9m a'dfgm

aig v ottt ALk 1
1 0 0

Ai = . . ) B'L' = . 3 (5)
1 0 0

A; € RFxk:i B, € R*¥X1 g ;s are generally non-zero
constants.

Ifin (S)alla; ; = 0, { A, B} is said to be in the Brunovsky
form [10; 11]. A controllable linear system can always be
transformed into the Brunovsky form via a state coordinate
change and static state feedback control.

By grouping together vector fields of the same order Lie
derivatives in G, an equivalent controllability matrix is
given by

G = [91  9po a’dfgl a’dfgm
ad’;_lm ad’;_lgpk_1] ©)

wherep=po > -+ > pp_1 > 0,k = kp, Zi:olpi =n.
Clearly, there exists a one-to-one correspondence between
the p-tuple {k1, - - kp} and the k-tuple of {po, - - - , p_1 }.

The following theorem introduces a compact version of
the controllability form which is referred as to the
condensed controllability form.

Theorem 1 For a controllable pair { A, B} with the in-
dices {po, - - - , px—1} a nonsingular constant matrix P can
be determined such that {A, B} can be transformed into
the condensed controllability form

X e X BO

o, B0 0
PAP™ = , PB= )

E,_, 0 0

where |Bo| # 0, E; = [ ey, --,ep, | € RPi-1%XPi ¢,
is the ith column of the p;_1-dimensional identity matrix,
and ’x’ denotes some matrices of no interest.

Proof. According to the matrix pencil decomposition
technique [12], via orthogonal transformations, {A, B}
can be transformed into the staircase form

X e X B;
’ . : 0

A~] A 1, B~| . |. ®
k-1 X 0

where A; € RPi-1XP:i 4§ =1, ... k —1 have full column

rank, |B;| # 0, and ’ X’ denotes matrices whose values are
of no particular interest. Here A ~ A and B ~ B mean
PAP~! = Aand PB = B, where P is a nonsingular
matrix.

Denote the matrices in (7) as

X X X X B

= | A_g X X X = 0
A= 0 4., x x|’ B=1|
0

0o 0 A, X

Since Aj,_, has full row rank, there exists a nonsingular
matrix, say P; ", such that A} ,PY = E. . Let

I 0 0 0
p_|0I 0o o0

LT 0 0 By BeaApx |2
0 0 0 I

where Af | = Ag_1(A,_;Ak_1)"L. Then, with P_1,

X X X X B
li
il Moz X X X 5 |0
A8 Badl ., x x| B
0 0 1.0 0



Hence, by repeating the above procedure, it is easy to ver-
ify that A and B can further transformed into the form (7)

where By = P1 1B, 0O
Clearly, for the single-input case, aspg =+ -+ = pg_1 =
By =-.-=Ej_1 =1with k = n and By = constant #

0, PAP~! and PB in (7) are reduced to A, and B; de-
fined in (5).

Consider a linear system & = Az + Bu with {A, B}
being in the form (7). It is readily to find a feedback con-
trol, say u = Kz + v, such that in the closed-loop system
matrix A + BK all > x’ matrices in (7) can be eliminated.

For the similar reason, as no particular assumptions on
matrices @ and b, except nonsingularity of b, in (2) have
been made, all terms ’ x” and By in (7) can be included in
a and b in (2). Hence, the following proposition is imme-
diate.

Proposition 1 The feedback linearization problem is solv-
able iff there exists a coordinate transformation £ = T(x)
on M such that (1) can be transformed into (2) where
{4, B} is in the condensed Brunovsky form

0 I
;o 0

A= E1 -- ' , B = : . (9)
E,, 0 0

From this proposition, the remaining part of the paper
will focus on finding the state coordinate change £ = T'(x)
which transforms (1) into (2) where A and B take the sim-
ple block forms shown in (9).

3 Essential Conditions

This section derives several fundamental conditions re-
quired in solving the feedback linearization problem.

Proposition 2 Ifthe feedback linearization problem is solv-
able, then there exists a k-tuple of {po, - - - , Dk—1} such that
rank G(z) = n on M, where G is defined in (6).

Proof. Let £ = T'(z) be the coordinate change trans-
forming (1) into (2). Then,

§=fe+geu, fe=AE+Ba, ge=Bb.

It can easily be verified that, forj =1,---,n— 1,
j—1
o} ge = (1 AIBb+ Y A'Bn,
=0
where 77; € RP*? contains some smooth vector fields of
no interest, and therefore that

rank[gg ads, ge -+ ad}‘;lgg]
= rank[ B AB A™B Jb=n (10

as the pair {4, B} is assumed to be controllable and b is
nonsingular. Moreover, the commutative property of co-
ordinate changes and Lie derivatives of vector fields [13]
implies that ad’ . g¢ =dT ad’ +9 which, due to the nonsin-
gularity of dT° and 10y, leads to

rank [ g adpg - a,d:f_lg]:

This guarantees thata k-tuple of {po, - - - , pr—1 } exists such
that rank G = n. m|

As pointed out in Section 2, {A, B} in (2) can be as-
sumed, without loss of generality, being in the condensed
Brunovsky form (9). Hence, some simple structure restric-
tions on the transformation T'(x) are implied by (9)
as shown in the following proposition.

Proposition 3 Assumerank G = n and G has the control-
lability indices py, - -, pi_1. Let

T=col.[T}y T, - Ty], T;eRP

transform (1) into (2) with A and B being in the form (9).
Then, the following relations hold

L,T;=0, L{T;=E!_Ti_1, i=2, - k(1)
L,Ty=b, L;iTi=a. (12)

Proof. A comparison of T = dT(f + gu) with T =
AT 4 B(a+ bu) leads immediately to these relations. O
Use the notation, fori =1,---,k — 1,

Givi=[Gi adigw |, 90 =[91 - gp ] (13)

and define Gy = gy = ¢

The proposition below indicates the equivalence between
L,T; = 0and (dT;, G;—1) = O under the condition
LiT;=FE_T;_1.

Proposition4 If L;T; = E;_ T, 1,1 = 2,---,k, hold,
then, fori =2,---,k,

LgTi =0 < <dT7,, G,;_1> =0. (14)

Proof. Note that *<’ is obvious, only *=>" needs to be
proved.

Clearly, (14) is true for 1 = 2. Suppose that (14) holds
fori = j. Usethenotation G; = [ g adsG;_1 |. Then,
by the construction of G given in (6), span G; = span Gj.
Here, span D stands for the distribution spanned by vector
fields contained in D [71.

Hence, (dTj41, G;) = 0iff (dT}41, G;) = 0. More-
over, the left hand-side of (14) implies (dTJ_H, g) = 0for
j = ,k — 1. Hence, (dTjy1, G;) = O iff
(dTj41, adfGJ_l) = 0. By the Leibniz formula (3) and
from L;T}; 1 = ETy,

(dTj11, adsGj-1)
= Ly (dT541, Gij1) — (L5(dT541), Gj-1)
= Ly (dTj11, Gj—1) — Ej{dT}, Gj_1) =0-0=0.



This inductive step verifies (14).

In the above equation, (dT};, Gj_1) = 0 is clear by the
inductive assumption. Ly (dT}41, Gj-1) = 0 needs fur-
ther verification. In fact, (dT}1, Gj—1) = 0is to be
proved in the following.

As Gjo1 = [ 90 adsgq)
(dT;41, Gj-1) = 0 is equivalent to

(dTj41, adsgyy) =0,
Clearly, due to the first set of equations in (11), (15) is true
forl =0.

Now suppose (15) is true for | = q. Then, forl =q¢+1
(£75-2),

<de+1, ad?+19(q+1)>
Ly <de+1, adqu(q+1)> - <Lf(de+1), ad?fg(q+1)>

Ly <de+1, ad',’cg(q+1)> - Ej <de7 ad;’cg<q+u>

ad} %g(; ) ],

1=0,1,---,5—2. (15)

which is identical to zero owing to the facts that
<de+1, ad} g(q)> =0 implies <dT]-+1, ad?c g(q+1)> =0as
gg+1) € 9g(q and that (dT};, G;_1) = 0 implies
<de, ad;g(q+1)> — 0. 0

4 Coordinate Transformation

This section characterizes the coordinate transformation
which solves the feedback linearization problem under nec-
essary and sufficient conditions. The proposition below is
useful.

Proposition 5 Let T; (7 < k) be a solution to
(dTy, Gj-1) = O with dT; having full row rank. Then

<L§;—ide, Gi> =0, i=2,-+,j (16)
and, fori=1,---,7,
rank <L§:ide, adjc_lg(i_l)> =dimT;.  (17)

Proof. Firstly, (16) holds fori = j. Suppose (16) is true
fori =1, then,fori=1-—1,

(14 Var;, Gis)

= Ly (LT, Gig) — (1 'am;, adsGi-3)
= 0-0=0.
This is because G;_2, adyGj_2 C span G;_; by construc-

tion of the controllability matrix G. Thus, (16) is proved
by induction.

To prove (17) inductively, let i = 7, then (17) is obvi-
ously true by assumption. Now, suppose that (17) is true
for i = I. For ¢ = [ — 1, direct computation gives

i—(-1) -2
<Lf dT;, ad; g(z-2)>

il _ . B
= Lf<L‘§c dry;, adlf 2g(1_2)>—<L;c lde, adﬁc lg(l_2)> .

Due to (16), <L§;_lde, adlf—2g(l_2)> = 0. Moreover,
note that <L§¢"lde, adlf_lg(l_l)> has full row rank and
that g _1y € g(;—2)- Hence, <L§;‘lde, adi:lg(l_z)> and
thus <Lf,_(l_1)de, adlf_zg(l_g)> have full row rank. O

Remark 1 For the single-input case, by setting j = k =
n, (16) and (17) are reduced to the well-known relations

<L}z—idTn, adff'—lg> —0,i=2 =1, i1
and (L} ~dT,, adi7'g) £ 0,i=1,--,m, respectively.

Corollary 1 IfT; (j < k) is a solution to (dT;, G;_1) =
0 with dT’; having full row rank, then all covector fields in
the set {L}_szj, i=1,---,j} are linearly independent.

Proof. In view of (16), direct computation gives

LTy Ci x - X
] —2 . .
L]f dTJ G _ CZ
: .ox
dT; C;

with C; = < Lffide , adjfl g(i_1)>, which leads to what
is to be proved by virtue of (17). O
The following is a key, though simple, lemma.

Lemma 1 The feedback linearization problem is solvable
iff the equations

@T;, Gi_)=0, LiT,=E.  Ti_1, i=2,---,k (18)

have a solution T = col.[ Ty T Ty | with

<dTi, adif_lg(i_l)>, i =1,---,k, being nonsingular on

Proof. If the feedback linearization problem is solvable,
necessity of (18) is implied by (11) and Proposition 4.
Moreover, dI" and, by Proposition 2, G must be nonsin-
gular. From the first relation in (18), it is straightforward
to obtain

D x - X

D,

dIrG = 19)

Dy,



with D; = (dT;, ad}_1 g(i_1)>. This verifies the require-

: . i—1
f nonsingularity of \dTi, ad 5 96-1)-

Now suppose that 7T = col. [ N Ty -0 T ]
is a solution satisfying (18) and with <dTi, ad?f1 g(i_1)>
being nonsingular on M. Then, direct computation leads

LTy L1y
ETy 0

= i (f+Q'U) = . - . (74
\; Ellc—lTk—l J [ 0 J

where @ = LT and b = L,y = (dI1, g) which is
guaranteed to be nonsingular. That is, T = dT(f + g u)
is indeed in the form (2) where A and B have the forms
of (9). Finally, as nonsingularity of dT" is implied by (19),
¢ = T'(z) is a diffeomorphism on M. O

In view of Lemma 1, to solve the underlying problem
it needs only to find existence conditions and a solution to
the equations given in (18).

Theorem 2 The feedback linearization problem is solvable
iff both the following conditions hold

(a) rank G(z) = n on M, where G is the controllabil-
ity matrix with the controllability indices of the k-
tuple {py, - - -, pr—1} as defined in (6);

(b) the distributions A; = spanG;, i = 1,---,k — 1,
are involutive on M, where G is defined in (13).

In case (a) and (b) hold, the solution of the feedback lin-
earization problem is givenby T = col. [ o I ],
T; € RP:i-1 with

_ | Tia | _ | LiTin 1k
TZ_[TM}_[ Rt i=tek-100

where both Ty, and T; o with d1; and dT; 5 having full row
rank are determined via

(dTy, Gg—1) =0, {(dT;p2, Gi—1) =0 @2n
dTi2 € span{L;dT;yy, dTiqq, -+, dTk}, (22)

t=1,---,k — 1, respectively. Here, define Gy = 0.

Proof: Necessity of (a) follows from Proposition 2. In
view of Lemma 1, the existence of T; with dT;; having full
row rank and satisfying (dT;, G;—1) = 0 is required for
the underlying problem to have a solution. This verifies
the necessity of (b) by virtue of the Frobenius theorem [7,
13].

Now let (a) and (b) be satisfied. Again by Frobenius’
theorem, the solutions of T and T5 o with with dT} and
dT; » having full row rank and satisfying (21) and (22) do
exist because dim7T;, = dimAj;_; and dimT;, =

dim Af- , — dimspan {L;dT; .1, dTiyq, - -, Ty}, i =
1,---,k—1. Here, A" represents the codistribution spanned
by all covector fields orthogonal to the distribution A [7].

From Lemma 1, it remains only to prove that the solu-
tion given in (20) satisfies (18) and that all
< dT;, ad}_1 g(i_1)> are nonsingular. Owing to the special
structure of E; 4, the second set of equations in (18) are
clearly satisfied by (20).

By definition of T}, in (20), the first equation in (18) is
satisfied for ¢ = k. Now, assume that (dT};, G;_;) = 0
is satisfied by T; given in (20) for ¢ = j. By the Leibniz
formula (3), direct computations lead to

dT5r. Gy = | (Li9T5 Gima) ] _
S T el Gyeg) |

[ Ly (dT}, Gj—2) . (dT;, LyG;_5) ] - [ 8 ] .

This inductive step proves that (20) satisfies (18).

Finally, by construction and due to Proposition 5,
{dTy,---,dT%} contain linearly independent covector
fields. Hence, from (19), all <dTi, adﬁc_lg(i_l)> must be
nonsingular.

If the controllability indices {py, - - - , px—1} satisfy some
simple relation, for instance in the single-input case, the
solution (20) can considerably be simplified. Corollary 1

and the above theorem lead to the following corollary im-
mediately.

Corollary 2 Ifrank G(z) = n on M with the controlla-
bility indices {po, - - - , pr—1} satisfying pg = - - = pg_1,
then the feedback linearization problem is solvable iff the
distribution Gy, is involutive on M and in which case,
the solution is given by T' = col. [ o o T ] with

Ti=LfTiyr, i=1,--k-1 (23)

where Ty, with dT}, having full row rank is determined via
(dT, Gi—1) =0.

Evidently, the solution (23) is equally simple as the so-
lution for the single-input case where pg = - -+ = pp_1 =
land k = n.

The following example taken from [7] illustrates the de-
sign aspect of the proposed solution.

Example 1 The system

Zo + T3 1 0
T3 — T1T4 + T4Ts 0 0
= | zoza+ziz5—22 | + | 1 cos(z1—x5) |u
Ty 0 0
z2 1 0

as analysed in [7], satisfies all conditions of Theorem 2
around the neighbourhood M of 2y = 0. In the following
itis to show how the coordinate transformation required in



the feedback linearization can easily be found by using the
solution formulated via (20-22).
The controllability matrix is given by

G=1g|adsg|adig | =

1 0 0 0 14229
0 0 -1 cos(z — z5) 0

1 cos(zi—z5) | —21 + 35 —x2sin(ri—25) T4

0 0 -1 0 0

1 0 0 0 215

with indices pg = p; = 2, p = 1.

T3: Ttiseasytoobtaindl3=[1 0 0 0 —1]asa
solution satisfying (dT3, Go) =dT3 [g adsg]| =
0. Hence, T3 = 1 — xs.

Tp: As  LydTs = [01 00 0],

dI32=[0 0 0 1 0 ] ¢span{LsdTs, dT3}
is obviously a solution to {dT5, G1) = dTag = 0.

meti= [ 2<%

T3: Since pg = p1,
0T —X1%4 + Tax5 + T3
Ti=L{lh=—=f= .
! Fi2 oz f [ 5

Finally, it can be verified that
—ZL1Z4 + T4ZT5 + X3

T1 Is5
T = T2 = T2
T3 T4

Iy —Ts

is the desired transformation.

5 Conclusion

A condensed controllability/Brunovsky form has been
introduced to deal with the feedback linearization problem
for multi-input nonlinear control systems. By using this
condensed form in the problem formulation, the underly-
ing problem has been treated in a more compact manner.
As the derivation is in many respects similar to the known
treatment in the single-input case, more direct insights have
therefore been provided in the solution of the multi-input
case. Infact, the derivation has been unified for both single-
input and multi-input cases. Owing to the compact formu-
lation, the proposed solution shows a clearer structure than
previous solutions in [2, 5, 7].

The use of the condensed controllability/Brunovsky form
makes it possible to derive the multi-input solution in a man-
ner analogous to the single-input case. It is believed that
the use of the the controllability/condensed Brunovsky form
could benefit derivations of many related problems in multi-
input multi-output control systems. Even in the linear sys-

tem case, the condensed controllability/Brunovsky form should

be of

value in designing feedback control. For instance, the dead-
beat controller design for the discrete-time linear systems

may be one of such examples.
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