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Abstract - A mathematical model describing the
pressure-volume relationship of the Novacor left
ventricular assist system (LVAS) was developed. The
model consisted of lumped resistance, capacitance, and
inductance elements with one time-varying capacitor to
simulate the cyclical pressure generation of the system.
The ejection and filling portions of the pump cycle were
modeled with two separate functions. The
corresponding model parameters were estimated by least
squares fit to experimental data obtained in the
laboratory. The model performed well at simulating
pump pressure of operation throughout the full cycle.
Computer simulation of the pump with a cardiovascular
model demonstrated the interaction between the LVAS
and the cardiovascular system. This model can be used
to incorporate on-line cardiovascular parameter
estimation and to design a new controller for the LVAS.

1. Introduction

Heart disease is a major health problem in the United
States and throughout the world [1]. Although heart
transplantation is an accepted method to treat severe
cases of the disease, the demand for heart transplants
exceeds the supply. For many patients, a left ventricular
assist system (LVAS) could provide a satisfactory
alternative.

The control of existing devices depends on human
operation, as shown in Fig. 1 (top). This manual
approach is effective in a monitored environment but
requires continuous engineering and clinical support
limiting the patient’s activities. A new controller under
development, shown in Fig. 1 (bottom), will adjust the
pump operation to changes in the patient’s body
demand based on estimates from a cardiovascular
model. It has been previously shown that the aortic
pressure (AoP) and aortic flow (Aof) measurements are
necessary to estimate cardiovascular model parameters
[2]. If these necessary signals can be derived or
substituted using measurements from the LVAS itself,

invasive sensors in the human body would not be
needed.
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Fig. 1 LVAS Control (current system above dashed line)

This paper illustrates the use of a simple lumped
parameter model to describe the pressure-volume
relationship of the Novacor LVAS pump (Novacor
Division, Baxter Healthcare Corp., Oakland, CA). This
pulsatile pump accepts blood from the left ventricle at
low pressure during natural cardiac systole and ejects
into the descending thoracic aorta during cardiac
diastole. In this counterpulsation operation, the pump
volume measurement, supplied by the LVAS, can be
used to estimate the aortic flow. If the pump pressure
can also be derived from the pump volume information,
an invasive measurement of the aortic pressure would be
eliminated. Thus the cardiovascular system estimator
can be used to identify the model parameters without
any indwelling sensor in the human body. In this study,
pump pressure and volume measurements were used to
identify the model parameters and to quantify its
accuracy. A computer simulation of the pump and the
systemic circulation was also constructed to show the
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interaction between the blood pump and the
cardiovascular system.

2. System Description

The Novacor LVAS is a spring-decoupled dual
pusher-plate sac-type blood pump driven by a pulsed-
solenoid energy converter. Fig. 2 illustrates the
principal components of the pump and their function
during a typical operation cycle [3]. The cycle begins
with the pump sac filled with blood and solenoid
unlatched (Fig. 2a). At the start of pump ejection,
shown in Fig. 2b, the solenoid closes rapidly, deflecting
the beam springs through the pump pusher plates and
exerting a balanced force on the top and bottom surfaces
of the blood in the pump sac. At the end of ejection,
shown in Fig. 2c, after the beam springs have released
most of their stored energy and returned to their preload
condition, the current to the solenoid is terminated, and
the pump is free to fill for the next ejection cycle.
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Fig. 2 Schematic LVAS operation [3]

An electric analog of the Novacor LVAS pump,
shown in Fig. 3, has been formulated to facilitate
analysis of the system. The purpose of this model is to
predict the pump chamber pressure, Pcp, for a given
instantaneous pump volume, V, based on the model

parameters. The static pressure-volume relationship,
P(V), representing the spring stiffness of the pump, was
modeled by a time-varying capacitance, CVAD(t). A
second order system, represented by RSO, LSO, and CSO,
was used to describe the dynamics of solenoid closure.
The pressure response for a given P(V) was represented
by the transfer function

PFICT/P(V) = H(s) = ωn
2 / (s2 + 2ζωns + ωn

2)
(1)

where PFICT is the pump pressure measurement in the
absence of fluid mechanics effect in the pump chamber.
The viscosity and inertance of blood in the pump
chamber were represented by a resistance, RP, and an
inductance, LP.
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Fig. 3 LVAS pump chamber model

3. Experimental Method

Two experiments were conducted to determine the
functions and the parameters of the pressure-volume
relationship, P(V), and the fluid viscosity and inertance
during pump ejection and filling.

a. Quasi-static experiment:
In the first experiment, the LVAS pump was operated

in a mode in which the solenoid is held closed (“HALT
EJECTION” mode [4]), allowing a quasi-static
estimation of P(V) during pump ejection to be
characterized. The schematic of the experiment is
shown in Fig. 4. A Novacor LVAS N100 pump was
used with 1 inch diameter PVC tubing with rubber
stoppers placed at the inlet and outlet ports. A 1/8 inch
tubing was attached to the pump outlet tubing to
introduce and remove fluid. A DTX pressure transducer
(Viggo-Spectramed, Oxnard, CA) was placed on the
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outlet tubing near the pump to measure the pump
chamber pressure, Pcp.

At the start of this experiment, the LVAS pump was
filled with 72 mL water. The pump solenoid was then
latched, and the fluid drained slowly at a controlled rate
to minimize the effects of inertia and viscosity. The
pump volume and pressure measurements were sampled
at 50 Hz for a duration of 60 seconds and recorded
digitally on an IBM 286 PC .
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Fig. 4 Scheme of the “Halt Ejection” experiment

b. Dynamic experiment:
In the second experiment, the LVAS pump was

attached to a passive “Penn State type” mock circulation
loop [5] as shown in Fig. 5 which includes two
compliance chamber and a fixed fluid resistor. The
LVAS was operated at 15 beats per minute (BPM) and
75 BPM to generate dynamic pump pressure and
volume data. The data obtained at 15 BPM were used to
identify the fluid mechanics parameters, RP and LP,
which could not be estimated during quasi-static
conditions of experiment 1. This low pump rate was
used because its filling portion is long enough to
characterize P(V) throughout pump filling. The data for
pump rate at 75 BPM were used to validate the accuracy
of the model. The pump pressure and volume
measurements in both pump rate were sampled at 1 kHz
for two pumping cycles.

atrial
compliance

systemic
resistance

systemic
compliance

Mock Loop

Millar micro-tip
catheter transducer

Outlet Valve

Inlet Valve

LVAS

Fig. 5 Scheme of the mock loop experiment

4. Model Parameter Identification

a. Quasi-static pressure-volume relationship, P(V):
The static pressure-volume relationship consists of

two parts: pump ejection (&V < 0 ) and pump filling

( &V > 0 ). The “HALT EJECTION” experimental data
were used to determine P(V) during pump ejection. The
data were first smoothed by ensemble averaging over
several successive trials. The smoothed data were then
used to determine the function and its coefficients by a
least squares fit algorithm (TABLE CURVE, Jandel
Scientific, Corte Madera, CA).

The function P(V) during pump filling was
determined by using the data obtained from the mock
loop experiment with the pump rate at 15 BPM. In order
to minimize the effects of the pressure transient at the
start of filling, only the pump volume data between 20
mL and 70 mL were used for the P(V) function
determination in TABLE CURVE.

b. The solenoid closure transient:
When the pump operation switched from filling to

ejection and vice versa, the solenoid closure transient
introduced a time delay and an overshoot in the pressure
response. The second order system, as in equation (1),
was used to describe this pressure transient. The time
delay, defined as the difference between the maximum
&Pcp  and the maximum &P(V ) , was 0.002 second. The

maximum overshoot,

[Pcp(tMAX) - P(V(tMAX))] / P(V(tMAX))  * 100 %      (2)

was 16.5%, where tMAX is the time that Pcp reached its
maximum. These resulted in a natural frequency, ωn, of
900 rad/sec, and a damping factor, ζ, of 0.5 [6].

c. Pump chamber fluid mechanics parameters
estimation:

The pressure drop due to the fluid viscosity and
inertance, represented by RP and LP, can be written as

LP⋅ &&V + RP⋅ &V = Pcp - PFICT,                               (3)

where &V and &&V are the first and second time derivatives
of the pump volume measurement. Equation (3) can be
rewritten in matrix form as

W(tk)⋅K = ∆P(tk),                                                (4)
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where W(tk)=[ &V (tk)  &&V (tk)]
T, ∆P(tk)=Pcp(tk)-PFICT(tk),

and tk is the k-th data point. The optimal parameter
vector K* for minimizing the least squares residual error
between the actual pressure drop, ∆P, and the predicted
∆P, given by [7],

K* = (WTW)-1WT⋅∆P,                                          (5)
where W=[W(t1) W(t2) ... W(tn)]

T and ∆P=[∆P(t1) ∆P(t2)
... ∆P(tn)]

T. n is the total number of data points used in
the estimation.

The estimation algorithm requires calculation of PFICT

and the time derivatives of the pump volume
measurement. Defining the state vector X=[x1

x2]
T=[PFICT &PFICT ]T, the second order system in (1) can

be written in state space form

  0          1                     0
&X =                                 X +                 P(V).      (6)

       -ωn
2   -2ζωn                 ωn

2

PFICT can be obtained by integrating (6) from the initial
state vector X(0), which in turn was determined by
assuming that the pump has been completely filled in
the filling phase so that the pump pressure has reached
a steady state condition at the beginning of integration.
The time derivative of the pump volume was calculated
by

& (V(t ) [V(t ) V(t )] f / 2k k 1 k 1 S )= − ⋅+ − ,                (7)

where V(tk) is the k-th volume measurement and fS is
the sampling frequency. A 3rd order digital Butterworth
lowpass filter was used following (7) to remove the high
frequency noise that is amplified by the time derivative
calculation. In order to avoid phase shift, a forward-
backward filtering technique was used [8].

d. Error analysis:
In any identification experiment, it is important to

quantify the error of the model. For the static P(V) data,
the coefficient of determination obtained from TABLE
CURVE was used as the model accuracy index. A
residual error index, defined by the percentage of mean
normalized error between the measured Pcp and the

model prediction, $Pcp ,

EI = ||Pcp - $Pcp || / ||Pcp|| ⋅100%                         (8)

where $Pcp =PFICT+LP
*⋅ &&V +RP

*⋅ &V , was used to quantify

the pressure prediction error.

5. RESULTS

a. Quasi-static pressure-volume relationship, P(V):
The pressure and volume measurements collected

from the “HALT EJECTION” experiment were used in
TABLE CURVE to find an appropriate function P(V)
and its parameters to represent the pressure-volume
relationship during pump ejection. TABLE CURVE is a
curve fitting program that can determine a function to
approximate a data set by fitting the data to functions
contained in the program. The program identifies the
corresponding function parameters by minimizing the
prediction error in least squares sense using the
Levenburg-Marquardt algorithm [9]. The function

P(V) = (a0+a1X+a2X
2+a3X

3) / (1+b1X+b2X
2+b3X

3)
(9)

where X=Ln(V), 0 mL<V≤71 mL, was found to fit the
data (r2=.999) as well as extrapolate well beyond the
data set. The coefficients were a0=-9.144, a1=16.700,
a2=-6.520, a3=0.872, b1=-0.805, b2=0.225, and b3=-
0.021. Fig. 6 (a) shows the fit of P(V) in (9) during
pump ejection to the experimental data.

The data collected from the mock loop experiment
with the pump rate at 15 BPM were used to determine
the function P(V) during filling. The function

P(V) = a + b⋅tan-1[(V-c)/d]                         (10)

with the coefficients a=187.66, b=124.75, c=71.98, and
d=0.27 was obtained from TABLE CURVE to describe
P(V) during pump filling (r2=0.962). Fig. 6 (b) shows
the fit of P(V) in (10) to the experimental data.
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Fig. 6 Novacor pump P-V relationship
(a) ejection; (b) filling

b. Pump chamber fluid mechanics parameters:
Identification of the viscosity and inertance

parameters in the LVAS pump chamber as described in
Section 4c was implemented in MATLAB (Mathworks
Inc., Natick, MA) using the experimental data with the
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pump rate at 15 BPM. The static pressure-volume
relationship P(V) was first calculated based on (9) and
(10). PFICT was computed by integrating (6) using the
Runge-Kutta fourth order method [10]. Filtered volume
data were then used to calculate the first and the second
time derivatives. The same filters were applied to the
time derivative signals to remove high frequency noise
and the signals were used to estimate the parameter
vector K in a least squares sense in (5). The parameter
estimates in (5) were RP

*=2.2946e-2 mmHg⋅sec/mL and
LP

*=5.8463e-4 mmHg⋅sec2/mL. The error index as
defined in (8) was EI=10.83%. Figure 7(a) shows the
pump pressure measurement and the model prediction
versus time at 15 BPM.

c. Model validation:
The data collected from the mock loop experiment at

75 BPM were used to validate that the model can
describe the hemodynamics under different operating
conditions. The pump volume measurement was used
with the model parameters obtained in Section 5b to
estimate the pump pressure. This prediction was then
compared with the experimentally measured pump
pressure. The residual error index, defined by (8), was
used as the overall assessment of the model
performance. The predicted and measured pressure
versus time are illustrated in Fig. 7(b). A small residual
error index, EI=11.93%, indicated that the model
performed very well overall.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-100

0

100

200

300

pump volume, mL

pu
m

p 
pr

es
su

re
, 

m
m

H
g

(b) Validation; Ei=11.93 %
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(a) Estimation; Ei=10.83 %

Fig. 7 Predicted (solid line) vs. measured (dashed line)
pump pressure (a) estimation; (b) validation

6. Computer Simulation

In order to realize the interaction between the LVAS
and the cardiovascular system, the LVAS model was
connected with a cardiovascular model [11] for
simulation. The electric analog of the model was shown
in Fig. 8. Since the LVAS operation depends on the
pump flow rate [4], the conduits should be modeled in

detail so that the pump flow from simulation will be
close to the actual pump flow. Also, this detailed model
will predict the aortic pressure (AoP) more accurately
and thus can be used as the input signal for the
estimation of the cardiovascular model parameters [2].
The inflow and outflow cannulas were modeled by T-
networks [12], while the model parameter values were
determined by least squares fit to the experimental data.
The state-space analysis with the Runge-Kutta fourth
order method [10] was used and implemented in
MATLAB to solve the dynamic equations
simultaneously. The amplitude of EV(t) was decreased to
33%, the heart rate was increased to 100 BPM, and RS

was increased to 125% of the nominal values in [11] to
simulate heart failure. Computer simulation was
performed for 12 seconds. The LVAS was on for the
first 6 seconds and was off for the last 6 seconds. The
hemodynamic waveforms predicted from simulation are
shown in Fig. 9. The predicted waveforms from
simulation showed that the left ventricular pressure and
volume were decreased and the aortic pressure was
increased when the LVAS was on. These phenomena
were consistent with experimental results obtained in a
calf [13].

7. Conclusion

A lumped mathematical model of the Novacor LVAS
pump that can estimate the pump chamber pressure
using only pump volume information has been
developed. The accuracy of this model has been
demonstrated by r2 and the error index in (8). This
model will be used for the estimation of the
cardiovascular model parameters and for the design of
the Novacor LVAS controller.

A computer simulation describing the coupling of the
LVAS with the cardiovascular system has been
developed. The changes of the hemodynamic variables
while the LVAS was on and off in simulation were the
same direction as changes obtained in animal
experiments. The accuracy of this simulation needs to
be further validated with clinical data. This simulation
can be used for the test of the new controller under
development before in-vivo experiment.
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