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Abstract 

We discuss a least squares method for identifying 
the growth function in a nonlinear hyperbolic initial- 
boundary value problem that describes the dynamics 
of tree population with self shading effects. Further- 
more, we present numerical results of estimating this 
parameter from computationally generated data. 

1 Introduction 

In this short note we consider an identification prob- 

lem for the following parametrized initial boundary 
value problem that models forest exploitation and 
competition for light in trees 
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ut + (9(X> Q(k x>)u)z + m(x, P(G)u = 0, 
(x7 t) E (074 x (0, Tl 
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where u(t, X) is the density of the population of size x 

at time t, P(t) = J,” ~(t, x) dx is the total population 

at time t and Q(t, x) = Jl ‘~l(t, x) dx is the popula- 
tion of individuals larger than size x. The function m 
denotes the mortality rate and ,B is the reproduction 
rate of an individual in the population. The function 
g denotes the growth rate of an individual and C(t) 
represents the inflow of zero-size individuals from an 
external source. In this model, we assume that the 
growth rate of individuals of size x is affected by those 
which are larger due to shading effects, and that the 
death and birth rates depend only on the total popu- 
lation. Moreover, we assume that an individual tree 
is harvested when it reaches size 2. The model (1.1) 
has been presented in [3]. The existence-uniqueness of 
nonnegative solutions to similar equations have been 
established in [4] using the classical method of char- 
acteristics. 

This paper is organized as follows. In section 2 we 
discuss the minimization problem and the finite dif- 
ference method used to approximate equation (1.1). 
In section 3 we present some numerical results of pa- 
rameter estimates obtained using the method pre- 
sented in section 2 and computationally generated 
data. Finally, in section 4 we close the paper with 
some remarks and future research issues. 

2 Parameter Estimation 
Problem 

For simplicity, we assume that all the parameters 
in equation (1.1) are sufficiently regular, nonnegative 
and are given functions except for the growth param- 
eter g. To identify g we consider the least squares 
problem of minimizing the cost functional 

J(g) = FJ F, /zs+’ u(t,, x, g)dx - ZJ2 (2.1) 
?-El SE1 z.5 

over g E G, where G is a compact subset of the 
space C’( [0, I]; C[O, co)) which satisfies the following 
assumption (necessary for the stability and conver- 
gence of the finite difference scheme presented in this 
section) 

(AG) Any function g E G is twice continuously dif- 
ferentiable in x and Lipschitzian in Q. Further- 
more, the continuous function gZ(x,Q) is Lip- 
schitzian in Q, g(x, Q) > 0,Vx E [O,Z) and 

dz, Q) = 0. 

ThenumbersZ,,,,r=1,2,...,nl,s=1,2,...,nn, 
in (2.1) are the observed total number of individuals 
in the size class [x,,x,+i) at time t,, and u(t,x,g) 
is the solution of the parameter dependent equation 
(1.1). We remark that the techniques presented here 
can be easily modified to allow the identification of 
the rest of the parameters ,B,m and C. 

To solve the above least squares problem we start 
first by approximating equation (1.1). To this end, we 



consider the following implicit finite difference method 

u;+w - u$(s) 
At 

+ 
g$j”” (9) - gjk_& (9) 

Ax 

+m$ui+l(g) = 0, 1 I j L N (2.2) 

g;u;+‘(g) = C” + CL, @uf+‘(g) Ax 

P”+l(g) = CL, uf+’ (g)Ax, 

Qjk+‘(g) = C:j+, uf+l (g)Ax, 

where Ax = $, and At = $ denote the spatial and 

time mesh size respectively. The point xj = jAx, j = 

0, 1,2, . . . ) Nandtk=IcAt,Ic=0,1,2,...,M. Fur- 
thermore, we denote by u:(g), Q;(g) and Pk(g) the 
difference approximation of u(tk, xj, g), Q(t,+, Xj, g) 

and P(tk , g), respectively and we define 

gj” = dxjr Qj”>, P; = Nxj, P”), 

rn: = m(xj, P”) and C” = C(tk). 

If we define 

d,k=l+gg;+Atm;, l<j<N 

then (2.1) is equivalently written as the following sys- 
tem of linear equations 

A”@1 - -k 
-f (2.3) 

where 
-kc+1 - u - [lb;+11 u:+l,. . . ) t&i+,“]‘, 

f3 = [Ck&U~ )‘..) up- 

and the matrix A” is given by 
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-&k df 

AzgO 
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0 -AL k 
Azgl 

g 1:: 0 
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From the matrix representation and Lemma 2.1 in [l] 
we establish that the system of linear equations given 
in (2.3) has a unique non-negative solution provided 
that Ax, and At are chosen to satisfy the following 
condition 

Ax $ + gg;(l + $g;+l + Atm$+l)-l < 1 

O<j<N-1 

Ax&l. 
90” 

The above approximation is extended to a function 
on [0, Z] x [0, T] by defining 

UAt,Az(tr x,9) = us(g), 

(&X) E [tk-l,tk) X [Xj-l,Xj), 

k = l,..., M,j=l,..., N. 

Hence, for computing minimizers we define the fol- 
lowing approximate cost functionals 

JAt,Az(g) = offs+’ UAt,Az(t,,X,g)dX-2,,,12 

T-cl .9=1 +a 

(24 

over g E G” a finite dimensional approximating se- 
quence of the parameter space G. 

3 Numerical Results 

For our numerical experiments, we choose the fol- 
lowing function forms for the parameters P,m and 
C 

p(x, P) = 0.5x2/3Pexp(-4P) 

m(x, P) = (1 +x)(1 + P)” 

c = 0 

In addition, we let T = 2, Z = 1 and choose the initial 
condition 

u”(x) { 2 0 5 2 5 0.5 = 
0 0.5 < x 5 1. 

Note that for the parameters given above the follow- 
ing bounds can be obtained 0 5 Q 5 P 5 1, independent 
of any growth function g E G. In fact, the lower 
bound follows from the nonnegativity of solutions to 
equations (1.1). While the upper can be obtained by 
integrating the first equation in (l.l), as follows 

d ’ J J 
1 

Z, 
udx-do, Q(t, O)h(t, O)+ m(x, P(t))u = 0. 

0 

Hence, using the boundary condition in (1.1) we get 

dP ’ 

dt= () J (P(x, P) - m(x, P)) udx 5 WP 

;p, w = supX,r(/3(x, P) - m(x, P)). This implies 

P(t) I II~“II~~(O,l)ewP 51 

since, w 5 0 and ]]u”]]~l(s,i) = 1 for the above choice 
of parameters. 

As for the growth function g, we assume that it has 
the following separable form 

cdxc, Q) = gl(xh(Q). 



Figure 1. This graph represents the estimated versus the 
true parameter for the function g;(Q) = (1 + &)e-2Q. 

Furthermore, we assume that the function gi(x) = 

(0.1+x)(1- ) g x is iven and attempt to identify only 

gz(Q). Hence, for this special case we choose the pa- 
rameter space G to be 

(92 E C[O, 11 : IL721 I L, 
IdQl) - dQd1 I LlQl - Q2lI 

where L is a fixed positive constant. This set is com- 
pact in C[O, l] with the sup norm, by Arzela-Ascoli 
theorem. We define the finite dimensional approxi- 
mating sequence of this parameter space G to be 

G” = span{B~}~s, 

where BJp is the j-th linear B-spline on the inter- 
val [0, l] defined with respect to the uniform mesh 

{O,&,&,+..,l}. That is 

I 

0 O<Q<s - ?n 

m&-j+1 c<Q<f - 

By(Q) = 
j+l-mQ f<Q<G 

0 m<Q<l m - 

j = 0,1,-e., m. Hence, if gp E G” then gF is given 
by gr = C& a?By (Q) and solving the identifica- 
tion problem (2.4) involves the choosing of the pa- 
rameters (c$, cry, f . . , ox) from a compact subset of 

lFP+i so as to minimize the functional Jat,aZ(gr). 
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Figure 2. This graph represents the estimated versus the 
true parameter for the function g;(Q) = 1 - 0.5Q2. 

To test our scheme, we choose a “true” function gz 
and generate the total population data 2, = P”(g,*) = 

Cg, ut (gz)Ax, k = 1,. . . ,200, using the finite dif- 
ference method given in (2.2), with Ax = 0.0125 and 
At = 0.01. We then used our least squares method 
to attempt to identify g.$ from the generated data Zk, 
lc= 1,..*,200. 

In the simulations presented here the nonlinear least 
squares minimization was carried out with LMDIFl, 
an implementation of the Levenberg-Marquardt algo- 
rithm available from NETLIB. We let m = 10, and as 
an initial guess for g; we took g!j’ = 0.5. In our first nu- 
merical experiment we let g;(Q) = (1 + Q) exp( -2Q) 
and presented the difference between the true and es- 
timated parameter in Figure 1. We repeated the pro- 
cess for the function g;(Q) = 1 -0.5Q2 and presented 
the results in Figure 2. 

4 Concluding Remarks 

In this paper, we have presented a least squares 
method for identifying parameters in a nonlinear tree 
population model with shading effects. The numeri- 
cal results of parameter estimates obtained using com- 
putationally generated data sets appear to be very 
promising. Our future efforts will focus on using such 
techniques for identifying parameters from observed 
field data. 

We point out that using similar techniques as those 
used in [5] together with the abstract least squares 



theory presented in [2] we can establish results con- 
cerning subsequential convergence of minimizers of 
the finite dimensional approximate cost functionals 

Jat,ar to a minimizer of the infinite dimensional one 
J. These efforts will appear in a forthcoming paper. 
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