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Abstract

This paper investigates a new theory, Fuzzy Cognitive
Map (FCM) Theory, and its implementation in modeling
systems. First the description and the methodology that this
theory suggests is examined and then the application of FCM
in a process control problem is described. The presentation
indicates how effective FCMs are and some interesting points
for further research are included. In the recent years, a wide
discussion has started about the autonomy and intelligence of
systems, so the application of FCM in the field of control and
systems may contribute in the development of more
intelligent and autonomous control systems.

1. Introduction
 

It is widely recognized that conventional methods in
modeling and control systems have contributed a lot in the
research and the solution of many control problems, but their
contribution on the solution of the increasingly complex
dynamical systems will be limited. It has became quite clear
that the requirements in the control and modeling systems can
not be met with the existing conventional control theory and
it is necessary to use new methods that will exploit past
experience, will have learning capabilities and will be
supplied with failure detection and identification qualities.
One new theory for modeling systems which is proposed in
this paper and which will contribute to the effort for more
intelligent control methods, is Fuzzy Cognitive Map (FCM)
Theory.

Fuzzy Cognitive Map (FCM) Theory uses a symbolic
representation for the description and modeling of the system.
It utilizes concepts to illustrate different aspects in the
behavior of the system and these concepts interact each other
showing the dynamics of the system. A Fuzzy Cognitive Map
(FCM) integrates the accumulated experience and knowledge

on the operation of the system, as a result of the method by
which it is constructed, i.e., using human experts that know
the operation of system and its behavior in different
circumstances.

At first, a political scientist R. Axelrod [1] introduced
cognitive maps for representing social scientific knowledge
and describing the methods that are used for decision making
in social and political systems. Then B. Kosko[2],[3]
enhanced the power of cognitive maps considering fuzzy
values for the concepts of the cognitive map and fuzzy
degrees of interrelationships between concepts. After this
pioneering work, Fuzzy Cognitive Maps attracted the
attention of scientists in many fields and have been used in a
variety of different scientific problems. Fuzzy Cognitive Maps
have been used for planning and making decisions in the field
of international relations and political developments [4] and
for analyzing graph theoretic behavior [5], been proposed as a
generic system for decision analysis [6] and for distributed
cooperative agents [7]. Fuzzy Cognitive Maps also have been
used to analyze electrical circuits [8], to structure Virtual
worlds[9]. In the control related themes FCMs have been used
to model and support plant control [10], to represent Failure
Models and Effects Analysis for a system model [11]-[13] and
to model the supervisor of control systems [14]. It is obvious
that there is high interest in the use of FCM in a wide range
of different fields. In this paper the objective is to define and
construct Fuzzy Cognitive Maps for modeling systems.

2. Fuzzy Cognitive Maps

In fact, Fuzzy Cognitive Maps (FCM) could be regarded
as a combination of Fuzzy Logic and Neural Networks. In a
graphical illustration FCM seems to be a signed directed
graph with feedback, consisting of nodes and weighted arcs.
Nodes of the graph stand for the concepts that are used to
describe the behavior of the system and they are connected by



signed and weighted arcs representing the causal
relationships that exist between the concepts (Figure 1). It
must be mentioned that all the values in the graph are fuzzy,
so concepts take values in the range between [0,1] and the
weights of the arcs are in the interval [-1,1]. Observing this
graphical representation, it becomes clear which concept
influences other concepts showing the interconnections
between concepts and it permits updating in the construction
of the graph, such as the adding or deleting of an
interconnection or a concept.
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Figure 1.  A simple Fuzzy Cognitive Map

W23

A Fuzzy Cognitive Map consists of nodes-concepts and
arcs between concepts. Each concept represents a
characteristic of the system; in general it stands for events,
actions, goals, values, trends of the system that is modeled as
an FCM. Each concept is characterized by a number Ai  that

represents its value and it results from the transformation of
the real value of the system’s variable, for which this concept
stands, in the interval [-1,1].

Between concepts, there are three possible types of causal
relationships, that express the type of influence from one
concept to the others. The weights of the arcs between concept
Ci  and  concept Cj  could be positive ( )Wij f 0  which means

that an increase in the value of concept Ci  leads to the

increase of the value of concept Cj , and a decrease in the

value of concept Ci  leads to the decrease of the value of

concept Cj . Or there is negative causality ( )Wij p 0  which

means that an increase in the value of concept Ci  leads to the

decrease of the value of concept Cj  and vice versa.

Beyond the graphical representation of the FCM there is
its mathematical model. It consists of an 1× n  state vector A
which includes the values of the n  concepts and an n n×
weight matrix W  which gathers the weights Wij  of the

interconnections between the n  concepts of the FCM. The
matrix W   has n  rows and n columns where n  equals the
total number of distinct concepts of  the FCM and the matrix
diagonal is zero since it is assumed that no concept causes
itself.

The value of each one concept is influenced by the values
of the connected concepts with the appropriate weights and
by its previous value. So the value Ai  for each concept Ci  is

calculated by the following rule :
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where Ai  is the activation level of concept Ci  at time t+1,

Aj  is the activation level of concept Cj  at time t, Ai
old  is the

activation level of concept Ci  at time t, and Wji  is the weight

of the interconnection between Cj  and Ci , and f  is a

threshold function.
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So the new state vector Anew  is computed by multiplying

the previous state vector Aold by the weight matrix W . The

new vector shows the effect of the change in the value of one
concept in the whole Fuzzy Cognitive Map. But, equation (2)
includes also, the old value of each concept, and so the FCM
possesses memory capabilities and there is a smooth change
after each new cycling of the FCM.

3. Constructing Fuzzy Cognitive Maps

From the presentation of FCMs, discussed in the previous
paragraph, it is clear that the most critical part is the drawing
of the FCM. In order to build a FCM, the knowledge and
experience of one expert on the system’s operation must be
used. At first the expert determines the concepts that best
describe the system; a concept can be a characteristic of the
system, a state or a variable or an input or an output of the
system; he has known which factors are crucial for the
modeling of the system and he represents a concept for each
one. Moreover he has observed which elements of the system
influence others elements; and for the corresponding concepts
he determines the negative or positive effect of one concept on
the others, with a fuzzy value for each interconnection, since
it has been considered that there is a fuzzy of degree of
causation between concepts.

It is possible to have better results in the drawing of the
FCM, if more than one experts are used. In that case, all
experts are polled together and they determine the relevant
factors and thus the concepts that should be presented in the
map. Then, experts are individually asked to express the
relationship among concepts, during the assigning of weights
three parameters must be considered: how strongly concept
Ci  influences concept Cj , what is the sign of the weight and

whether concept Ci  causes concept Cj , or vice versa.

Therefore there will be a collection of individual FCMs that
must be combined into a collective map. But if there are
experts of different credibility, for them, their proposed maps



must be multiplied with a nonnegative ‘credibility’ weight bi

before combining them with other’s experts FCMs. So the
combination of these different FCMs will produce an
augmented FCM and its weight matrix W  is created by
adding the matrices Wi  of the FCMs, that each one of the N

experts have drawn :

                           W W= ∑bi i

N

1

(3)
where W  is the whole FCM, bi  is the weight for ith  expert

and Wi  is the connection matrix of ith expert’s fuzzy

cognitive map and N  is the number of the experts.
Sometimes it is necessary to construct more than one

FCMs, each one describing different parts of the same system.
And then, using a similar method, these different FCMs can
be integrated into one augmented FCM. This is another
quality of FCM which allow knowledge bases to grow by
connecting different Fuzzy Cognitive Maps.

When a FCM has been constructed, it can be used to
model and simulate the behavior of the system. Firstly, the
FCM should be initialized, the activation level of each of the
nodes of the map takes a value between -1 and +1 based on
expert’s opinion for the current state and then the concepts
are free to interact. In each step of the cycling the values of
concepts change according to the equation (1). This
interaction between concepts continues until:

i)  A fixed equilibrium is reached
ii)  A limited cycle is reached
iii)  Chaotic behavior is exhibited
A Fuzzy Cognitive Map is a powerful tool that can be used

for modeling systems exploiting the knowledge on the
operation of the system. It can avoid many of the knowledge-
extraction problems which are usually present in by rule
based systems and moreover it must be mentioned that cycles
are allowed in the graph.

Usually, concepts and causality are determined by experts
involved in the construction of FCM, but this methodology
would lead to a distorted model of the system, since it is
possible that experts have not consider the appropriate factors
of the system. In order to minimize this likelihood learning
methods can be utilized to train the FCM. If there is data of
the real system about the changes in the values of concepts,
the Differential Hebbian learning method can be used as it
has proposed in [2], in order to train the FCM, which means
adjusting the weights of the interconnections between
concepts.

4. Implementation of FCM in a Process Control Problem

In this section the modeling of a practical problem will be
examined. As it has become clear, the most important
component in drawing a FCM is the determination of the
concepts that best describe the system and the direction and

grade of causality between concepts. These aspects will be
represented through this example.

A system is considered, which is part of a large plant that
is widely known and used in chemical process. The system
consists of two identical tanks depicted in figure 2. Each tank
has an inlet valve and a outlet valve. The outlet valve of the
first tank is the inlet valve of the second.

Figure 2. Example of a process system to be controlled

The control objective of the system is to keep the amount of
liquid, in both tanks, between some limits, an upper Hmax and

a low limit Hmin , and furthermore, the temperature of the

liquid in both tanks must be kept between maximum value
Tmax and a minimum value Tmin . The target is keeping these

variables  in the middle of their range of values:
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The temperature of the liquid in tank1 is increased
through a heating element. A thermostat continuously senses
the temperature of the liquid in tank1 and turns the heater on
and off. The temperature of the liquid in the tank2 is
measured through a thermometer; when the temperature of
the liquid2 decreases, this causes the valve2 to open, so hot
liquid comes into tank2.

A FCM will be constructed which will model and control
the whole system. In order to determine the concepts of the
FCM that describe the system, the variables of the system
must be taken into account, such as the height of the liquid in
each tank or the temperature. Then concepts are assigned for
the system’s elements that affect the variables such as the
state of the valves.

For this simple plant FCM, eight concepts are supposed
and they give a good model of the system, later on, any other
concept can be added, which will help the view and control of
the system:

Concept1 The amount of the liquid which tank1 contains.
This amount is dependent on valve1 and valve2.

Concept2 The amount of the liquid in the tank2. This
amount is related to valve1 and valve2.



Concept3 The state of the valve1. The valve is open,
closed or partially open.

Concept4 The state of the valve2.
Concept5 The state of the valve3.
Concept6 The temperature of the liquid in tank1.
Concept7 The temperature of the liquid in tank2.
Concept8 Describes  the operation of the heating  element

which increases the temperature of the liquid in
tank1.

These concepts must be connected with each other. First
for each concept it must be decided with which other concepts
it will be connected. Then the sign of the connection is
decided, and then the weight of each connection is
determined. For this procedure the experience on the system’s
operation is used.

The connections between concepts are:
Event1 It connects concept1 with concept3. It relates the

amount of the liquid in  tank1 with the operation
of the valve1.When the height of the liquid in the
tank is low we want to increase the amount of
incoming liquid and we open valve1.

Event2 It relates concept1 with concept4; when the
height of the liquid in tank1 is high we open
valve2 (concept4) and reduce the amount of
liquid in tank1.

Event3 It connects  concept2 with concept4; when the
height of the liquid in tank2 is low we open
valve2 (concept4) so that liquid comes into tank2.

Event4 It relates concept2 with concept5; when the
height of the liquid in tank2 is high, we open
valve3 (concept5) and keep the amount of the
liquid below a limit.

Event5 It connects concept3 (valve1) with concept1
(tank1); any change in valve1 influences the
amount of liquid in tank1.

Event6 The value of concept4 (valve2) causes the
decrease or not of the value of concept1(tank1)

Event7 The value of concept4 (valve2) causes the
increase or not of the amount of liquid in tank2
(concept2).

Event8 It relates concept5 (valve3) with concept2
(tank2), the value of concept5 causes the decrease
or not of the amount of the liquid in tank2.

Event9       It connects concept6 (temperature in tank1) with
the concept8 (the operation of the heating
element).When the temperature in tank1 is low, it
causes the opening of the heating element.

Event10 It connects concept8 with concept6; the value of
concept8 (operation of the heating element)
increases the value of concept6 (temperature in
tank1).

Event11 It connects concept6 with concept3 (valve1);
when the temperature in tank1 reaches an upper

limit, we open valve so that liquid of low
temperature will enter tank1.

Event12 It relates concept7 (temperature in tank2) with
concept4 (valve2); when the temperature in tank2
is below a limit, we open the valve2 and so new
hot liquid enters tank2 from the tank1.

Event13 It shows the effect of concept4 (valve2) on
concept7 (the temperature in tank2); when the
valve2 (concept4) is open then hot liquid comes
into tank2 and the temperature in tank2
(concept7) is increased.

 It is obvious that connections can easily be added or
removed between the concepts that describe the system.
Moreover, a concept can be added or removed if this improves
the system’s description. For example, another concept, that
could be added later, is a concept which will include the
desirable output of the valve3.

Each event (connection between concepts) has a weight
which ranges between [-1,1] and in this case it was
determined arbitrarily and then has changed during the
training period of the FCM. Each concept has a value which
ranges in the interval [0,1] and it is obtained after
thresholding the real value of the concept. It is apparent that
an interface is needed which will transform the real measures
of the system to their representative values in the FCM and
vice versa. It should be mentioned that the transformation
from the real values of the physical measurements to the
values of the concepts, needs investigation and must take into
consideration the actual mechanisms depicted in the FCM.

Figure 3. The initial FCM, with the first values for the concepts

Figure 3 shows the FCM that is used to describe and
control the system, with the initial value of each concept and
the interconnections between concepts. The values of concepts
correspond to the real measurements of the physical
magnitude. The values of the events have been determined
after observation of the changes in the real experimental
system and then training the FCM according to the
Differential Hebbian learning method [2].



At each running step of the FCM, the value of each
concept is defined by the result of taking all the causal event
weights pointing into this concept and multiplying each
weight by the value of the concept that causes the event,
according to equation(1). Then the sigmoid function is
applied on the result of calculation and it is transformed in
the interval between 0.00 and 1.00. As running step or
running cycle of the FCM is defined the time unit during
which the values of the concepts are calculated and change.

Figure 4. The FCM after 50 running cycles

Figure 4 shows the FCM after 50 running cycles; it must
be mentioned that each running cycle holds for a time unit.
Table I represents the value of each concept for the first
eighteen (18) cycles. It can be seeing that after some cycles
the FCM reaches a limit cycle and its values have a slight
variation.

Table I. The values of FCM concepts for the first 18 running cycles.

The FCM never reaches a fixed point, because random
noise has been considered which influences the value of the
interconnections (events) between concepts. In this way, the

disturbances that influence the real system and our
uncertainty about the FCM’s weights, pass into the model of
the system.

If the weights of the interconnections are considered fixed,
without any noise, and the FCM runs for the same initial
values, as in the previous example, in Table II it can be seen
that after only 5 running steps, the FCM reaches a fixed
point. After this fixed point, if a disturbance occurs in the real
system, which will cause the change in the value of one or
more concepts, the FCM in a limited number of cycles will
reach again another fixed point.

Table II. The values of FCM concepts for fixed event values

In this problem it has been assumed that there is no time
relationship in the changes of the concepts values, when the
value of one concept changes, in the same time unit the values
of the rest concepts change according to their influence of the
first. This is referred to as a running cycle. But in a realistic
system effects take place in different unit times. For example,
in Figure3 a change in the concept6 (the temperature of the
liquid in tank1) will lead almost immediately to a change on
the state of the heat element(concept8) but a change in the
state of the valve1 take some time to have full effect in the
amount of liquid in the tank1.

Thus, time tags would be introduced corresponding to
each effect, but then there would appear problems on
estimating the time tags for each effect but it could be
followed the methodology that has been proposed [15].

5. Supervisor Control for the process control problem

In the previous section a model for a process control
problem has been proposed, this model could be enhanced if a
two-level structure model is considered (Figure 5). In the
lower level of the structure will lie the FCM that it has just
constructed and it will reflect the model of the process during
normal operation conditions. In the upper another FCM will
be constructed and will be used for failure modes, effects
analysis and decision analysis.

The FCM on the upper level will consist of concepts that
may represent the irregular operation of some elements of the
system, failure mode variables, failure effects variables,
failure cause variables, severity of the effect or design
variables. In this example, the FCM will describe the failure
states of the valves, possible malfunction in the heating
element, leaks in the tanks or other alarm schemes. Moreover,
this FCM will include concepts for determination of a specific
operation of the system. As an example, in a similar chemical



process, as the one represented in the previous section, it
could need different amounts of liquid in the output at
different times, according to the requisite density of the
liquid.

The two FCMs will interact with each other and there will
be an amount of information that must pass from the one
FCM to the other. So two interfaces are needed, one will pass
information from the FCM in the lower level to the FCM in
the upper level and the other interface in the opposite
direction. The two interfaces are necessary because changes
on two or more concepts in the FCM on the lower level could
mean change in one concept in the upper level and the
corresponding procedure, when information descends from
the FCM on the upper level towards the lower level. As it can
be seen from figure 5, two or more concepts of the FCM in
the lower level pass through the interface and influence one
concept in the FCM on the upper level, an analogous interface
exists for the inverse transmission of information.
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Figure 5. The path from the lower level to the upper.

The cooperation of two-level FCM seems to be alluring
and could lend itself to more sophisticated systems. Moreover,
it gives the stimulus to investigate another approach, where in
the lower level there is a more conventional controller, like a
Neural Network, and the supervisor in the upper level is a
FCM.

6. Summary

Fuzzy Cognitive Map Theory, a new theory used to model
the behavior of complex systems, which best utilizes existing
experience in the operation of the system, has been examined.
For such systems it is extremely difficult to describe the entire
system by a precise mathematical model. Thus, it is more
attractive and useful to represent it, in a graphical way
showing the causal relationships between states-concepts.
Since this symbolic method of modeling and control of a
system is easily adaptable and relies on human expert
experience and knowledge it can be considered intelligent.

The implementation of this method in a process control
problem has been presented and it has been shown how
simply it describes the system’s operation. The prospect for it
to be expanded in more advanced control schemes has been
discussed,  by adding a second FCM in a higher level which
will be used  for failure analysis, prediction and planning.

Fuzzy Cognitive Maps seem to be a useful method in
modeling and control of complex systems which will help the
designer of a system in decision analysis and strategic
planning. Fuzzy Cognitive Maps appear to be an appealing
tool in the description of  the supervisor of  complex control
systems, which can be complemented with other techniques
and will lead to more sophisticated control systems.
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