
A State Reconstruction Algorithm for Parameter Dependent
Discrete Event Dynamic Systems
F’rancesco Martinelli, Salvatore Nicosia, Paolo Valigi

rl
p i

\
Dipartimento di Informatica, Sistemi e Produzione

Universita di Roma “Tor VergataP - 00133 - Roma - Italy
%

martinelli@tovvxl.ccd.utovrm.it, {nicosia,valigi}Qdisp.utovrm.it

Abstract

In this paper, the problem of state reconstruction for
the class of parameter dependent discrete event systems
that can be modeled by means of queueing networks is
considered, and a novel solution is proposed, based on the
use of observed data. The algorithm allows to accurately
reconstruct the state behavior of a system, for parameter
values different from the nominal ones.

The proposed approach has been applied to the on-line
control problem for real systems, and a complete control
procedure is proposed.

1 Introduction

Discrete Event Systems (DES) are important models
for real systems whose state transitions are triggered by
the occurrence of discrete events [l, 2, 31, such as com-
munication networks, manufacturing systems, computer
systems or traffic networks.

Several techniques based on (observed) sample path
analysis have been proposed, aimed at estimating the
behavior of a DES under perturbed values of some of
its parameters. In particular, perturbation analysis tech-
niques are now well established, and can be used both for
continuous and discrete parameters. Similar approaches
include augmented system analysis [4], standard clock
[5], and rapid learning [6]. Recently, an exact finite
perturbation-like algorithm for the analysis of single class
queueing network has been proposed, for the case of
buffer capacity augmentation [7]. A “time warping” ap-
proach, similar to the one proposed here, has been consid-
ered in [8]. Modified finite perturbation rules have been
proposed in [9, 10, 111 for the case of general queueing
network, extending the original results in [12, 131 to the
case of weakly adjacent events.

Although, historically, the main motivations for the in-
troduction of these techniques was the attempt to reduce
simulation computation effort, they are particularly use-
ful also to implement on-line control schemes for physical
systems. As a matter of fact, in this case it is not pos-
sible to run several instances of the same system, with
different values of the parameters, in order to asses its
behavior. Such a type of on-line comparison instead, is
made possible by sample path techniques.

Perturbation analysis techniques attempt to estimate
the perturbation in the time of occurrence of events by

comparing other time perturbations, as well as nominal
timing, without taking into account the state evolution.
The main difficulty in such a time “timing comparison”
approach is that, in order to correctly compute the time
perturbation of an event, almost all the past and future
events are required, thus making such a computation too
complex, and, more important, non causal. The problem
is usually solved by assuming that only sufficiently close
events may change order due to parameter perturbation.
This allows to obtain computation algorithms, which are
approximate in nature, and whose accuracy is reduced
when larger parameter variations are considered.

Here, a novel algorithm is proposed, fully exploiting
the benefit of reconstructing the “extended” state of a
queueing network: if the network state is available, the
“destiny” of a node arriving to a queue can be decided
immediately, without any need for future events. This
allows to derive exact algorithms, regardless of the mag-
nitude of the parameter perturbation.

The proposed algorithm is based on the assumption
that relevant information, such as the system initial state
and the system input sequence, can be extracted from the
observation of the system over a finite horizon, and prop-
erly stored. Based on the knowledge of these data, and
assuming a “topological” model of the system is avail-
able, the state sequence can be fully reconstructed, for
perturbed values of the system parameters. The avail-
ability of perturbed state sequences allows to compute
performance indices, and to implement dynamic control
schemes.

This paper considers the state reconstruction problem,
illustrating in details the proposed methodology for on-
line state reconstruction and control. In [14], the appli-
cation of such a methodology to on-line control of manu-
facturing systems has been tested by means of simulation
results. Initial results on the parallel implementation of
the algorithm are presented in [15]. The reconstruction
algorithm is mainly intended for on-line control of real
systems, and therefore computational efficiency is not the
major issue.

2 Queueing network dynamics

In this paper it will be considered the class of systems
that can be modeled by means of queueing networks with:
(a) general service time at each node, (b) general rout-

ing policy at each node, (c) general scheduling policy at
each node, (d) finite buffer capacity, (e) multi-class, (f)
non-preemptive service at each node, (g) infinite arrival
rate sources, (h) infinite capacity sinks. Each node of
a network comprises a server, which has as much input
queues as the number of classes it can provide service to,
and each class is associated a dedicated input queue.

The event of type “completion of service of a customer
on a node” is sufficient to fully describe the evolution of
the class of queueing networks considered here.

Notation

Let Ns denote the number of servers in the network,
NC the number of customer classes serviced by the net-
work, NQ the total number of queues in the network;
let N := {1,2,. . . , Ns} denote the set of all the nodes,
c := {1,2,. . .) NC} the set of all the customer classes, Ci
the set of all the classes that may be serviced at node i,
and Q := {(i, a) : cr E Ci, i E N} the set of all the net-
work queues; hence NQ = 1 QI. Finally, let Nc,i denote

the number of elements in Ci (NQ = CF1 NC,;).

The following three types of counters will be used. The
first counter is global, is used to count the service comple-
tion events occurred over the whole network, is denoted
by n, and is referred to as the global counter. The second
type of counters are local to each node; node i counter
is denoted by ki, i E N, counts the total number of ser-
vice completion events occurred at node i, regardless of
the customer class, and is referred to as a node counter.

The third type of counters are local to each node as well;
counter k+, a E Ci, i E N, is used to count the number
of class cr customers serviced at node i, and is referred
to as a class counter. Clearly, CaECi ki,, = ki.

The event of service completion of a class a customer
at the i-th node will be denoted by +, the service com-
pletion of the ki,,-th customer of class Q at node i will
be denoted by ci,(y (k), the time of occurrence of the com-
pletion event Q,~ (k) will be denoted by t&(k); the com-
pletion time of the customer currently under service on
node i, or the completion time of the last customer ser-
viced by node i, if node i is currently starved or blocked,
will be simply denoted by tz, and tC := (tf, t$, . . . , thJT

will denote the vector of all completion times.

The vector x of the queueing state is given by x :=

(XL x$7 4’7 where XL is the NQ dimensional vector
of the current queue lengths (without counting the cus-
tomers under service), 5~ is the NS dimensional vector
of the classes of customers currently under service (with
XC,~ = 0, i E N denoting that server i is empty/starved),
and finally zn is the Ns dimensional vector indicating
whether a server is blocked or not. The above structure
of the state vector implies that each node can be blocked
by only one other node. Hence, splitting nodes are not
allowed here, while assembling/joining nodes are.

Let X denote the state space of the queueing network,
let & = {Q, (Y E Ci,i E N}, denote the set of all the

completion events, let A(z) := {i : (XC(i) # O)r\(zg(i) =
0), i E N}, for all x E X, denote the set of servers active
while the network is in state x, and let R(z’; 2, s) := {i :
i E d(z’) \ (d(x) \ {s}), i E N} denote the set of servers
re-activated upon the transition from state z to state z’
due to service completion at server s.

It is assumed that randomness in state transition can
only arise from random scheduling policies, and/or ran-
dom routing policies. The stochastic structure of these
policies is not relevant, it will be simply assumed that
each node i, i E N, where a random scheduling policy
is used, is associated a random sequence {us,i}k;, taking
values in Ci, and indexed by the node counter ki. Sim-
ilarly, it is assumed that each node i, i E N, where a
random routing policy is used, are associated Nc,~ ran-

dom sequences {uR,&~,, , taking values in &, indexed
by the class (Y counter ki,, of node i.

As for the randomness in customer service duration,
for the purpose of this paper it will be assumed that each
node i, i E N, are associated Nc,i random sequences

h,i,dki,, 7 taking values in lR+ (positive real numbers),
indexed by the class counters, with the ii,,-th element
of the a-th sequence of node i being the random variable
determining the service duration of the ,I&,,-th class Q
customer serviced by node i.

Let (0, B, P) be a common probability space for the
whole the random sequences {US,i}ki, {Un,i,a}k;,, , and

b,i,&,, 7 then, each element w E R corresponds to a
unique realization of these sequences.

Queueing network dynamics

Let x(0) E X be the initial queueing state of the net-
work, let t(0) E lR be the initial time, and assume the ini-
tial service completion times t:(O), t:(O) E IR,, are given
for all i E N. Set to zero all the counters, i.e., n = 0,
ki = 0, for all i E N, k;+ = 0, for all (Y E Ci, and for
all i E N. The determination of the next queueing state
is based on the computation of the server s* where the
next service completion will occur, and the corresponding
service completion time t*:

p = ,$&,(w)l
s* = min{j : t;(n) = t*,j E d(x(n))}, (lb)

where the min operation in (lb) allows to select a unique
server. Given t* and s*, the new state and completion
times can be computed as:

x(n+ 1) = ~2(x(n),tC(n),s*,~R,2LS), (14
t(n + 1) = t*, (14

t”(n+ l> = ~t(xC(n),tC(n),s*,~D), (14
n=n+l w

where the vectors Us, ?iR, and tiD are realization of a
suitable number of random variables from the random

sequences {US,i}ki, {UR,i,a}k;,, , and {uD,i,cy}ki,, , respec-
tively, and the i-th component c#Q,; of function & is de-
fined as:

&i(X(n), t”(n), s*, CD) =

{

t* + fiD,j, if i E R(x(n + 1); x(n), s*),

tl(n), otherwise ,

where i%D,i denotes the new service duration for server i.
Notice that equations (2), describing the network dynam-
ics, are completely deterministic and can be evaluated
provided that vectors tin, Gs, and CD are given.

Now, let the sets of known infinite sequences us(.),
UR(‘), and UD(‘), be a realization of the random se-

quences {%S’,i}ki, {uR,i,cy}ki,,, and {uD,i,a}k+, respec-
tively. Let u(a) := {us(-),uR(*),uD(*)} denote the set
of all the known sequences US(.), uR(.), and Ug(‘). For-
mally, u(e), the input sequence, can be indexed by the vec-
tor ([ki] [k&j) of all the node and class counters. Finally,
let the set U of all the admissible input sequences be the
set of all the deterministic sequences u(a) that are real-
izations of the stochastic sequences {us,i}ki, {uR,i,cy}k+,
and {uD,i,cy}k+, for some value w E 0.

Then, the whole state evolution can be computed via
the map + = (@z @F)T, obtained by the formal compo-
sition of the equations (la)-(lf) governing a single state
transition:

XC*) = ~)5(40),w%u(-)), (24
f(*> = @t(~(0),tC(O),u(*)). G’b)

For a given initial queueing state x(O), and initial service
completion times t”(O), a given infinite input sequence
u(s) yields a unique infinite state sequence x(e) and a
unique service completion time sequence t”(e) provided
that both the initial state x(0) and the initial service
completion times tC(0) are fully specified.

In the following the vector xe := (xT, (tc)T)T will be
used to represent the “complete” state, and referred to
as the network extended state, with extended state space

X, := X x IR. Then, (2) can be rewritten as:

xc(-) = @(Xe(O>,U(‘>L (3)

and function @ will be referred to as the input to extended

state map. It is stressed that equation (3) is completely
deterministic, and its solution depends on completely de-
terministic initial extended state and input sequence.

Parameter dependent queueing networks

Let 19 E 0 be the vector of all the network parameters
that may change value during network operation, and
whose impact on network performance is of interest. It is
assumed that the parameter space 0 has a finite number
of elements and does not contain structural parameters,
such as, e.g., the number of nodes in the network. Hence,
a third argument 0 will be added to map @:

xc(*) = @(xe(o>,U(.),e). (4
It is important to stress that, for queueing networks,

the values that the state may assume are not independent
from network parameters. Let X(e) denote the admissi-

ble state space under parameter 8, that is, the set of all
the values the queueing state vector may assume, for the
value B of the network parameter. The state space X is
given by X = &ox(B). A given queueing state x is an
admissible queueing state under parameter t9 if x E X(e).

For example, if 8 is the NQ dimensional vector of buffer
capacities, with O(i,a) denoting the buffer capacity of the
queue (i,a) E &, then the set X(e) is given by:

x(e) := {(XT X$ X:)*

: XL,(i,a) E {O,l,. * . , e(i+) 1, (6 a) E Q,

Xc,j E Cj, j EN,xB,e E &,e E N}

where XL,(~,~), xc,j, and xn,e denote the (i,o)-th, j-th,
and Gth component of the queueing state sub-vectors XL,
XC, and xg, respectively.

3 State reconstruction

The solution to the state reconstruction problem con-
sidered in this paper, is based on the assumption that,
for a given physical plant, modeled by a queueing net-
work, it is possible to observe its behavior over a finite
horizon, and in particular it is possible to observe the
input sequence and the initial extended state.

The extended state sequence, for a given observed in-
put sequence, a given observed initial state, and some val-
ues of the network parameter, is reconstructed by means
of the system dynamics, i.e., by means of the map (4).

To illustrate the basic idea of the proposed state re-
construction algorithm, the following problem is initially
considered, though its solution is not physically realiz-
able.

Problem 1 Assume the evolution of a given queueing
network over an infinite horizon is observed, for a nom-
inal network parameter vector t9 = ON. Let x$$ be the

observed initial extended state, u”(.) the observed input

sequence, and x:(e) = +(xg0,uo(.),f9N) the observed
extended state sequence. For such a queueing network,
find the extended state sequence S&(o) corresponding to

T.
a perturbed value 0 = 0 of the network parameter vec-
tor, from the same initial condition x$$, under the same

input sequence u” (a). 0

Problem 1 is solved by the following theorem, under
the only assumption that the observed initial queueing
state is admissible under perturbed parameter 6. Its
proof is easy, hence omitted.

Theorem 1 If the observed initial extended state x$‘o =

cbw (t;O>T is such that x$’ E X(6), then Problem

I is solved by the following algorithm:

&(.) = qx~o,uo(.), 6). (5)

Theorem 1 allows to solve the state reconstruction
problem provided an infinite input sequence is available.
Instead, in real applications, only finite input sequences
are available, and one is interested in making the best
use of them, i.e., in reconstructing the longest possible
extended state sequence. To formally state this require-
ment, the following notation and machinery will be used.

Let u(.) be an admissible infinite input sequence, and
let [Ici+] denote the vector containing all the NQ class
counters. Then, ulki,,l (s) denotes the unique [ki,,]-length

finite initial subsequence (briefly, [&-J-subsequence) of
the infinite sequence u(e), i.e., the finite subsequence con-
taining, for all Q: E C; and for all i E N, all the elements
of the corresponding sequences UR(.) and ‘LLD (e) in u(.)
with index less than or equal to IC+, and all the elements
of the corresponding sequence US(.) with index less than
or equal to ki = CaECi ki,,. In addition, given a [k+]-
subsequence tilki,,l(.), let U(C[J+I (0)) denote the set of
all the admissible infinite sequences having Ulki,,l (.) as
the common [kJ-length finite initial subsequence:

~(~i[~,,~l(~)) := (4.1 E ~4 : yk;,,] (-1 = ‘LLpi,c&)b (6)

Now, assume a [&J-subsequence Elki,,](an initial

extended state xe,s, and a network parameter e are given.
Then, for each infinite sequence u(.) in U(C[,,,+l(.)), the
corresponding extended state sequence xe (a) from the ini-
tial extended state XQ can be computed, and the set

S(xe,o, qk;,J (*I, e> can be constituted as:

ee,o, ‘Il[ki,,] (.I, e) :=

{xe(*> : xc?(*) = @(xe,o,u(-L e>T 4.1 E W[k;,,](.))~

The set S(G,O, ~[rci,,l(*>, e) comprises all the infinite ex-
tended state sequences that can be generated from all
the admissible input sequences having tilki,pl(.) as the
common [k&j-subsequence.

Given an extended state sequence xc,(.), the sub-se-
quence obtained by taking the first A terms (the n-th
term is the value that the extended state assumes when
the global counter is equal to n) will be denoted by
[x~(.)]~ and will b e referred to as the A-subsequence of
the infinite sequence x, (.).

Given the set S(x,,e, 211ki,pl (a), 8), a k-subsequence

[xE(.)]rc is a common k-subsequence of S(xe,e, ~lk~,~l (a),@

if [x,(.)lk = [x2(-Ilk for all x,(.1 E S(xe,O,Ei[ki ,1(-j,@.
The state reconstruction problem for finite input se-

quences can be formally stated as follows.

Problem 2 Assume the evolution of a given queueing
network over a finite horizon is observed, for a nominal
network parameter vector 8 = ON. Let xg, be the ob-

served initial extended state, and u” lIcp](.) the observed

[kc,J-length input sequence. For su:i a queueing net-

work, with a perturbed value 6J = 6 of the network pa- ,.
rameter vector, find the longest common k-subsequence

of S($o 7 $yp] c-1 > e^> *

Problem 2 is initially solved, under the following sim-
plifying assumption, by means of the subsequent algo-
rithm.

Assumption 1 The queueing network only comprises

servers with deterministic scheduling policy.

Algorithm 1 Deterministic Marking Algorithm

l Given the finite observed input sequence u” py-1 (*L
let u,“(m) be the infinite sequence obtained from usual

by adding an infinite number of mark symbols after the
last terms of the sequences in u$ l(e).

l Apply the reconstruction al&ithm given by &(.)

= +(xgo,u~(.),@ and t erminate the extended state re-
construction when a server which needs a new service
duration value extracts the first mark symbol. V

Theorem 2 If Assumption I holds, then, if the observed

initial extended state xgo = ((x:)~ (tg”)T)T is such that

x0” E X(6), and the probability distributions of all the

random variables determining the customer service du-
ration r, for each server, are so that, for all E > 0,
Prob(0 < r 5 e) > 0, then Problem 2 is solved by the

Deterministic Marking Algorithm.

The theorem proof, omitted for brevity, can be found
in [16]. The extension to the general case of servers with
random scheduling is not difficult, and is given in the fol-
lowing algorithm. To simplify notation, assembly nodes
are not allowed.

Algorithm 2 Marking Algorithm

l Given u” lkP l (a), let uy (.) the infinite sequence ob-
*,a

tained from u” lk-, l(e) by adding infinite mark symbols

after the last te;& of all the sequences in u&,,l(.).

l Associate each server i using a random scheduling
policy a set Fi, initially empty, and Nc,~ flags f (i, a),

initially set to zero.

l Apply the algorithm a,(.) = @(x~~,u$)(.),@, and,
at each state transition, update flags f(i, a), Q E Ci, and
sets Fi, for all nodes i implementing a random scheduling
policy, according to the following rules:

f(i,a) := { i ft;g(:+l = mark symbol

Fi = {(i,a), a E Ci : _f(i,a) = 1 and z~(i,o) > 0))

and mark all the servers for which all the three following
conditions are satisfied together:

1. Fi is not empty;

2. server i has completed a customer service at the
current transition, or is starved;

3. Us(ki) E Fi or us(ki) = mark symbol.

l The algorithm terminates as soon as a server with
deterministic scheduling which needs a new service du-
ration value extracts a mark symbol or a server imple-
menting a random scheduling policy is marked. V

Theorem 3 summarizes the results of the solution to
Problem 2, in the general case in which both determinis-
tic and random scheduling policies are allowed. Its proof
is omitted [16].

Theorem 3 Assume the queueing network does not con-

tain assembly nodes, then, if the observed initial extended

state xpO = ((x$‘)T (tg”)T)T is such that x0” E X(8),

and the probability distributions of all the random vari-
ables determining the customer service duration r, for

each server, are so that, for all E > 0, Prob(0 < r 5 6) >

0, then Problem 2 is solved by the Marking Algorithm.

4 Dynamic control

The behavior of a queueing network can be assessed
by means of a performance index J(e), depending on the
network parameter vector 0.

The queueing network control proposed in this paper is
implemented on line, by periodically modifying the value
of the network parameter 8, selecting the new value in an
admissible subset of 0 (to be defined), with the objective
of maximizing J(0) with respect to 8. Hence, a control

action consists in a variation of the network parameter.
The basic idea of the proposed control scheme is as

follows. Suppose m control actions have been already
implemented, m 2 0, and assume the value of the net-
work parameter, after the m-th control action, is 8 = 0,.

Control actions are taken with a control period (or ob-

servation period) equal to the time required to the system
to complete service on M customers. Parameter M is a
design parameter.

Within each control period, the network behavior is
observed, and relevant data, e.g. the observed input se-
quence, are stored for later processing. At the begin-
ning of each control interval, all the counters are reset
to zero. During the m-th observation period, the per-
formance index J(em) is computed, and the input [kra]-

subsequence uFTal (a), the initial and final (i.e., at the end

of the period) extended state z:a and x:~ respectively,
are recorded.

The evaluation of J(B), for all B E O,, with 0, a suit-
able set to be defined, can be carried out by reconstruct-
ing the extended state subsequence for every 0 E O,, by
means of the marking algorithm described above, with
the input [k,&]-subsequence UK, I (.) recorded during the

I,_
observation period, and a suitable initial extended state
?i&,s, to be computed taking into account the observed
initial state xro and the network parameter for which
the extended state has to be reconstructed.

Given the reconstructed extended state subsequence,
it is possible to compute the performance index J’(d), for
all 8 E O,, and to choose, as the current control action,
the network parameter 0’ E 0, such that:

(7)

Given the final extended state x:~, the set 0, can be
defined as:

0, = {e E 0 : x;” E K(B)}, (8)

where x7 is the queueing state sub-vector correspond-
ing the the extended state x:~. Set 0, can be reduced,
by considering suitable constraints, e.g., in order to re-
duce computational complexity, or to take into account
constraints in the real system.

The initial extended state xLo to be used by the re-
construction algorithm can be selected by one of the two
following rules, where the distance funcion d(., .) is de-

fined as d(x’, x2) := Czl lx;+ - x;,~ 1 , whit x;,~ denot-
ing the i-th entry of the xLcomponent of the queueing
state vector .j.
Rule a). Select the initial extended state x~,~=((x$)~
(tg’“)T)T such that:

xa zzz
0 min

roEX(e),VeEQm
{d(xo,$)]. (9)

Rule b). For all 8 E O,, select the initial extended
state 2, o a;’ = ((xg>O)T(ti’“)T)T such that

a,@
X0 = sol$e) Id (x0, xgm)l. 00)

5 Simulation results

Several simulation tests have been performed, aimed
at verifying the performance of the proposed real-time
control scheme, and of the underlying state reconstruc-
tion algorithm. Here only a brief summary is given, a
more detailed description can be found in [14, 151.

The results refer to the dynamic control of a simple
multi-class manufacturing system, depicted in figure 1,

Figure 1: The manufacturing system

and in which control actions amount to allocation of
buffer capacities of the nodes 2,3,4,5,6, referred to as
the set of controlled nodes, with the constraint that the
sum of all the capacities remains constant, and equal to
8. It is assumed that the service duration of all the nodes
is independent of part type, nodes 3,4, and 5 works only
one part-type each. The routing probability from node
2 to nodes 3,4, and 5 is a model of the mix of part type
arriving at the system, and of a deterministic routing
policy, based on part-type: each type to a different node.

All the simulation experiments have been carried out
with the following specifications for the network: expo-
nentially distributed service times, with mean equal to
0.5, 1, 3, 2, 1, and 1, for nodes from 1 to 6, respectively.
Routing probabilities from node 2 to nodes 3,4, and 5
equal to 0.05, 0.05, and 0.9, respectively.

The performance index to be maximized is the system
throughput, computed over 30000 part serviced by node
6. The control period h4 has been chosen as M = 500.

The optimal buffer capacity allocation for the system
without any control scheme active has been determined
by means of independent simulations. Then, the simula-
tion of the controlled system indicates that almost 80%
of the control actions coincide with the buffer allocation,
which is the optimal one for the system without control.

From the point of view of performance, simulation re-
sults indicate that the controlled system achieves a sys-
tem throughput of about 0.81 (over a throughput of 0.815
for the optimal system, i.e., of the system without con-
trol scheme, and with fixed optimal buffer capacity allo-
cation), with a 14% improvement over the throughput of
the uncontrolled system (i.e., the system without control
scheme, and with an fixed buffer capacity allocation of
(1,2,2,2, l)), which turns out to be equal to 0.72.

Acknowledgment

This work has been supported by MURST (ex) 40 %
and 60 % funds.

References

PI

PI

P. Glassermann, Gradient Estimation Via Perturbation
Analysis. Kluwer Academic, 1990.

Y. Ho and X. Cao, Perturbation Analysis of Discrete
Event Dynamic Systems. Kluwer Academic Publishers,
1991.

[31

[41

151

bl

[71

PI

PI

[lOI

WI

PI

1131

P41

1151

P61

C. Cassandras, Discrete Event Systems: Modeling and
Performance Analysis. Boston, MA: Irwin 8z Aksen,
1993.
C. Cassandras and S. Strickland, “Observable aug-
mented systems for sensitivity analysis of Markov and
semi-Markov processes,” IEEE fians. on Automatic
Control, vol. 34, no. 10, pp. 1026-1037, 1989.

P. Vakili, “A standard clock technique for efficient simu-
lation,” Operation Reseacrh Letters, vol. 10, pp. 455-452,
1991.
C. Cassandras, “Rapid learning techniques for discrete
event systems: Some recent results and applications to
traffic smoothing,” in 12th IFAC World Congress, vol. 3,
(Sydney, Australia), pp. 323-326, July 1993.

C. G. Panayiotou and C. Cassandras, “Optimization
of kanban-based production systems,” in proc. of the
WODES 96, International Workshop on Discrete Event
Systems, (Edinburgh (Scothland): IEE Computing Con-
trol Division), 1996.

C.G. Cassandras and C. G. Panayiotou, “Concurrent
sample path analysis of discrete event systems,” in
Proc. of the 35th Conf. on Decision and Control, Kobe
(Japan), December, 1996.
G. Liberatore, S. Nicosia, and P. Valigi, “Dynamic allo-
cation of kanbans in a manufacturing system using per-
turbation analysis,” in Proc. of the 1995 INRIA/IEEE
Conference on Emerging Technologies and Factory Au-
tomation, vol. 3, (Paris, France), pp. 595-600, October,
10-13 1995.

G. Liberatore, S. Nicosia, and P. Valigi, “Path contruc-
tion techniques for dynamic control of kanbans systems,”
in Proc. of the 34th Conference on Decision and Control,
(New Orleans, LO), pp. 2610-2611, December 1995.

G. Liberatore, S. Nicosia, and P. Valigi, “Dynamic al-
location of buffer capacity in discrete event systems,”
Journal of Intelligent Automation and Soft Computing,
1997.

Y. Ho, M. Eyler, and T. T. Chien, “A gradient technique
for general buffer storage design in a production line,”
Innt. Journ. of Prod. Res., vol. 17, no. 6, pp. 557- 580,
1979.

Y. Ho, X. Cao, and C. Cassandras, “Infinitesimal and
finite perturbation analysis for queueing networks,” Au-
tomatica, vol. 19, pp. 439-445, 1983.

F. Martinelli, S. Nicosia, and P. Valigi, “Dynamic control
of manufacturing systems based on a novel state recon-
struction algorithm, ” in 1997 IEEE Int. Conference on
Robotics and Automation, (Albuquerque, NM), April 20-
25 1997.

A. Loretucci, F. Martinelli, S. Nicosia, and P. Valigi,
“A parallel algorithm for on-line simulation and control
of discrete event systems,” in Annual Conference of the
Italian Society for Computer Simulation, (Rome), De-
cember 18-19 1996.

F. Martinelli, S. Nicosia, and P. Valigi, “State recon-
struction techniques for discrete event dynamic systems:
Theory and application,” Tech. Rep. R.Ol-97, Diparti-
mento di Informatica, Sistemi e Produzione, Universita
di Roma “Tar Vergata”, Roma, 1997.

