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I. Abstract 

The optimal control problem of linear 
stochastic continuous-time systems with a finite budget 
of N exact full state observations interspersed at Poisson 
distributed instants of time is considered. The length of 
the control horizon is random. The horizon lies at the 
instant where the last observation is gathered. 

It is shown that this problem has intimate 
connections with that of linear quadratic Gaussian 
regulation with an exponentially discounted cost. Also, 
the optimal control is shown to be made up of a 
sequence of piecewise open loop controls corresponding 
to linear feedback of the state predictors based on the 
most recent information. The feedback gains are 
piecewise-constant and are obtained from a sequence of 
algebraic Riccati equations. They are computed off-line. 

II-Introduction 

The solution to the problem of optimally 
controlling a discrete or continuous-time stochastic 
Gaussian (finite-state) dynamic system under full or 
partial state observation is by now very well known 
(see[l] or [2] for example). In the existing literature, 
state observations whether noisy or exact, partial or 
total, occur either continuously or at regularly spaced 
intervals of time. 

In this paper, we consider instead the case 
where observations, while corresponding to exact full- 
state observations, occur at random intervals of time 
which are Poisson distributed with a given fixed mean 
interarrival time. The controller is allowed a finite 
budget of N observations. The length of the control 
horizon is random as it ends with the gathering of the 
N* observation. 

Interest in this problem stems from at least two 
practical control situations; both situations involve 

reliance on a highly trained technician with expensive 
hourly rates for manual measurements of the controlled 
process, and constraints on the total measurements 
budget over the finite control horizon. However, in the 
first situation, while regularly spaced measurements are 
planned for initially, it is the technician who has 
random availability, thus introducing Poisson 
distributed measurement times of the process. In the 
second situation, while more control can be exerted over 
the technician’s availability, it is desired to investigate 
the appropriateness of randomizing observation times of 
the process, while keeping the total mesurements budget 
fixed. Indeed, one can legitimately ask whether the 
choice of random independant interarrival observation 
times with a given fixed mean and maximum variance 
may do better from the point of view of overall control 
performance than regularly spaced fixed observation 
times for a fixed total number of observations. In 
particular, one such interarrival observation time 
distribution is exponential, thus making the resulting 
observation times process Poisson. We note that, in 
principle, the comparison of the performance of this 
latter scheme with the original fixed observation time 
scheme may be carried out using the results of this 
paper. 

The remainder rest of the paper is organized as 
follows. In section 3, we formulate the linear Gaussian 
quadratic regulator problem with a finite budget of 
Poisson distributed (full state) observation times. In 
section 4, and in order to limit complexity ,we present 
results only for the scalar case. A dynamic 
programming framework is developed whereby it is 
shown that at stage i (i.e. following the i* observation), 
the structure of the optimal control is obtained from the 
solution of an infinite horizon linear Gaussian 
exponentially weighted quadratic regulator problem, the 
parameters of which are obtained as the result of a 
backward recursion from the parameters at stage i+l. 
The solution corresponds to a sequence of piecewise 
constant gain feedback controls linear, not in the system 
state per se, but in the predictor of that state based on 



the most recent observation and the calculated control 
structure. Note that all feedback gains can be computed 
off line, thus making the overall controller a gain 
scheduling type of controller. In section 5, conclusions 
and suggestions for future work are summarized. 

III-Problem statement 

We consider a linear time-invariant stochastic 
system evolving according to the following It6 
stochastic state equation: 

dx(t) = A dt + B u(t) dt + G dw(t) (1) 

where x,u are respectively nxl and mxl vectors, and w 
is a normalized zero mean standard vector brownian 
motion, while A, B, and G are matrices of the 
appropriate dimensions. 

We associate with (1) a full-state, exact, 
observation equation: 

Z(ti) = X(tJ , i=O, 1,2 . . . . . ,N (2) 

where the t;‘s are Poisson distributed with mean 
interarrival time l/ h. Note that we set to = 0. 

Under this randomized observation structure, 
the objective is to construct a control law which 
optimizes the following quadratic expected cost 
functional: 

tl.4 

JWoN = Ew,t, I I(x’Qx+u’Ru)dtIx(to>l, (3) 

to 
where Q, R are symmetric and respectively positive 
definite, and positive semi-definite matrices of the 
appropriate sizes. Note that for notational simplicity, we 
shall consider that knowing x(6) corresponds in fact to 
knowledge of both x(ti) and ti, that is to say, the iti 
observation is (ti, x(c)). 

In the next section, we develop a dynamic 
programming solution to this optimal control problem 
in the scalar case. 

IV-Optimal control synthesis 

Consider the following scalar version of (1): 

dx(t) = a dt + b u(t) dt + g dw(t) , (4) 

z(ti) = X(ti), where the ti’s, i = 0, I, . . . . N are as in (2) 
above. 

It is desired to construct the control law, within 
the class 9 of admissible control laws (defined to be 
that of control functions measurable with respect to the 
o-field of observations, and yielding a finite 
performance index), which minimizes the following 
cost functional: 

5-4 

J(x(t,)) = $“a Ew.tN [ I (x’(t) + r U*Wdt I x(b)1 , 
5 

r>O. (5) 

We consider a dynamic programming 
formulation of the optimization problem, whereby the i” 
stage starts with the occurence of the i* measurement, 
and the optimal cost-to-go for the i* stage is given by: 

V(X(ti), i) P V(W, t; A 

tN 
min E 

=ua 
WJN [ 

f (x*(t) + r u*(t)) dt 1 x(ti> ] (6) 

ti 

Notice that the optimal cost-to-go associated with the 
N* stage is given by: 

v(x(tN), N> = 0 (7) 

At the (N-l)* stage, the cost is given by: 

v(x(t&,), N-l) = Inin Ew,t, [ j 
UE9 

(x*(t) + r u*(t)) dt 
t N-l 

+ v(x(tN), WI 1 x(fN-1) 1 

= min E 
tN 

UE9 
WA4 [ I (x*(t) + r u*(t)> dt 1 x(fN-1) 1 (8) 

t N-l 

Now, upon conditioning on tN in (S), and using 
the independence of the w(t) process and the sequence 
of t/s, we can write: 

m b-4 

v(x(t,-,), N-l) =ut$ Ew jhc-h(r,-tN-‘) [ 5 (x*(t) 

fN-I tN-1 

with the randomized observation equation: + r U2(t>> dtl dh 1 x(tN-I)] (9) 



Using Fubini’s theorem in (9), one can 
interchange the order of the double integration to 
obtain: 

co 

v(X @N-l), N-1) =upq EW[ I [(X’(t) + r U*(t)] 

tN-l 

00 

j- he-h(‘N-‘N-l) dtn dt IX (tn-1) ] 

In order to compute the above integrals, we rely on the 
following identity: 

E[(X Xl)] = P(t) + E(X) E(X) (15) 

where X is the state vector in (13), P(t) = E[(X-E(X)) 

WXWI, as well as the following covariance 
propagation equation [3]: 

t 

= /ki& Ew [ j&N-‘N-1 ) (x2(t) 
+(t)=AP(t)+P(t)A’+GG’ , P(O)=0 

(16) 

tN-l 

+ r U*(t)) dt 1 X (fN-111 , (10) 

which is effectively an infinite horizon dicounted linear 
quadratic regulator problem, with perfect knowledge of 
the initial state, but no further observations. The 
resulting optimal control law is well known [4], and by 
a separation theorem [2], corresponds to a linear state 

feedback u = -kN-l 2 (t/t&, where 2 (t/t& iS the 
predictor Of X(t) given the initial State x(t&, with the 
following dynamics: 

d%t 1 t&,) = (a - k,-, )d%t I t,-1). (11) 

The gain kNVl is obtained from the following algebraic 
Riccati equation: 

r-‘b*ki-, - (2a + h)k,, - 1 = 0 (12) 

Thus, the resulting closed-loop system evolves 
according to: 

Dx (t) = (a x(t) - kn-1 2 (tltN-l))dt + g dw(t) 

dji (t 1 tN-1) = (a - kn-,) j; (tltn-r)dt , (13) 

while A and G are the A matrix in (13), and the [g 11’ 
vector respectively. 

Notice that the cost in (14) can now be expressed as: 

V x(t,-, , N - 1) = j: e-h(‘-‘N-n) 

hi-1 [ ~~~(~~~~~~~~N-,r~(17) 

Furthermore, Laplace transformation of (16) yields: 

sP(s) - P(0) = A P(s) + P(s) A’ + GG’ (18) 

and by setting s = h , one can compute the integrals in 

(17). 

( 15) - ( 18) yield after appropriate calculations: 

V(X(tN-,)rN -1) = (h -2(a - k,-,))-‘[I + (k:-,&(tN-i)+?gi- 

= aN.IX2(tN-l)+~N-1 (19) 

At this stage, we postulate that the cost 
structure will remain quadratic in the initial state, and 
establish that result through a backwards recurrence. 

with the following optimal cost functional: Thus, let: 

V(X(ti+l), i+l) = %+l x(ti+l > + Pi+1 , (20) 

for some 0 I i < N, and given constants ai+], bi+l. 

V(X(ti), i) = oi X*0;) + pi , (21) 

[:;, tNml,l ’ lx(h-l,E (14) For some constants ai, pi. 



X2(t) ldt I X CC) 1 + Pi+1 
Indeed, 

ti+l 

V(x(ti), i) = upB Ew,ti+, [ l (x2(0 + m2(Wdt + 
ti 

V(X(ti+l), i+l) I x(C)1 

ti+l 
= upq Ew [jk eeh(‘i+lmti) J 

(x2(t) + 

ti ti 

m2(t))dt;+l + CL;+] x2 (t&l) + Pi+1 I x(G)] 

= upq [ Ew , j [x20) + ru2(t)] [j: h e-h(‘i+l-ti) dti+l] 
G t 

co 

dt 1 x(ti)] + Ew[a;+l I 
h 6a’t-ti) x2(t)dt + pi+1 1 x(ti)]] 

G 

. 

zuyq EW [i h e-h(t-ti) [x2(t)[l + oLi+l 1L] + rU2(t) ]dt 

+ 

+ Pi+1 I X(G)1 2 (22) 

where, once again, one recognizes an infinite horizon 
discounted linear quadratic Gaussian optimal control 
problem with perfect knowledge of the initial state and 
no further observation . 

The optimal control is again a linear feedback 

on the predictor 2 (tlti) of the state under the control 
structure . Thus, 

u(t) = -ki 2 (t I ti) ) (23) 
With: 

d?(tlti)=(a-ki) ?(tIti)dt , (24) 

and ki is obtained from the following Riccati equation: 

0 = i’ b2 k f - (2a + h)ki - (1 + ai+l h) 

The resulting cost functional is then given by: 

V(X (t;), i) = Ew [ jXe-‘(‘-l’) [x2(t) [l + ai+l J-1 
G 

+ rU2(t)]dt + pi+1 I x(C)1 

= [ -2(a-k;) ] [ 1 + %+I h + r k f ] x2(ti) + pi+1 

Thus: 

ai=[-2(a-ki)-‘][l+ai+lh+rkf] 

2 Pi= Pi+1 + $J----g for’ i = 0, 

With: 

furthermore, 

C$.J=O 

PN=O , 

k: (2a+h) rk. b+%+?) r = 0 -- 
L ,,2 ‘- ,,2 

and 

V (X ( ti ), i) = o$ X2(c) + pi . 

This establishes our main result. 

V-Conclusion 

(25) 

.., N-l 

(26) 

(27) 

We have developed results on linear quadratic 
regulation with intermittent Poisson distributed 
observations with a finite number of observations N. 
The behavior of the optimal controller as N goes to 
infinity is an issue remaining to be explored. Also, the 
results lead to further questions, among which the 
following one : given a finite budget of N observations 
which should on average span a fixed length of horizon 
T, with some given maximal relative variance, is there 
an optimal (fixed) distribution of observation times 
which will minimize the resulting cost functional (and 
would therefore be most advisable)? 
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