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Abstract 
This work presents synthesis of adaptive identifiers 

for distributed parameter systems (DPS) described by partial 

differential equations (PDE’s) of parabolic, elliptic, and 

hyperbolic type. The fundamental concept of identifiability 

is studied. Adjustable parameters in the adaptive identifiers 

proposed are shown to admit simultaneous convergence to 

their nominal space-varying values when an appropriate 

input signal is used. The class of sufficiently rich input 

signals referred to as generators of persistent excitation is 

defined. This class guarantees the existence of a unique zero 

steady state for the parameter errors, thereby yielding 

unknown plant parameters. 

Keywords: distributed parameter system, identifiability, 

persistent excitation, adaptive identifier, 

Lyapunov functional. 

I. Introduction 
Adaptive identification [l] assumes construction of a 

model, parameters of which evolve in time and 

asymptotically converge to the unknown parameters of the 

plant. Due to the relative simplicity of implementation and 

some degree of robustness with respect to small perturbations 

of the plant dynamics adaptive identification of lumped 

parameter systems found practical applications both by itself 

and as a part of an adaptive control system. 

Some of the general ideas used in the paper, such as the 

use of Liapunov function for the adaptive identification in 

distributed parameter systems have appeared in the literature 

PI. The first richness-like condition for parameter 

identifiability in DPS, namely elliptic PDE, was introduced 

by Baumeister and Scondo in 1987 in [3]. Subsequently, the 

use of persistency of excitation for parameter identification 

of parabolic PDE’s as a part of an adaptive control law, and an 

infinite dimensional analog of Barbalat’s lemma for 

convergence proof, was introduced into distributed parameter 

systems by Bentsman and Hong in 1991 [4]. This topic was 

further developed by them in a series of papers [5-121, 

including the case of the spatially and time-varying 

parameters in the works with Solo [7, lo]. 

Following this work, Demetriou and Rosen and co-workers in 

a series of papers (cf. [13, 141 and ref. in [14]) generalized the 

above results to abstract setting, including hyperbolic and 

implicit parabolic PDE’s. 

The previous work on adaptive identification of parameters in 

parabolic and hyperbolic PDE’s, however, utilized the second 

spatial state derivatives, thereby making the algorithms very 

sensitive to noise and/or nonsmoothness of solutions and 

greatly reducing their applicability. The only exceptions 

where second spatial derivatives are not used are the works 

[29, 301 and related works by the same authors. These works 

treat only single parameter in elliptic and parabolic equations 

and do not mention persistency of excitaion, which is not 

required for the problems considered therein. 

The contribution of the present work is threefold: it 

introduces the adaptive identification laws that do not require 

second spatial derivatives of the state, presents explicit 

persistency of excitation-type conditions for the 

identifiability of space-varying DPS described by PDE’s of 

parabolic, elliptic and hyperbolic types, and extends the 

adaptive identification within this framework to a class of 

implicit hyperbolic pde’s, i.e. the ones with an unknown 

parameter in front of the highest time derivative. Distributed 
sensing is assumed to be available. The L2 convergence of 

parameters is shown, which also leads to the pointwise 

convergence under additional smoothness assumptions. The 

synthesis is carried out in the infinite-dimensional setting, 

yielding algorithms, the numerical approximation of which 

can be carried out at the implementation stage. 

The following mathematical models of DPS are used 

subsequently: 

(8 a heat conduction parabolic PDE with spatially 

varying coefficients which has the form 

p(x)4 = [k(x)Q’]’ - q(x)Q +f(x,f),O < x < 1.1 > 0, (1.1) 

Q(x,O)=Q,(X),OIXS~ 

with the homogeneous Neumann boundary conditions 

Q(O,f) = Q’(l,t) = 0,t > 0 (l.la) 

or nonhomogeneous Dirichlet boundary conditions 

Q(W) = P,($Q(Lf) = P,(& > 0; (l.lb) 

(ii) a steady state regime of the heat equation which has 

the form of an elliptic PDE 

[k(x)Q’]’ - q(x)Q + p(x) = 0.0 < x < 1, (1.2) 

Q’W - Q’(1) = 0, (12a) 

Q(O) = Co> Q(l) = Cl. (1.2b) 

with 

To = ~&(a r* = w31(0. 

limj~[p(x) - f(x,f)]2dx = 0 us f + 00; (1.3) 

(iii) a vibrating string hyperbolic PDE with spatially 

varying coefficients which has the form 

p(x)4 = [ze(x)tY]’ - g(x)8 + y(x,t), 0 < x < 1, f > 0, 



2 

6(x,0) = e,(X), b(x.0) = e1 (x). 0 < x < 1 (1.4) 

with the homogeneous Neumann boundary conditions 
fY(0.f) = fY(1.f) = 0, f > 0 (1.4a) 

or nonhomogeneous Dirichlet boundary conditions 

6qO.f) = w,(t), 0(l.f) = q(f). f > 0. (1.4b) 

Equation (1.1) describes the propagation of heat in a 

one-dimensional rod, insulated at both ends in the case of 

boundary conditions (l.la) or with a given temperature at the 

ends in the case of boundary conditions (l.lb), where 

k(x) > 0 is a smooth heat conduction coefficient, q(n) 2 0 is 

a continuous coefficient of the heat exchange with the 

surroundings, p(x) > 0 is a continuous heat capacity, 

~(x,t),p,(t),/3l(f) and Q,(x,f) are sufficiently smooth 

external and boundary inputs and an initial condition. 

Equation (1.2) describes a steady state regime of the 

temperature field. 

Equation (1.4) describes the oscillations of a string 

with fixed ends in the case of boundary conditions (1.4a) or 

with the specified ends motion in the case of boundary 

conditions (1.4b), where e(x) > 0 is the smooth elasticity 

coefficient, p(x) > 0 is a continuous density coefficient, g(x) 

1 0 is a continuous restoring stiffness coefficient, and y(x,t), 
w,(t), wl(t), qo(x), ql(x) are sufficiently smooth external and 

boundary inputs and initial conditions. 

The above assumptions guarantee existence, 

uniqueness, and smoothness of the solutions of the boundary 

value problems [19]. In the case of the nonhomogeneous 

boundary conditions the solutions of the above parabolic and 

hyperbolic equations are understood in a mild sense [17] as a 

result of the convolutions of the input functions and Green 

functions of the corresponding boundary value problems. 

This work demonstrates that it is in principle possible 

to simultaneously identify all spatially distributed plant 

parameters both in the case of heat processes (1.1) and that of 

mechanical oscillators (1.4). In the steady state (1.2) only 

one of the two parameters k(x) and q(x) is identifiable under 

the assumption that the other parameter is known in advance. 

For the classes of DPS considered, the sufficient 

identifiability conditions for the unknown parameters are 

given, which place additional constraints on the external and 

boundary inputs. 

The main result of the present work is the construction 

of the adaptive identifiers of the spatially varying 

coefficients for heat process (l.l), steady state regime (1.2), 

and vibrating string (1.4) under the assumptions that 

unknown parameters are identifiable and the system state and 

input functions can be measured at all points of n E [O,l] and 

120. 

The adaptive identifiers are represented as error 

systems describing the evolution of the state error and the 

parameter error. The state and the parameter error systems 

take the form of PDE and ODE (ordinary differential equation), 

respectively. The justification of the convergence of the 

tunable parameters of the adaptive identifier to the parameters 

of the plant is based on the extension to the infinite- 

dimensional case [20] of the method of Lyapunov functions 

with nonpositive derivative along the system trajectories. 

For the boundary conditions considered, Lyapunov functional 

with nonpositive time derivative along the solution of the 

coupled identifier-plant system is constructed. It takes zero 

values on a certain manifold in the state space. A sufficiently 

rich input signal, called a generator of persistent excitation 

guarantees the absence of the nontrivial trajectories on this 

manifold, and thereby ensures the existence of a unique zero 

steady state for the parameter errors. Since the identification 

problems considered are ill-posed 12,161, the regularization 

principle [21,22] is used to justify the well-posedness of the 

algorithms proposed. 

The identification algorithms proposed here for 

Neumann and Dirichlet boundary conditions do not admit easy 

generalization to nonhomogeneous Neumann boundary 

conditions and to the mixed homogeneous and 

nonhomogeneous boundary conditions, since in these cases 

the expressions for the derivatives of the corresponding 

Lyapunov functionals contain the terms linearly dependent 

on the parameter errors which can take positive as well as 

negative values. The numerical simulation of the adaptive 

identifier of the heat process with mixed boundary conditions 

confirmed the lack of the parameter convergence in the case 

of mixed Neumann and Dirichlet problem. 

For simplicity, the presentation here is limited to one 

space variable; however, the extension to the case of several 

spatial variables is straightforward. This, in particular, 

permits the use of the results presented in this paper for the 

identification of the parameters of geophysical and 

electromagnetic fields, described by the two- and three- 

dimensional elliptic PDE’s. We also note that for a vibrating 

beam described by fourth-order hyperbolic PDE [19] a similar 

plant identifier can be designed as well. 

The paper has the following structure. Section II 

introduces formal definitions of the parameter identifiability 

for systems (1.1). (1.2), and (1.4). The class of sufficiently 

rich signals which ensure parameter identifiability is 

presented in Section III. Design of adaptive identifiers is 

given in Section IV. Finally, Section V presents the 

conclusions. 

II. Parameter Identifiability 
In the present work identifiability is understood as a 

uniqueness of the solution of the parameter identification 

problem for a given set of measurements. We restrict our 

consideration to the full state information case when 

distributed sensing is available. Below, the identifiability 

concept is specialized for each class of the DPS considered. 

A. Heat Processes 
Along with the system (l.l)-(l.la) ((l.l)-(l.lb)) 

consider its model in which k(x), r(x), q(x) are replaced by 

L(x), p(x), q(x), respectively. The output error AQ between 

the system state Q(x,t) and the model state &x,t) and 

parameter mismatch, Ak, Ar, and Aq are given by 
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AQk I) = Qb. I) - fk 0. M(x) = k(x) - i(x), 
(2.1) 

A/%x) = p(x) -/Xx,, Aq(x) = q(x) - q(x), 0 s x -s 1, t 2 0. 

Definition 2.1 A set of parameters (k(x), r(x), 

q(x)] of the heat process (l.l)-(l.la) ((l.l)-(l.lb)) is 

identifiable under external input f(x,t) (and boundary inputs 
b,(t), bl(t)) if the relation 

AQ(x,f) = 0 for all x E [ o,I], t 2 0, 

or, equivalently 

(2.2) 

Ap( = [Ak(x)Q’]’ - Aq(x)Q, 0 S x S 1, I Z 0, (2.2a) 

implies that 

&k(x) = 0, Ap(x) = 0, Aq(x) = 0 for all x E [o,I]. (2.3) 

The identifiability of a subset of parameters (k(x). 

r(x), q(x)) can be defined similarly. The next section presents 

the sufficient conditions for the simultaneous identification 

of parameters k(x), r(x), and q(x). 

B. Steady State Regimes 
Unlike in the case of heat processes, simultaneous 

identification of parameters k(x), q(x) in the steady state (1.2) 

- (1.2a) or (1.2) - (1.2b) is impossible in principle 
irrespectively of which external inputs p(x) (and boundary 

conditions x0. xl) are used. Indeed, let us choose an interval 

(x03 xl), on which a solution Q(x) of a boundary values 

problem (1.2) - (1.2a) or (1.2) - (1.2b) differs from zero. 

Note, that the identically equal to zero solution Q(x) = 0 under 

zero external excitation a priori carries no information about 

coefficients k(x), q(x) and admits arbitrary choice of these 

coefficients. Then, according to Eq. (1.2) the value of 

parameter q(x) on this interval is defined uniquely: 

q(x) = 
1 

[WQW]’ + ID(x)} I Q(x), x0 s x -S xl 

via the value of parameter k(x) which in turn can be smoothly 

varied on this interval. 

Referring to the above discussion, consider the steady 

state (1.2) in which one of the parameters k(x) or q(x) is 

replaced by i(x) or q(x), respectively. The output error AQ(x) 

and parameter mismatch Ak(x) or Aq(x) are given as before. 

Definition 2.2 Parameter k(x) is identifiable in a 

steady state regime (1.2) - (1.2a) ((1.2) - (1.2b)) under 
external input p(x) (and boundary conditions x0, xl) if the 

relation 

AQ(x) = 0 for all x E [o,I], 

or, equivalently 

(2.4) 

[A~(~)QR]’ = o, o s x 5 1, (2.4a) 

implies that 

M(x) = 0 for all x e [O,l]. (2.5a) 

The identifiability of parameter q(x) is defined similarly. 

Definition 2.3 Parameter q(x) is identifiable in a 

steady state regime (1.2) - (1.2a) ((1.2) - (1.2b)) under 
external input p(x) (and boundary conditions x0, xl) if the 

relation (2.4) or, equivalently 
Aq(x) Q(x) = 0, 0 I x I 1 (2.4b) 

implies that 

Aq(x) = 0 for a21 x E [0.1]. (2.5b) 

Fairly simple necessary and sufficient conditions of the 

parameter identifiability in the steady state regime will be 

presented in Section III. 

C. Vibrating Strings 
Along with the system (1.4) - (1.4a) ((1.4) - (1.4b)) 

consider its model in which a(x), p(x), g(x) are replaced by 
a(x), F(x), g(x). respectively. Let us introduce the following 

notations: 

Ae(X,f) = e(X,f) - @X,f), A=(X) = z(X) - g(X). 

(2.6) 
&p(x) = p(x) - B(x), A&x) = g(x) - i(x), 0 5 x 5 1, f 2 0 

where q(x,t) is the system output, and &x,r) is the model 

output. 

Definition 2.4 A set of parameters (Z(X). p(x), 

g(x)) of the vibrating string Eq. (1.4) - (1.4a) ((1.4) - 

(1.4b))are identifiable under external input y(x,t) (and 
boundary inputs w,(t), wl(t)) if the relation 

AB(x, f) = 0 for all x e [ 0, 11, t 2 0, (2.7) 

or, equivalently 

Ap( = [A ie(x)@]’ - A&x)0, 0 2 x I 1. f 2 0, (2.7a) 

implies that 

A z(x) = 0, Ap(x) = 0, Ag(x) = 0 for all x E [0,1]. (2.8) 

For the vibrating strings as well as for heat processes it is 

possible to identify the whole set of parameters (g(x), p(x), 

g(x)). 

III. Sufficient Conditions of the Parameter 
Identifiability 

Identification of the spatially varying parameters 

places certain requirements on the input functions. The class 

of sufficiently rich input signals referred to as generators of 

persistent excitation is defined in this section. This class 
guarantees the identifiability of the plant parameters. 

A. Persistent Excitation of the Heat Process 
The concept of persistent excitation of the heat 

process is introduced as follows. 

Definition 3.1. External input f(x,t) (and 

boundary inputs P,(f)J$(f)) generates (generate) persistent 

excitation of the heat process (l.l), (l.la) ((l.l), (l.lb), 

respectively if Fourier coefficients I, (I), i,(l), n = 1.2,. . . o f 

the solution 

Q(x,f> = El 1, (f)m (x> (3.1) 

and its time derivative 

rib) = E, i, (f>r, tx) (3.la) 

of the Neumann (Dirichlet) boundary value problem (l.l), 

(l.la) ((l.l), (l.lb)) are linearly independent functions. 

The definition given above does not specify the 

particular orthonormal basis of functions 
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r,(x) E Z$(O,l) = {r(x):r’(O) = r’(1) = O,r”(x) E L2(0,1)},n = I,... 

(m(x) l Hi(O.1) = {r(x):r(O) = r(1) = O,r”(x) E %(O,l)}) 

used in the Fourier series, since, as it is shown below, the 

choice of basis can be arbitrary. 

The property of the input functions to generate 

persistent excitation of the heat process is a sufficient 

condition of the parameter identifiability. 

Proposition 3.1. If f(o) (and P,(t), P,(d) 

generates (generate) persistent excitation of the heat process 

with respect to orthonormal basis of functions 

r,(x) E ~~(O,l)(H~(O.l)).. n=1,2, . . . then it generates 

(they generate) persistent excitation with respect to arbitrary 

orthonormal basis of functions 

im(x) E i?;(o,l)(If;(o,l)),m = 1.2 ,... 

Proof: Along with (2.9) let there be a representation 

Q(a) = m~lim(~)&). Then 

i,(f) = 

~~Q(x.f)im(x)~ = ,~n~,l.(f)r,(x)i,(x)~ = n~,qJ,(f) 

and 

i(f) = Al(f), 

where a, = 

(3.2) 

JAi,(x)r,(x)&A = {a,}~,n=l.i = (\.G,...)‘.l= (11J2,...)T. 

Analogously to (3.2) obtain 

l(f) = A?(f), 

which obviously implies that A 
-1 

=AT. 

Assume now that functions im(f),im(f),m = 1,2,..., are 

linearly dependent, i.e. 

mFJa~im(f) + p;Qf)] = 0, 

where constants jiL,ji&.m = 1,2... are not equal to zero 

simultaneously. Then, taking into account (3.2) yields 

m~l[ii(~im(~)+~~~mt~)]=~n~~[B;lnt~)+~;nintf)]= 
, 

n~l[~,i,(f)+~;;in(f)]=or=i,2.... 

where constants 

m.l[iqJm(4+P;,i,(r)] = m~na,[F,I,tf)+iir,i,(r)] = 

nfl[p;l,(f)+B:in(f)] = ofl=u,.., 

are not equal to zero simultaneously by assumption and 

nonsingularity of the infinite-dimensional matrix A. But this 

contradicts the linear independence of functions I, (I), i, (1 ), 

n = 1,2, . . . . Consequently, functions S,(f),i,(f). m = 1, 2, 

. . . are also linearly independent. Thus, the proposition is 

proven. 

Theorem 3.2. If external input f(x,t) (and boundary 
inputs b,(t), bl (t)) generates (generate) persistent excitation 

of the system (1.1) - (l.la) ((1.1) - (l.lb)) then parameters 
k(x), r(x), q(x) are identifiable under f(x,t) (and b,(t) and 

h(O). 

Proof. Representing solution of the plant equation 

(1.1) - (l.la) ((1.1) - (l.lb)) as a Fourier series 

Q(x,f) = n~ol,W ~0s - 

and substituting it into (2.2a) yields 

Zt p(%) cos - i,(f) = 

-.5 {[Aq(x) + (zt~)~ Ak(x)]cos znx + ~cn U’(x) sin m}l,(f ), 

where Fourier coefficients I, (t) and their derivatives I, (1) are 

linearly independent by virtue of Proposition 3.1. Hence, 

[Aq(x) + (m~)~Ak(x+os mx = nn a’(x) sin ma, 

Ap(x) cos znx = 0, n = 0,1,2, . . . 

and validity of (2.3) follows due to the fact that function sets 

{cos m), {sin ?mx> have nonintersecting everywhere dense 

zero sets. This proves Theorem 3.2. 

Since solution (3.1) of the heat conduction Eq. (1.1) 

admits the explicit mode representation [15] given by 

In(f) = ~~Qo(x)r~(x)o!xe-a’“r + 

,~~-ahcf-“‘,~f(x,~)r~(x)dXd7,R = 1,2,... 

(3.3a) 

for Neumann boundary value problem (l.la) and 

In(f) = ~~Qo(x)r~(x)ake-a’nf +,~~-“:““-“,~fo(x.~)r~(x)drdr 

+ri’(O) ~~~-a~n’f-T)~o(T)dT-~‘(l)~~e-a~n(f-T)~l(T)dT,n = I,.. 

(3.3b) 

for Dirichlet boundary value problem (l.lb), where 

{Cn );cl - and {rL (X)}~~, ,i = 0.1 form a set of eigenvalues 

and orthonormal basis of eigenfunctions of the 

corresponding Sturm-Liouville problems 

[ 4xlritx,l - qtx)r,O(x) = -&p(x>r,“(x), 
r:(O) = r:(1) = 0, (3.4a 1 

and 

r:(O) = r:(l) = 0, 

the construction of the generator of the persistent excitation 

of the heat process is not difficult. In particular, for the zero 
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initial condition Q, (x) = 0 one can choose the following 

inputs as the generators of the persistent excitation: 

i) time-invariant external input 

f(x,f)=f,(r)=~~~f~-lco~R(n--1)~. (3.5) 

for nonzero Fourier coefficients 

f; = I;f,(x)dx # 0, f; =~~~fo(x)cos7r?Lx # 0. n = 1,2... 

(3.5a) 

for Neumann boundary value problem (l.la); in this case 

function 

im(f) = ?;(I- esazmf) 1 a&,i,(t) = f$-azmr,m = 1,2,... 

are linearly independent, since input Fourier coefficients 

j-; = I: f,(x&xW = nf, f,“-,JA cos[n(n - l)x]r&x) dx, 

m = 1, 2, . . . for eigenfunctions r:(x) are also nonzero due to 

the nonsingularity A-l = AT of matrix 

A = (a&): n=l, ark = JL cos[ sc(n - l)x]rz (x)& 

ii) time-invariant external input 

f(x,t) = flW = k, f: sin 7m-x (3.6) 

with nonzero Fourier coefficients 

f; =&.I: fl(X)Siu7r?X&,n=l,2,... (3.6a) 

and zero boundary inputs 

P,(f)=P1(f)=O (3.6b) 

for Dirichlet boundary value problem (l.lb); as in the 

previous case, functions 

i,(f)= It, f~(.~~~x~~(~-~a~~f)/a~~, 

i, (2) = Ii fl CxkX (x)dx e 
-aTmi 

( m = 1,2,... 

are linearly independent; 

iii) time-invariant boundary inputs 

P,(f) = v”, Pl(f> = v1 

and zero external input 

f(x,t) = 0 

for Dirichlet boundary value problem (l.lb), if 
, 

(3.7a) 

= vOr$(O)- v’rk(1) # 0, m = 1,2,...; 

in this case 

‘;( )I 

(3.7b) 

lm(l)= vm l-e 
-aTmt 

a;m.im(t) = vme 
-afmf 

, m=l, 

2 , . ..I are also linearly independent. 

Remark 3.1 It should be noted that r;‘(O) # 0 and 

r;‘(l) z 0, since otherwise r:(x) = 0 according to (3.4b). 

Hence, it is always possible to select constants no and n1 

such that relations (3.7b) are satisfied. 

Remark 3.2 The persistent excitation property of 

the input can be extended to the case of the multi-dimensional 

spatial variable, however the construction of the generator of 

persistent excitation in this case becomes more complicated 

if the corresponding Sturm-Liouville problem has roots with 

multiplicity. In this case, persistent excitation cannot be 

generated by boundary input or time-invariant external input, 

however time-varying external input with linearly 

independent Fourier coefficients can be the generator of the 

persistent excitation for a heat process with zero initial 

conditions. 

B. Identifiability Conditions for Steady 

Identifiability of parameter q(x) of a steady state (1.2) 

is equivalent to the uniqueness of solution of the linear 

State Regimes 

algebraic Eq. (1.2) with respect to q, which takes place if and 

only if 

Q(x) # 0 for almost all x E [OJ]. (3.8) 
Since according to (1.2) condition (3.8) holds only for 

functions j(x) which differ from zero almost everywhere, the 

identifiability of q(x) is equivalent to condition 

j(x) # 0 for almost all x e[O,l]. (3.9 
Identifiability of parameter k(x) of Eq. (1.2) is equivalent to 

the uniqueness of solution of linear differential Eq. (1.2) with 

respect to k(x). Integrating this equation yields 

'rn = vOrL(O)- vlrjfj(l) f 0, m = 1,2,... (3.1Oa) 

under Neumann boundary conditions (1.2a) and 

k(x)Q’(x) = I,” [dOQ(5, + &-)]4 + COME (3.1Ob) 

under Dirichlet boundary conditions (1.2b). Equation (3.1Oa) 

is uniquely solvable with respect to k(x) only in the case 

when 
Q’(x) # 0 almost for all x E [OJ], (3.11) 

which due to (1.2) is equivalent to the linear independence 

P,(X) f c,q(x)* co = const, x E (x1.x2) c IO.11 (3.12) 

of functions Q(X) and q(x) on any subinterval (xl, x2). 

For the unique solvability of Eq. (3.10b) under condition 

(3.12) it is necessary to assume additionally that 

3 x0 E [O,l]: Q’(x,) = 0. (3.13) 

Obviously, condition (3.13) can be always satisfied via a 
special choice of one of the variables x0 or xl. Thus, the 

identifiability of parameter k(x) of Eq. (1.2) is equivalent to 

condition (3.12) in the case of Neumann boundary conditions 

(1.2a) and equivalent to conditions (3.12). (3.13) in the case 

of Dirichlet boundary conditions (1.2b). 

The conditions obtained are formulated below in the 

form of a theorem. 

Theorem 3.3 Parameter q(x) is identifiable in the 

steady state (1.2) - (1.2a) or (1.2) - (1.2b) under external input 

j(x) if and only if condition (3.9) is satisfied. Parameter k(x) 

is identifiable in the steady state (1.2) - (1.2a) under external 

input j(x) if and only if condition (3.12) is satisfied. 

Parameter k(x) is identifiable in the steady state (1.2) - (1.2b) 
under external input j(x) and boundary conditions x0, xl if 

and only if conditions (3.12) and (3.13) are satisfied. 
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C. Persistent excitation of the vibrating 
string. 

The persistent excitation condition for the vibrating 

string unlike that for the heat process requires the linear 

independence of the time derivatives of the solution Fourier 

coefficients up to the second order. 

Definition 3.2 External input y(x,t) (and boundary 
inputs w,(t). wl(t)) generates (generate) persistent excitation 

of the vibrating string (1.4) - (1.4a) ((1.4) - (1.4b), 

respectively) if Fourier coefficients 5, (1). 4, (f), i,(c), n = 1. 

2 , . . . . of the solution 
Q) 

eb, 0 = C 
n=l 

5,(f) rn (x) (3.14) 

and its time derivatives 

kf) = 3 f,(f) r,(x), &-V) = n!l tnW m(x) (3.144 

of the Neumann (Dirichlet) boundary value problem (1.4) - 

(1.4a) (( 1.4) - (1.4b)) are linearly independent functions. 

Similar to Prosition 3.1 and Theorem 3.2, the 

following results take place. 
Proposition 3.4 If y(x,t) (and we(t). and wl(t)) 

generates (generate) persistent excitation of the vibrating 

string with respect to orthonormal basis of functions 

m(x) E ‘i,o(O,l)(H,O(O.l)). n = 1, 2...., then it generates (they 

generate) persistent excitation with respect to arbitrary 

orthonormal basis of functions im(x) E fi~(O,l)(H~(O.l)). m 

= 1, 2, . . . . 

Theorem 3.5 If external input y(x,t) (and boundary 
inputs we(t), wl(t)) generates (generate) persistent excitation 

of the system (1.4) - (1.4a) ((1.4) - (1.4b)). then parameters 
Z(X), p(x), g(x) are identifiable under y(x,t) (and we(t), and 

w1(t)). 

The proofs of Proposition 3.4 and Theorem 3.5 are 

similar to those of Proposition 3.1 and Theorem 3.2, 

respectively, and therefore are omitted. 

Since solution (3.14) of the vibrating string Eq. (1.4) 

as well as solution (3.1), (3.3), and (3.4) of the heat 

conduction Eq. (1.1) admits the explicit mode representation 

r171 

1 0 
t,(f) = IO ~,(x)z, (4 dx ~0s Yonf + ifA e,(x) z,O(x) dr sin yonf 

Yen 

1 I:, +- sin yen 0 - z)J: Wx, z,z,” (xW d7, 
Y Otl 

n=l, 2, . . . (3.15a) 

for Neumann boundary value problem (1.4a) and 

5,(f)=~~eo(X)Z~(X)dx~~~Ylnf+iJ~e1(*)Z~(X)drsinYlnf 
Yn 

+$sinyln(f - z)j; yl(x,s)z~(x)dr dz + z;‘(O)&in qn(f - z) x 

o,(z)dz - z;‘(l)$sinylJf - z)o,(z)dz, 

n=l, 2, . . . (3.15b) 

for Dirichlet boundary value problem (1.4b), where n=l 

and i = 0.1, form set of eigenvalues and 

orthonormal basis of eigenfunctions of the corresponding 

Sturm-Liouville problems , 
=cx,z,o’cx, 1 - d&(x) = -&P(X) 2,0(x). 

(3.16a) 

z,o’(O) = z;‘(l) = 0. 

and 

[=(&x)] - .dx)z; (xl = -&w 2; (xl, 2; (0) = 2; (1) = 0. 

(3.16b) 

the construction of the generator of the persistent excitation 

of the string also is not difficult. For instance, the following 

inputs generate persistent excitations of the string (1.4) 
under the zero initial conditions, qo(x) = 0, ql(x) = 0: 

i> time-invariant external input 

Y(W) = Ye(X) = nzl w;-1 cos 7c(n - 1)x, (3.17) 

with nonzero Fourier coefficients 

y; = iz, y, (x)dx # o, Iv,” = &J: ry,(x)cos imxiix + o, 
n=1,2,... (3.17a) 

for Neumann boundary value problem (1.4a); in this case 

functions 

5,(f) = Pi (1 - c0.s yo,f)/~~m . 4, (4 = ff; sin Y,~/Y, . 

@,(I) = @?~cosyomf, m = 1,2,... 

are linearly independent, since input Fourier coefficients 

q; = fz, Y,(X&X)dr = z* Y;&os[K(” - lijz~wk 

m = 1,2,... 

for eigenfunctions Z;(X) are also nonzero due to the 

nonsingularity A-l = AT of matrix 

A = (vin);,n=l* cln = f: cos[ x(n - l)x]ri (x) dr ; 

ii) time-invariant external input 

&J> = Y1(4 = k, Y; sin - (3.18) 

with nonzero Fourier coefficients 

y&Q; ~l(X)Sin~nr&#O,n=l,2,... (3.18a) 

and zero boundary inputs 

o,(t) = cl+(f) = 0 (3.18b) 

for Dirichlet boundary value problem (1.4b); as in the 

previous case, functions 

5,(f) = I: w,(x)(&) k (1 - cos rlmr)/rfm * 

trnw = I: w,(x,z;(x) k sin Ylmf/Ylm. 

t,(f) = JA w,(x)z~(x) dx cos ylmf, m = 1,2,... 

are linearly independent ; 

iii) time-invariant boundary inputs 

~o(~)=~o, ol(‘)=p* (3.19) 

and zero external input 
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yw = 0 
for Dirichlet boundary value problem (1.4b), if 

(3.19a) 

pm = p’s:(O)- plzL(l) z 0, m = 1.2, . . . . (3.19b) 

in this case, 

gm(f)=~m(l-CosYlml)/Y~m, 

4,(t) = Pm sin rlmt/rlm. 4’,(f) = pm cos ylmf. m = I,%... 

are also linearly independent. 

Remark 3.3 Similarly to Remark 3.1 one can check 

that there exist such constants p” and cl1 that relations 

(3.19b) are satisfied. 

Remark 3.4 In order to generate the persistent 

excitation of the hyperbolic system (1.4) with multi- 

dimensional spatial variable one should use time-varying 

external input with linearly independent Fourier coefficients 

(cf. Remark 3.2 for details). 

IV. Adaptive Identifier Design 
As discussed earlier, it is theoretically possible to 

determine unknown distributed plant parameters based on the 

noise-free measurements under the assumption that the 

parameters are identifiable. This task can be carried out by 

the adaptive identifiers proposed below. 

A. Adaptive Identification of a Heat Process 
The following identification law is proposed for Neumann 

boundary value problem (l.l), (l.la) in order to identify the 

spatially varying plant parameters p(x),k(x), and q(x): 

p(x,r)d = [i(xJ -cT(x,t)lZ + f(w) + v,(Q - c?), 
~(x,O)=$(x), Ocxcl, (4.1) 

@(o,t) = &(l,l) = 0,t > 0, (4.la) 

i(x,t) = -vl(Q - &j’,i(x.O) = k,(x), (4.2a) 

i(u) = -u2(Q -&b(x,O) = &), (4.2b) 

/S(M) = -v,(Q - d)&&,O) = &) (4.2~) 

where vi > 0, i = 0,1,2,3 are adaptation gains, k,(x) > 0 and 

Q,(X) are smooth functions, q,(x) > 0 and p,(x) > 0 are 

continuous functions. The law, as shown below, ensures the 

necessary asymptotic convergence 

[*Q(L~>]" + [dxd]" + 

[*q(x,')]2 + [Ap(x.t)l" 

AQ=Q-&Ak=k-i,Aq=q-q,Ap=p-j?, (4.3a) 

for arbitrary adaptation gains, initial distributions and 

generator of persistent excitation of heat process (l.l), 

(l.la). Since state and parameter errors (4.3a) are continuous 

functions the quadratic convergence (4.3) implies their 

pointwise convergence almost everywhere in x E [0,1] and 

consequently permits identification of unknown coefficients 

k(x),p(x),q(x) everywhere in x E [0,1]. 

Theorem 4.1. Let the external input ~(.x,I) 

generate persistent excitation of the heat process (1.1). 

(l.la). Then the limiting relation (3.3) holds with the 

adaptive identification law (4.1). (4.la) and parameters 

f(x,~),p(x,t),ij(x,t) tuned as (4.2a)-(4.2c). 

Proof. First, let us prove the local existence of the 

unique solution of the overall system (l.l), (4.1). (4.2). For 

this purpose, we integrate equations (4.2a)-(4.2c) 

d(x,t) = k,(x) - v&Q - a)‘@dr, 

4(u) = q,(x) - v2C(Q - i!)&, 

P(a) = pa(x) - v,f:(Q - &idz = &) + (4.4) 

+v3&jQdr++v3 {[2Q(d)- &o)]&o) - 

-[zQ(w) - 8(~.1)]8(*.1)}, 

and substitute the outputs of the integrators into (4.1). Since 

functions (4.4) are positive at initial time moment t = 0 and 

they are continuous in (x. f.Q.0) the resulting equation is 

locally parabolic [17]. Hence, the results of [18] can be 

applied to show the existence of a unique local solution of 

(4.1), (4.la). 

Now, using Lyapunov functional 

~(1) = &J~,/P(~)[AQ(X.~)]~ + &[&x,t)]2 + 

++[Aq(x.: f + +~(xJ)]~j~~ 

(4.5) 

where, according to (4.2) and (4.3a), variables AQ,ti,Aq, Ap 

satisfy equations 

p(x)AQ + Ap(x.f)& = [k(x)AQ’]’ + [Ak(x.l)&]’ - 

-[q(x) + vo]AQ - Aq(x&,O < x < 1.1~. 0, (4.6a) 

AQ’(0.t) = AQ’(l,t) = 0, 

Al; = vlAQ@, A++ = v,AQ& A/j = v3AQ& (4.6b) 

we can show that solution of (4.1), (4.la) is well-posed for all 

t 2 0. Indeed, the computation of the derivative of Lyapunov 

functional along the trajectories of (4.6) yields 

r’(t) = -J;k[AQ’12& + kAQAQ’l;-~;AkAQ’&ix 

+ A.k-AQi$-f:(q + “o)[AQ]2k - &qAQdh - 

- I; ApAQ& + It, A~AQ’@~x + IA AqAQ0d.z + 

+ J~A~AQ&X = -JAk[aQ’]2h -JA(q + v0)[~Q12d, 9 0, 

which implies the boundedness of Lyapunov functional 

V(t) 2 V(0) c m for all t 2 0, L2-boundedness of the 

solutions of (4.6) and their stability. Since the principal term 

a/h b(x) ~/~I in Eq. (4.6) has a compact resolvent in 

%(O,l) and the outputs of heat process (1.1) and dynamic 

model (4.1) are smooth functions, every trajectory of system 

(4.6) is precompact due to its boundedness [16]. Therefore, 

due to the invariance principle [20, Theorem 4.3.41. there 

must be a convergence of the trajectories of system (4.6) to 



the maximal invariant subset of a set of solutions of (4.6) for 

which 

V(t) = -J,$(x)[a~‘]~dr -J&(x) + t&Q12~ = 0. 

Taking into account (4.6) this leads to the expressions 

Ak(x,t) = M(x),Aq(x.t) = Aq(x),Ap(x,f) = Ap(x), (4.7a) 

AP(x)L&,~) = [A&)QG-J>] - &(x)c!(w). (4 7b) 

Q(0.t) = Q’(1.r) = 0,O <x < 1.t > 0. 

Therefore to complete the proof it remains to show that 

(4.7b) holds if and only if 

A/t(x) = Aq(x) = Ap(x) = 0 for all xe[O,l]. (4.8) 

This is indeed true by virtue of Theorem 3.2 and an 

assumption that f(x,t) generates the persistent excitation of 

the heat process. This proves Theorem 4.1. 

In order to identify the plant parameters for the case of 

Dirichlet boundary value problem (1.1). (1 .lb) we need to 

modify boundary conditions (4.la) for the identification law 

proposed above and to consider Dirichlet boundary 

conditions 

Q(w) = P,(f),r2(l,~) = P,(h ’ 0 

as well. 

(4.lb) 

Theorem 4.2. Let the external and boundary inputs 

fbJM~)J$( 1 t generate persistent excitation of the heat 

process (1.1). (l.lb). Then the limiting relation (4.3) holds 

with the adaptive identification law (4.1), (4.lb) and 

parameters L(x,l),p(x,f),~(x,t) tuned as (4.2a)-(4.2c). 

The proof of this theorem is similar to that of Theorem 

4.1 and therefore it is omitted here. 

Remark 4.1 If some of the plant parameters are 

known a priori or are space-invariant, then the corresponding 

equations (4.2) can be omitted or, respectively, replaced by 

the equations with respect to the corresponding lumped 

variables 

k*(t) = J; X(x,t) a!x .q * (1) = It, lj(x,t) dr,p * (1) = J; p(x,t)dx: 

I; * (r) = -v& (Q - &‘&‘dr, k * (0) = k,: > 0, 

(4.2d) 

rj * (t) = -v2c (Q - &Q& q * (0) = q; > 0, (4.2b’) 

b * (t) = -v3 j; (Q - 0)&x, p * (0) = ,o; > 0. (4.2~‘) 

The identifier convergence k*(t) +k, q*(t)+q, r*(t)+r as 

t+- for spatially-invariant coefficients k(x)=k, q(x)=q, 

r(x)=r is a consequence of Theorems 4.1 and 4.2. 

Remark 4.2 Identifier (4.1) - (4.2) does not require 

higher order temporal and spatial derivatives of the state, 

which lead to the loss of robustness in the presence of 

measurement noise and dynamic nonidealities. Certainly, 

employing the fist order spatial state derivative in identifier 

Eq. (4.2a) implies the use of the regularization method [21] 

for its calculation because of ill-posedness of heat conduction 

coefficient identification problem [22]. However, due to 

smoothness of the heat equation solution that takes place 

under our assumptions on the plant parameters, the external 

and boundary inputs, and the initial distribution, an 

implementation of the derivative in the identification 

algorithm admits simple realization by an appropriate 

differential filter or via its approximation by first order 

difference with a sufficiently small step. 

B. Adaptive Identification of the Steady State 
Regime. 

The following identification law 

6 = [W8’]’ - 4(u)& + P,(X) + v,(Q - e). (4 9) 

&x,0) = (j,(x), 0 < x < 1, 

O’(0.f) = Q’(lJ) = 0. f > 0. (4.9a) 

(7(x, 0 = -v2 (Q - a)i?, 3% 0) = q. (xl (4.10) 

is proposed in order to identify the spatially varying 

parameter q(x) in the steady state mode (1.2) under Neumann 

boundary condition (1.2a). The law ensures the necessary 

asymptotic convergence 

tow d {[AQw)]~ + j&wiJ2} dr = 0. (4.11) 

AQ=Q-0, Aq=q-j (4.11a) 

for arbitrary no > 0, n2 > 0, and continuous initial 

distributions &(x) and qo(x), and for arbitrary function 

q(x), different from zero almost everywhere. Since state and 

parameter errors (4.11a) are continuous functions the 

quadratic convergence (4.11) implies their pointwise 

convergence almost everywhere in xa[O,l] and consequently 

permits identification of an unknown coefficient q(x) for all 

XE[O,l]. 

Theorem 4.3 Let the parameter k(x) be known a 
priori and let the external input p(x) satisfy the condition 

(3.9). Then, the limiting relation (4.11) holds with the 
adaptive identification law (4.9), (4.9a), and parameter i(x,t) 

tuned as (4.10). 

Proof. First, note that the proof of the unique 

solution existence of the overall system (4.9). (4.9a), (4.10) 

is similar to that of Theorem 4.1. Now, let us introduce 

Lyapunov functional 

AQ(x,t)12 + -!- 

V2 

(4.12) 

and calculate its time derivative 

r’(t) = -J:~[AQ~]~& + ~~QAQ*IL - 6(q + vo)[~e12h 

-I; AqAQ &ix + It, AqAQ &x = -JZ, k[ AQ’]~ do - 

-jA(q + vo)[ae12dx 5 o 

(4.13) 

along the trajectories of the equations 

ad = [wAQ~]’ - [q(x) + V~]AQ - Aq(x@, t4.14aj 
AQ’(O,t) = AQ’(l,f) = 0, 

Acj(x,f) = v2AQ& 0 < x < 1, t 2 0 (4.14b) 

with respect to variables AQ, Aq. Since the principal term 

d[W alax]/m in Eq. (4.14) has a compact resolvent in 
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L2(0,1) and the outputs of system (1.2), (1.2a) and model 

(4.9) (4.9a) are smooth functions, every trajectory of system 

(4.14) is precompact due to its boundedness [16]. Therefore, 

by virtue of the invariance principle [20, Theorem 4.3.41, 

there must be a convergence of the trajectories of system 

(4.14) to the maximal invariant subset of a set of solutions of 

(4.14) for which 

V(C) = -J~~(~)[AQR]~~x- JA(q(x) + v~)[AQ]~~x = o (4.13a) 

Due to the continuity of the integrands it leads to the 

expression AQ ] 0 that holds by Theorem 3.3 if and only if Aq 

] 0. Thus, Theorem 4.3 is proven. 

In order to identify parameter q(x) for the case of 

Dirichlet boundary value problem (1.2), (1.2b) it is necessary 

to modify boundary conditions (4.9) for the identification 

laws proposed above and to consider Dirichlet boundary 

conditions as well. The formulation and the proof of the 

corresponding result can be carried out with no difficulty and 

therefore is omitted. 

Next, consider the problem of the identification of 

parameter k(x) for Dirichlet boundary value problem (1.2) - 

(1.2b). The identification law 

d = [&d’]’ - q(x)~ + q(x) + v,(Q -a), 

&x,0) = $(x,, 0 < x < 1 

m,*) = co. m,*, = 4-l.’ ’ 0. 

I;(x,t) = -vl(Q - a)’ 0’. t > 0, &x,0) = k,(x), 

ensures the necessary asymptotic convergence 

(4.15) 

(4.15a) 

(4.16) 

fh+ JA {[AQcx,~]~ + [~k(~,f)]~} dr = 0, (4.17) 

AQ=Q-&Ak=k-i (4.17a) 

for arbitrary no > 0, n1 > 0 and smooth initial distributions 

&,(x) and ko(x) > 0, for arbitrary boundary values zo, z1, and 

for arbitrary function j(x) linearly independent on q(x) inside 
any subinterval (x1, x2)c[O,l] that provides equality 

Q’(x,) = 0 at some point x0 E [O,l]. 

Theorem 4.4 Let parameter q(x) be known a priori 

and let conditions (3.12), (3.13) be satisfied. Then, the 

limiting relation (4.17) holds with the adaptive identification 

law (4.15) and parameter i(x,t) tuned as (4.16). 

Proof. The existence of the unique solution of the 

overall system (4.X), (4.16) is proven similarly to that of 

Theorem 4.1. Setting M = k-E let us define Lyapunov 

functional 

v(r) = ii: [~e<x,f)]” + t[Ak(x,f)12 (4.18) 

along the trajectories of the equations 

Ai! = [WAQ’] + [AW@] -[q(x) + vo]AQ. t4.19aj 
AQ(0.f) = AQ(l,f) = 0, 

8(x, 0) = a0 (x). 8(x. 0) = 31 (x). 0 s x 22 1, (4.21a) 

B(0.f) = w,(t), fi(1.f) = 01(f), f 2 0, (4.21b) 

6(x,f) = -pl(s AW+ A&) &,%(x,0) = se,(x), (4.22a) 

j(x,f) = -p2(s Ae + Ab) 8,&O) = g,(x), (4.22b) 

j(x, 1) = -p3 (s A@ + Ah) i, F(x, 0) = p. (cc), (4.22~) 

where s > 0, l.t > 0, l.ti > 0, i = 0, 1, 2, 3 are adaptation gains 

such that 

a(x) = p + g(x) + p. - p(x)s2 > 0. p - p(x)s ’ 0, 
(4.22d) 

for al\ x E [O,l], 

Ai = v,AQ’& f > 0, 0 < x c 1 (4.19b) z,(x) > 0, and a,(x). and 81 (x) are smooth functions, go(x) 

with respect to variables AQ, Ak, and compute its time > 0 and pa(x) > 0 are continuous functions, A0 = 0 - 8. The 

derivative law ensures the desired asymptotic convergence 

v(t) = -I: k[AQ’-j2dx + k AQ AQjl, - I;& AQ’ Q’& 

+Ak AQ @if, - !A (q - v,)[AQ]~~x + I: Ak AQ’ &ix 

= -I; k[AQ’]2& -I; (q + v0)[AQ12 9 0. 

Similarly to the proof of Theorem 4.3, the invariance 

principle [20, Theorem 4.3.41 applied to system (4.19) 

guarantees a convergence of the system trajectories to the 

maximal invariant subset of a set of solutions of (4.19) for 

which relation (4.13a) is satisfied. Taking into account 

(4.19) equality (4.13) leads to the expressions 

Ak(x,f) = Ak(x), [Ak(x)Q’]’ = 0,O 5 x S 1. (4.20) 

Due to (3.13) it follows that Ak(x)Q’ = 0 which by virtue of 

(3.12) implies that Ak(x) = 0 almost for all xo[O.l]. This 

proves Theorem 4.4. 

To identify parameter k(x) for the case of Neumann 

boundary value problem (1.2) - (1.2a) it is necessary to 

replace boundary conditions (4.15a) in identification law 

(4.15) - (4.16) by the appropriate Neumann boundary 

conditions and omit condition (3.13). 

Remark 4.3 If parameters q(x) or k(x) are space- 

invariant then identification Eq. (4.10) or (4.16) can be 

replaced by Eq. (4.2b) or (4.2a) with respect to variable 

q * (t) = IAg(x,l)dr or k*(t) = J~i(x,r)& respectively. 

Remark 4.4 The identification of parameter k(x) is 

ill-posed problem both for the heat process and the steady 

state regime. Therefore, Remark 4.2 is still valid for the 

steady state regime identification. 

C. Adaptive Identification of the Vibrating 
String 

The following identification law is proposed for 

Dirichlet boundary value problem (1.4) - (1.4b) in order to 

identify the spatially varying plant parameters z(x), p(x). 

and g(x): 

,qx,r)i = [a(x,t)e’]’ - g(x,f)e + fy(x,r) + p(” - 6) + p&b e), 

O<x<l,t>O, 
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lim J: 
[Ae(x,fjj2 + [Ab(x.f)]2 + [Ae’12 

ok=* 
I+- 

+[Are(x.f)]2 +[4(*,t)]2 +[dp(~t)]~ 

(4.23) 
Ae=e-8,Aae=ae-5,~==--,A~==--, (4.23a) 

for arbitrary initial distributions, adaptation gains and 

generators of persistent excitation of vibrating string (1.4) - 

(1.4b), which due to continuity of state and parameter errors 

(4.23a) implies their pointwise convergence almost 

everywhere in XE [O,l] and consequently identification of 

unknown parameters everywhere in x E [ 0.11. 

Theorem 4.5 Let the external and boundary inputs 
y(x,t), w,(t), and wl(t) generate persistent excitation of the 

vibrating string (1.4) - (1.4b). Then, the limiting relation 

(4.23) holds for the adaptive identification law (4.21) and 
parameters t+.(x.r). g(x, t), p(x,r) tuned as (4.22). 

Proof. First, we prove the local existence of the 

unique solution of the overall system (1.4), (4.21). and 

(4.22). For this purpose, we integrate Eqs. (4.22) 

i%(x,t)=ae,(x)-plJ:,(s~e’+A&)h, 

g(x,r) = g,(x) - p2J:,(sAk’ + Ab)e dz, 

>(x,r)= p,(x)-&;(s~e+Ab)i dz= pa(x)+ 

1 
+p&[&+i@dz+;p3 {[2sAe(x,O)+2&x,O)- &,O)]} x 

x$(x,0)- [2sAe(x.f) + 28(x,1) - i(x.f)]i(x,f)}. 

(4.24) 

and substitute the outputs of the integrators into (4.21). Since 

functions (4.24) are positive at initial time moment t = 0 and 

they are continuous in (x,r,Q,g) the resulting equation is 

locally hyperbolic [19]. Hence, the results of [19] can be 

applied to show the existence of a unique local solution of 

(4.21). 

Now, let us define Lyapunov functional 

1[ 

p(x)[sAe + Ati12+ c~(x)[Ae]~+ le(x)[Aej2 

v(x) = L Jz, 
+;[Az12+ ;[Ag12+ ;[ap,, 

I 

dx 2 

(4.25) 
on solutions of equations 

p(x)Alj + Ap(x,f)F, = [zz(x,Ae’]’ + [Aae(x,f)&] 

-J.& - (g + po)Ae - A& 

Ae(O,f) = 0, Ae(1.f) = 0, 

A i = ~1 (sAe’ + A&)&, 

Ag = /.t2 (,A6 + Af$, 

AJ!J = fl3(sAe + Ab)i 

(4.26a) 

(4.26b) 

with respect to variables Aq, Aae, Ag, Ap to demonstrate that 

solution of (4.21) and (4.22) is well-posed for all t 2 0. The 

computation of the time derivative of the Lyapunov 

functional along the trajectories of (4.26) yields 

V(t) = J$(sA~ + A~)(sA@ + ~b) + uA~AB + ZA~‘A& + 

1 1 
+-AbAG+-A&+ -!-A&J dx = J~{~sA~(sAo + ~b) + 

v1 v2 v3 1 
+(sAe + A$[-Api + (= Ae’)’ + (Aae i?)’ - ~6 - (g + uo)AB 

-Age + aAeAB) + +~e Ae’Ab’ + Ap6 + A&j] + Ak(sAW + A&)8+ 

= J:{~s(A~)~ + p2 x 

xA0Ab - (sAe’+ A&)(aeAe’ + Ao 8’) - (sAe + Ab) 

[ud~+(g+Po)AQ]+ 

Q A6A8 + ae Ae’ A& + A re(sAe’ + A&)8’}& 

+(SAB + A~)(zA~# + AZ @)I: = J:{~sA~~ 

+pp2AbAe - s~(Ae’)~ - aeAe’Al?- j.fsAeAh - @d2 

-(g + po)AeAti - gsAe2 + aAeA8 + aeAe’A&}dx = 

= -JA(p - ps)[~b]~k - J,!,sz(AB’)~& 

-J:(g + P,)-[AQ]~~ s 0, 
that guarantees the boundedness of Lyapunov functional 
V(r) 5 V(0) c rn, for all t 10, L2-boundedness 

J:{[ANw)]2 + [Ae’W)]2 + [Ak*)]2}~ (4 27) 

of the solutions of (4.26) and their time and spatial 

derivatives, and their stability. 
Furthermore, (4.27) ensures L2-uniform boundedness 

of every trajectory of (4.26) and equicontinuity property in 
Banach space L2(0,1) for its values AQ(x,t) under t Z 0. 

Hence, by virtue of Ascoli-Arzela theorem [28] every 
trajectory of (4.26) is precompact in L2(0,1). Therefore, 

according to the invariance principle [20, Theorem 4.3.41 the 

trajectories of system (4.26) tend to the maximal invariant 

subset of a set of solutions of (4.26) for which 

ii(f) = -J;{(p - ps)[Ab12 + s~[Ae’]~ + (g + po)s[Ae]2}dz = 0 

By virtue of (4.26) it implies that 
Aae(x,f) = AZ(X), Ag(x,f) = Ag(x), Ap(x,f) = Ap(x) (4.28a) 

Ap(x)zj = [Aze(x,e’]’ -A&x)8, fl(0.f) = w,(f), 
(4.28b) 

e(1.t) = Wl (f), 0 < x < 1, f > 0. 

But due to the assumption of the theorem relations (4.28) 

hold if and only if 
AZ.(X) = Ag(x) = Ap(x) = 0 for all xe[O,l]. (4.29) 

This justifies the convergence (4.23) and completes the proof 

of the theorem. 

The similar identification problem solution for the 

case of Neumann boundary conditions (1.4a) is obtained by 

replacing boundary conditions in the identification law 
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proposed above by the appropriate Neumann boundary 

conditions. 

Remarks 4.1 and 4.2 are valid for the identification of 

the vibrating string as well. 

V. Conclusions 
This work presents construction of the adaptive identifier for 

heat processes, their steady state regimes, and vibrating 

strings, described by partial differential equations of 

parabolic, elliptic, and hyperbolic type, respectively, with 

either homogeneous Neumann or nonhomogeneous Dirichlet 

boundary conditions. Distributed sensing of the system state 

and knowledge of the input is assumed to be available. The 

whole adaptive identifier is represented as two error systems 

describing the evolution of the state error and the parameter 

error. In the adaptive identifiers of the distributed parameter 

systems, the state and the parameter error systems take the 

form of a partial differential equation and an ordinary 

differential equation respectively. The identifier developed 

does not require higher order temporal and spatial derivatives 

of the state, which lead to the loss of robustness in the 

presence of measurement noise. Employing the first-order 

spatial state derivative in the identification law implies the 

use of the regularization method for its calculation because of 

ill-posedness of the identification problem. Due to 

assumptions on plant parameters and input functions, the 

implementation of the derivative in the identification 

algorithms admits simple realization via an appropriate 

differential filter or an approximation by first-order difference 

with a sufficiently small step. Adjustable parameters in the 

adaptive identifier are shown to simultaneously converge to 

their nominal space-varying values when an appropriate 

input signal is used. The sufficiently rich input signals, 

referred to as the generators of the persistent excitation are 

defined for the problem at hand. They ensure the existence of 

a unique zero steady state for the parameter errors thereby 

yielding unknown spatially varying plant parameters. The 

identification algorithms proposed admit a generalization to 

the case of the multi-dimensional spatial variable. The 

validity of the algorithms proposed is limited by the 

boundary conditions. The numerical simulation shows the 

loss of convergence under boundary conditions of mixed 

type. 

Acknowledgment 
This work has been supported by the National Science 

Foundation grant CMS 94-14472 and Electric Power Research 

Institute contract WO 8016-10 

References 

r11 Y. D. Landau, Adaptive Control-The Model Reference 

Approach. New York: Marcel Dekker, 1979. 

PI H. T. Banks and K. Kunish, Estimation Techniques for 

Distributed Parameter Systems, Boston: Birkhauser, 

1989. 

r31 J. Baumeister and W. Scondo, “Asymptotic Embedding 

Methods for Parameter Estimation”. Proceedings of 

the 26th CDC, Los Angeles, CA, Dec.1987. 170-174. 

[41 Hong,K. S. “Vibrational and Adaptive Control of a 

Class of Distributed Parameter Systems Described by 

Parabolic PDE’s”, PhD dissertation, University of 

Illinois, Urbana, IL, 1991. 

[5] Hong, K. S., and J. Bentsman, “Nonlinear Control of 

Diffusion Processes with Uncertain 

Parameters Using MRAC Approach,” Proceedings offhe 
1992 American Control 

Conjkence, Chicago, IL, 1343-1347. June 1992. 

161 Hong, K. S.. and J. Bentsman, ” Application of 

Averaging Method for Integro-Differential 

Equations to Model Reference Adaptive Control of 

Parabolic Systems.” preprints of IFAC 
Symposium on Adaptive Systems in Control and Signal 

Processing, Grenoble, France, 

591- 596, July 1992. 

171 Bentsman, V. Solo, and K. S. Hong, “Adaptive Control 

of Time-Varying Parabolic 

Systems,‘Proceedings of the 31st IEEE Conference on 
Decision and Control, Tucson, AZ, 

710-711, Dec. 16-18, 1992. 

PI Hong, K. S., and J. Bentsman, “Averaging for a Hybrid 

System Arising in the Direct 

Adaptive Control of Parabolic Systems and Its 

Application Stability Analysis,” preprints of 

the 12th IFAC World Congress, Sidney, Australia, 4, 

177-180, July 18-23, 1993. 

PI Hong, K. S., and J. Bentsman, “Direct Adaptive 

Control of Parabolic Systems: Algorithm 

Synthesis, and Convergence and Stability Analysis,” 

Proceedings of the 32nd IEEE 
Conference on Decision and Control, San Antonio, 

TX, 2413-2418, Dec. 15-17, 1993. 

[lo] Solo, V., and J. Bentsman, “Adaptive Control of 

Parabolic Systems with Spatially Varying 

Parameters: An Averaging Analysis,” Proceedings of 
the 32nd IEEE Conference on 

Decision and Control, San Antonio, TX. 2435-2437. 

Dec. 15-17, 1993. 

[ 1 l] Hong, K. S., and J. Bentsman, “Application of 

Averaging Method for Integro-Differential 

Equations to Model Reference Adaptive Control of 

Parabolic Systems,” Automatica, 30:s 

1415-1420, Sept. 1994. 

[12] Hong, K. S., and J. Bentsman, “Direct Adaptive 

Control of Parabolic Systems: Algorithm 

Synthesis, and Convergence and Stability Analysis,” 
IEEE Trans. Autom. Control, 39:&J, 

2018-2033, 1994. 

[13] M. A. Demetriou and I. G. Rosen, “Model Reference 

Adaptive Control of Abstract Hyperbolic Distributed 

Parameter Systems” Proceedings of the 32nd CDC, San 

Antonio, Texas, pp. 2424-2429, 1993. 



12 

[14] J. Baumeister. W. Scondo, M. A. Demetriou, and I.G. 

u51 

[161 

P71 

[I81 

[191 

WI 

WI 

Lw 

f231 

1241 

[251 

P61 

[271 

WI 

P91 

[301 

Rosen, “On-line Parameter Estimation for Infinite 

Dimensional Dynamical Systems”, to appear in SIAM 

Journal on Control and Optimization, 1997. 

V. I. Utkin and Yu. V. Orlov, Theory of Infinite- 

Dimensional Sliding Mode Control Systems, 

Moscow: Nauka, 1990 (in Russian) 

S. Omatu and J. M. Seinfeld, Distributed Parameter 

Systems, Oxford: Clarendon Press, 1989. 

A. Pazy, “Semigroups of Linear Operators and 

Applications to Partial Differential Equations,” New 

York: Springer Verlag, 1983. 

A. Friedman, Partial Differential Equations. New York: 

Holt, Reinhart, and Winston, 1969. 

S. G. Krein, “Linear Differential Equations in Banach 

Space,” Providence, American Mathematical Society, 

1971. 

D. Henry, Geometric Theory of Semilinear Parabolic 

Equations, Vol. 840, (Lecture Notes in Math.). Berlin: 

Springer-Verlag, 1981. 

A. N. Tichonov, “Regularization of Ill-Posed 

Problems,” Dokl. Acad. Nauk, USSR, Vol. 153, p. 49- 

52. 
C. Kravaris and J. H. Seinfeld, “Identification of 

Parameters in Distributed Parameters Systems by 

Regularization,” SIAM J. Control and Optimization,” 

Vol. 23, pp. 217-241, 1985. 

G. Chen, J. Zhou, “Vibration and Damping in 

Distributed Systems, Boca Raton: CRC Press, 1993. 

Nakagiri, S. (1983), “Identifiability of Linear Systems 

in Hilbert Spaces,” SIAM Journal on Control and 
Optimization, Vol. 21. pp. 501-530. 

Kitamura, S. and S. Nakagiri, “Identifiability of 

Spatially-Varying and Constant Parameters in 

Distributed Systems of Parabolic Type,” SIAM J. 
Control & Optimiz., 1977, Vol. 15, pp. 785-802. 

Courdesses, M., M. G. Polis, and M. Amouroux, “On 

the Identifiability of Parameters in a Class of 

Parabolic Distributed Systems,” IEEE Trans., 
Automatic Control, 1978. 

Pierce, A., “Unique Identification of Eigenvalues and 

Coefficients in a Parabolic Problem,” SIAM J. Control 
& Optimization, 1979, Vol. 17, pp. 494-499. 

Danford, N., and J. T. Schwartz, “Linear Operators,” 

New York: Interscience Publishers, 1964. 

Alt, H. W., K. H. Hoffman, and J. Sprekels, “A 

Newmerical Procedure to Solve Certain Identification 

Problems”, Intern. Series Numer. Math, 1984, 68, pp. 

1 l-43. 

Hoffman, H. K. and J. Sprekels, “On the Identification 
of the CoefSicients of Elliptic Problem by Asymptotic 
Regularization”, Numer. Function. Anal. and 

Optimiz., 1984-85, 7, pp. 157-177. 


