
Supervisory Control Using Computationally Efficient 
Linear Techniques: .A Tutorial Introduction 

John 0. Moody and Panos J. Antsaklis 
Department of Electrical Engineering 

University of Notre Dame, Notre Dame, IN 46556 
jmoody@nd.edu Panos.J.Antsaklis.l@nd.edu 

Abstract 

This paper provides an overview of a computation- 
ally efficient method for synthesizing supervisory con- 
trollers for discrete event systems (DES). The DES 
plant and controller are described by Petri nets which 
provide a useful linear algebraic model for both con- 
trol analysis and synthesis. It is shown how a set of 
linear constraints on .the plant’s behavior can be enA 
forced, accounting for possibly uncontrollable or unob- 
servable transitions in the plant net, using techniques 
from Petri net theory, integer programming, and linear 
systems. The paper is written as a tutorial introduc- 
tion to the approach. Several results presented here 
have been reported elsewhere in the literature. 

1 Introduction 

A methodology to automatically derive feedback su- 
pervisory controllers for discrete event systems (DES) 
described by Petri nets appears in [13]. The control de- 
signer is presented with a Petri net model of a DES and 
a set of linear constraints on the state space of the DES. 
The control goal is to insure that the constraints are 
met during the plant’s normal operation. In the spirit 
of supervisory control, this task is accomplished,by pro- 
hibiting certain occurrences in the plant’which would 
cause one or more of the constraints to be violated. 
The method is based on the idea that specifications 
representing desired plant behaviors can be enforced 
by making them invariants of the controlled Petri net. 
The resulting controllers are themselves Petri nets and 
are identical to the monitors [2] of Giua et al. The 
controller’s size is prdportional to the number of con: 
straints. 

The supervisor is used to enforce a set of linear con- 
straints on the state space of the plant DES. These 
constraints are not as general as the languages enforced 
by Ramadge and Wonham [lo] in their work on super- 
visory control using automata, but the solution algo- 
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rithms are simpler, and they can be used to describe a 
broad variety of problems including 

l A large range of forbidden state problems. 

e Serial, parallel and general mutual exclusion 
problems. 

l A class of logical predicates on plant behavior 
[12]. 

l Conditions involving the occurrence of events and 
particular regions of the state space. 

l Conditions involving the concurrence of events. 

l The modeling of shared resources [6]. 

The approach was extended in [7] to apply to Petri 
nets which contain uncontrollable transitions, the fir- 
ing of which cannot be inhibited by the controller. This 
work was partially motivated by the research of Li and 
Wonham [3] dealing with the enforcement of linear con- 
straints on vector discrete event systems’ with uncon- 
trollable events. The approach in [7] was expanded 
in [4] to include uncontrollable and unobservable tran- 
sitions in a unified framework. Algorithms were pre- 
sented for automatically computing new sets of plant 
constraints which accounted for uncontrollable and un- 
observable transitions while still enforcing the original 
constraints. Unobservable transitions force a special 
structure on the Petri net controller which can be used 
to characterize valid controllers and simplify controller 
design. These results appear in [6]. These contribu- 
tions extend the applicability of the control method 
while maintaining its original emphasis: they also re: 
late to Petri net place invariants and are again simple 
to implement with excellent numerical properties. 

The paper is structured as follows. The controller syn- 
thesis method for plants with controllable transitions is 
described in section 2. A methods for dealing with un- 
controllable and unobservable transitions is covered in 
section 3. An example is used to illustrate the method 
in. section 4, and concluding remarks are given in sec- 
tion 5. 



2 Automatic Controller Synthesis 

The system to be controlled is modeled by a Petri net 
with n places and m transitions and is known as the 
process or plant net. The incidence matrix of the plant 
net is Dp. It is assumed that all the enabled transi- 
tions can fire. It is possible that the process net will 
violate certain constraints placed on its behavior, thus 
the need for control. The controller net is a Petri net 
with incidence matrix DC made up of the process net’s 
transitions and a separate set of places. The controlled 
system or controlled net is the Petri net with incidence 
matrix D made up of both the original process net and 
the added controller. The control goal is to force the 
process to obey constraints of the form 

where pp is the marking vector of the Petri net mod- 
eling the process, L is an n, x n integer matrix, b is 
an nI, dimensional integer vector and n, is the number 
of constraints. Note that the inequality is with respect 
to the individual elements of the two vectors Lk and 
b and can be thought of as the logical conjunction of 
the individual “less than or equal to” constraints. This 
definition will be used throughout this paper whenever 
vectors appear on either side of an inequality sign. 

Inequality (1) can be transformed into an equality by 
introducing an external Petri net controller which con- 
tains places which represent nonnegative “slack vari- 
ables” pe. The constraint then becomes 

ii+, + pc = b (4 

where pe is an n, dimensional integer vector which rep- 
resents the marking of the controller places. Note that 
pC > 0 because the number of tokens in a place can 
not become negative; thus equation (2) implies inequal- 
ity (1). The controller places insure that the weighted 
sums of tokens in the process net’s places are always less 
than or equal to the elements of b. The places which 
maintain the inequality constraints are part of a sepa- 
rate net called the controller net. The structure of the 
controller net will be computed by observing that the 
introduction of the slack variables forces a set of place 
invariants on the overall controlled system defined by 
equation (2). 

Place invariants are one of the structural properties of 
Petri nets. See [8,9,11] for more information on Petri 
nets and their properties and analysis. A place invari- 
ant is defined as every integer vector x which satisfies 

xT/.b = aTpo (a constant) (3) 

where ~0 is the net’s initial marking, and ~6 represents 
any subsequent marking. Equation (3) means that the 
weighted sum of the tokens in the places of the invari- 
ant remains constant at all markings and this sum is 

determined by the initial marking of the Petri net. The 
place invariants of a net are elements of the kernel of 
the net’s incidence matrix, i.e., they can be computed 
by finding integer solutions to 

xTD=O (4 

where D is an n x m incidence matrix with n being the 
number of places and m the number of transitions. 

The matrix D, contains the arcs that connect the con- 
troller places to the transitions of the process net. 
Let Z be the set of integers. The incidence matrix 
D E &+‘dxm of the closed loop system is given by 

D= 2 [ 1 c 
and the marking vector p E 2?‘+nC and initial marking 
po are given by 

P= 2 [ 1 po= h-2 [ 1 PC0 (6) 
Note that equation (2) is in the form of (3), thus the 
invariants defined by equation (2) on the system (5), 
(6) must satisfy equation (4). 

XTD=[LI] 2 [ 1 = 0 c 
LD,+D, = 0 (7) 

where I is an nC x nC identity matrix since the coef- 
ficients of the slack variables in equation (2) are all 
equal to 1. The following proposition follows from this 
discussion. 

Proposition 1. The Petri net controller, D, E Zncxm 
with initial marking pCD, which enforces constraints (1) 
when included in the closed loop system (5) with mark- 
ing (6) is defined by 

D, = -LD, (8) 

with initial marking 

~co = b - Ly, (9) 

assuming that the transitions with arcs from DC are 
controllable, observable, and that pCo 2 0. 

The controller defined by proposition 1 is maximally 
permissive, assuming that all transitions are control- 
lable and observable, in that it will never disable a tran- 
sition that would not directly violate the constraints if 
fired. The proof of this result is given in [13]. 

Proposition 1 creates a controller which will enable and 
inhibit various transitions in the plant. If any of these 



transitions are uncontrollable or unobservable, then the 
controller defined by this method may be invalid. The 
next section shows how a transformation of the con- 
straints can be performed in order to avoid these tran- 
sitions while still enforcing the original constraints. 

3 Handling Uncontrollable and Unobservable 
!lhnsitions 

Consider the situation where the controller is not al- 
lowed to influence certain transitions in the plant Petri 
net. These transitions are called uncontrollable. It is 
illegal for the Petri net controller to include an arc from 
one of the controller places to any of these uncontrol- 
lable plant transitions, since these kinds of connections 
can lead to the disabling of plant transitions. 

Equation (8) in section 2 shows that it is possible to 
construct the incidence matrix DC of a maximally per- 
missive Petri net controller as a linear combination of 
the rows of the incidence matrix of the plant. Neg- 
ative elements in D, correspond to arcs from con- 
troller places to plant transitions. These arcs act to 
inhibit plant transitions when the corresponding con- 
troller places are empty, and thus they can only be apr 
plied to plant transitions which permit such external 
control. Group all of the columns of Dp. which corre- 
spond to transitions which can not be controlled into 
the matrix D,, . The matrix LD,, must contain no pos- 
itive elements’, as these will correspond to controlling 
arcs when constructing the supervisor D, = -LD,. An 
enforceable set of constraints will satisfy 

It is also possible that transitions within the plant may 
be unobservable, i.e., they are defined on the Petri net 
graph because they represent the occurrence of real 
events, but these events are either impossible or too 
expensive to detect directly. It is also possible, in the 
event of a sensor failure, that a transition might sud- 
denly become unobservable, forcing a redesign or adap- 
tation of the control law. It is illegal for the controller 
to change its state based on the firing of.an uriobserv- 
able transition, because there is no direct way for the 
controller to be told that such a transition has fired. 
Both input and output arcs from the controller places 
are used to change the controller state based on the fir- 
ings of plant transitions. Let the matrix D,, represent 
the incidence matrix of the unobservable portion of the 
Petri net. This matrix is composed of the columns of 
Dp which correspond to unobservable transitions, just 

as L is composed of the uncontrollabie columns of 

‘Actually LD,, may contain positive elements when the con- 
troller is merely observing uncontrollable transitions and not in- 
hibiting them, but this situation is not covered here. 

Dp. It is illegal for the controller D, = -LOP to con- 
tain any arcs in the unobservable portion of the net, 
thus an enforceable set of constraints will satisfy 

LD,, = 0 (11) 

Conditions (10) and (11) indicate that it is possible to 
observe a transition that we can not inhibit, but it is 
illegal to directly inhibit a transition that we can not 
observe. 

Suppose, given a set of constraints LP~ 5 b, we con- 
struct the matrices LD,, and LD,, and observe that 
there are violations to conditions (10) and/or (11). 
Since the controller is made of a linear combination of 
the rows of Dp, it is interesting to consider the situation 
where we use the addition of further rows from D,, in 
order to eliminate the positive elements of LD,, and 
use rows from Duo to eliminate the nonzero elements 
of LD,,, i.e., if we are going to use a place invari- 
ant forming Petri net controller, what additions to the 
constraints would we need to make in order to elimi- 
nate positive elements from LD,, and nonzero elements 
from LD,,? What constraints, of the form L’clp 5 b’, 
that can be enforced by an invariant-based controller, 
will also maintain the original constraint Lclp 5 b while 
not interfering with the uncontrollable/unobservable 
portions of the plant? The following lemma appeared 
in [7]. 

Lemma 2. 

Let RI E Zncxm satisfy RAPT 2 0 V pp. 

Let Ra E Zncxnc 

(12) 

positive definite diagonal matrix (13) 

If’L’pz 5 b’ where 

L’ = R1+R2L (14) 

b’ = R2(b+ l)- 1 (15) 

and 1 is an nc dimensional vector of l’s, then Lclp 5 b. 

Lemma 2 shows a class of constraints, L’h 5 b’, which, 
if enforced, will imply that Llrp 5 b are also enforced. 
In [4], Lemma 2 is used to prove a portion of the fol- 
lowing proposition. 

Proposition 3. Let a plant Petri net with incidence 
matrix Dp be given with a set of uncontrollable transi- 
tions described by D,, and a set of unobservable tran- 
sitions described by D,,. A set of linear constraints on 
the net marking, Lp, < b, are to be imposed. Assume 
RI and Rz meet-(l2j aid’(l3) with RI + R2L # 0 and 
let 

L”;;:, L% -Duo llP0 

<[o ITO 
-LD,, 

-11 

LppO - b - 1 

(16) 

1 



Then the controller 4 Example - The Unreliable Machine 

D, = -(RI + RaL)D, = -LID, (17) 

P cO = Ra(b+l)-l-(R1+RaL)ppO = b/-L’/+,,, (18) 

exists and causes all subsequent markings of the closed 
loop system (5),(6) to satisfy the constraint Lpp 5 b 
without attempting to inhibit uncontrollable transi- 
tions and without detecting unobservable transitions.. 

The usefulness of proposition 3 for specifying con- 
trollers to handle plants with uncontrollable and un- 
observable transitions lies in the ease in which the ma- 
trices RI and Ra, with the appropriate properties, can 
be generated. Algorithms for solving this problem in- 
cluding a method involving matrix row operations and 
by solving a linear integer programming problem ap- 
pear in [4]. The method of using row operations is 
outlined below, but instead of presenting the pseudo 
code algorithms of [4], the overall motivation and goals 
of the method are described. 

To meet assumption (12), it is sufficient to assume 
that all of the elements of RI are nonnegative, since 
the elements of pz are nonnegative by definition. In 
general, for unbounded pz, it is necessary that all of 
the elements of RI be nonnegative, however if’bounds 
on pr, are known, then it is possible to generate valid 
RI vectors which contain some negative elements. If 
RI and Rz which satisfy (12) and (13) do exist, then 
they can be found by performing row operations on 

[ lzk ] and [ ik 1. 
Row operations act as pre- 

multiplications of a matrix, just as [ RI Ra ] prel 
multiplies these two matrices in inequality (1.6). RI 
and Ra can be found by finding a set of row operations 
which do not involve premultiplication of any row by a 
negative number and which force the LD,, portion of 
the matrix to contain all zero or negative elements and 
the LD,, matrix to be all zeros. Note that assump 
tion (13), which requires Ra to be a positive definite 
matrix, is not restrictive. This matrix simply repre: 
sents the premultiplication coefficients of the rows of 
the LD,, and LD,, portions of the matrices under- 
going row operations. We can assume this matrix is 
diagonal because LD,, and LD,, are linearly depen- 
dent with D,, and D,,, i.e., we will never need to take 
linear combinations of the rows in LD,, or LD,,. We 
can also assume that the diagonal elements are posi- 
tive since, if negative numbers are required, they can 
be accounted for by &I, which still needs to meet as- 
sumption (12). This technique is illustrated for a plant 
with uncontrollable transitions in the following section. 

We now provide a simple example in order to illustrate 
the concepts that have been covered above. The exam- 
ple plant is partially based on the model of an “unreli- 
able machine” from [l]. The machine is used to process 
parts from an input queue, completed parts are moved 
to an output queue. The machine is considered unreli- 
able because it is possible that it may break down and 
damage a part during operation. This behavior is cap- 
tured in the plant model. Damaged parts are moved to 
a separate queue from the queue for successfully com- 
pleted parts. The Petri net model of the plant is shown 
in figure 1, and a description of the various places and 
transitions is given in table 1. 

I 04 t.5 D7 

Figure 1: Petri net model of an uncontrolled unreliable 
machine. 

Places 
pr Input queue - Number of parts remaining 
pz Machine is busy, part is being processed 
ps Waiting for transfer to comnleted Darts uueue 

I a 1 

p4 Waiting for transfer to damaged parts queue 
PS Machine is waiting to be renaired 

- - A 

ps Completed parts queue 
p7 Damaged parts queue 

Transitions 
tl Part moves from input queue to machine 

ta Uncontrollable: Part processing is complete 

t3 Uncontdlable: Machine fails, part is damaged 
t4 Part moves to completed parts queue 
ts Part moves to damaged parts queue 
i!e Machine is repaired 

Table 1: Place end transition descriptions for the Petri 
net of figure 1. 

The plant model has two uncontrollable transitions, ta 
and t3. Transition t3 represents machine break down 
and so obviously can not be controlled. Transition ta 
is considered uncontrollable because the controller can 
not force the machine to instantly finish a part that 
is .not yet completed, nor does it direct the machine 
to stop working on an unfinished part. The transition 
is labeled uncontrollable in order to prevent a control 



design from attempting either of these two actions. 

4.1 Controller Synthesis 
The Petri net model of the plant has the following in- 
cidence matrix and marking vector. 

Dp = 

The 

-1 0 0 
1 -1 -1 
0 1 0 
0 0 1 
0 0 1 
0 0 0 
0 0 0 

. 4 
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initial conditions 

0 0 0 
0 0 0 

-1 0 0 
0 -1 0 
0 0 -1 
1 0 0 
0 1 0 

Pp = 

(19) 
are 

y,=[3 0 0 0 0 0 01’. 

If the machine is broken, we do not want to load a new 
part until repairs have been completed. This means 
that places pz and ps should contain at most one token: 

Parts waiting to be transferred to a storage queue, 
whether completed or damaged, wait in the same po- 
sition on the machine. The Petri net model uses two 
places, ps and ~4, to represent waiting parts, because 
there are two different destinations. In order to prevent 
conflict, the second constraint is 

p3 + p4 5 1 

Using the matrix form of constraint (1) we have 

: ; ; ; ; ; :]Pps[ ;] (22) 
/ 

L b 

First we must check the uncontrollability condition. 

We need all of the elements of LD,, to’be less than 
or equal to zero if we are to avoid using uncontrollable 
transitions. There is no problem with the first row, but 
a transformation will have to be found to eliminate the 
l’s in the second row. This can be done by applying 
row operations from the matrix D,, to eliminate the 
positive elements in the second row of LD,,. 

0 0 
-1 -1 

1 0 
0 1 
0 1 
0 0 

[Y lo] 

Row8=Row8+Row2 

0 0 
-1 -1 

1 0 
0 1 
0 1 
0 0 

[ii oO] 

Because constraint (20) required no transformation, 
the first row of RI will be all zeros. A row operation 
involving the addition of the second row of the D,, ma- 
trix is required to transform constraint (21), thus the 
second row of RI will be all zeros with a one in the sec- 
ond column. It was not necessary to premultiply either 
constraint, thus Ra will be an identity matrix. 

0000000 
0 10 0 0 0 0 1 R2= [ ; ; 1 

We now apply equations (14) and (15) to find the trans- 
formed constraints represented by Li and b’. 

[: : Y Y ii : :ly 

L’ b’ 

The controller is the calculated using equations 
and (18). 

(17) 

D, -LID, -1 1 0 0 0 1 = = -1 0 0 1 1 0 1 
pco- = b’ - L’ pp,, = [ 1 ; 

The controlled net is shown in figure 2. The constraint 
logic is enforced and no input arcs are drawn to the 
uncontrollable transitions. 
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Figure 2: The controlled unreliable machine. 

4.2 Discussion 
An extensive look at many of the issues central to this 
research can be found in the work of Li and Wonham 
[3]. These authors show that optimal, or maximally 
permissive, control actions which account for uncon: 
trollable transitions can be found by repeated applica, 
tions of a linear integer programming problem (LIP), 
assuming that valid control actions actually exist and 
that the uncontrollable portion of the net contains 
no loops. They also give sufficient conditions under 
which the solution to the LIP has a closed form ex- 
pression. These conditions place a certain tree struc- 
ture on the uncontrollable portion of the net. When 



this tree structure is further limited, Li and Wonham 
are able to prove that the optimal control law which 
insures Lpp 5 b. can be written Cpp 5 d. This is the 
case where it is possible to represent the action of the 
optimal control law with ordinary Petri ,nets. In this 
situation, it is possible to find R1 and Ra by performing 

row operations on DIE, [ 1 LDuc 
which is much more de- 

sirable, computationally, than analytically solving an 
LIP. However the tree structure assumed by Li and 
Wonham is only sufficient, not necessary, for example, 
the structure of the uncontrollable part of the plant in 
section 4 does not conform to Li and Wonham’s “type 2 
tree structure,” however an optimal solution was found 
and implemented using an ordinary Petri net controller. 
There are also cases where, following the procedures 
presented above, suboptimal Petri net controllers may 
be derived. These suboptimal controllers may be suffi- 
cient for many tasks, depending on the application. 

5 Conclusions 

This paper has presented computationally efficient 
methods for constructing feedback controllers for ordi- 
nary Petri nets, even .in the face of uncontrollable and 
unobservable plant transitions. The method is based on 
the idea that specifications representing desired plant 
behaviors can be enforced by making them invariants 
of the controlled net, and that simple row operations 
on a matrix containing the uncontrollable and unob- 
servable columns of the plant incidence matrix can be 
used to eliminate controller use of illegal transitions. 

The significance of this particular approach to Petri net 
controller design is that the control net can be com- 
puted very efficiently, thus the method shows promise 
for controlling large, complex systems, or for recom- 
puting the control law online due to some plant failure. 

There are several areas of ongoing research for this 
work. Necessary and sufficient conditions for a lin- 
ear control law to be maximally permissive in the face 
of uncontrollable and.unobservable transitions are not 
known. Time is becoming an increasingly important 
factor in the area of DES control. Ordinary Petri nets 
are sufficient for modeling sequences in time and con- 
currency, but it may be desirable to extend the method 
for use with actual timed Petri nets. It may also be 
possible to extend the applicability of the method by 
expanding the kinds of constraints that may be en- 
forced. Methods for transforming logical predicates on 
the plant behavior into linear inequality constraints; 
and a class of nonlinear constraints, are currently be- 
ing explored. 
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