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Abstract 

Efficient algorithms for approximate minimization 
of constrained infinite horizon predictive control costs 
are presented. The resulting control laws have guar- 
anteed stability and asymptotic tracking, and com- 
parable performance with existing &P-based control 
laws. 

1 Introduction 

Model based predictive control (MBPC) has at- 
tracted a lot of recent research attention (eg. [l, 2,3]). 
This is primarily because it adopts a simple and sen- 
sible control strategy: using the model, predict and 
minimize a cost J which penalizes future output er- 
rors, from a desired setpoint trajectory and control 
increments. A more important feature of MBPC how- 
ever is its ability to handle hard input constraints 
[2, 4, 51 which apply to most practical control sys- 
tems. 

For a wide class of problems encountered in prac- 
tice, input constraints can be expressed in terms of 
inequalities, say Ci i = 0,l. . .ncon (where n,,, is a 
computable constant), which are linear in the vec- 
tor, say f, of degrees of control freedom. The usual 
MBPC cost J can be expressed as a quadratic func- 
tion of f. The minimization of J subject to C; is 
therefore a Quadratic Programming (QP) problem. 
For large setpoint changes, the dimension off must 
be sufficiently large to avoid infeasibility which can 
lead to instability, while the computational burden of 
QP can be prohibitive in high-dimensional problems. 
In fast sampling applications therefore, QP may not 
get close to the optimal solution due to limits on com- 
putation time, and the resulting control law will be 
suboptimal and possibly unstable. 

Here we propose an alternative which also results 
in suboptimal control laws but has guaranteed stabil- 
ity and asymptotic tracking. The idea is simple: let 
F define the set of all f that satisfy the constraints Ci. 
Then instead of minimizing J subject to flying in F, 
minimize J subject to the constraint that f lies in an 
ellipsoid contained within F. To minimize the degree 
of suboptimality in the resulting predictive control al- 
gorithm, the bounding ellipsoid should clearly be as 
large as possible. However this requirement has to be 
moderated by the requirement for a simple/fast com- 
putation. In this paper we propose two ellipsoidal 

bounding algorithms which we then incorporate into 
the MBPC framework to develop a control law with 
guaranteed stability and asymptotic tracking. A fur- 
ther advantage of the proposed methodology is the 
derivation of an analytic expression for the solution 
to the minimization problem. The advantages of the 
results of the paper over earlier work are illustrated 
by means of a numerical example. 

2 Infinite horizon MBPC 

Consider the scalar, discrete-time, LTI model 

Yt+i = z 
- 1 w -Ut+j = z -lb(Z) 

u(z) 
-AUt+j, i = 1,2,. . . 
A(z) 

(1) 
\ I 

where A(z) = (1 - z-l >+>, nut = ut - w-1; Yt/Ut 
are the system output/input at time t, I is the z- 
transform variable, and 2-l is the backward shift op- 
erator. In most practical applications, inputs and/or 
control increments are subject to (hard) constraints: 

g+c<ut+i<?i, Au<Au,+<Au, i=O,l,... -- - 
(2) 

where u, ?i, &, G are constants satisfying the ob- 
vious steady-state constraints: 

41) - 
x+E I b(1) -ro 5 Z-E, Au-l-c’ < 0 5 Au-e’, E, E’ > 0. 

. I 
(3) 

This system description is used in many of the 
recent predictive control algorithms, which despite 
having different objectives, have in common the re- 
quirement for guaranteed stability. This in turn re- 
quires the use of control laws which yield stable in- 
put/output predictions. A description of the class of 
such laws is given below. We note here that, on ac- 
count of the stability of the predictions. to be used, it 
is not necessary to invoke condition (2) for all positive 
i; there always exists [6] a finite horizon neon with the 
property that if (2) holds for all 0 5 i 5 neon, it will 
hold for all positive i. 

2.1 The class of stable predictions 

Let {i&+i-1, &+i}, i = 1,2,. . . denote a predicted in- 
put input trajectory and the corresponding predicted 
output trajectory at time t. Then from (1) we have: 

j+) = WAfiT(4 + PC,> 
A@) ) B(z) = ’ -lW, (4) 



where AC(Z) and p(z) are the z-transforms of the 
predicted input and output sequences, and P(Z) ac- 
counts for the effect of initial conditions at t. Next 
assume for convenience (without loss of generality) 
that the setpoint trajectory is a constant rg, so that 
the reference signal rt and corresponding predicted 
error signal et = rt - gt have z-transforms: 

^ 
R(z) = *, ./i?(z) = Q@) - f;;JA”“’ ) (5) 

where Q(z) = a(z)ro-P(z). Thus the predicted error 
behaviour will be stable if and only if: 

Q(z) - WA@) = A+(z)@(z), (6) 

where Q(Z) is a polynomial or stable transfer func- 
tion; it is assumed that A(z) = A+(z)A-(z) and that 
the roots of A- (z) [A+(z)] are all inside [on or inside] 
the unit circle. 

From equation (4) it follows that the predicted in- 
put behaviour will be stable if and only if 

A+WW + B+WW = Q(z) (7) 

where B(z) = B+(z)B- (z) is conformal to the factor- 
ization of A(z), and !l!( ) z is a stable transfer function. 

Theorem 2.1 ([4]) The class of stable input and out- 
put predictions is defined by 

(8) 

where F(z) is an arbitrary stable transfer function 

and%(~), Qpb) d enote a pair of particular solutions 
to the Bezout identity of equation (7). 

Proof: This follows directly from equations (5), (6), 
and the fact that a(~) = ap(z) + B+(z)F(z), Q(z) = 
KOp(~) - A+(z)F(z) define the whole family of solu- 
tions to equation (7). 0 

2.2 Predictive control algorithm 

In common with most predictive control strategies 
we consider a cost that penalizes predicted error and 
control activity. The value of the cost at time t is 
given by: 

Jt = &+, + X2A9,2+& (9) 
d=l 

= -& @(z)12 + X21Air(z)12]$ 

= j&/pa] + [-%J] Fc+, 

where use has been made of Parseval’s theorem and 
of (8); ]].]]2 is the Euclidean norm and all contour 
integrals are taken over the unit circle (1.~1 = 1). The 
optimization of Jt in the presence of constraints (2) is 
conveniently handled by replacing the stable transfer 
function F(z), which has an infinite impulse response, 
by a polynomial of finite degree nf - 1. 

Let f denote the vector of coefficients of F(z), then 
by the residue theorem, Jt can be expressed as: 

Jt = (f - f*)?S(f - f*) + a, (10) 

with a a constant and f* the unconstrained opti- 
mum. Denoting by ha, gi, i = 0, 1, . . . the elements of 
the impulse responses of H(z) = A+(z)/B-(z) and 
G(t) = Qr(z)/B-(z), the constraints of equation (2) 
can be rewritten in terms off using (8) as 

Au<hTf+g&G -- (11) 
i 

11. I x(h;f + gj) + Q-I 5 II (12) 
j=o 

for i = 0, 1,. . .n,,,, where hT = [hi hi-1 . . . ho 01, 
i=O,l,.... We denote the set of points f satisfying 
(11,12) as FT. 

Algorithm 2.1 (IHPC) Compute {(hi)~~dR}. At 
times t = 0, 1, . . .: 

(i). compute P, solve (7) for ap, \E‘, and hence 
obtainf*,gi i=O,l,...n,,, 

(ii). if f* E .T, set f = f*; otherwise use QP to 
compute argminfeT Jt 

(iii). form F(z) and compute the current optimal 
control move Au, from (8). 

Theorem 2.2 Given feasibility at t = 0, ie. assum- 
ing that F is non-empty at t = 0, Algorithm 2.1 has 
guaranteed stability and asymptotic tracking. 

Proof: Feasibilty at t = 0 implies feasibility at all 
subsequent times. It is therefore easy to show that 
the sequence { (Jt),“,o}, minimized subject to (11,12) 
converges to zero. cl 

3 Suboptimal algorithms 

Infinite horizon predictive control (IHPC), in com- 
mon with most other constrained predictive control 
algorithms, requires the solution to a quadratic con- 
strained optimization problem at each sample instant. 
For large setpoint changes, it is necessary to use a 
large number of degrees of freedom nf in order to 
avoid infeasibility which in turn could result in in- 
stability. Under such conditions upper bounds on 



the computational burden of QP algorithms are large, 
and QP may not therefore be implementable in con- 
strained control problems with high sample rates. In 
the following we develop an alternative approach, giv- 
ing a suboptimal control law within a known and 
practicable number of computations. The approach 
is to obtain a convenient ellipsoidal bound for the 
constraint set 3, and use this to obtain a suboptimal 
but analytic solution to the minimization of Jt. 

3.1 Constraint set ellipsoidal bounds 

We begin with the derivation of convenient ellipsoidal 
bounds on the constraint set 3. 

Define an ellipsoidal set & = {f; (f - ff)TC,‘(f - 
f:) 5 l}, and let Ci = {f; (hTf + gi)2 < d2}, where 
Ca = CT > 0, and gi, d are constants. Then the fol- 
lowing lemma can be used to determine an ellipsoidal 
set &+r bounding the intersection of & and Ci. 

Lemma 3.1 If f E & f~ Ca, then for all p > 0, f 
also lies in &+I = {f; (f-fio+l>TC~~ll(f-fi+l) I 11, 
where 

fi”+l = fi” - $Iihi 

Q+~ = [I +;- $1 bi - $.&hihTEi] (13) 

and y = h:fj + gi, p = d2 $ up, u = h?Cha. Fur- 
thermore if p is the smallest positive root of 

(nj - l)a2p2 + [(a nf - l)d2 - (T + y2]q 

+ d2[q(d2 - 7”) - u] = 0 

then &+I has the smallest volume Of all ellipsoidal 
sets containing Ea n Ci. 

Proof: See [7]. 0 

Remark 3.1 In the above it is assumed that the in- 
tersection of & and Ca is non-empty. For given &, C;, 
the validity of this assumption can be checked by de- 
termining whether (Id] - Irl)” 5 g. Furthermore it is 
clear that if only one of the two hyperplanes bound- 
ing Ci intersects &, then the other can be replaced by 
the parallel hyperplane which is tangent to la. 

Constraints (11,12) define a sequence of pairs of 
parallel hyperplanes between which feasible f must 
lie. Given a suitable initial ellipsoidal set lo, an el- 
lipsoid containing the feasible set 3 can be generated 
by successive application of Lemma 3.1 to the indi- 
vidual constraint sets Ci, i = 0, 1, . . .n,,,. Since the 
resulting bounding ellipsoid &,,,+I includes points 
which are not feasible, it must be shrunk before be- 
ing used in place of 3 in the minimization of Jt. In 
the interest of minimizing the degree of suboptimal- 
ity, it is important to make the shrunken ellipsoidal 

set as large as possible. This is undertaken below; 
for simplicity the treatment is given only for the case 
of input rate constraints, but the extension to the 
general case is obvious. 

Corollary 3.1 Let Ck,,,+1 = ~~~~~~~~~~ EAcO,+I = 

if; (f-f,Oo,+l>T(C~=:on+l)-l(f- f,f,,,+l> 5 11, and 

min{yi - &, hu - ri} 

(hFChi)l/2 (14 

with ̂ li = hTf” a n,,,+l+gi. Then in the presence of con- 
straints (11) alone, EAc,,+1 is the largest ellipsoidal 
set with the same centre and principle axes as En,,,+1 
contained entirely within 3. 

Proof: The set E = {f; (f-f”)‘C-l(f-f~,,,+l) 2 1) 

can be expressed (~~$4~4 5 l}, 4 = Am1i2RT(f - 
f”), where A, R are the eigenvalue and eigenvector 
matrices of C. Correspondingly, (11) may be written: 

Au < @+ + yi 2 s, i = 0, 1, . . .n,,n, -- 

with 8. = A112RTh i, yi = hTf” + gi . It is therefore 
easy ti show that, for all f E C, 

-yi - (h$hi)1/2 < hTf + gi 5 ^li + (h$ha)1/2 

for i = O,l,...ncon. With E replaced by CA,,,+i, it 
then follows that the lagest value of v for which (11) 
holds is given by (14). 0 

Remark 3.2 A larger ellipsoidal bound on the inte- 
rior of 3 can be found if the centre of &,,,+I is re- 
defined, in addition to the scaling of its eigenvalues. 
This however requires the solution to a linear pro- 
gram, and since the aim of this paper is to develop a 
simple alternative to &P-based predictive algorithms, 
this issue will not be pursued further here. 

Combining Lemma 3.1 and Corollary 3.1, the fol- 
lowing procedure determines an ellipsoidal set con- 
tained within 3. 

Procedure 3.1 Set CO = ~~~1, E << 1, fi = 0. For 
i = O,l,. . .n,,,: 

(i). obtain Ci from (11,12), and &+I from (13) 

(ii). if i = neon, compute EAcon+r using (14). 

The ellipsoidal bounds generated by Procedure 3.1 
are likely to be similar in shape to the feasible set due 
to the use of minimum volume bounding ellipsoids in 
step (i). However the control law obtained by approx- 
imating 3 with EA,,,+i in the minimization of Jt will 
give poorer performance than the &P-based control 
law. To remedy this, we develop below an alterna- 
tive ellipsoidal bounding algorithm, based on fitting 
ellipsoidal sets of maximum volume within successive 
constraint hyperplanes. 



Theorem 3.1 The largest volume ellipsoidal set con- 
tained in the intersection of&i and Ca (defined as in 
Lemma 3.1) is &+.I = {f;(f-f~+l)TC~~l(f-f,+l) 5 
l}, where 

CahihTCi 
(15) 

u 

PO = (7 - 4” ) Al = (rl - 4”/2 

K.Ec, v4:,,{E, :gy ~:“~-?~~“i 

and u = h$ihi, ~1 = d - (gi + hTff>, ~2 = -d - 

(si + h?fiO), (o) = ( Klr K2) if Iwl < IK2l, (t&q = 

(~2, ~1) otherwise. 

Before giving the proof of Theorem 3.1, we first de- 
termine the orientation of the eigenvectors and centre 
of the largest volume ellipsoid contained within the 
intersection of &i and Ci. 

Let the centre of&i in a transformed space in which 
& is a unit spheroid be q!$, and denote the hyperplane 
bounding Ci that is closest to c#$ as Xi, with nor- 
mal 8i. Next consider a second transformation: + = 
AF-+l[2RF+I~, where Ai+1 and Ri+l are the eigenvalue 
and eigenvector matrices of a symmetric positive def- 
inite matrix ,$+I. Under this transformation, the el- 
lipsoid &+I = (4; (4 - +~+,)TS~~l(4 - (6F+1) < 1) is 
a unit spheroid; and since Es _> &+I for det(Sa+i) 5 1 
and suitably chosen +iqtl, the problem of determining 
LY i+i E & II Ci of maximum volume is equivalent to 
that of determining the minimum volume &i _> &+I 
for &+I c Ci a unit spheroid. 

By inspection, the minimum volume & has the vec- 
tor $f - $F+‘,, between the centres ($p and $F+, 
respectively) of & and &+I as an eigenvector, and 
the eigenvalues associated with all other eigenvec- 
tors are equal. Furthermore all eigenvalues of & de- 
crease monotonically with increasing Il$p - +:+11/z, 
and since it can be assumed without loss of general- 
ity that S&+1 is tangent to SCi, it follows that the 
volume of IS is minimized when the perpendicular 
distance d(+p) f rom $p to SCi is minimized. If the 
perpendicular distance from 49 to SCi is d(&), then 

Wll2 
d(+3 = (B3i+lBi)l,2d(43 

which is minimized when 8i is an eigenvector of Si+i . 
In the space in which & is spheroidal, the normal to 
the hyperplanes bounding Ca is therefore an eigenvec- 
tor of the maximum volume &+I ; and since @(& - 

&+1> # 0, t 1 f 11 i a so o ows that the line between the 
centres of & and &+I is normal to the bounding hy- 
perplanes. 

Proof of Theorem 3.1: Under the transformation 4 = 
k1f2RT(f - fi”), we have & = (4; cpT+ 5 1) and 
Ca = (4; ]ci 5 BiT4 5 k2}, with t9j = A1/2RThi/g1/2 
and Icj = Kj/a1’2, j = 1,2. From the preceding dis- 
cussion, the ellipsoidal set of maximum volume in the 
intersection of &i and Ci, denoted ,$+I = (4; (4 - 
4~+l)TS~$1(+ - &i”,i) 5 1) has the form 

Si+l = CL11 + (/JO - pl)eieiT, (bf = CELlei, 

for some constants a and ~0, ~1 > 0. Consider first 
the case of the boundary S&+i of &+I being tangen- 
tial to only one the bounding hyperplanes of Ci. 

If 6&+i is tangent to SC: = (4; ei?p = kj} j = 1 
or 2, at 4 = 4,, then for some A, 

S$(4, - &+1) = Mi. 

From (4, - +j’+l)TS~~l(~b, - &+,) = 1 and BiT4c = 
Icj therefore, 

po = (kj - CY)~. (16) 

Similarly, S&+1 tangential to SE,, at 4 = 4, gives for 
some A,, 

s&4, - &+1> = h7$. 

Since 0T4, # 0, for any 61; 8:8i = 0, it follows 
that (&’ - &‘)(pT’ - 1) = &‘~~‘a2. Defining 
77 = 2a - kj and using expression (16) for ~0’) ~1~ 
can be expressed 

-1_2(1-rlkj)~L(1-k~)(l-112)11’2 (17) 
Pl - 

(II - lcjj2 

The volume of Ei+i is maximized at the value of 
71 that maximizes pc,ul nf-l. Using (16) and (17), the 
maximizing value q* = arg sup, (pc$‘-‘) is given by 

‘I* = f $$ 1 I[ ‘cj” + cn;“-;,z] 112 . 

The positive root gives Q < kj, and therefore corre- 
sponds to the case of S&i+1 tangential to SC;, and the 
negative root similarly gives tangency to SC;. If the 
boundary of &+i is tangential to both hyperplanes, 
then by symmetry, CY = (kl + k2)/2, and ~0, ~1 are 
given by (16) and (17), with q replaced by the rele- 
vant kj . Finally, p&‘-l is monotonically increasing 
in Ir] - kj 1 for 1~1 < lr]*l and &+I is therefore tangent 
to SC! if and only if I Icj I < Iv* I. q 

The following procedure uses of Theorem 3.1 to 
find an ellipsoidal bound on the interior of FT. 

Procedure 3.2 Set CO = E-lI, E < 1, fl = 0. For 
i=O,l,...&J,: 

(i). obtain Ci from (11,12), and &+I from (15). 



Theorem 3.2 Assume that 3 is non-empty at t = 0, 
ie. that the setpoint ro is feasible. Then for 

6 < min min lb& llhill2 -. ZIGon 1 p-i--g$ I;li-u+l-giI (18) > 

the ellipsoid Eo defined in Procedures 3.1 and 3.2 con- 
tains all feasible f. 

Proof: From (11,12) it follows that for allf E 3, llflln 
is upper-bounded by the inverse of the RHS of (18). 
The constraint set 3 is therefore contained within the 
ellipsoid Es defined in Procedures 3.1 and 3.2. 0 

Remark 3.3 Simulations show that the choice of E 
is not critical (ie. does not affect significantly the 
bounding ellipsoids of Lemma 3.1 and Theorem 3. l), 
and can therefore be taken to be some arbitrarily 
small value. 

Remark 3.4 It is clearly possible to construct a non- 
empty constraint set 3 for which Procedure 3.2 fails 
(although this situation has not been encountered in 
simulations with constraints generated on the basis of 
predicted system inputs). In contrast, Procedure 3.1 
necessarily provides a bound on the interior of any 
non-empty 3 due to the inclusion ellipsoidal set em- 
ployed in step (i). Thus Procedures 3.1 and 3.2 are 
subject to a trade-off between optimality and robust- 
ness. 

3.2 Cost minimization 

As stated earlier, we now replace the problem of mini- 
mizing Jt subject to constraints (11,12) by minfEE Jt, 
where E = {f; (f - f”)TC-l(f - f”) 5 1) is gener- 
ated at time t using either of Procedures 3.1 and 3.2. 
Using (lo), this problem is equivalent to 

(19) 
where 4 = hk”Rz(f - f*), 4’ = hi”R$(f* - fo), 

C = d;‘2R$CRSA, , 112 and As, Rs are the eigenvalue 
and eigenvector matrices of S. 

Theorem 3.3 The solution to the minimization prob- 
lem (19) is given by 

f,+ = RsA~~‘~+*, +* = Rdiag{X*/()r* .- &)}RT+‘, 

where {(&)y&} are the diagonal elements of ii A, k 
are the eigenvalue and eigenvector matrices of C, and 
A* is the negative real root of the polynomial 

(& is the ith I e ement of RTq5). Furthermore, f(A) 
has no negative real roots if f*. E E (in which case 
f,+ = f*), and a single negative real root if f* # E. 

Proof: If fopt is the solution to (19), then either (i) 
fopt lies on the boundary of 2 at the tangent point 
to the ellipsoid +T4 = JO, where JO is a constant; 
or (ii) fopt = f* E 8. Case (i) occurs if and only if 
4 = X%-l(+ - 4’) and (.+ - 4°)Tg:-1(4 - 4”) for 
some X < 0. Using the eigenvalue/vector decomposi- 
tion of $, it can be shown that these conditions hold 
simultaneously only for X satisfying f(A) = 0. To 
complete the proof we observe that there can be at 
most one point (corresponding to a negative root of 
f(A)) at which & is tangent to a level set of Jt with 
the outward normal to the boundary of E in the di- 
rection opposing VJt; that such a point exists for all 
f* # 3; and that no such points exist if f* E E. 0 

Remark 3.5 The eigenvalue-eigenvector decomposi- 
tion of S can be computed off-line. 

Remark 3.6 The approximate solution to the min- 
imization problem minfE7 Jt obtained using Theo- 
rem 3.3 and either of Procedures 3.1 and 3.2 requires 
O(ny) operations. This is to be contrasted with the 
computational burden of a QP algorithm, which typ- 
ically requires O(nq (log nf - log 6)) operations to at- 
tain an approximate solution within a tolerance E of 
the solution [8]. 

3.3 Predictive control algorithm 

The results of sections 3.1 and 3.2 give the following 
algorithm. 

Algorithm 3.1 As per Algorithm 2.1, with the opti- 
mization of step (ii) replaced by the optimization pro- 
cedure of Theorem 3.3 and either of Procedures 3.1 
and 3.2. 

Theorem 3.4 Given feasibility at t = 0, Algorithm 
3.1 has guaranteed stability and asymptotic tracking. 

Proof: Feasibility at t = 0 implies feasibility and 
hence the existence of a bounding ellipsoid generated 
using Procedure 3.1, at all subsequent times; this fol- 
lows from the fact that f,+ always lies within the fea- 
sible set. By same argument it can be shown that the 
existence of a bounding ellipsoid generated by Proce- 
dure 3.2 at t = 0 ensures the existence of bounding el- 
lipsoids generated by this algorithm at all subsequent 
times. It follows that sequences {( Jt)Eo} obtained 
using Algorithm 3.1 converge to zero. 0 

f(A) = cx”ic$; n (A - ij)2 
i=l j=l,j#i 



4 Simulation Results 

The performance of the control laws of Algorithm 
3.1 are contrasted with that of optimal &P-based 
IHPC in the following simulation example. The sys- 
tem model is taken as 

u(z) = 1 - 5.5.2-l + 8.54~-~ - 3.2~-~0.24~-~ 
b(z) = 1 + O.~.Z-~ - 3.1~--~ + 1.4~-~ 

which has unstable poles at z = 2,3 and a nonmini- 
mum phase zero at z = -2. The setpoint is rc = 1. 
Input rate constraints of Au = -Au = 0.5 are as- 
sumed, and nj = 10 for each controller. Figure 1 
shows that Algorithm 3.1 with Procedure 3.2 has 
marginally slower response times, more conservative 
control moves and higher costs than the &P-based 
controller, and that Procedure 3.1 leads to a higher 
degree of suboptimality. However, figure l(e) shows 
that the computational burden of the &P-based algo- 
rithm per sample is five times that of the suboptimal 
controllers. 
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Figure 1: (a) System outputs yt. (b) Control inputs 
ut. (c) Control input rates Aut. (d) Prediction costs 
Jt. (e) Floating point operations per sample. 


