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Abstract 

A state reconstruction method of non-linear systems is 
proposed. It concerns the systems which can be broken 
up into linear and non-linear parts and requires the 
implementation of two observers. The first one is used for 
determining approximately the target for a neural 
network providing the estimation of the non-linearity. 
This later can be the consequence of modeling errors of 
the system parameters. The second observer allows to 
reconstruct the state of the non-linear system. 

1. Introduction 

The state reconstruction of non-linear systems has 
received many attention specially as part of continuous 
cases [lo]. The non-linearities can be due to uncertainties 
on the model of the system. To reconstruct the system 
state, assumptions have to be verified. Some papers 
require that the non-linearities are lipschitz [9] [3] [4] [2]. 
Others need the transformation of the model of the 
system into appropriate observable canonical forms [l] 
[6], where the development of the non-linear time- 
variable form requires regularity of the non-linear time- 
variable observability matrix of the system. Others 
techniques use algorithms based on neural networks, for 
control [7] or diagnosis [SJ goals. However, methods 
allowing the estimation of the uncertainties are seldom 
treated. [8] has proposed a method to estimate the non- 
linearities and to reconstruct the state. The model of the 
non-linearities is identified by a neural network and the 
state is reconstructed using a sliding mode observer. The 
technique requires the measurement of all state 
components. 
A method is proposed here, for discrete cases, to 
reconstruct the state and to estimate the non-linear part, 
which can depend on the system input and output when 
only few state components are measured. 

2. Problem Statement 

A non-linear system can be presented in state form by: 

x(k+l) = f(x,u) 

where x and u are the state and the input of the system, 
respectively. In practice, this representation is often 

avoided by operating around an operating point; the 
system is then linearized and can be written as: 

x(k+l) = A x(k) + B u(k) 

If the system is observable, its state estimation is “easily” 
obtained by using a Luenberger’s observer. Actually, the 
system operates away from this operating point and 
consequently, its structure moves. 

This kind of system is considered in order to propose a 
method able to reconstruct the state and to estimate the 
unmodeled non-linearities. It is assumed that the system 
remains stable in spite of disturbance. 

3. Non-linearities Estimation 

Let us consider a non-linear system defined by: 

x(k+l) = A x(k) + B u(k) + F ‘I’(y, u) (1.4 

y(k) = C x(k) (1.b) 

c= [I o] (1.c) 

where XER”, FERN, u E RP are the state, the output 

and the input of the system, respectively; Y E Rq and A, 
B, C and F are matrices with appropriate dimensions. The 

variable Y represents the disturbances due, for example, 
to modeling errors. It depends on the input and on the 
state or the output of the system. Note that only the first 
m components of the state are directly measured. 

Assumption 1: the pair (A, C) is detectable 

Observer 1 
A Luenberger’s observer is used to generate the non- 
linearities estimation. The system output can be 
reconstructed by: 

i(k+l) =A, i(k)-t-B u(k)+L y(k) (2.4 

y(k) = C i(k) (2.b) 

where i(k) E R” , Ao = A -L C , with L, the observer 

gain. 



It is clear that the output estimation error does not 
converge to zero when k tends to infinite because the 
observer (2) cannot provide an acceptable estimation on 
account of non-linearities. 

By substituting the system output (1.b) and its estimate 
(2.b) by their expressions, the output error 
E(k) = y(k) - f(k) becomes: 

a(k) = C (qI-A&FY(y,u) (3) 

where q is the forward shift operator. This equation is 
also equivalent to: 

v(k+l) =A0 v(k)+F’P(y,u) (4.4 

a(k) = C v(k) (4.b) 

Partitioning the variable v into [VI v2 v31T and taking 

into account the expression (1.~) of C, the system (4) is 
written under the form: 

0 q.(m) Oq.(n-m) o(m-d.q l(q).(m+ o(m-Nn-m) 
v1 E RS, v2 E Rm-q, v3 E Rn-m, ~1 E Rq, ~2 E Rm-% Al 1, 

Al2, A13, A219 A229 A.239 A319 A323 A33 and Fl, F2 and F3 

correspond to the partitioning of A, and F. 

Assumption 2: the matrix 6 is regular 

The substitution of the equation (5.d) in (5.a) leads to: 

The non-linear variable Y( y, u) is expressed in terms of 

an unknown parameter v3. Its estimation will be 

performed after generating, firstly, an equation with a 

state variable v3, and secondly its corresponding 

measurement equation. 

Replacing the non-linearity Y(y, u) by its expression (6) 

in equation (5.~); leads then to: 

v3(k+l)=Kv3(k)+r(k) (7.a) 

x=A33-yA13 

r(k) = (A3rYA&dk) +(A32-@r2)a2(k) + y&l(k+l) 

with y = Ej Frl 

Expression (7.a) represents an equation with a state 

variable v3. Its corresponding measurement equation is 

obtained by substituting the non-linearity (6) in (5.b): 

f(k) = D vg(k) (7-b) 

where D = A23 - F2 F;lAl3 (8.4 

and 

f(k) = a2(k+l) - Dl&l(k+l) + D,&,(k) + D3a2(k) (8.b) 

-1 with Dl = F2 Fl 

D2 = Dl All - A21 

D3 = D, A12 -A22 

Assumption 3: the pair (x, D) is detectable 

If this assumption holds, the unmeasured variable v3 can 

be reconstructed by: 

Gj(k+l) = (A-M D) i3(k)+r(k)+M f(k) (9) 

where M is the observer gain and c3 the estimation of 

v3. 

It can be noticed that the proposed estimation (9) depends 
on unavailable variables defined at the discrete time kt 1. 
This problem can be overcome by defining an 
intermediate variable w: 

w(k) =+3(k)-(y-M D1) &t(k)-M E2(k) (10) 

Taking into account the expression (9), the dynamic of w 
is written under the form: 

w(k+l) = G w(k) + H, El(k) + H, a2(k) (11) 

After determination of w, the estimation of v3 is 

deduced. The expression of the non-linearity contains 
unavailable parameters. At infinite, this non-linearity 
becomes: 

where: 



The structure of the non-linear variable Y(y,u) can be 

approximated and defined using a neural network 
(multilayer perceptron, for example). The neural network 

is used to learn Y(y.u) as a function of the system output 

and input. As shown fig. 1, the network input is composed 
of y and u and its output gives the estimation of Y(y,u) . 

Fig. 1. Neural Network inputs and output. 

4. State Reconstruction 

Once the neural network has been trained, its output is 
used as feedforward signal to compensate the modeling 
errors. The accurate estimation of the system state is then: 

Observer 2 

z(k+l) =(A-KC)i(k)+Bu(k)+Ky(k)+FY(y,u) (13.a) 

s(k) = C i(k) (13.b) 

It is clear that the output error 

e(k) = y(k) - $(W (14) 

is asymptotically null but presents picks because of the 
approximation ( 12). 

Proof 

Let us compute the state reconstruction error defined by: 

P(k) = x(k) - i(k) 

The dynamic of this error is obtained by substituting the 
state x and its estimation by their respective expressions 
(I) and (13): 

As the eigenvalues of the matrix (A-KC) have to be 

chosen in the unit circle, the state reconstruction error 

p + 0 if k + w and Y(y,u) + Y(y,u); consequently, 

the output estimation error + 0 when k + 00. 

5. Algorithm 

The proposed method can be summarized by the 
following algorithm. 

For a diagnosis goal, the properties of the residuals ‘e’ 
can be used to detect and identify the faulty system 
components (actuators, sensors, . ..). Then, a threshold h 
has to be defined: 

* if lel < h: no faults, 

* if lel > ?L: presence of faults. 

6. Simulation Results 

A non-linear system defined by: 

x(k+l) = A x(k) + B u(k) 
+O.OlFx(1:2)(k) x(3)(k)cos(lOOrcu(k)) 

y(k) = C x(k) 

is considered, where the system matrices are: 

End of proof 



The system input and output are shown on figures 2 and 3 
respectively. 
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Fig. 2. System input. 
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Fig. 3. System output. 

After using the pole assignment method, the observer 1 is 
designed in order to generate the first output estimation 

error ‘E’ (fig. 4) which allows the estimation of the 
variable vs. 
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Fig. 4a. First component of E. 
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Fig. 4b. Second component of E. 
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Fig. 4c. Third component of E. 

Consequently, the target of the Neural Network is 
obtained. It represents an approximation of the actual 

value of the non-linearities Y(y,u). Their estimations are 
obtained using a multilayer Neural Network 4x8x2 which 
is trained off-line and are presented on the figures 5 and 
6. 
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Fig. 5a. First non-linearity and its estimation. 
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Fig. 5b. Second non-linearity and its estimation. 

The non-linearity estimation is used as feedforward signal 
to compensate the modeling errors. The observer 2 
provides the accurate reconstructed output (figures 6). 
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Fig. 6.a. First output and its reconstruction. 
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Fig. 6.b. Second output and its reconstruction. 
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Fig. 6.~. Third output and its reconstruction. 

7. Conclusion 

By respecting some assumptions, we have proposed a 
method able to estimate system non-linearities. Their 
structures can be found using Neural Network and 
expressed in terms of the known variables y and u. The 
observer used for reconstructing the actual state takes into 
account the estimated non-linearities. The method 
requires the transformation of the measurement matrix C 
into [I 0] which is always possible if material 
redundancies are avoided. 
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