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Abstract 

It is known that for nonlinear systems the drift- 
observability property (i.e. observability for zero in- 
put) is not sufficient to guarantee the existence of 
an asymptotic observer for any input. Many authors 
studied conditions on systems structure that ensure 
uniform observability (i.e. observability for any in- 
put). Conditions are available that define restrict 
classes of uniformly observable systems. This work 
considers the problem of state observation with expo- 
nential error rate for smooth nonlinear systems that 
do not meet conditions of uniform observabihty: con- 
ditions are given on the input, instead of on the sys- 
tem structure. It is shown that drift-observability, 
together with a smoothness/boundedness condition 
on the input, is sufficient to ensure the existence of 
an exponential observer. Three types of observers 
are presented, that can be constructed 
observability assumption. 

under drift- 

1 Introduction 

Many authors pointed out the peculiarities of the 
state observation problem for nonlinear systems [4- 
11]. A main property is that state reconstructabil- 
ity in general depends on the input function, in that 
drift-observability (i.e. observability for zero input) is 
not a sufficient condition for existence of an asymp- 
totic observer for any input, as it is for linear systems. 
This fact induced some authors [1,9,10] to find condi- 
tions that ensure state reconstructability for any in- 
put. Classes of nonlinear systems are then defined for 
which observers can be constructed that work inde- 
pendently of the input applied (uniformly observable 
systems). However, such classes are characterized by 
limitative conditions, that can be met with difficulty 
in applications. 

Following the researches presented in [l-3], this pa- 
per studies conditions on the input, and not on the 
system structure, that guarantee state observation 
with exponential error decay. It is shown that, given 
systems that are not uniformly observable, an expo- 
nential observer can still be constructed if the input 

satisfies some boundedness and/or smoothness condi- 
tion. The properties required for the system are basi- 
cally two: 1) smoothness of the vector fields and func- 
tions that define the system, 2) drift-observability. 
Due to pages limitation, the results presented in this 
paper concern only single-input single-output nonlin- 
ear systems of the type 

2(t) = f(4t>) + g(xc(t))u(t), (1) 

y(t) = h(x(t)), (2) 

where x(t) E X c En, u(t) E U c R and y(t) E IR, 
g(c) and f(g) are C”(X) vector fields and h(z) is a 
C”(X) function. 

Throughout the paper the symbol Oaxb denotes a 
matrix of zeroes of dimension a x b, the symbol Ik 
denotes the k: x Ic identity matrix, and en(P) denotes 
the condition number of a matrix P. 

2 Preliminaries 

In this paper it is assumed that the reader is fa- 
miliar with the concept of Lie derivative of a function 
along a vector field. Consider the vector function 
(square mapping) 

(a(x) 42 [h(x) &h(x) . . . L;-lh(x)lT. (3) 

Denoting with Y, the vector of the first n output 
derivatives (from 0 to n - 1) 

T 

Y, = [yG . . . y-1 ) 

it is easy to verify that, for u(t) G 0, 

(4) 

Y, = (a(x). (5) 

Thus, from a theoretical point of view, if the vector Y, 
where known at a given time t, the invertibility of the 
mapping a(.) would allow exact state reconstruction. 

This property justifies the following definition. 
Definition 1 If the map Q(x) is a diffeomorfism from 

an open set Cl C R” in @(Cl), the system (1) (2) is 

said Cl-drift-observable. If s1 z lRn than the system 

(1) (2) is said globally drift-observable. 



An important consequence of this definition is the 
nonsingularity in fi of the Jacobian of the map (a(.) 

Q(x) & F. (6) 

In the state observation problem it is important the 
following concept, that is a weaker version of the well- 
known concept of relative degree (see e.g. [12]). 

Definition 2 The system (1) (2) is said to have ob- 

servation relative degree r in a set s1 E R” if 

Qx E i-l L,L;h(x)=O, s=O,l,..., r-2, 

3xEt2 : L&;-%(x) # 0. 

(7) 

Consider now the expression of the output deriva- 
tives in the general case in which u $ 0. From the 
definition of observation relative degree it follows that 
the output derivatives from 0 to r - 1 are functions 
of the state 2 only, while the r-th derivative is also 
function of the input 

y(k) = lqh(x), k=O,l,..., r-l, 
y(‘) = Ljh(x) + L,L;-%(x)u. 

(8) 
It is readily proved that higher order derivatives are 
functions of the state x, of the input u and of its time 
derivatives until a suitable order. More precisely, if 
U, denotes the vector composed of the first s time- 
derivatives of the input (from 0 to s - 1) 

u, !i [u ai . . . u(+l) IT ) (9) 

it can be readily proved that the Ic-th output deriva- 
tive can be written, for L > r, as 

y(‘“)= qw+Th(dL+l) (10) 

where the function &(x, Uk-,-+I) is recursively de- 
fined as 

&GO, fork=O,l,..., r-l, 

$4.(x, Ul) 5 L,L;-lh(x)u, 

&4x, &-,-+I) i L&;-‘h(+ + &ph+.~(x, CL,)+ 

+&$k-1(X, Uk-T>u + [O e] Uk-r+l, k: > r. 

(11) 

Using the scalar functions $k(x, Uk++l) for k = 0, 1, 

“‘> n- 1 a n-components vector function !P(x, U,-,) 
can be defined such that 

Y, = qx, u,-,) ii a?(x) + xlqx, U,+.). (12) 

(The j-th component of 8(x, II,-,), with r+ 1 5 j 2 
n, is tij-i(x, II,-,).) If r = n the function XP vanishes, 
and the (12) can be simply written as (5). It is also 

easy to check from definitions (11) that the function 
XP(x, Un-,.) satisfies the property 

9(x, 0) = 0, Qx E IiT. (13) 

In general, drift-observability of system (1) (2)does 
not imply invertibility of (12) for x. In general, in- 
vertibility of (12) f or x strongly depends on the input, 
through the vector of derivatives U,-,, that can be 
considered as parameters in the mapping 5(x, U,-,). 

Thus, the following definition can be given. 

Definition 3 If for any Un-, in an open set l? C 

En-’ the map Y, = %(x,Un-r) in (12) is a difleo- 

morfism from an open set Cl c IRn in $(a,@, the 

system (I) (2) as said ii-uniformly Q-observable. If 

R E Rn and i!P-” E IF??’ than the system (1) (2) 

is said globally uniformly observable. 

An important consequence is that in fi x Z? is non- 
singular the Jacobian 

- 

9(x, CT,-,) ii a@(x;p-r). (14 

If a system is a-uniformly a-observable, the knowl- 
edge of vectors Y, and Un-, E u would allow state 
reconstruction. Note that in the case r = n the maps 
@ and 6 coincide, so that drift-observability guaran- 
tees state reconstructability for any input. Moreover 
the following theorem holds. 

Theorem 4 If system (1) (2) is Cl-drift observable, 

then there exists a suficiently small spherical neigh- 

borhood u of the origin such that the system is fi- 

uniformly R-observable. 

Proof. From (12) the map 8(x, II,-,.) satisfies the 
property 

&(x, 0) = a(x). (15) 

As a consequence a-invertibility of Q(x) ensures that 
Q(x, U,-,) can be solved for x E R if Un-, = 0. 

Since, by-smoothness assumption for system (1) (2), 
the map @(x, Un-,.) is continuous w.r.t. Un+., then it 
can be solved for x E Q if II,+,. is sufficiently close to 
the origin. This means that there exists a spherical 
neighborhood u of the origin with sufficiently small 
radius that ensures n-uniform Q-observability. l 

In the set fi, as long as U,-, belongs to a, if the 
system (1) (2) is Z7- um ormly R-observable, the map ‘f 
n = s(x,Un-r) can be considered as a time-varying 
change of coordinates (Un-, is a function of time). 

The inverse map is denoted as z = 6-‘(n,Un-,). 

Since ~j = y(jW1) for j = 1, . . . , n, and then + = nj+i 
for j = l,..., n - 1, in q-coordinates the system is 
written 

;7 = &q + &m(q, &+-+I), 
Y = G% 

(16) 



where the term m(n, U,+,.+l) is 

(L;h(x)+~,(x,U,-r+1))I==~-~(91i _ )! (17) 
,nr 

and matrices A, E Rnx”, B, E En and C, E R” 
are Brunowsky matrices 

A, = ; i *.. i 

I 0 0 0 0 0 0 0 1 ... *-. .*- ... 0 0 0 1 

c, =[l 0 .f. O] 
1 , Bn= . (18) V,,(X)(A* - K(X)Cn)Vn(X)-l = diag{X} = A. (27) 

If the coordinate change z = a(x) is considered in- 
stead, the system (1) (2) can be written in the new 
coordinates as 

i = Anz + B,J3h(@(z)) + Qtx)g(x)(o=a-+)u, 

y = c,z. 

(19) 
The product of the Jacobian Q(x) by the matrix g(x) 
iS 4Ax) 

Q(4d4 = ; [ 1 L,L;-‘hj(x) ’ 

PO> 
From the definition of observation relative degree in 
fl, the first r - 1 rows of vector (20) are identically 
zero in fi, so that last equation can be rewritten as 

QtxMxc) = F H(x), (21) 

qr-1)x(w+1) 1 
L,L;-‘h(x) 

$l fi 

L-r+1 ' 
H(x) fi ; [ 1 . 

L,L;-‘h(x) 

(22) 
It is also useful to define the function 

L(x) b L!jh(x), 

so that system (19) can be rewritten 

(23) 

i = A,z + B,L(@-l(z)) + FH(W1(z))u, 

y = c,z. 

(24 
The pair A,, C, defined in (18) is observable, and 

it is an easy matter to assign eigenvalues to the matrix 
A, - KC,, that has the companion structure 

-kl 1 ... 0 
-k2 0 ... 0 

An-KC,= 

I 1 

i ; . . . ; . (25) 

-k,-l 0 .++ 1 
-k, 0 ... 0 

Let K(X) denote the vector that assigns eigenvalues 
A = (Al,... ,&). Matrix A, - K(X)Cn is diagonal- 
ized by the Vandermonde matrix 

v, 4 K(X) = [ ;: [lj ;; ;] , P-9 

so that 

It is well known that a Vandermonde matrix Vn(A) 

is singular if and only if two or more eigenvalues in 
the set A coincide. It is also well known that the 
smaller is the difference between eigenvalues in A the 
larger is the norm of Vn-‘(A). For reasons that will 
be made clear in the following section it is important 
to choose eigenvalues for matrix A, - K(X)& while 
keeping bounded the norm of the inverse of the Van- 
dermonde matrix l&(A). In [l] it is shown that if the 
n eigenvalues are chosen as Xj = Xj (u) = -uj , for 
j = l,..., n, with u > 0, then 

J& WC’(W)ll = 1. (28) 

Remark 5 In [9,10] it is shown that a system (1) 

(2) is observable for any u(t) if and only if in z- 

coordinates the vector function Q(@-1(z))g(9p-1(z)) 

has a triangular structure. This condition restricts 

the class of nonlinear systems under investigation. 

For this reason this property is not required in the fol- 

lowing development. Pathological inputs are excluded 

by suitable conditions. 

3 The Observer for Systems 

with Bounded Input 

In this section it is shown that a dynamic system 
of the type 

i = f(2) + g(2)u + &-+)I< (y - h(i)), (29) 

with the constant gain matrix Ii properly chosen, is 
an exponential observer for the system (1) (2), pro- 
vided that the input is suitably small and some tech- 
nical conditions are satisfied. The results reported in 
this section are a modified version of those presented 
in [2] for the SISO case, and in [3] for the MIMO 
case. Both local and global results are available. For 
shortness only global results are here reported. 

A first result is given by the following theorem. 

Theorem 6 For system (1) (2) assume that the fol- 

lowing hypotheses hold: 



1) The system is drift-observable in IRfl, and the 

map z = a(x) is uniformly Lipschitz together with 

its inverse x = @-l(z) in R”, with constants ya and 

ye-1 respectively; 

2) the functions H(@-l(z)) and L(@-l(z)), defined 
in (22-23), are uniformly Lipschitz in IRn, with Lip- 

schitz constants 7~ and 7~ respectively; 

3) a constant UM > 0 exists such that /u(t)1 5 uM 

Qt 2 0; 
4) for a given (Y > 0 a vector I< E IRn and a sym- 

metric positive definite matrix P E Enxn exist that 

satisfy the following H, Riccati-like inequality 

(A, - I(Cn)P + P(A, - KC,JT + B&t- 
+ukFFT + 2aP + y2P2 5 0, 

(30) 

where y2 = 7: + -&. 

Then the dynamic system (29) is such that 

Ildt> - ill I w-atl149 - VII (31) 

with p = dmyaya-1. 

Proof. For system (1) (2) and for observer (29) con- 
sider the following coordinate transformations and 
the following definitions of observation errors 

z = a(x), e, k 2 - 2, 

1= qe>, ea &z-i. 

From assumption (1) they are such that 

(32) 

lletll 5 %44l~ lIeoIl 5 -wlllezll. (33) 

System (1) (2) can be written in z-coordinates as (19), 
while the observer is written 

; = A,~+B,L(~-l(~))+FH(~-l(i))u+I~(y-Cni). 

(34) 
The dynamics of the observation error in z-coordinates 
is governed by the linear perturbed equation 

it = (A, - I<C,)e, + B,vl(z,i) + Fw2(z, i)u, (35) 

where 

Vl(Z, -q ii L@+(z)) - L(@(i)), 

v2(z, 2) ii H@-‘(z)) - H(@(Z)). 
(36) 

From assumption (2) the perturbations satisfy the in- 
equalities 

IIQII 2 Y~ll4L llwll i YElk4L (37) 

In order to prove that e,(t) exponentially goes to zero, 
consider the positive definite function of e, 

v(e,) = e?JP-‘e,, (38) 

where the positive definite symmetric matrix P sat- 
isfies inequality (30). The derivative of v along the 
error trajectory is 

li = eF(P-l(A - KC) + (A - IcC)TP-l)e,+ 

+2vlBTP-‘e, + 2uvTFTP-‘e,. 

(39) 
The following inequalities can be easily checked 

2vlBzP-1e, 5 eTP-lB,BzP-le, + vf, 

2uvFFTP-‘e I 5 u&eFP-lFFTP-le, + vTv2, 

(40) 
and substituted in (39). Using (33) and inequality 
(30) in assumption (4), after simple transformations 
one has 

i/ 5 -2w, j v(t) 5 e-2atv(0), (41) 

(last implication is due to Gronwall’s inequality). From 
this, recalling the definition (38) of V, we have 

(42) 

Given the properties (33), inequality (42) becomes 

Iledt)ll I ~e-Qtllez(0)ll, (43) 

with p = ~~-y~-y~--1. This proves the thesis. l 

Corollary 7 If all assumptions made in theorem 6 

hold, with CY = 0 in assumption (4), then the dynamic 

system (29) is such that 

&Ix& Ilx(t> - qt>j/ = 0. (44) 

Remark 8 An automatic choice of I< can be adopted 

by taking K = p2PCT, for a given /3. With this 

choice inequality (30) becomes a true H, Riccati in- 

equality 

AnP + PA: + BnB,‘+ u&FFT+ 

+2aP + y2P2 - 2P2PCTCP 5 0, (45) 

in which the matrix P is the only unknown. 

The assumption regarding the uniform Lipschitz 
property in R”, rather strong but essential to proof 
the global convergence of the observation error to 
zero, can be relaxed to prove local convergence. This 
topic is not treated here. 

Looking at the assumptions of theorems 6 it can 
be recognized that a central point in the construction 
of an observer of the form (29) is the existence of a 
pair IC, P that solves inequality (30). 

An interesting point is that the H, Riccati-like 
inequality admits solution (K, P) for any Q! > 0 and 
y > 0 if the term FFT is not present in the expres- 
sion. 



Lemma 9 For any triple Q, p, y of positive real the provided that [u(t)1 2 UM Qt, with uM suficiently 

H, Riccati-like inequality small. 

(A, - KCn)P + P(A, - ItC,)T+ 
+P2BnBz + 2c~P + y2P2 2 0, (46) 

admits solution (K, P) with P symmetric positive def- 

inite. 

Proof. From theorem 6, it is sufficient to show that 
for any positive (Y a sufficiently small UM exists such 
that the H, Riccati-like inequality (30) can be satis- 
fied. This can be done by considering, for a given p, 
the inequality 

Proof. Choose matrix K so to assign a set of real 
eigenvalues X, and set P = (Vn(X)TVn(X))-l. Left- 
multiplying (46) by Vn (A) and right-multiplying it by 
VT(A) the H, Riccati-like inequality becomes 

(A, - KC,)P + P(A, - KC,JT+ 

+B, B,T + 2aP + (y2 + P2)P2 5 0, 

(52) 

2A+ p”V,B,B,TV,T + 2& + y2V,-1Vn-T 5 0. (47) 

To satisfy the matrix inequality (47) it is sufficient to 
verify the scalar inequality 

which admits solution K, P, as proved in lemma 46. 
Since FFT 5 I, 5 & ,i,(p) P2, as it can be easily 

verified, one has 

2max{x} < -~2~~VnB,~~2 - 2a - y2~~V~1~~2. (48) 

The product VnB, and the norm IlVnB,II are easy to 
compute 

P2X~in(P)FFT < p2P2, (53) 

and thus the solution for inequality (30) exists with 
UM 5 p”X~i,(P). Th is completes the proof. 0 

VnB, = [l ... llT E R”, + IIVnBnB~V~lI = n. 

(49) 
The choice of eigenvalues that satisfies (28) can be 
adopted so to keep the norm of matrix V;’ next to 1 
as desired. Assuming u > 1 then max{A} = -u, and 
inequality (48) can be rewritten 

Remark 11 The suficient conditions for the exis- 

tence of an exponential observer given in theorem 10 

do not include the condition of observability for any 

input. However, a bound on the input has to be satis- 

fied. Evidently this smallness condition automatically 

excludes the presence of inputs that make indistin- 

guishable some system states. 

- u 5 -cr - jjn/3’ - $211V~‘(3jj, (50) 

where Vn(u) has been indicated as function of the 
scalar parameter u that defines all the eigenvalues. 
Thanks to (28), inequality (50) can be satisfied for u 
sufficiently large. This proves the lemma. . 

Theorem 6 and the properties of the H, Riccati- 
like inequality (30) originate two important results: 
1) existence of exponential observers for systems driven 
by sufficiently small input; 2) existence of an observer 
with assigned exponential rate for systems that have 
observation relative degree equal to n and a bounded 
input. 

Theorem 12 For the system (1) (2) assume that the 

following hypotheses hold: 

1) the system is drift-observable and the map z = 

a(x) and its inverse x = a-‘(z) are uniformly Lips- 

chitz in R* with constants ye and -yQ-1, respectively; 

2) the observability relative degree in IRn is r = n; 
3) the matrix functions H(@-l(z)) and L(@-l(z)) 

are uniformly Lipschitz in IRn, with Lipschitz con- 

stants 7~ and yi respectively; 

4) a constant UM > 0 exists such that Ilu(t < uM 

Qt 2 0; 

The theorems that state these results are reported 
below. 

Then for any a > 0 a gain vector I+ E R” exists 

such that the dynamic system (29) is such that 

Theorem 10 For system (1) (2) assume that the fol- 

lowing hypotheses hold: 

1) the system is drift-observable and the map z = 

a(x) and its inverse x = (a-l(z) are uniformly Lips- 

chitz in .6? with constants ya and ya-1, respectively; 

2) the functions H(@-l(z)) and L(@-l(z)) are uni- 

formly Lipschitz in R”, with Lipschitz constants 7~ 

II+) - ~(t>ll 5 w-%40) - ~(O>ll 

for a suitable p > 0. 

(54) 

Proof. From theorem 6 it is sufficient to prove that 
with the given assumptions the H, Riccati-like in- 
equality (30) can always be satisfied. This happens 
because when r = n, then F = B, (see definitions 
(22-23), and thus inequality (30) can be rewritten 

and yL respectively; 

Then for any Q > 0 there exists a vector K E R” 

that the dynamic system (29), for a suitable p 

gives 

lb+) - Wll 5 ~e+%@4 - W>ll 

such 

> 0, 

(51) 

(A, - KC,)P + P(A, - ItC,)T+ 

+( 1 + u&)Bn B,T + 2aP + y2P2 5 0. 

(55) 
Lemma 9 ensures existence of solution (I<, P). 0 



4 The Observer for Systems 

with Bounded/Smooth Input 

Theorem 10 states that for systems with any rela- 
tive degree an exponential observer can be designed 
if the input is sufficiently small. Moreover it could be 
shown that the smaller is the input, the faster can be 
chosen the exponential rate. 

On the other hand, if the system has observation 
relative degree r = n, and a known bound on the 
input (not necessarily small) then an observer with 
arbitrary exponential rate can be designed. 

In this section it is shown that in the case of relative 
degree r < n, an exponential observer with arbitrary 
exponential rate can be obtained if the derivatives of 
the input up to order n - r are known and bounded. 
Obviously, in many application the derivatives of the 
input are not known, and this observer can not be 
constructed. For this reason this observed is called 
theoretical. 

An observer that uses estimates of input deriva- 
tives is presented after. In this case the observa- 
tion error is not driven to zero, but its norm can be 
reduced, with exponential rate, below a prescribed 
bound. This kind of observer is called practical. 

4.1 Theoretical Observer 

In this section it is assumed that the input function is 
differentiable n - r times, with derivatives uniformly 
bounded in [0, +oo). The observer considered has the 
form 

i = f(2) + g(2)u + &-‘(if, U,+,)K(y - h(P)), (56) 

and can be constructed as long as U,-, allows in- 
vertibility of the Jacobian of the map S(Z, V,-,.). 
Only local uniform observability is strictly required 
(remember that, from theorem (4) drift-observable 
systems are locally uniformly observable). 

For brevity, only global properties are considered 
in this section, although local results can be derived 
as well. 

Theorem 13 For system (1) (2) assume that the fol- 

lowing hypotheses hold: 

1) the vector of input derivatives is bounded by a 

positive constant ti&f, i.e.. Ilun-T+l(t)ll 5 tiM Vt 2 0; 

2) the system is globally uniformly observable and the 

map q = 6(x, U,-,.) and its inverse x = &-l(rl, Un-,) 

are uniformly Lipschitz w.r.2. x and 17, respectively, 

in all R”, under condition IlUn-,.ll 5 UM, implied by 

hypothesis 1. Let y5 and ~~-1, respectively, be the 

Lipschitz constants for IllI,-,.[I 5 GM; 

3) the function m(n, Un++l) defined in (17) is uni- 
formly Lipschitz w.r.t. 77 in .US”, under assumption 1. 

Let 3;n be its Lipschitz constant for IIUn-,.+lII 5 %M. 

Then for any cx > 0 a gain vector K E R’ exists 

such that the dynamic system (56) is such that 

b(t) - ~(t>II I w-“%@) - Q)ll 
for a suitable p > 0. 

(57) 

Proof. From assumption 2 the system (1) (_2) is glob- 
ally uniformly observable and the map v = Q(x, U,-,.) 

can be considered a time-varying change of coordi- 
nates. In vcoordinates system (1) (2) and observer 
(56) can be rewritten 

, ti = &q+ %m(v, Lr+l), 
Y = Grl, 
d = An6 + B,m(+, CL-,-+I) + K(Y - Gfj). 

(58) 
Defining the function 

v(v, 6, h-,+1> e m(77, &+-+I) - m(li, LLr+l), 

(59) 
the observation error e, = r] - Q in Q coordinates is 
described by a linear perturbed system 

6, = (A, - KC,)e, + B,,.v, (60) 

in which the perturbation, by assumptions 1 and 3, 
satisfies the inequality 

I4 5 “lnzlhll. 
In order to prove that a properly chosen gain matrix 
K drives e,(t) to zero with an assigned exponential 
rate (Y, consider a pair (I(, P) that solves the H, 
Riccati-like inequality 

(A, - KC,)P + P(A, - KCJT+ 

+B,B,T + 2c~P + r;P” 5 0. (62) 

Existence of solution for (62) for any (Y and ^/m is 
guaranteed by lemma 9. Consider now the following 
positive definite function of the observation error 

v(e,) = e:P-le,. (63) 
Taking the derivative of v along the error trajectory, 
after few passages that use also (62), one has i/ 5 
-2ov, and therefore 

v(t) 5 e-2"tv(0). (64) 

Recalling definition (63) of v 

Il%wll 5 dT%-atlle,(0)ll> (65) 
and using Lipschitz conditions in assumption (2) in 
the original coordinates inequality (57) is obtained 
with p = ~~~~~,r,-l, and the thesis is proved. l 



As mentioned before, the observer (56) can be im- 
plemented only if input derivatives up to order n-r - 
1 are known. It follows, obviously, that the observer 
can be always implemented if r < n - 1, since in this 
case no input derivative is needed (if r = n the ob- 
server (56) coincides with observer (29)). Moreover, 
the observer can be implemented in all cases in which 
the generation model of input u is known (e.g. the in- 
put u is generated by a smooth controller or simply 
by a preprocessing filter). 

4.2 Practical Observer 

As in the previous section also here existence and 
boundedness of the first n - r derivatives is assumed 
for the input function in [0, +oo). With this assump- 
tion the input can be thought as generated by the 
system 

tin-, = A,-,U,-, + B,-.u(‘+, 

U = GA-TV,-T, 
(66) 

where A,-,., B,-,., C,-, is a Brunowsky triple of 
order n - r. The asymptotic reconstruction of the 
input derivatives can be made using an observer for 
system (66). Let x, E R”-’ be an auxiliary state 
and 5, = [xT XT]’ be an extended state x, E R”+‘. 
Considered now the observation problem applied to 
the augmented system 

2, ’ = f(G) +i?(xe)w, 
Y = h(%), (67) 
u = [O c&+.]x,. 

where h(x,) e h(x) and 

1 0 , stxe> ’ B,-, ’ [ 1 
(68) 

The auxiliary variable x, coincides with the vector 
of input derivatives U,-,, while the new input w is 
the (n - r)-th input derivative, i.e. w = u(~--‘), and 
is unknown. Thus, the problem into consideration is 
transformed into a state observation problem with an 
unknown input w and two known outputs y and u. 

If system (1) (2) h as observation relative degree r 
in a set Q c E, from definitions (68) it follows that 

and therefore 3x, E fi x R”-’ : LgLj-lL(xJ # 0. 

This means that system (67) has observation relative 
degree n. The mapping s(., .) defined in (12) can be 

written as &(xe) = k %(x, U~-F)Iu,-T=I,, or +J &(xe) = &(x,x,) ii Ly@e) : 1 . (70) 
Ly-l&x,) 

Defining the square map 

z [ 1 Xl3 = Qe(x,) e Q(2axJ , [ 1 (71) 
it can be easily recognized that zj = y(j-‘1, j= 

n and, as a consequence, system (67) in the 
;1;;* i- d’ t a coor ma es is written as 

i = &.z. + B, (fi(z, 2,) + fi(z, x&o), 
XL7 = An-+, + B,-,w, 

Y = GA 
U = CnmTxa. 

Defining the matrices 

(72) 

A d% 
&&A) = Z’ (73) 

a 

the Jacobian of the map Qe and its inverse can be 
written 

(74) 

(75) 
The observer proposed for system (67), and therefore 
for (1) (a), is 

i = f(2) + g(2)C,+.& + ip(i?, &). 

. I(1 
( ( 

Y - h(4) - O,( 5, fa)~(2(U - G-T&)), 

i, = A,-,& + I<2 (u - C,-,.&). 

(76) 
This is a block triangular system. The second block 
estimates the vector U,-, of input derivatives. In 
(z, x,)-coordinates the observer becomes 

j = A,i + B, (ffi(i, 2,) + ii@, &)w) + K1 (y - h(g)), 

2, = A,+.,& + I(2 (u - C,-,&), 

(77) 
Defining the functions 

%(Z, 2,x,, &a> = m(z, 2,) - m(i, &), 
w,(z, i, x,, &) = qt, xa) - n(i, Q, (78) 

the dynamics of the observation errors is described 
by equations 

’ ez = (A, - I(lC,)e, + &(v, + w,w) (79) 

ea * = (A,-, - K2Cn-,-)ea + B,+,-w. (80) 

For the linear system (80), the following lemma can 
be given (the proof is not reported for brevity). 



Lemma 14 Assume that in (80) a bound wM > 0 

exists such that Iw(t)l 5 w&f, vt 2 0. For a given 

positive 132 let (K2, Pa) 6 e a solution of the Lyapunov 

inequality 

(An-r - K2G-,>I=, + Pa(An-, - IC2G-,)T+ 

+%.-,B:-, + k2f’a 5 0, 

(P, symmetric and positive definite). Then 
(81) 

llea(t)112 5 cn(P,)e-2cuztlle,(0)l12 + !$$w2 M. (82) 

Remark 15 Note that with the choice of eigenval- 

ues Xi = -u’, i = 1,. . . ,n - r for matrix A,+. - 

~~2(~)G--r, lIPall can be made arbitrarily close to 1 

(see (28) and proof of theorem 9). Therefore, lemma 

14 asserts that a gain K2 can be chosen so that the 

error e, decays below a prescribed bound with a pre- 

scribed exponential rate c~2. The bigger the constant 

CQ the faster is the convergence and the smaller is the 

final error bound. 

In the next theorem the following function defini- 
tion is needed 

e-2cult _ e-2cx2t 

&(t; al, cl!=) k -2(o!1 - Lys) ’ if (~1 # (~2, 

te-=fflt 7 ifoi=a2. 

(83) 
Let (Y = min(cyi, CQ). It can be easily proved that E(t; al, cr2) 5 1/(2oe) Vt 2 0. 

Let tin-r(UM, WM) be the set of input functions u 
such that //U,+,.(t)// 5 ‘6~ and u’“-‘)(t) 5 wM for 

t 2 0. 

Theorem 16 For system (1) (2) assume that the fol- 

lowing hypotheses hold: 

1) the map z = %( x,x,) 
for all 2, E lh?-’ 

admits inverse x = $-l(z, x,) 

and G-l 

(global uniform observability). G 

are Lipschitz w.r.t. both arguments, with 

Lipschitz constants -ys and y&-l, respectively; 

2) the functions E(x, xa) and ii(z, x,) are Lipschitz 
w.r.t. both arguments; let ym and -ya be the Lipschitz 

constants; 

3) u E %a-r(GM, WM); 

Then there exist gain matrices IX?1 and I(2 for the 

observer (76) is such that fort 2 0 

Ilec(t)ll 5 cle-altlleo(o>ll+ 
+( cle -It + c21/W )lle,(O>ll + ~3. 

(84) 
Moreover, I~1 and IC2 can be chosen so to make ion: 

stunts c2 and c3 arbitrarily small. 

Proof. From lemma 14 for any ff2 > 0 a gain K2 
exists that ensures observation error decay for system 
(80) according to the law (82). 

The state observation error dynamics in z-coordinate: 
(79) consists of a linear system with nonlinear pertur- 
bations v,a and vs. 

Assumption (2) states that 

b~~~%~~~[~~]~l> b~,l<mll[~“]ll, (85) ea 

and therefore 

47 5 Y&(eZe, + eze,), 
4 5 ri(eTe, + e;fe,). 

036) 

Now, given positive constants (~1 and /3, consider a 
solution pair (Ki, P) (P symmetric and positive def- 
inite) of the H, Riccati-Like inequality 

(A, - KlC,)P + P(A, - KIC,)T+ 

+2P=B,B,‘+ 2alP + $P” < 0 (87) 
- > 

where y2 = -y& +$ w& (solution is ensured by lemma 

9). 
Consider also the positive definite function of the 

error e, 
u = e:P-le z. (88) 

It is not difficult to derive the following inequality 

fiti> I -hv(t) + $jle=(t)[[‘. (89) 

Substitution of (82) in (89), after few computations 
based on Gronwall inequality, gives 

u(t) 5 e-2cu1t 40) + hllea(0)l12~(t; w, a2) + 

+ 1-e-2a1* --Tq--p=, (90) 

where ~1 = cn(Pa)$, P2 = gqw&, 2 

and from definition (88) 

llez(t)l12 L cn(P)e-2”‘tlle,(0)l12+ 
+IIPII (Ilea(0)l12mO; (~1, a2) + Fp2) . 

(91) 

Using the following inequalities, implied by assump- 
tion (l), 

llezl12 i 9 (llezl12 + lleal12), 
llezl12 5 7!-, (llezl12 + lleal12), (92) 

easy computations show that the observation error in 
original coordinates satisfies inequality 

l14t)l12 5 yay~-,cn(P)e-2”lt(lle,(0)l12 + llea(0)l12)+ 
+7~-111PII (~~llea(0)l12~(t; al, a2) + Fp2). 

(93) 



This inequality easily implies (84), with 

Cl = ygy,-1 &pJ, 
c2 = ypJp$qEjp, (94 
c3 = yG-l qg$f. 

The proof is completed observing that ~2 can be cho- 
sen arbitrarily large while keeping l/P, ]I arbitrarily 
close to 1, while (~1 and /3 can be made arbitrarily 
large while keeping [/PII arbitrarily close to 1. As a 
consequence constants c2 and cs can be made arbi- 
trarily small. 0 

Remark 1’7 Inequality (84) can be expressed by stat- 

ing that the observation error exponentially tends to 

be bounded by 123. 

5 Conclusions 

This work considers the problem of state obser- 
vation with exponential error rate for smooth non- 
linear systems that do not meet conditions of uni- 
form observability. It is shown that drift-observabi- 
lity, together with a smoothness/boundedness condi- 
tion on the input, is sufficient to ensure the existence 
of an exponential observer. Three types of observers 
are presented, that can be constructed under drift- 
observability assumption only. The first observer pre- 
sented is suitable for systems with maximal relative 
degree or for general nonlinear systems driven by suf- 
ficiently small input. The second type of observer 
requires the input derivatives up to a certain order, 
and gives exponential error decay in the case of input 
sufficiently smooth. The third observer presented, ap- 
plicable in the case of smooth input, does not require 
input derivatives, and ensures exponential decay of 
the observation error below a prescribed level. Com- 
puter simulations, not reported in this paper due to 
lack of space, show good behavior of the last two ob- 
servers in situations in which the first observer does 
not work. 
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