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Abstract:

In the last years many efforts have been taken to develop simulation models. These models need a large

amount of parameters. Many of these parameters are unknown and difficult to measure. A precise knowledge
of interior parameters of the car is necessary to be able to make a model which delivers accurate and reliable
results. This paper presents the identification of some important parameters concerning the dynamical
bebaviour of the vehicle. These parameters are the road slope € and the moments of inertia Jx, Jv, ]z for the x-
,y- and z-axis and the mass of the chassis. To achieve this goal, a non-linear observer will be used to calculate
and to validate the wheel forces which are needed as input values for an estimator. The five parameters are
estimated using a RLS method. According to measurements in a test car our method delivers a very good

estimation for the behaviour of the vehicle.
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1. Introduction

Intelligent automotive control systems improve the
safety of cars in many fields. For example, a driving
stability control by active braking of individual wheels [1]
stabilizes the car in critical situations.

These dynamic control systems are always based on
more or less complex vehicle models. For accurate vehicle
simulations, the vehicle models should be adapted to
different cars by adapting several specific vehicle
parameters.

Many of these parameters are unknown and difficult
to measure. A precise knowledge of interior parameters of
the car is necessary to make the model deliver good,
accurate and reliable results. Estimating non measurable
parameters gives the opportunity to get to know the
needed parameters.

In this paper the identification of some important
parameters concerning the dynamical behaviour of cars is
presented. These parameters are the road slope € and the
moments of inertia Jx, Jv, Jz for the x-,y- and z-axis and
the mass of the chassis.

After a short description of the vehicle model in part
2, the determination of the wheel forces is dealt with in
chapter 3. The wheel forces in x-, y- and z-direction are
needed as input values for the estimator. A non-linear
observer will be used to validate the calculated wheel
forces indirectly.

In chapter 4 the identification of the parameters is
presented. After introducing the Recursive Least Squares
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estimator, the road slope and the moments of inertia are
estimated. Together with the moments of inertia a second
parameter can be identified, namely the product of vehicle
mass and distance between center of gravity and rotation
axis.

The measurements are described in chapter 5 and the
results are presented in chapter 6.

2. The vehicle model

The described vehicle dynamic model consists of
several submodels which are modularly implemented in
Matlab/Simulink. An example of such a model is shown
in figure 1. The model uses the input values steering angle,
wheel velocity, weather conditions and initial speed of the

car.
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Figure 1: Modular implementation



With this model it is possible to determine non-
measurable dynamic parameters of a real driving
manoeuvre if the measured steering angle and wheel
velocities of the manoeuvre are used as input.

The model itself can be adapted to any car by adapting
the physical parameters of the specific car. However,
many of these physical parameters are unknown and
hardly measurable. The only way to get these parameter is
to carry out an identification process.

3. Determination of the wheel forces

The wheel forces are essential as input for the
identification task of some parameters. As they are very
difficult to measure, they have to be modelled.

The normal forces depend on suspension dynamics and on
the driving situation [2].

The normal forces at the front and rear wheels are
assumed to be described by the following relations [3]
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where 1, 1, by, b,; are geometric parameters and a, a,
the acceleration of the chassis in the center of gravity.

The next step is to define that the tire is subject to a
longitudinal force and a lateral force as a function of the
load F,, and the friction coefficient :

Fo=F T

Fs=Fz Tls

The friction between tire and road is dependent on the
road surface as is shown in figure 2.
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Figure 2 : Friction characteristics for some typical
surfaces

Now the wheel forces in x- and y-direction can be found
with a wheel model. Burckhardt [4] and Pacejka [5] give
some equations to analytically describe the non-linear
adhesion curve.

Burckhardt uses exponential functions to approximate the
adhesion curve as following

Hres(Sres) =16, [L— €7%=) ~ C ] (&%= [(1-,[F,")

whereas Pacejka makes use of trigonometric functions
F(s) = Dsn[Carctan{B 3- E(B - arctan(B [$))}]

in order to describe the wheel force as a function of the
wheel slip.

The parameters ci, ¢, ¢, o, ¢s and B, C, D, E,
respectively, give us the characteristics of the road surfaces
or the tire.

After calculating the wheel forces, we also had to validate
our results before using them as input values for the
identification. For this purpose a nonlinear observer was
used with the wheel forces in x- and y-direction as inputs
and the observed velocity v, slip angle B and yaw rate v
as outputs. The observer was built upon the nonlinear
two track model [6].

Figure 3 shows the implemented observer to validate the
wheel forces:
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Figure 3 : Validation of wheel forces with non-linear

observer

By comparing the observed velocity and yaw rate with
their measured values, one can make conclusions on the
accuracy of the input values of the wheel forces.



Figure 4 shows the measured and the observed data,
namely the velocity, the yaw rate, the acceleration in x-
and y-direction and the forces Fxvi, Fyvi of the front left
wheel as an example.
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Figure 4 : Validation of the results from the non-linear
observer

Another way to get the wheel forces is to use the vehicle
model described in chapter 2. Once validated, both
methods are capable of determining the wheel forces from
the measured steering wheel angle and the wheel velocity.

4. Identification of parameters

4.1. Identification methods

Depending on model structure, a-priori information,
disturbances and real-time feasibility, there is a vast
variety of different estimation methods. A very common
and powerful method is the Recursive Least Squares (RLS)
Estimator [7] and some of its derivatives.

The estimation terms of the RLS are
(k) = P(k) tu(k +1)
Y= 0T (k+ D) P(k) Tp(k +1) + A

O(k +1) = O(k) + y(k) Qy(k +1) - ¢ (k +1) [©(K)]

P(k+1) =[I = y(k) " (k+ D] EF’(k);l

In order to avoid numeric problems due to badly
conditioned matrices, it is advisable to wuse some
numerically improved identification method, e.g. the
discrete square root filter in the covariance form (DSFC)

[8].
These equations are:

f (k) =S"(k) [w(k +1)

1
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O(k +1) = O(k) + y(k) My(k +1) = ¢ (k +1) O(K)]
e(k+1)

Before applying the identification equations you have to
determine the data-matrix W, the parameter-matrix © and

the output-matrix y according to the Least Squares
equation

y(k) = W'(k) ©(k)

4.2. Identification of the moments of inertia

The moments of inertia can be found in the equations of
the rotatory motion of the chassis. The three torque
equations are described in [2] as follows:

Torque equation for the yaw rate:
J, = (FXVR - FXVL) %Q/ + (FXHR - FXHL) B;-—bH

+ (FYVL + FYVR) Dl/ - (FYHL + FYHR) D]H
Torque equation round a longitudinal axis:

I X = (FZVL + FZHL)dzz_ (FZVR + FZHL)%-I- mayh

Torque equation round a lateral axis:

3¢ = (FZVL + FZVR) [, - (FZHL + FZHR) 0, +ma,h

In these equations the roll- and pitch-axis were assumed to
be on the road surface. To be more exact, it is better to
raise the roll- and pitch-axis on their real level somewhere
between the street and the center of gravity of the
springed car mass. In the equation for the yaw rate the
structural caster offset can be taken into consideration
which leads to the following RLS-equations:



Identification of the moment of inertia for the x-axis
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Identification of the moment of inertia for the y-axis
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Identification of the moment of inertia for the z-axis
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It is obvious that a second parameter can be identified in
addition to the moments of inertia. For the x- and y-axis
this second parameter is the product (m@#’), the vehicle
mass m and the distance between center of gravity and
rotation-axis »’. With the knowledge of one of these two
parameters it is possible to identify the vehicle mass or the
parameter b’.

4.3. Identification of the road slope

The knowledge of the road slope € is essential for an
accurate vehicle dynamics model to work in real time on
the car.

The slope can be determined by the offset of the real
acceleration and the measured acceleration in x-direction
which is due to the orientation of the acceleration sensor.
As the sensor is not oriented horizontally when driving
upwards, it also measures a part of the gravity-acceleration
depending on the road slope.

a, =X+gl&ine

The real acceleration of the car can be calculated from the
wheel rates

X=ry,

o(k)

In order to avoid errors due to wheel slip it is advisable to
use the wheel rates of the not driven wheels.

Solving the above equations for the road slope and
neglecting the sin for small angles leads to

5. Measurements

The test car was equipped with a steering angle sensor and
a motion-pak.box in the car’s center of gravity to measure
the accelerations and the rotation rates of the three axes.
The velocity was measured with a correvit-sensor and the
wheel rates were taken from the ABS-unit.

In order to stimulate the input of the estimator
adequately, special manoeuvres were chosen to get good
results. The most important manoeuvres were accelerated
and decelerated rides straight forward, slalom rides at
constant velocity and rides with steps in the steering
angle.

The measured data were filtered and saved in the Matlab
format. At this stage the data were then evaluated off-line
with Matlab/Simulink on a PC but the used algorithms
would all work for real time applications as well.

6. Results

The estimated parameters are presented in the following
figures. The calculated reference-line in the plots
demonstrate the accuracy of the results for the specific
manoeuvre. With the moments of inertia for the x- and y-
axis the second parameter (m[A’) was solved assuming a
specific value for /’, the distance between center of gravity
of the springed vehicle mass and the rotation axis.

For the road slope two plots are presented showing the
same valley twice, first driven in one direction and then
the same way backwards.



Result 1: The plots on the left side show the results of the moments of inertia for the x- and y-axis, the left plots show the
results for the estimated vehicle mass
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Result 2 : The second figure shows the estimated moment of inertia for the z-axis
—
o 3000 __ 3000
N
£ g
=, g
(@)]
N
S =
2500 N 2500
reference(2 Pers.)=2450 kgm~"Z= 13 referenée(5 F’erls.):zeoc‘) kKgm~z=
2000 s 75 5 55 55 30 2000 —3 P s s 1o

t [s] t [s]



Result 3 : In this figure the detected road slope is presented, driving through the same valley to and fro
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7. Conclusions

The identification of the parameters road slope &,
moments of inertia Jx, Jv, Jz for the x-,y- and z-axis and
the product m[A’ of vehicle mass and distance between
center of gravity and rotation axis produced good results.
The wheel forces which are needed as input values for the
identification could be calculated with specific wheel
load- and tire-models and could be validated with help of
a non-linear observer.

The algorithm to estimate the road slope is numerically
easy to implement and gives in its simple form a
resolution of less than 5% slope.

Using adequate driving-manoeuvres it was possible to get
reliable values for all three moments of inertia.
Additionally, with the knowledge of either m or 4’ one
of these parameters could also be determined. In the plots
of resultsl b* was given a fix value to determine the
vehicle’s mass.

Having estimated the above parameters, the vehicle
model described in chapter 2 could be improved by using
the current parameters during a driving manoeuvre. In
particular the dynamic changes in the road slope make
the simulation model more accurate when used for on-
line modelling of a driving condition. The simulated
dynamics of the car are then more reliable and more
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accurate then and therefore can be used as inputs for
automotive control systems e.g. Bosch FDR [9].
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