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Abstract 

In this paper we introduce the sufficient statistic algebra 
which is responsible for propagating the sufficient statis- 
tic, or information state, in the optimal control of stochas- 
tic systems. Certain Lie algebraic methods widely used 
in nonlinear control theory, are then employed to derive 
finite-dimensional controllers. The sufficient statistic al- 
gebra enables us to determine a priori whether there exist 
finite-dimensional controllers; it also enables us to classify 
all finite-dimensional controllers. 

1 Introduction 

The DMZ equation of nonlinear filtering of diffusion pro- 
cesses is a linear, stochastic, partial differential equa- 
tion (PDE) which describes in a recursive manner the 
evolution of the unnormalized conditional distribution of 
the state process, {z(t);t 2 0}, given the observations, 
{y(t); t 1 0). If this distribution has a density function, 
say, {rr(z, t); t 2 0}, then 

&c, t) = Lon(z, t) + h(x)7r(z, t) 0 $y(t). (1.1) 

Consequently, {X(X, s); 0 5 s 5 t} evolves forward in 
time with initial condition r(x,O). Here, LO is a certain 
second-order differential operator related to the drift and 
diffusion coefficients of the state process, the Kolmogorov 
forward operator, and h(z) is a zero-order differential op- 
erator related to the signal in the observations. 

Brockett and Clark [I], proposed that due to the analogy 
between (1.1) and the control system k(t) = f(z(t)) + 
g(z(t))u(t), the Lie algebraic methods might be applica- 
ble to (1.1) as well. In particular, they proposed that the 
finite-dimensionality of solutions to (1.1) can be deduced 
from the Lie algebra generated by the operators Lo,h. 
Moreover Ocone [2], noted that if the Lie algebra gen- 
erated by the operators Lo, h, is finite-dimensional, then 
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(under certain conditions) the Wei-Norman method can 
be used to derive the structure of the recursive filters, 
(see [2, 3, 4, 51. Recently, gauge transformations have 
been introduced in [6, 7, 81, to identify nonlinear control 
problems with finite-dimensional controllers. 

In the present paper we point out how the Lie alge- 
braic methods can be used to address the question of 
finite-dimensionality of optimal controllers in problems 
of optimal control of partially observed stochastic sys- 
tems. Note that in the absence of control optimality, 
this framework can be used to address the question of 
finite-dimensionality of optimal (in least-squares sense) 
observers for nonlinear stochastic control systems. This 
framework would enable us to investigate the question of 
classification and finite-dimensionality of optimal controls 
a priori, by investigating the Lie algebra of certain opera- 
tors associated with the model at hand. The Lie algebra 
method yields new classes of nonlinear systems which are 
not a subset of our earlier classes in [6, 7, 81. 

In particular, the observation that leads to these devel- 
opments is that for optimal control problems (with usual 
integral cost function) affine in the control inputs, the in- 
formation state satisfies a controlled version of the DMZ 
equation, namely, 

&ytT,t) = Lo2(z,t) + Ln”(z,t)U(t,y) 

+ Now O $y(Q, (1.2) 

where u(.) is the control input and L is certain first- 
order differential operator. Therefore, by analogy with 
finite-dimensional nonlinear affine control systems, we 
view (1.2) as a bilinear equation with control inputs 
u(.), &y(.). This gives rise to the investigation of the Lie 
algebra generated by the operators LO, L, h, which we call 
sufficient statistic algebra. In fact, from certain results of 
realization theory, we deduce that if the sufficient statistic 
algebra, LS G {LO, L, ~}L.A., is finite-dimensional, then 
(under certain conditions) the optimal controller is finite- 
dimensional. 



2 Mathematical Constructs 

Consider the Ito stochastic differential system 

Definition 2.3 The set of admissible controls de- 
noted by #?/ad is defined by &d A {u(.); u(.) E 
L$([O,T]; Ee), u(t, y) E U C @,a.e.t, P -as.}. 

dx(t) = f (x(t))dt + c:=, gj(x(t))uj(t,y)dt 

+ Cj”=, uj W))dwj (t)> x(0) E W”, (2.3) 2.1 Sufficient Statistic 

dyj(t) = hj(x(t))dt + dbj(t), yj(0) = 0 E 32, (2.4) 

1 5 j 5 d. Here {I; t E [0, T]} and {bj (t); t E [0, T]}, 
are mutually independent standard Brownian motion pro- 
cesses, for all 1 5 i 2 m, 1 5 j 5 d, which are 
also independent of the random variable x(0). u(.) = 

[w,uz, . . ..ue]'(.) is a vector of control processes. All 
stochastic processes are defined on a probability space 
(0, F, P”) equipped with a complete filtration, {Fe,t; t E 
[0, T]}, and a finite-time interval, [0, T]. 

The usual optimal control problem addresses the mini- 
mization over the controls u(.) E &d, (see Definition 2.3 
), of the integral cost criterion J(U): 

J(u) = E” (s T MtL u(t> y)Pt + cp(4T)) 1 . (2.5) 
0 

Notation 2.1 

?” denotes transposition of a matrix, Ik denotes k X k 
identity matrices, {~rj}jn_~, {~ri,j}&=~ denote finite se- 
quences in 8; 

C”(M) denotes the vector space of all infinite differen- 
tiable real-valued functions defined on an n-dimensional 

Let IL(@) A E” [@(x(t))lF&],tl; let 

A0,t = exp 

( J 
-& 
j=l O 

t hj(x(s))dyj(s) - ; 2 1’ h;(x(s))ds) 
j=l 0 

Introduce the Radon-Nikodym derivative, (see [9, 8]), 

%bO,T = Ao,T. By a version of Bayes formula we have: 

a(@> = E [%W~o,tI~oY,t] . m(+) 
E [~wF~,t] =rrt(l). (2.6) 

Here IL(.) and rrt(.) are measure-valued processes; the 
latter is the unnormalized version of the former. 

Theorem 2.4 [g, 81 Let @ E C2(V) and suppose rrt(.) 
has a density function r : ?JF x fi x [0, T] + R. Then 

n-t(@) = E [@(x(t))Ao,tlJ$,] = J @$z)+,t)dz, (2.7) w 
where z(.) is a solution of the controlled version of the 
DMZ equation (FisLStratonouich form): 

r(x, t) = x(x, 0) + 1; Lor(x, s)ds 

+ C&, s; 44x> sh(s, z-/Ids (2.8) 

+ C;c, ./; hj (x>+, s> 0 dyj (s), 

differentiable manifold M; 

dx:) = [g1(2),g2(2),...,gel(~c),[gli,j(z) = gi,j(~:),N~) = 
A(@)(X) A $ Crj=l & ([gc’Ii,j ‘) (X) 

[hl,hz,.. .,hd]'(z),y(t) = [Yl,Y2,.. .Yd]'(t); 
+C~=l (fj& + &(fj)) (@)(x)7 

+ : W” + R is C2 with compact support; 
Lj(@)(X) + -Cy=“=, (iLj& + &(gi,j)) (+)(X)7 

(2.9) 

1 I j I e, 

{FE,,; t E [0, T]} denotes the complete filtration generated 

Lo(@)(x) = (A - $ c;=, h!) (@)(x). 

by the observations u-algebra, a{y(s); 0 5 s 5 t}, E”, E Moreover, for u E b&d the cost function (2.5) has the 

denote expectations w.r.t. measures P”, P, respectively. representation 

Jod4 = E {JOT &n ‘32, u@, y)>+, Wdt 

Assumptions 2.2 + sRn cp(z)d~ TW} . 
(2.10) 

U is a compact subset of Re; In the formulation of Theorem 2.4, the conditional density 

f : 8” + %?,gi : W” + W”,flj : 97 + ?F, 1 5 i 5 is an information state, or a sufficient statistic. Therefore, 

i?, 1 5 j 5 m, are Cm(Rn) vector fields, hj : %? -+ R, by construction (2.8) propagates the information available 

1 5 j 5 d, are C-(F) functions, and 
to the controller. In the sequel we assume the measure- 
valued process rrt (.) has a unique density n(.) satisfying 

IfI + bjl + Igil + lhl I h Cl+ I4, Vi,ih (2.8). 

e:~nxU~~,cp:~n-,~,e20,cp~0, and Definition 2.5 Let X,Y : Cm(M) -+ C-(M), be dif- 

Kx,‘U.)l I k2 (1+ I4 + lul)“” , IP( 5 Jc4 (1+ l”l)lcS ; 

ferential operators with C” coeficients. The vector space 
of all differential operators (with C” coeficients) is a Lie 

The random variable x(0) has distribution IIo(dx) = 
algebra with the Lie bracket of X, Y defined by 

ro(x)dx, with TO(.) E L2(W”). [KY](@) - x (Y(a)) -Y (X(tD))) vcb E P(M). 



Definition 2.6 The estimation algebra LE of the filter- 
ing problem (2.3), (2.4) (with uj = 0,l 5 j 5 e), is the 
Lie algebra generated by, {LO, hl, hz,. . . , hd}, defined by 

LE A {Lo, hl, h2,. . . , hd}L,A,. (2.11) 

The suficient statistic algebra Ls of the control 
problem (2.3)-(2.5) is the Lie algebra generated by, 

{Lo,Ll,& ,..., Le,hl,hz ,..., he}, defined by 

Ls-{Lo,L1,L2 ,..., Le,hl,hs ,..., hd)L,A,. (2.12) 

3 Sufficient Statistic Algebras 

Assumptions 3.1 Assumption 2.2 hold, m = n, and 
[(TI,(T~, . . . ,on][c71,(52, . . . ,a,]‘(~) = In, that is, C(X) is 3.1 The Linear Case 
orthogonal; in the scalar case it is assumed that (T = 1. 

Here we analyze the linear control system 

Define a%(t) = e(t)at + C:=, BjUj(t, y) 

Di A & - fi, 
+ Cj”=l Gjdwj (t), 

l<i<n, 
(3.15) 

qA)y 2=1 &fi + C;=“=, ff + Cfc, hf. 
(3.13) 

dyj(t) = cr=“=, Hj,ixi(t)dt + dbj(t), 1 5 j I d. 

Then Lemma 3.3 (Scalar case). Suppose n = e = d = m = 1. 
The suficient statistic algebra has dimension 4 with basis 

\i=l / 

We shall need the following calculations. 

c3.14) Ls = Span LO = f(D” - q), 5, D = $ - Fx, 1) (3.16) 

The non-zero commutative relations are 

Lemma 3.2 Let 

[Lo, x] = D, [Lo,D]=D+;&), [D,x]=l. 

Moreover, LS = LE. 

wGj(xc) = &fj(X) - &fi(X), 1 I i,j I n. 

Then 

Proof. See Theorem 3.4. 

[Di, Dj] = wj,i, 1 5 i,j 5 n; 

[Di, hj] = &hj, 1 5 i 5 n, 1 5 j 5 d; 

[Df>hj] = $$(hj) + 2&.(hj)Di, 

1 5 i <‘n, 1 5 j < d; 

Theorem 3.4 (Multidimensional case). The suficient 
statistic algebra has dimension at most 2n + 2 with basis 

13s = Span {LO = $ (~~=, 04 - a) , 

X1,~2,.~.,X?z, Lh,D2 ,..., &,I>. 
(3.17) 

The non-zero commutative relations are 

[Lo, xj] = Diy [Lo, Dj] = EYE”=, (Fi,j - F’,;) D; 

+$&(v), 1 I j I n; D,xjl = 
1, if i = j, 
0, if i # j. 

[Li,hj] =-Ciclgk,i&(hj), 15 i 54 1 <j Id; 
Moreover, LE = Cs. 

[Q?, Dj] = 2wj,iDi + &(wj,i), 1 5 i,j 2 n; I 

[Lo, Dj] = f CL1 (2wj,iD; + &(wj,i)) 

+i&(rl), 15j In; 

Proof. 

% G [LO, hj] = f Cyl-1 [D:, hj] = Cy=“=, Hj,iDi, 

1 I j L 4 Xj,i A [q, hi] = CL=, Cy’, Hj,kH;,e 
. [Dk,xe] = c;=, Hj,kHi,k, 1 L i,j 5 d; 



Therefore, D1, Dz, . . . , D, and 1 are elements of Ls. Also, The non-zero commutative relations are 

from the computation 

zi A [Lo,%] = + [Lo, Hj,iDi] = c;=, CL=, Hj,k 
hi - Fi,k)Dk + z x;=l Hj,i&(~), 1 5 j 5 d, 

[hxi] = Di, 1 I i 5 2; [Lo, &] = wl,2D2 

+f&(d + c;=, Fl,iDi; [Lo, Dz] = w2,1D1 + f&); 

[& D2] = -.( &(fl) + 742) ; 

we deduce that xi, 22,. . . , zn are also elements of Ls. 
Now, 

q,k A [yj, yk] = x;=, c;=, [Hj,iDi, Hk,eDe] 

= xb, c,“=, Hj,iHk,ewe,i, 1 5 j,k 5 d. 

Proceeding we calculate 

Lo,j A [Lo, Lj] = + [c;=, D? - q, - c;=, Bk,j &] 

= - CL, CL, { ~k,&(fd (& -fi)} 

-; c;,, Bk,j&(d, 1 I j 5 e. 

Hence, Lo,j is a linear combination of elements 
Dl,Dz ,..., Dn,x1,x2 ,... xnrl. Inaddition, 

[Lj, hi] = -CL=, Bk,jHi,k, 1 5 j 5 e, 1 5 i 5 d; 
[&a] = -z;=, Bk,jFi,k, 1 5 j 5 e, 1 5 i 5 d; 
[Lj,E] = -c,=, &,jHi,k, 1 5 j 5 e, 1 5 i 5 d. 

Therefore, we deduce that Cs is finite-dimensional with 
basis as specified, and that Ls and Ls generate the same 
algebra. 

3.2 The Nonlinear Drift Case 

Proof. 1. Prom Theorem 3.4 we have Yi G [Le,hi] = 

c;=, Hl,iDi,Xl,l A [fi,hl] = ~~=, H?,k; Hence, 
&,x1,22,02,1 are elements of Ls. Also, 

21 G [Lo, J’I] = C:=, Cf=, Hl,e (we& + &(we,i)) 

+ti Ce2=1Hl,e&(71). 

Since wi,j are constants and q is a quadratic function of 
(x1,x2), we conclude that 21 = ~~1x1 + ~~2x2 +cys& + 
o4DZ + (~5 .l. Proceeding we calculate 

Lo,1 G [Lo, Ll] = -f c;=, c;=, {2&l & 

dfd (& - fi) + Bk,l&(fi)} - $ [q, Ll] 

Since Bk,i = 0, for k = 2 and fi = cs=l Fl,jxj we have 

Here we investigate the nonlinear control system If we now substitute &f2 = &-fl + w1,2, then 

dx(t) = f(x(t))dt + & Bpj(t, y)dt 
Lo,1 is a linear combination of x1,x2, &, Ds,l; also, 

+ C;c, ui (x(t))dwi (% 
[LoJ, hi], [LoJ, Li] , [LoJ, Yi], are linear combinations of 

(3.13) these elements as well. Hence, we deduce that Ls con- 

dyj (t) = Cdl Hj,ixidt + dbj (t), l<j<d. 
tains elements LO, & & - f2, xi, x2,1. 
2. If we now let hi = H~,lxl we have 

Lemma 3.5 (The two-dimensional case). SUppOSe n = 
2,m=2,t?=d=l, and 

Yl = hl,lD1 x l,l = $1 21 = H1,1wl,rzD2 + ;H+(q). 

fl = Cj”=, Fl,jxi, f2 = f2hx2), B2,1 = 0, (3 19) If 71 = (x1,x2)&(21,x2)’ + 2u(xi,xz)’ + 6 + 7(x2), for 

Wi,j = constant, fOT i # j. some Q 2 O,(T E (?B2)‘,6 E Ll?, y E Cw(!l?), then 21 is a 
linear combination of elements xi, x2, &, D2, 1. More- 

l. If over, Lo,1 = (~1x1 +azxz +as&+ct4D2 +ob.l. In this 

r]=C2 2=1 &fi + c;:, R + h:: 
case, tracing our earlier steps we deduce that Cs contains 

(3.20) the elements L 0, &, D2, xi, x2,1 which are its basis ele- 
= Quadratic function of (xl, x2) 2 0, merits. 

then the suficient statistic algebra has dimension at most 
6 with basis Example 3.6 The following stochastic control problem 

Cs = Span LO, 21,x2, &, DZ = & - f2,l 
-t > 

has a finite-dimensional suficient statistic algebra. 

. (3.21) 
dxl(t) = (9,1x1(t) + Fl,zxz(t)) dt 

2. If hl = Hl,lxl and n = A noynegative quadratic func- 
tion of (x:1, x:2) + 7(x2) for some y E C-(X), then the 
suficient statistic algebra is given by (3.21). 

kfOreover, ,&E = &. 

+Bl,lu(t, y)dt + dull(t), 

dx2(t) = fi(x2(t))dt + dwz(t), 

dy(t) = Hl,lx:l(t)dt + db(t) 



To verify the claim, notice that ~1,s = &-f2 - &fl = Let 
-Fl,a =constant, and 

q = (Fl,l~l)~ + (F1.2~2)~ + Wl,1F1,2x1~2 

+Fl,l + &fi(m, + f2W2 + Wwd2 
= (XI, x2)&(x1, x2)’ + y(xz), 

where 

Lo = A - + C;=, Mj$, Mk = cfcl hi[C-‘]i,k f yk, 
fi = - ~~cl[Ga’c-l]i,k &, c = aa’ + N, 

A = i CL’[GG’]i,j & - Cbl ([Fx:Ii& + Fi,i) > 
&f/c = ~;Tl[%i+[C-l]i,k - ~~Tl[Ga’C-l]i,k&, 

Q= 
[ 

@,I + @,I F1;?,2 ’ I> 1 5 k 5 d, where A, Lj axe defined earlier. The sufficient 

Fl,dQ statistic and estimation algebras are given by 

7(x2) = fi(xz)” + &fz(xz) + Fl,l. 
&={Lo,Ll,Lz ,..., Le,Ml,Mz ,..., Md}LA,, 

Hence, when Q > 0 and y E C-(Z), statement 2, of LE = {Lo,Ml, M2,. . . , A&},,,, . 

Lemma 3.5 applies. 
Let 4 E C” (P) and set 

Theorem 3.7 (Multidimensional case). Suppose n = m, 
!, d are arbitrary, and fi = cycl (Fi,jZj + [GG’]i,i&4 

fi = Cj”=, Fi,jxj, 1 I i L k, 

fk+l = fk+l(xl,x2,.. . ,xk), 
hi = Cj”=, (Hi,j~j + [aG’]+&cj 

i 

, 1 < i 5 n, 
(3.26) 

, 1 5 i 5 d. 

fn = fl(Xl,X2,...,2?3), 

Theorem 3.8 [8]. Suppose (3.26) holds and 

Bi,j = 0, Vi > k, 1 5 j 5 C, 
gj =Bi, lLj<e, (i.e., independent of x). (3.27) 

Wi,j = constant, t/l 5 i 5 k, k + 1 I j I n. 1. If f$ E Cm(?JY) is a solution of 

1. If 

q = C;=, &fi + C;=“=, fi” + C;z, h? 

i CC=, ([GG’li,i A(4) + [GG’li,j & (4) & (4) 

(3.22) +2Fi,ixi&(4)) + Cr=l cf=l Bi,iui &(4) 
= Quadratic function of (XI, ~2,. . . , Xn) 10, = $ (kQ(u)x + 2m(u)x + d(u)), 

then the suficient statistic algebra has dimension at most 
2n + 2 with basis for some Q(u) = Q’(u) > 0, m(u), S(u), then JZS is iso- 

& = Span{L0,21,22,. . ,xn, 
morphic to the Lie algebra 

a a (3.23) -- a 
axI y axz j... y ax:, j Dk+l,DIc+z,.. . ,&,I . 

> 2s = 
1 

ao - i ~~=, A?: - f (x’&(u)2 + 2m(u)x 

2. If hi = c,“,, Hi,jxj, 1 5 i < d, wi9j = constant, 
+6(u)),Li,L2,...,Le,~i,~2 ,..., &i},,,,. 

Vl 5 i 5 k, k + 1 5 j 5 n, and 
Moreover, if Q(u), m(u), b(u) are independent of the con- 

n = A nonnegative quadratic function of 
(3.24) 

trol u then Es is finite-dimensional with basis 

(x1,22,..., xn) + ‘-@k+l, xk+2,. . . , xn.), 

for some y E C~(!lYk), then the suficient statistic alge- 
.& = Span & - i ~~=, i@ - i (x’Qx + 2mx 

(3.28) 
bra has dimension at most 2n + 2 and is given by (3.23). + @,&& ,..., &,x1,22 ,..., xn,l}. 2 

Proof. Follow the derivation of Lemma 3.5. 2. If 4 E Coo(P) is a solution of 

3.3 The Nonlinear Drift and Observa- i C&l ([GG’l~.i&(4) + [GG’l~&(4)&(4) 
tions Case +2Fi,jxj &($)) = i (x’Qx + 2mx + 6) , 

Next we investigate the correlated nonlinear control sys- for some Q(u) = Q’ 2 0, m, 6, then LE is finite- 
tern dimensional isomorphic to the Lie algebra 

dx(t) = f (x(t))dt + C:=l gi(x(t))ui(t,Y)dt 

+ C;--, Gi dwj (t) > 
&= &-$~~=1k~-~(x’Qx+2mx+6), 

{ 
(3.25) 

dyj(t) = hi(x(t))dt + Cy=“=, a&w(t) 

+ Et=, Njfidbi(t), 1 I j I d. 

A&&2,. . . ,fid}L,,, , 

with basis given by (3.28). 



3.4 The Linear Affine Control Case 

Theorem 3.9 (Multidimensional Case). Consider the 
control system (2.3), (.2.4), with 

f = Fx, gi = Bix 15 j 5 L, h(x) = Hx, C(X) = I,. 

Then 

& = Span 
-t 

{ &I&=17 Izi&IT;j=lj 

{&}?=ly {xixi}&=l~l} . 

The non-zero commutative relations are 

[ 
a2 

Z-T 13’ xk& 1 = hk,j& + ak,iGj 
I m 

[ 
&I xkXm 1 = (bk,j&n,i + 6k,i&n,j) 

+ (6k,j + xm + &m,jXk) & + (bk,iXm + &n,ixk) &, 

[ 
xi&, & = -&,k&, 

3 m 1 
+&n,jXixk, [&,x:Xrn 

Xi &) XkXm 

i 
2 1 = 6k,jXiXm 

= bk,ixm + &n,ixk, 

where 1 5 i, j, k, m 5 n, &,j = 1 if i = j and zero other- 
wise. 

Proof. Follows from the commutative relations. 

4 Additional Generalizations 

Consider the nonlinear control system (2.3), (2.4). Here 
we are interested in minimizing (over u(.) E Z&d) the 
exponential-of-integral cost function Je (u): 

T 

J’(u) = E” exp e 
{ (s 

Wt), dt, y))dt + Mx(T)) > 
0 )) 

where 0 > 0. Similar to Theorem 2.4, the information 
state approach to this control problem yields: 

J’(u*) =UpUf/ 
(s 

exp (BP(X)) rr’(x, T)dx . (4.29) 
D w > 

Here, {#(x, s); 0 5 s 5 t}, is an information state; it is a 
solution of a certain controlled Feynman-Kac stochastic 
PDE. In particular, when 

e(x,u) = e,(x) + C!j(x)u;, (4.30) 

j=l 

we have 

7r8(2, t) = 7r(x, 0) + Jot (Lo + ee,) 7rB(x, s)ds 

+ xi=l Ji LiKe (2, sh (s, Y)ds 

+ciT1 Jo eej~YxC,+;(~,ddS 
(4.31) 

+ C;=l l; hjn’(x, s) 0 4./j(s). 

The sufficient statistic algebra is 

where Lg = LO + f% . Clearly, ,$, can be used to 
classify nonlinear systems with finite-dimensional con- 
trollers. An important observation announced in [6], 
is that we can solve the so-called inverse control prob- 
lem, by choosing the zeroth order differential operators, 
lo, Cl, es, t?e, to force C”,, to be finite-dimensional. When 
lo =polynomial in (xi, x2,. . . , xn) of degree at most 
two, and & =Constant, 1 < j 5 e, we obtain finite- 
dimensional controllers for the classes of nonlinear sys- 
tems discussed in earlier sections. 
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