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ABSTRACT 

An important aim is to make control synthesis of processes modelled by timed event graphs. Using the state 
equations, we solve the optimal tracking problem for any past evolution of the system. However, the model is only a 
picture of the reality and modelling errors and faults generate misestimation of the state vector. In the case of an 
unknown state vector, we propose to compensate this information loss by the use of the “ARMA” model in control 
field . 
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1. INTRODUCTION 

Discrete Event Dynamic Systems represent a large 
amount of systems such as flexible manufacturing 
systems, multiprocessor systems, and transportation 
networks implying synchronisation, parallelism or 
concurrence. Among formalisms used to represent 
DEDS, Timed Petri Nets allow to explicitly integrate 
time. The subclass of Timed Event Graphs plays an 
important role by its deterministic behaviour. Its 
evolution is described by linear systems defined on a 
diofd. The interpretation of each variable is, for 
example of dater type for (max,+) algebra : each 
function xi(k) represents the date of the kth firing of 
the transition xi. @ stands for the max. operation 
while the usual addition plays the role of the 
multiplication, denoted @ . 

For the (max,+) algebra, state equations are : 
x(k+l) = AsxQ 8 Bsu(k+l) 

Y(k) = C@x(k) 
where the state x , the output y and the control u are 
defined on %U{ -w} with the dimensions n, p and q, 
respectively. 

An important objective is to make control synthesis 
of systems described by Timed Event Graphs. The 
problem is to compute the latest tiring dates of the 
input transitions in such a way that the output events 
occur at the latest before the desired dates. However, 
the process undergoes unavoidable model errors and 
failures, and the model presents ruptures in its 
description which generate misestimation of the state 
vector. 

Thus, the knowledge of model and initial condition 
makes possible to characterise the state vector by 
state equation iteration. But, this solution disregards 
unavoidable model errors and must start from a 
known state. The development of a similar technique 
for observers appears at first sight necessary not only 
to know the system state but also for every control 
system which will use it. Unfortunately, the simple 
transposition of the classical structure gives a non- 
linear closed-loop system which raises the problem of 
convergence. 

In order to overcome these difficulties, we propose to 
use a different model composed of equations called 
“ARMA” by analogy with ARMA equations used in 
classical control systems. The proposed method aims 
at avoiding the need to know the state vector rather 
than estimating it. Equally, the “ARMA” model 
allows us to take a general initial condition contrary 
to the transfer function model and it operates on a 
finite horizon 

In this paper, we solve the optimal tracking problem 
for any past evolution of the system. Equally, we 
show the possibility of using “ARMA” model to 
make a temporal control synthesis without knowing 
the state vector. The principle of the approach is 
based on “predictability” and “commandability” 
conditions : as the addition Q does not have the 
property of symmetry, we cannot express the output 
from the input as usual and these concepts make 
possible to reduce the “ARMA” equation structure. 



The paper is organised as follows. In section 2, we 
give notations and background concerning dioi’ds. 
The section 3 presents the control synthesis using the 
state equations. We introduce then the 
“predictability” and “commandability” concepts 
which enable us to propose control synthesis based 
on the “ARMA” model. 

2. PRELIMINARY 

One of the tools used in this paper is (max,+) 
algebra, which is a particular example of the 
algebraic structure generally called diofd. In this 
introduction, we shall limit ourselves to present 
notations and main concepts. A complete description 
may be found in [l] [4]. 

A semi-ring S is a triplet (S,e,@) where (S,@) and 
(S,@) are monoyds, 8 is commutative, 8 is 
distributive with respect to o and the zero element of 
8 is the absorbing element of 8. A diojid D is an 
idempotent semi-ring. Set [wU{-00) with max. 
denoted o and with addition noted @ is usually 
called (max,+) algebra and is an example of dio’id. 
We have : Iw,,~ = (RU{-~},@,S) with 

a 8 b = max.(a,b) ; E = -KY is the zero element of 8 
asb=a+b; e = 0 is the identity element of o 
aQa=a ( idempotency of @) 
a QE = E @a = E (absorbing element E) 

We denote a\b = max{r such that czx I b) the left 
residuated of b by a, also called the subsolution of 
equality ax=b. 
The function x + a\x (respectively x + x\b) is 
increasing ( respectively decreasing). 

We denote A\B = max. {x 1 Ax < B } with A E 

93 m.lz,B~%m ,XE sin and A\B = At 0 
max max max 

B where 0 is a matrix product where operation 0 

and @ of ‘% maxare replaced respectively by A 

(minimum) and \ of gmaX. 

3. CONTROL SYNTHESIS 

3.1 Introduction 
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Let the matrix A of dimensions m.n 
Ai,.(respectively A.j ) is the ith row ( respectively 
the jth column) of the matrix A. Let I={il,i2,...,ik) 
and J= ~l,j2,...&.} with k5m and r 5n. We note 
AI,J the matrix composed of the rows il,i2,...,ik and 
the columns jlj2,...& of A. 

Problem 

In this part, we generalise the classical tracking 
problem as follows : let’s suppose that the control and 
output dates are known, the number of events being 
inferior or equal to k~ ; we want that output follows a 
desired output trajectory starting from any k~. A 
complete formulation can be : 

Let the dates’ values of the control and the output, the 
number of events being inferior or equal to k~ and let 
a sequence of desired output z(k), k ranging from k,= 
ko+Z to Kf. The problem is to determine the greatest 
control sequence u(k) if it exists such that the output 
trajectory under the control effect satisfies 

Vk~[h,, h,] ~(k)I~(k)andy~)maximum 

3.2 Control synthesis using state equations 

Now, we solve the optimal tracking problem for a 
known state vector. 



Property 1 
The two following equations are equivalent : 

(1) Y@&# = oj,. X0$)) Q cj,. Uz:i 5 z&j+j) 

(2) Qj,. UzIk 22 z&&i) Q oj,. X&o) 

with Oj,. = CAj 

Cj,. =( CAj-‘B, . . . . . CB, E ,..., E) 

and uz:k the greatest control 

Proof 
Indeed, for the equation y(ko+j) = Oj,. x(kg) 8 Cj,. 

po+l ko+h, we have two cases. 

1) oj,. X&$ 5 z&o+.0 

We can take U:IL such that Cj,. U:Ii I zh+j). 

SO, Oj,. X&o) 8 4,. U,“ork = y(kO+j) I z(kg+j) 

We take the greatest control 7.J~~~ such that cj 

‘* UzIk I z(kg+j) = z(ko+j) @ CDj,. x&o) . 

2) Oj,. X0%) > z(kg+j) 

In this case, for any U:$ Oj,. X&o) 8 Qj,. 

uw - 
ko+h - Yh+j> > ztQ+j> 

We take the greatest control ?IJzIi such that Qj 

U:Ik I Oj X&)) = z@+j) @ Oj X&o) q 

The following theorem generalises the results of [2] 
[8] : it makes possible to compensate the effects of 
unfavourable past evolution of the system for any 
horizon h of the desired output trajectory. 

Theorem 1 
In the Multi-input Multi-output case, the greatest 
control so that each output y(k) occurs at the latest 
before z(k), otherwise at the earliest after this time is 
given by : 
forj=l to h and i=l to q 

V&)+j) = c., J \ [ z$!,- @ 0 X&C)) ] 

with J={(i-l)q+l,(j-l)q+2,..., (i-l)q+q) 
Ui(ko+j)=Vi&)+j) A Ui(ko+j+l) 

under the conditions ui(ko+j) 2 2 xi@) 
i=l 

and ui(ko+l)~ui(ko) 

Proof 
We want to calculate the greatest control such that 

Y’+l I 22:; . The model is b+h 
y.+; = CD x&o) @ Q uz;; 
If ox&$ I z;:;, the greatest control is Q \ 

Z$+i . In this case, Y:+t = 0 x&o) @Q (Q \ 

z$$ ) is maximum and Yc+t G 22:: . 

But, the proposition 0 x&-j) I 22:; can be false 

because x(ko) is function of the past control and the 
initial condition. To obtain the latest control, we 
consider each row j of the equation set which is 
equivalent to 

Cj,. U$:i 5 z(ko+j) @ Oj,. X&$ from the property 

1. 

Ifj = 1 ..h, we obtain C UzIL I 221; o 0 x(kg) 

; the formulation is identical in the Multi-output 
case. 
However, the control is non-decreasing and the 
greatest solution is obtained by : 

V(k@j)= 6., J \ [ zz:i Q O(C,A) X&O) ] with 

J={ l+(j-l)q, 2+&l)q,..., q+&l)q} in the Multi-input 
Multi-output case and 
Ui(kO+j)-Vi&)+j) A Ui(ko+j+l). 
Equally, x&-$ must be known before the application 
of the first control u(ko+l) ; otherwise we must take 

It xi(kg) for the corresponding input transition 0 
id 

Remark 
The results presented in [S] correspond to a similar 
development in (mm,+) algebra but restricted to the 

case 0 x&o) I 22:;. In this case and in (max,+) 

algebra, the left hand term u(ko+j-1) is useless 
because the calculus of v(kg+j) gives directly a non- 
decreasing input sequence. 

3.3. MULTI-STEP CONTROL SYNTHESIS 
USING “ARMA” MODEL 

In this section, we take the hypothesis of an unknown 
vector state. 

3.3.1 Cyclicity and model 

Definition 
Let h be the maximum mean value of circuit weight 

of a graph associated with a general matrix A. h is 
also the maximum proper value of this matrix. We 
say that a matrix A is cyclic if there are d and m such 

that : tll2 m, A’+d = Id A’ 
d is called matrix A cyclic&y and we say that A is d- 
cyclic. 

Theorem 2 
Every irreducible A matrix is d-cyclic 0 

While residuation is well adapted to the resolution of 



inequalities of the type Ax< B, the (max,+) algebra 
extension Smax. [6] [7] is an interesting approach 
that facilitates analogies with classical algebra. Based 
on this theory, in [5], we deduce from the state 
equations the following ARMA model for the 
important class of systems presenting the cyclicity 
property, like the strongly connected Petri Nets. 

y(k) @ m~-Y~~~gi-du(k - i) = 

fY(k - d) @ 
m+d-1 

Jo aigiu(k - 0 
(1) 

with gi =CAiB and for i from d to m+d-1 

(ai9Pi)=(E~E) if& = Pgisd 

(ai,pi)=(e,&) if & > Pgisd 

(ai,Pi)=(e,e) if&< i@gi-d 

Each term contains once the output and a function of 
the control. However, as the addition does not have 
the property of symmetry, we cannot express the 
output y(k) from the other terms. An objective will be 
to reduce this form. In this aim, we introduce the 
following initial concepts of the control synthesis : 

Note : if the Petri Net is without loop, we obtain the 
n-l 

equation : y(k) = c gi u (k - i) . We can deduce 
i=O 

this structure from (1) if we Put 
Ad = E and m + d = n and consequently, we can 
easily transpose the next results. 

3.3.2 “Predictable” and “Commandable” 
concepts 

Control conditions 
The three conditions such that the control can 
determine the output are : 
a) Deterministic model 
The ARMA model must be the most representative 
and the equation (1) must be compatible or in other 
words, the equality is verified. 

b) Predictable or “observable” behaviour 
If we apply any control, we must anticipate its effects 
on the output. It is the case if 

m+d-1 
y(k)2 c /?,$gi _ du(k - i) 

i=d 
( condition Cl ) 

So, the condition Cl makes possible to “observe” the 
output, knowing the past values of the input and 
output. So, we have, under condition Cl 

y(k)=IECEy(k-d)O 
m+d-1 

C aigiu(k-i) 
i=O 

The first right hand term represents the internal 
periodic behaviour of the system as the other term 
gives the effects of the external control on the output. 

c) “Commandable” behaviour 
The preceding form shows that the control can only 
delay the output y(k) relatively to Ady(k-d). So, a 
condition such that the control have an effect on the 
output is 

Py(k-d)<m+~-~lga(k-i) (conditionC2) 
i=() ’ ’ 

Under the three previous conditions, we obtain 
finally 

m+d-1 
y(k)= C aigiu(k - i) 

i=O 

The following definition expresses the output 
trajectory characteristic. It can be applied equally to 
the control or to the desired output after a past 
evolution of the process. 

Definition 
d-cyclic trajectory : Output y follows a d-cyclic 
trajectory starting from k=k, to kf if 
y(k) 2 Ad y(k-d) with k, d k Gkf 
Notice that a d-cyclic desired output follows the 
production capacity of the process. 

Equation set 
If we vary the number of events k in the ARMA 

equation (i) , v 
( y@-4 
y(k-d+l) 

1 (12 + m - 1). 

f 
y(k) 

= y(k + 1) 

1 \y(k+m+d-1) 

with Qu(k) 

: obtain the following equation set : 



am+d-l 

1 
%d . . . ad+l ad ad-l . . . a, 

E %+d-l . . . ad+Z ad+l ad . . . a2 

Q & & .” 
ad+3 ad+Z ad+l . . . cg 

I & E . . . E E & . . . EJ 

. . . E E 

E E & . . . 

ai = OciCA’B ; 

. . . E E . . . 

. . . E E . . . 

. . . E E . . . 

. . . bd E 

. . . bd+l. b, . . . 

bi = BihdCAimdB 

R, R’ are two column matrices of dimension m+d. 1 . 
They are respectively defined by : 
Ri = fli gi for i equals 0 to m+d-1 

R’i = E for i equals 0 to d and Bihdgi-d for i equals d 
to m+d-1 
Q,Q’ two upper triangular matrices of dimension 
m+d. m+d-1. So, by construction, the last line of both 
Q and Q’ is zero. 

We introduce the two following lemmas that give 
conditions of a “predictable” and “commandable” 
behaviour of a trajectory. The proof of the lemma 1 is 
given in [5]. The theorem 2 that summarises the 
results on the concepts of the part 3.3, enables us to 
present the control synthesis approach in four steps. 

Lemma 1 
If the trajectory is d-cvclic and verifies - - 

‘$+m+d-1 ’ &’ ‘k.-1 
k8-m-d+1 and if u(k) =R \ 

Yt+m+d-l for k 2 k8 then the output trajectory is 

predictable (CL) 

Lemma 2 
Let consider an output trajectory and an input vector 
such that the equation set (2) is compatible. If the 
output trajectory is predictable and d-cyclic then the 
output are “commandable” (C2) 

Proof 
Under the condition of exact model and predictable 
behaviour, we obtain 

y(k) = fy(k - d) a3m;go-;jgp(k - i) 

If the trajectory is d-cyclic, the equation is reduced to 
m+d-l 

Y(k) = Z. Q+gju(k - i) 

As i?y(k - d) I y(k) , a consequence is 

&(k - d) Im+;-;.g+(k - i) 
i=Q ’ ’ 

which is the condition C2 cl 

Theorem 2 
The two following propositions are equivalent : 
- the equation set (2) is compatible. The output 
trajectory is predictable (Cl) and “commandable” 
(C$ 
- the trajectory is d-cyclic and verifies 

‘t+m+d-1 ’ &“k 
k,-m-d+1 

a& 
a- 1 

k 
u(k) = R \ Yk+m+d-l for k 2 ke 

m+d-1 
y(k) = Z. aigiu(k - i) 

Proof 
* Suppose that the trajectory is d-cyclic (Hl) and 
verifies 

k+l 
u( k + 1) = R 4 Yk+m+d fork 2 k. (H3) 

m+d-1 
Y(k) = i& aigiu(k - 0 (Hq) . 

- HL,H2 and H3 3 predictable condition (lemma 1) 
- H1 and H4” 

Y(k) =kly(k - d) ~m~~~ig~~(k - i) 

Moreover, 
m+d-1 d 

y(k)> i,CdpiA gi-dU(k -i) ( condition Cl ) . 



4. CONCLUSION So, the equation 
m+d-1 

y(k) Q ;_Cd Pi’gi-dU(k - 9 = 

P - m+d-l y(k d)@ i& aigiu(k - i) is compatible. 

- Compatibility , predictable condition and HI + 
“commandability” condition by the lemma 2. 
* Reciprocally, suppose that the equation set (2) is 
compatible (H5), the output trajectory is predictable 
(H6) and “commandable” (H7). We have : 
- H5, Hg +Hl (d-cyclicity) 

Hivhi”+“z” is included in Hg 

) 

m+d-1 
- H5, bj and H7 * H4 (y(k)= C aigiu(k -i)) 

i=O 

verifies the equality 0 

The four steps of the control synthesis 

The solution is given by the four following steps, 
where the three first ones are constructive and the 
last one is a verification. 

a) d-cyclic trajectory 

y(k)&I+y(k-d) forkS+d<kskf 

We deduce it from 

y(k)=z(k)AP \ y(k+d) for 
ks<k<k~withy(k)=+ooforkzkf 

b) Control 
Control is deduced as above by 

u(k) = R \ Yhk+,+&l fork,<k <kf 

c) Compatible trajectory 
We deduce a compatible trajectory y with 

tR ‘) ‘ti+rn+d-1 = ‘k+m+d-I 
m+d-1 

and y(k) = ,,Co ajgju(k - i) for k 2 ks+m+d 

d) Initial constraint 
Trajectories must verify the following inequalities : , - -\ 

Yk:+m+d-l > (Q 63 Q' ) ,;I;,-'+' 0 ,@ 
8 

and u(h,) 2 u(&) @ y(k,,) (causality condition 
in single-input single-output case) 

In this paper, we introduced two control synthesis 
approaches which use state equations and ARMA 
model, respectively. The first one needs the state 
vector knowledge, contrary to the second approach. 
In the two cases, we considered a past evolution of 
the system and the two approaches authorise changes 
of desired output and of the production rate. 
Moreover, the control expression shows some 
structure similarities and some natural relations can 
be realised. Future work will specify the connections 
between the daerent approaches and will define the 
consequences of an unknown vector state. 
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