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Abstract 

We study the distributed suboptimal full information 
H” problem for a stable well-posed linear system 
with control U, disturbance w, state x, and output 
y. The problem is to find all suboptimal compensa- 
tors u = Uw, i.e., compensators that make the norm 
of the closed loop input/output map from w to y 
less than a given constant y. Define &(x0, U, w) = 

ll~ll&~+;~ - ~~llwll~~~~+.~~~ We first choose 21 to 
minimize d and w to maximize min” Q, and show 
that the minimizing control and maximizing distur- 
bance can be written in a well-posed feedback form if 
and only if the input/output map of the system has a 
(J, S)-inner-outer factorization. We then give a para- 
meterization of all suboptimal compensators. In the 
generality that we allow it is possible that we have 
to include a feed-forward term in the compensator. 
This term is not present in the classical continuous 
time theory, but it is well-known from the discrete 
time theory. 

1 Introduction 

In this note we study the full information LP pro- 
blem for a distributed parameter system. In our set- 
ting the transfer functions need not be rational or me- 
romorphic; they are just plain H” without any extra 
smoothness. We follow a route based on spectral fac- 
torization that is well-knownfrom the theory for the 
finite dimensional rational H” problem, but there is 
a lot of details that have to be filled in, and it is not 
at all obvious how one should proceed at each stage. 
We believe that the final result is interesting even in 
the finite dimensional setting, since the point of view 
that we have adopted is somewhat different from the 

usual one. In particular, all our proofs are adapta- 
tions of standard frequency domain proofs, but they 
are recast in a state space setting, and some state 
space ingredients have been added. The key addition 
is the state space factorization of the Hankel opera- 
tor induced by the input/output map as the product 
of the controllability and observability maps. This 
makes it possible to connect the state space and the 
frequency domain theories to each other. 

The problem that we study is of the following type. 
We let 

Pi K ;] = [[;][~:~;!,] (1) 
be a stable well-posed linear system with control in- 
put space U, disturbance input space W, state space 
H, and output space Y x W (see [Staffans 1997a, 
Section 21 or Weiss [1994ab] for reviews of well-posed 
linear systems.) Here A is the semigroup around whi- 
ch the system is built, Bi and & are the two con- 
trollability maps corresponding to the two different 
inputs (they map a past control u E L2 (R- ; U) and 
disturbance w E L2(R-; W) into the present state 
x(O)), Ci is the observability map of the first out- 
put (it maps the present state x(0) into the future 
output y E L2(R+; Y), and Vii and Vi2 are the cor- 
responding input/output maps. The controlled sta- 
te at time t > 0 of Ik with initial time zero, initial 
value xs E H, control u E L2(R+; U), and distur- 
bance w E L2(R+; W) is given by z(t) .= d(t)to + 
Bir(t)r+~ + &r(t)n+u (see the notations at the end 
of this section), and the first output y E L2(R+;Y) 
of \E is given by y = Cixs + 2)ii?r+u + Vi27r+w. The 
second output is a copy of the disturbance w; this 
output has been added in order to give the controller 
direct access to the disturbance and to simplify the 
final formulas. We let the diagram drawn in Figure 
1 represent these input/state/output relations. Ob- 
serve the exact locations of the different arrows: an 
initial value or input acts on the operators located in 
the corresponding column, and a final state or out- 
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Figure 1: Input-state-output diagram for \E 

put sums all the contributions to the corresponding 
row. The goal is to find a simple parameterization of 
all possible feedback/feed-forward controllers u = Uw 
that make the norm of the closed loop input/output 
map from the second input w E L’(R+; IV) to the 
first output y E L’(R+; Y) strictly less than a given 
constant y. Such a controller is called suboptimal. 

We use the standard approach, and define the in- 
definite cost function 

Q(w 211 WI = IIYll;P(R+;Y) - r211412~(R+;W, 
= civ > JWLyR+;YxW) 2 (2) 

where J = i -t2r . [ 1 We first look for the con- 

trol Pit E L2(R+; U) that minimizes Q under the 
worst possible disturbance wcrit E L2(Rf; IV). This 
problem has a well-defined solution whenever there 
exists a suboptimal compensator. The critical con- 
trol/disturbance pair can be written in a well-posed 
feedback/feed-forward form if and only if the com- 
bined input/output operator V = [ D;l =;~;a] has a 
(J, S)-inner-outer factorization, where S = S is an 
invertible operator in U x W. With the help of the 
feedback system that we get in this way we can give a 
complete parameterization of all suboptimal control- 
lers. 

Throughout this note we assume the existence of 
a (J, S)-inner-outer factorization of 2). The existence 
of such a factorization is necessary only in the sen- 
se that without it there does not exist a well-posed 
suboptimal central controller. In particular, there do 
exist full information suboptimal H” problems that 
cannot be solved directly with the method presented 
here. 

In general it is not possible to split a well-posed 
linear system into a feed-forward part and a strict- 
ly causal part. This means that without any further 
assumptions it is impossible to make any statements 
about the feedback/feed-forward nature of the central 
controller that we have obtained. However, if we add 
an extra regularity assumption, then it becomes pos- 
sible to investigate the feed-forward part of the op- 
timal solution. Furthermore, under this assumption 

We use the following set of notations. 

The time shift operator r(t)u(s) = u(t+s). r(t): 

?TE: (rEU)(S) = 
u(s) ifs E E, 

0 ifseE 
, here E C R 

is an interval 1 

n+, R- : r+=rn+and?r-=nR-. 

TI(U; Y): The set of bounded linear time-invariant 
operators from L2(R; U) into L2(R; Y). 

TIC(U; Y): The set of causal operators in 
TI(U; Y). 

t?, c: f?= [s, a,],c= [Cd]. 

V, J: V= [=,,lDy], J= [;-“1]. 

A >> 0: A - EI is positive definite for some E > 0. 

it is possible to show that the Riccati operator sa- 
tisfies a nonstandard Riccati equation, and that the 
feedback operator can be computed from the Riccati 
operator. 

2 The Minimax Solution 

Definition 1 We call,?4 E TIC(W; U) a (uniformly) 
suboptimal controller for the system \E in (1) with the 
cost function &(x0, u, 20) defined in (2) iff 

IIPll~ + w~+41Z2(R+;Y) L h2 - 4II4l~yR+;W) 

forsomee>O andallure L2(R+;W). 

Note that (DriZ.4 + Dis)?r+w represents the in- 
put/output map from w to y if we take u to be 
u = U?r+w. Thus, this condition says that the norm 
of the closed loop input/output map from w to y 
should be less than y in the presence of the controller 
u. 

Definition 2 Let @, Q, and J be defined as abo- 
ve. The system 9 is called minimax J-coercive 
ifl for each x0 E H and w E L2(R+; W) the 
function u I+ Q(xa,u, w) is uniformly convex on 
L2(R+; U), and for each x0 E H the function 
w e inf,eL++;U) &(x0, u, w) is uniformly concave 
on L2(R+; W). 

The following results are almost immediate: 

Lemma 3 Suppose that the function u I+ 
Q(xa,u, w) is uniformly convex on L2(R+; V). 
Then a necessary condition for the existence of a 
suboptimal controller is that !P is minimax J-coercive. 

Lemma 4 Let 9 be a stable, well-posed, and mini- 
max J-coercive linear,system. 
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(i) For each fixed x0 E H and w E L’(R+; W) there 
is a unique function umin(x~, w) that minimizes 
Q(xa, u, w) with respect to u. We denote the cor- 
responding state and output by xmi”(xa, w) and 
pin (x0, w), respectively. 

(ii) For each fixed x0 E H there is a unique function 
wcrit(xa) that maximizes &(x0, umin(xa, w), w) 
with respect to w. Define xCrLt(xe) = 
xmin(xb, wCrit), ucrit(xa) = umin(xg, wcrit), and 
ycy20) = ymqxo, w-it). 

(iii) The minimax cost Q(xe, xcrit(xo), wCPit(xb)) 
is a nonnegative quadratic function of 

and it can be written in the form 
;ixo, xc’it(x0), w=rit (x0)) = (xq,~xo), whe- 
re II = II* > 0. This operator n is called the 
Riccati operator of \E. 

1 3 A Feedback/Feed-Forward 
Representation 

The construction in the preceding section gives us 
a unique minimax control/disturbance pair. In order 
to get a feedback/feed-forward representation for this 
pair we need to compute a (J, S)-inner-outer factori- 
zation of 2): 

Definition 5 Let S = S’ E ,C(U x W). 

(i) T$;Jyr;r N E TIC(U; Y) is (J, S)-inner iff 

(ii) The operator X E TIC(U;Y) is outer if the 
image of L2(R+; U) under Xrr+ is dense in 
L2(R+; Y). 

(iii) The factorization 2) = NX is a (J, S)-inner- 
outer factorization of V E TIC(U;Y) if N E 
TIC(U; Y) is (J, S)-inner and X E TIC(U) is 
outer. 

Theorem 6 Let \E be a stable, well-posed, and mini- 
mat J-coercive linear system. 

(i) Suppose that 2) has a (J, S)-inner outer fac- 
torization NX. Then S is invertible in 
C(U x W) and X is invertible in TIC(U x 
W).’ Define M = X-l and [K 31 = 
[-S-ln+PJC (I - X)] . Then [K: 31 is an 
admissible stable state feedback pair for \k‘, i.e., 

‘This means that X is an invertible S-spectral factor of 
PJV. 

U(J U 
+- x 

* 

+ 
x0 

+ 
wo +& 1 W 

Figure 2: Closed loop feedback connection 

the feedback connection drawn in Figure 2 defines 
a well-posed linear system \Iro, given by 

II 
= FZlf ,JQ] . 

Moreover, the state and outputs of this closed 

loop system are equal to xcrit (t, xO)7 [ :Zilk’,] J 

and [ ~~[~~‘,I, respectively, if we take the two 

closed loop inputs uo and wo to be zero. The 
Riccati opemtor l7 of q can be written in the fol- 
lowing alternative forms: 

II = C’JC - K*SK = C’ (J - JNS-‘n+n/* J) C 

=C*JC, =&*JC,,. 

p(Za) 
w==yzO) (ii) Conversely, if Ucrit~20~ [ 1 is equal to the output 

wC*it(zo) 
of some stable state feedback perturbation V!o of 
@ with initial value x0, initial time 0, zero con- 
trol, zero disturbance, and some admissible stable 
state feedback pair [K 31, then there exists an 
invertible self-adjoint operator S E C(U) such 
that NX is a (J, S)-inner-outer factorization of 
V, where M = (I - 3) and N =9X-‘. More- 
over, K is given by X: = -S-lrr+N/*JC. 

(iii) Zf [ $ ] = Co xo+Qr+ [Z”,] is the output of the 
minimax closed loop system \Eo with initial state 
to E H, control uo E L2(R+; U), and disturban- 
ce 2~0 E L2(R+; W), then the closed loop cost 
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Figure 3: Paxameterization of ail suboptimal control- 
lers 

QO(XO, UC,, WC)) is given by 

&0(x0, uc)r wc)) 

= IlYll2yrr+;q - Y211412~(R+;w) 

= (x0, HXO)H 

+ WI ~s~w,y,+;,x,)~ 

Hypothesis 7 Throughout the remainder of this no- 
te we let Q be a stable, well-posed, and minimax J- 
coercive linear system, and suppose that the two equi- 
valent conditions (i) and (ii) in Theorem 6 hold. 

Because of the final formula for the cost given in 
part (iii) of Theorem 6, we call S the sensitivity opera- 
tor associated with the given factorization. Observe 
that this formula rewrites the cost in terms of the ini- 
tial state CO and the two closed loop inputs ~0 and 
wo in Figure 2. This formula plays a key role in the 
subsequent development. 

Lemma 8 It is possible to choose the factorization 
in Theorem 6 in such a way that the cross terms in 
the sensitivity operator S vanish and S is of the type 

s = [ s;l s”,, 1, where &I >> 0 and 5’22 << 0. 

4 The Central Controller 

In order to get a centml controller we have to cut the 
bottom feedback loop in Figure 2, or equivalently, we 
change the direction of the bqttom line to get Figure 
3 with V = 0. 

Theorem 9 Suppose that W is finite-dimensional, 
and that the factorization in Theorem 6 has been cho- 
sen in such a way that the conditions on S listed in 
Lemma 8 hold. 

(i) The connection dmwn in Figure 3 with V = 0’ 
defines a well-posed linear system, and the in- 
put/output map U from w to u is a suboptimal 
controller. We call this controller the centml 
controller induced by the factorization NX. 

(ii) If V E TIC(W; U) in Figure 3 satisfies 

IIS:~2v(-S22)-“2~~ < 1, 

then the input/output map U from w to u is a 
suboptimal controller. 

(iii) Every b p su o tzmal controller U has a unique re- 
presentation of the type described in part (ii). 

5 Separation of Feed-Forward 
Terms 

In order to talk about feed-forward terms we need the 
following definition (cf. [Weiss 1994a, Theorem 5.81): 

Definition 10 (i) An operator 2) E TIC(V;Y) is 
called regular iff the strong mean 

Duo = ,li-lm iQ)vo 

exists for every vo E. V; here X tends to +co 
along the positive real axis and 5 is the transfer 
function (th e as n u aon Laplace transform) of d’ t ‘b t 
V. 

(ii,) The operator D: V + Y defined above is called 
the feed-through (or feed-forward) opemtor of 2). 

(iii) A regular operator V E TIC(V; Y) is called 
strictly proper iff its feed-through operator va- 
nishes. 

(iv) We say that 2) as regular together with its ad- 
joint iff, in addition to (i), the strong mean 
limx-t+m s*(X) yo exists for every yo E Y. (This 
limit is equal to D*yo whenever it exists.) 

Hypothesis 11 Throughout the rest of this note we 
suppose that W is finite-dimensional and that both 2) 
and X are regular together with their adjoints (for at 
least one factorization, hence for all factorizations of 

V). 

Lemma 12 There is a unique (J, ,?)-inner-outer fac- 
torization in Theorem 6 for which 3 is strictly proper 
(i.e., there is Ao feed-forward term inside the feed- 
back loop”). 

Theore_m 13 Let si be the special (strictly pro- 
per) (J, S)-inner-outer factorization of V described in 
Lemma 1Z2 

2This factor will not, in general, be of the type described in 
Lemma 8. 
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(i) The factorization NX induces_ a suboptimal 
central controller if and only if Szz << 0. This / 
is the only possible strictly proper suboptimal 
central controller. 

(ii) If the feed-through opemtor DII of 2)11 satis- 
fies D;,DII >> 0, then SII >> 0, and the 
factorization for which the feed-through opera- 

tor of 3 is given by F = 
[ 

i -s;iala] indu- 

ces a uniformly suboptimal central controller. 
The sensitivity operator of this factorization is 
Sll 

[- 
0 

- - 
0 S~~-S21S;,‘Sla 1 , where 3,,-,!?z1$:.!?12 << 

0. In particular, it is of the tupe described in 
Lemma- 8, and Theorem g applies. 

6 The Riccati Equation 

Under the same regularity assumption as in the pre- 
ceding section it is possible to show that the Ricca- 
ti operator satisfies a Riccati equation, and that the 
feedback operator can be computed from the Riccati 
operator (the latter statement is true without the ex- 
tra regularity assumption). To formulate this result 
we need a few more facts about the general theory 
about well-posed linear systems. More precisely, it 
is known (see, e.g., Salamon [1987 19891 and Weiss 
[1994ab]) that, in the case where u E W’>2(R+; U), 
w E W112(R+; IV), and A~(O)+BI~(O)+B~W(O) E H 
(where A is the generator of A and Bi and Ba are 
the two control operators; see the formula below), the 
input-state-output relations of the extended system 
corresponding to the factorization in part (ii) of The- 
orem 13 can be written in the form (for all t E R+) 

d(t) = At(t) + &u(t) + &w(t), 

y(t) = c,,(t) + Dllu(t) + &w(t), 

21(t) = &c(t) + Flzw(t), 

22(t) = 7&(t), 

where Fla = -S;;‘siz. The operators cl, ri, and 
R2 are the Weiss extensions of the observation ope- 
rators C, Ki, and K2 defined on dam(A), i.e., 

cl = &-I~ X1(X1 - A)-l, 

ri = ,liym xKi(M - A)-‘, i = 1,2. 

The adjoints B; and Bs of the operators B1 and Bz 
are defined on dom(A*), and they are extended in 
a similar way into zi = limx++oo xBz(M - A*)-l, 
i = 1,2. Moreover, we define 

K=(g;), B’=(z), D=(“;+), 

c= (2), F= (iFha ), 

Theorem 14 The Riccati opemtor II and the feed- 
back operator K satisfy the following two equations 
for all 20 E dam(A) and ~1 E dam(A): 

ho, fl& + (co, L4& 

= - (Czo, JC& + (Kzo, SKz& , 

Kzi, = -S-‘(I - F*)-’ (B’II + D* JC) to. 

It is possible to write out the two components Ki 
and Kz of K explicitly in terms of the data: A sub 
stitution into the formula in Theorem 14 gives 

KI = -3;;’ (B;l-I + D;,C,) , 

K2 = - (522 - 321s”;:312)-1 (B;II + D;,Cl - 321lr;,) 

Note that both of these operators appear in the alge- 
braic Riccati equation for II that we get from Theo- 
rem 14, but that only K1 is used in the actual central 
control, i.e., in the feedback/feed-forward formula 

u(t) = %(t) + Flzw(t) 

for 21. The role of K2 is to reproduce the “worst pos- 
sible” disturbance w(t) = x22(t) in feedback form. 

We observe that the Riccati equation that we get 
differs from the_usual one in the sense that there is a 
new parameter S that does not normally occur in the 
continuous time case (although it is standard in the 
discrete time case). 3 This parameter can be compu- 
ted from the Riccati operator: 

Theorem 15 The sensitivity operator ? can be com- 
puted as the strong limit 

i%o = D*JDvo + >&B’II(M - A)-lBvo 

for each vo E U x W; here X tends to +ca along the 
positive real an’s. 

For details, see Staffans [1995 1996ab 1997abc], 
and, in particular, Staffans [1997de]. 
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