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Abstract
This paper deals with the identification of NARX
(Nonlinear Autoregressive eXogenous) models for
describing the pressure inside the intake manifold and
the crankshaft speed of Internal Combustion car
engines. The proposed method is based on stepwise
regression and has been applied to real data collected on
a 1200cm3 commercial engine. A number of
experimental results witness the applicability of the
approach.

1 Introduction
The development of reliable Internal Combustion (IC)
engine dynamic models is of crucial importance for the
synthesis of control strategies coping with more and
more challenging requirements on fuel consumption,
vehicles' driveability, performance and pollutant
emissions, see e.g. [1] for a recent survey on this topic.
At the same time, thanks to the increasing availability of
computing power it is now possible to implement on-
board monitoring and diagnosis techniques for
improving vehicle maintainability and repairability, see
e.g. [2]. Also these fault detection and diagnosis
methods call for the knowledge of simple and reliable
engine models. However, IC engine modelling is still an
open field of research due to the antithetical needs of
describing a very complex, nonlinear system and
deriving simple model structures suitable for the control
synthesis or diagnosis phases [3].

A common approach to the development of IC engine
models is to resort to Mean-Value Models (MVM),
which are basically derived from physical laws
complemented by identification techniques for the
estimation of the unknown parameters, see e.g. [4]-[5].
In these models, the pressure p inside the intake
manifold, and the crankshaft speed n are described as

functions of the external manipulated variables, namely
the position α of the stepper motor directly linked to the
idle by-pass valve shaft, the spark advance ψ, and the
relative air/fuel ratio λ. The main drawback of MVM is
the need to determine the functional dependence of some
quantities, such as the friction and pumping powers, on
the primary state and input variables n, p, α, ψ, λ. The
tuning of the model calls also for the identification of
some parameters, such as the volumetric and the thermal
efficiencies or the flow coefficient though the throttle
body. The identification task can be successfully
accomplished at the cost of collecting data in expensive
and time consuming dynamic test bench experiments,
see e.g. [5]-[7].

For all the above reasons, it is of great interest to develop
efficient algorithms for the identification of reliable
engine models from raw data collected on-board. The
approach here proposed is to resort to the identification
of NARX models describing the dynamics of n and p in
a set of operating conditions ranging roughly from 650
RPM (Revolutions Per Minute) to 1100 RPM for the
crank shaft speed and from 250 mbar to 360 mbar for
the manifold pressure, which constitute a wide
neighbourhood of idle speed conditions. NARX models
have been already used in [2], [8], for the development
of on-board diagnosis techniques.

The identification method here proposed has been
applied to various sets of data collected on a commercial
1200cm3 IC engine. NARX models in the crank-angle
domain have been identified starting from time histories
of n, p obtained by imposing step changes of different
size and at different times to α, ψ, λ. The crank-angle
(θ) basis instead of the time basis has been adopted since
it is commonly recognized that in the angle basis idle
speed controllers and fault detection methods are easier
to design and calibrate, besides being more robust with



respect to variations due to time and deterioration, see
e.g. [9], [10].

2 The NARX model and the
identification method

2.1 Parameter estimation and structure
selection

Consider a general discrete-time nonlinear system with
one output y and m inputs u1, u2, ..., um. It has been
shown in [11], [12] that, under very mild assumptions,
the system can be locally described by the model

y(t) = f(y(t-1), ..., y(t-ny), u1(t-1), ...,u1(t-nu1), . um(t-1),
...,um(t-num)) (1)

In (1) ny and nu denote the maximum lags in the output
and input and f(·) is a nonlinear function, a-priori
unknown. Expanding f(·) as a polynomial of degree M,
model (1) can be written as [13]:
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where r depends on m, M, ny, nui, i=1,...,m. The
parameters βi, i=0,...,r are coefficients to be suitably
identified, x0=1 and xi(t), i=1,..., r, are monomials made
up by (delayed) outputs and/or inputs. In the following,
β=[β0  β1 ...βr] will denote the vector of unknown
parameters, and
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will denote the residual sequence.

Assuming that N observations are available, the Least
Squares (LS) estimate β LS of β  is
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If the nonlinear model structure (2) is assigned, the
estimation problem is trivially solved by means of
standard algorithms. A much more challenging problem
is determining the optimal structure of the model, that is
what powers and delays of what variables should be
included in the model (2). Indeed, it is apparent that
even for small values of  m, M, ny and nui, i=1,...,m, the
number r  of possible monomials (and regressors) tends
to explode.

A simple, yet effective, approach to the optimal structure
selection (OSS) problem is to divide the data into two
subsets {yid,uid} and {yv,uv} which will be used for

identification and validation respectively. Given
alternative model structures, the identification data are
used to estimate their parameters. Among the identified
models, one chooses the one that minimizes a suitable
performance index, typically a sum of squared residuals
(SSR), computed on the validation data.

In the present paper, the OSS problem is solved using a
stepwise regression algorithm, see e.g. [14]. For a given
model structure, once the estimate βLS has been obtained
using the identification data, the simulated output ys(t) is
computed by applying the validation input signal uv to
the identified model. In other words
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where βi
LS

 is the i-th entry of the estimated vector βLS

and the zi's in (4) correspond to the xi's in (2) provided
that the terms y, u in the definition of the xi's are
substituted by analogous terms ys and uv, respectively.
Correspondingly, the simulation residuals εs(t) are

εs(t)=yv(t)-ys(t) (5)

Letting Nv be the number of validation data, the quality
of the identified model is measured by the SSR relative
to simulation
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The overall stepwise regression technique can be
summarized as follows

1. Define a family of candidate regressors xi, i=0,...,r
and identify r+1  models with only one regressor at a
time. Select the most significant regressor, that is the
one that minimizes the SSRs criterion (6).

2. Temporarily extend the model by including one at a
time each of the remaining regressors, estimate the
model parameters and compute the corresponding SSRs.

3. Include in the model the regressor producing the
greatest decrease of SSRs with respect to that of the
previously selected model. If there are no regressors
whose inclusion reduces the SSRs, go to step 5.

4. Consider one at a time all the regressors included in
the model and check whether their elimination  reduces
the SSRs. In the affirmative, eliminate the regressor and
proceed to check the others. When this step is completed
go to step 2.

5. Stop.

Remark 1 Stepwise regression provides only a
suboptimal solution of the OSS problem. In fact, the



procedure only guarantees that the final model will be
locally optimal in the sense that it performs better
(according to SSRs) than all the models whose structure
differs for one regressor (added or subtracted) at most.
Nevertheless, given the prohibitive cost of performing an
exhaustive search over all possible model structures, the
stepwise regression strategy is widely applied and often
leads to more than satisfactory results.

Remark 2 The stepwise regression scheme adopted in
this paper is different from the standard one in that the
residuals computed on a validation data set are used to
accept (or reject) the candidate regressors, while it is
more common to adopt "subjective" (e.g. statistical)
criteria such as the F-test or "objective" criteria such as
AIC, see [14] and the references quoted there. The use of
a cross-validatory performance index seems more robust
with respect to the statistical assumptions that are
needed by other criteria.

Remark 3 In the above procedure the SSR is computed
on the validation data in a simulation experiment where
the measured validation outputs are not used to simulate
future outputs. In other words, the validation criterion is
an "output error" one, see e.g. [15]. Conversely, the
parameters are estimated from the identification data by
minimizing the prediction error according to an
"equation error" philosophy, see again [15]. This
discrepancy is justified by the fact that equation error
models, being linear-in-the-parameters, result in easy
identification algorithms. However, as far as an output
error performance index is more realistic, it is
convenient to solve the OSS problem resorting to
simulation-based criteria. In so doing, it is guaranteed
that the obtained model will be able to provide realistic
simulations of the physical phenomenon.

2.2 Identification of the pressure dynamics

For completeness, as many regressors as possible should
be considered a-priori; on the other hand this may imply
a prohibitive computational burden. The approach here
adopted is to first identify a model for the pressure
dynamics and select its candidate regressors by resorting
to physical considerations. To this end, recall that a
reliable and quite simple MVM of the pressure inside the
intake manifold is, see e.g. [4],
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where V and &m  are the engine displacement and the
manifold port-passage volume respectively, T is the
intake manifold air temperature (which is assumed to be
almost constant in warmed-up conditions), R is the gas
constant, η is the volumetric efficiency and &m  is the air

mass flow through the throttle plate. In (7) the term &m
can be modeled as an isoentropic flow of a compressible
gas in a pipe, see e.g. [5]. However, this requires the
knowledge of the throttle and by-pass open area as well
as the measure of the pressure at the inlet port of the
intake manifold, which is in contrast with the goal of
identifying a model from data collected on-board. On the
other hand, experience has shown that in most cases one
can assume a simple quadratic dependence on α, that is

&m = + +β β α β α0 1  2
2       (8)

As for the volumetric efficiency η, in [6] it has been
shown that a suitable polynomial model is

η = β3 + β4p + β5p2 + β6n + β7n2 +β8n3          (9)

Then, by combining (7)-(9) and using the Euler
discretization rule, it easily turns out that the candidate
regressors to be considered for identification in the crank
angle domain are p, p2, p3, np, n2p, n3p, n-1, αn-1, α2n-1,
besides a constant term which is always worth
considering in the identification of nonlinear models, see
[11]. Since the number of candidate regressors is small,
the stepwise regression method of Section 2.1 can be
applied to obtain with a negligeable effort the discrete-
time model in the crank angle domain

p(θ )=fp(p(θ -1),n(θ -1),α(θ -1)) (10)

where the sampling instants coincide with the cylinders’
top dead center. The model (10) is then used to compute
the simulated pressure transient ps on the validation data
as follows

ps(θ )=fp(ps(θ -1),nv(θ -1),αv(θ -1)) (11)

2.3 Identification of the crankshaft speed
dynamics

The identification of a suitable discrete-time model for n
of the form

n(θ )=fn(p(θ -1),n(θ -1),α(θ -1),ψ (θ -1),λ (θ -1))

poses two basic problems: the first concerns again the a-
priori selection of the candidate regressors, while the
second is due to the requirement that the connection of
the identified submodels (10) and (12) is representative
of the overall engine dynamics, that is the overall model
(10), (12) is a reliable simulator of the engine.

In this case too, recall (see again [4]) that a widely
accepted MVM of n is
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where Hu is the fuel heating value, &mf  is the injected

fuel mass flow, I is the total moment of inertia loading
the engine, ηb is the indicated efficiency and Pb, Pp and
Pf are the brake, pumping and friction powers
respectively. In [4] it has also been argued that the loss
power Pp+Pf  can be described as

Pp+Pf = n(β 10+β 11n+β 12n2)+np(β 13+β 14n) (14)

while the indicated efficiency can be viewed as due to
four effects, nearly independent, and quadratic in n, p, λ, 
ψ  respectively, that is

ηb=(β 15+β 16n+β 17n2)(β 18+β 19p+β 20p2)(β 21+
β 22λ+β 23λ2) (β 21+β 22ψ +β 23ψ 2)
(15)

Finally, the term &mf  in ideal (steady-state) conditions

coincides with & /m λ  and its dependence upon α directly
follows from (8). By combining (8), (13)-(15) and by
using the Euler discretization rule, it it is possible to
select the a-priori candidate regressors for the crankshaft
speed.

The problem of deriving an overall model, composed by
(10) and (12) and representative of the engine dynamics,
is solved as follows. Assume to be at step 2 of the
stepwise regression technique described in Section 2.1: a
candidate model structure of the form (12) has been
chosen and the problem is to assess the capability of the
last candidate regressor included into the model to
improve the model performance according to an output
error criterion. Then, two modifications in the basic
algorithm of Section 2 are introduced:

(i) in the identification phase, the regressors, instead of
depending on pid, depend on

ps(θ )=fp(ps(θ -1),nid(θ -1),αid(θ -1))

where fp is the (previously identified) model of the
pressure dynamics;

(ii) in the validation phase, the crankshaft speed n is
simulated by using the overall model (10)-(12) feeded by
αv, ψv, λv, that is

ns(θ )=fn(ps(θ -1),ns(θ -1),αv(θ -1),ψ v(θ -1),λ v(θ -
1))

=fn(fp(ps(θ -2),ns(θ -2),αv(θ -2)),ns(θ -1),αv(θ -1),ψ
v(θ -1),      λ v(θ -1)) (16)

In so doing, at step 3 of the stepwise regression
procedure, the selection of the regressor minimizing the
SSRs value amounts to optimizing the accuracy of the
overall model (10) and (12) in simulating both the
pressure and the crankshaft speed dynamics.

3 Experimental setup
The experimental data were collected on a commercial
car with a 1200cm3 engine with four valves per cylinder.
The car was equipped with a development Electronic
Control Unit (ECU) with serial link to an external PC
based development kit in order to perform data
acquisition. The collected data were subsequently
transformed in the crank angle domain.

The experiments were performed with warm engine
(TH20=900C) and the clutch not coupled. Closed-
loop idle control, λ control and knock control were
disabled. The ECU was programmed in order to generate
pre-assigned stimuli (time-histories) on the control
variables: α, ψ and λ. The acquired data were the
control variables and the relevant outputs p and n.

4 Identification results
In all the identification experiments, data scaling was
used by considering the variables nn=n/1000; pn=p/300;
ψn=ψ/10; αn=α/60, λn=λ/14.5. For identification
purposes, λ was varied in the range [14.9,17.5],
variations of alpha were imposed in the range [45,83],
while the variations of ψ were limited to the range
[3o,16o]. The models identified according to the
procedure described in Section 2 are :

Model of the pressure dynamics

pn(k)=0.0743αn(k-1)nn
-1(k-1) + 0.0311nn

-1(k-1)  +
0.8874pn(k-1) -  0.0032pn

3(k-1) (17)

Model of the crankshaft speed dynamics

nn(k)= - 0.0989 - 0.797pn(k-1)αn(k-1)λn(k-1)

+ 0.0268nn
-2(k-1)pn

2(k-1)αn
2(k-1)λn(k-1)ψn(k-1)

+ 0.9879nn(k-1) - 0.1007nn
2(k-1)pn

2(k-1)
+ 0.0171λn

-1(k-1)ψn(k-1) + 0.0167 nn
2(k-1)λn(k-1)

+ 0.2462nn(k-1)pn
2(k-1) + 0.0852αn(k-1)λn(k-1)

- 0.0443nn
-1(k-1)pn(k-1)αn(k-1)ψn(k-1)

- 0.0081λn
2(k-1)ψn(k-1)                                           (18)

 - 0.0137n n
-1(k-1)  p n (k-1)α n

2(k-1)λ n
-1 (k-1)

- 0.0043 nn
2(k-1)λn

2(k-1)ψn
2(k-1)

- 0.0053 pn
2(k-1)αn

2(k-1)ψn
2(k-1)

- 0.416nn(k-1)pn(k-1)λn(k-1)
+ 0.0133 nn

-1(k-1) pn
2(k-1)αn(k-1)ψn(k-1)λn(k-1)                          



Experiment 1

With reference to the validation data, the transient of n
and p and those of ps and ns provided by the joint
simulation of the identified models (17) and (18) are
reported in figs.1 and 2; correspondingly the computed
RMS values are 21.1 RPM and 6.76 mbar. Note that in
this experiment and in the following Experiment 3 the
simulation is performed by feeding the inputs
α ψ λn

v
n
v

n
v, ,   without using either pn

v  or nn
v .

Figure A: validation data - transient of n and of the
output ns  ( dotted line ) computed with the joint
simulation of models ( 17 ) and ( 18 ).

Figure B : validation data - transient of p and of the
output ps  ( dotted line ) computed with the joint
simulation of models ( 17 ) and ( 18 ).

Experiment 2

The one-step-ahead predictions of p and n provided by
the joint use of the identified models (17) and (18) have

been computed on the validation data. The obtained
transients are reported in figs. 3 and 4; correspondingly
the values of RMS are 6.22 RPM and 1.78 mbar.

Figure C : validation data - transient of n and one step
ahead prediction ( dotted line ) computed with the joint
simulation of models ( 17 ) and ( 18 ).

Figure D : validation data - transient of p and one step
ahead prediction ( dotted line ) computed with the joint
simulation of models ( 17 ) and ( 18 ).

Experiment 3

The performance of the identified models have also been
tested by applying them to an extra set of data S1,
different from those used in the identification procedure
and in the validation one. Correspondingly, the
transients of ns and ps reported in figs. 5, 6 have been
determined. The RMS values are 20.43RPM and
6.17mbar.

5 Conclusions
This research is part of a wider project aimed at the
development of idle speed control and diagnosis



techniques for IC engines directly from data collected
on-board. The results reported here show that the
modelling phase can be effectively carried out through
the identification of nonlinear input-output models. This
conclusion is confirmed by the preliminary results
obtained by applying the proposed approach also to the
identification of a 1600cm3  engine, see [16].

Figure E : data set S1 - transient of n and of the output
ns ( dotted line ) computed with the joint simulation of
models ( 17 ) and ( 18 ).

Figure F : data set S1 - transient of p and of the output ps

( dotted line ) computed with the joint simulation of
models ( 17 ) and ( 18 ).
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