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Abstract

A fuzzy logic approach for collision avoidance in a
multiple autonomous mobile robot environment is
proposed.  Up to four robots are given starting points and
destinations they must reach within a hypothetical indoor
environment.  The fuzzy logic method enables the robots
to reach their intended destinations while avoiding
stationary and mobile obstacles alike.

1.  Introduction

With the increasing demand to explore regions that are
either too hazardous or unattainable to humans, the need
arises for the development of mobile robots that can
navigate autonomously in unstructured and unexplored
environments.  Many of these situations require several
robots in order to complete the task at hand.
Unfortunately, sensors used for positional information
and collision avoidance are often too imprecise and
difficult to interpret due to the complexity of the
environment.  Therefore a system must be designed that
can use this limited information to accomplish the goals
set out by the robot, which are: 1) avoid collisions with
other objects, and 2) to reach its targeted destination.
This requires a control strategy with intelligent decision
making capabilities that can judge various situations
from multisensor data and act accordingly.  It must be
able to determine which incoming information are
relevant and be able to formulate suitable procedures in
order for the robot to safely reach its destination.

      In classical motion control, a set of equations are
derived to describe the vehicle and its surroundings.
These are then implemented with feedback control laws
in order to calculate the robot’s positional data.  Several
attempts have been made using this type of approach.
For instance, Shibata (1993) proposed a hierarchical
intelligent control method and Brooks (1987) developed
a bottom-up approach using state transition machines.
Unfortunately both of these methods were unable to
tolerate complex situations.  Also classical motion
control approaches are commonly unable to handle small

perturbations in the system, such as changes in the
environment or the vehicle’s speed.  This is an important
setback since these are common occurrences in the real
world.  What is required is a control algorithm that is
able to adapt to various situations and still reliably get
the robot to is intended destination.

       One control methodology that is recently gaining
acceptance is fuzzy logic.  Martinez (1993) was
successfully able to navigate a mobile robot collision free
through an unknown, semi-structured environment using
fuzzy logic.  However the real world often presents more
complex situations that were not present in this
environment.

       The aim of this paper is to test fuzzy logic in a multi-
agent environment that includes both stationary and
moving obstacles.  The user of the system is able to
select the starting and destination points for up to four
robots.  The additional robots in the system provide for
the moving obstacles.  In addition, the user may place up
to ten stationary obstacles in the room.  Allowing the
user such control enables the opportunity to examine the
flexibility and robustness of fuzzy logic.

2.  Fuzzy Logic

2.1  Introduction to Fuzzy Logic

If a person were to control the robots directly, it is not
hard to imagine that the destinations would be achieved,
collision free, without much of a problem.  After all,
many people do this everyday when they drive to work.
Then one has to wonder why it is so difficult for classical
control theory, with its complex algorithms, to perform
the same task.  One idea is that these type of control
systems perform unnecessary precise calculations.
Certainly a person does not have to be so precise when
controlling their car.  This point of view suggests two
things: 1) while the system’s input and output should be
accurate, it does not have to be extremely accurate, and
2) the data from the system’s input is not being used
effectively.  The first point says that the level of accuracy
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in the system reaches a point in which any further
increase in accuracy would be redundant and could
adversely affect system performance.  The second point
suggests that a different control strategy should be used.

        In 1965, Lotfi Zadeh published the paper "Fuzzy
Sets" which challenged traditional probabilistic theory
(McNeill and Freiberger 1993).  Instead of trying to
determine whether or not an event occurs, fuzzy theory
determines to what degree an event occurs.  Instead of
categorizing events in ‘black and white’ fashion, fuzzy
theory blurs these strict cut-off points and puts values
into one or more highly descriptive groups.  For
example, take the case of a person’s age.  Probability
theory may define a person as being ‘old’ for ages 65 and
above and ‘not old’ otherwise.  On the other hand fuzzy
theory is not restricted to just two groups.  It may have
any number of groups, depending on how many the
designer sees fit.  For instance it might say that the age of
65 is ‘somewhat old’ and ‘partly middle aged’.  The use
of these descriptive linguistics enables a system to have a
more precise description and a better understanding of its
inputs and outputs.

2.2. Fuzzy Theory

Figure 2.1 illustrates the basic idea behind fuzzy logic.
Input value A is taken from domain X and is assigned a
fuzzy value between zero and one.  The fuzzy value is
determined by a fuzzy association memory (FAM)
matrix, which maps input data to fuzzy values.  How the
two sets of values correlate between each other is
completely decided by the designer of the system.  From
the example of Figure 2.1, value A is assigned a fuzzy
value of B = 3/4, which can be thought of as ‘a particular
action occurred to a degree of 3/4’.  Since an action
either occurs or it does not, it can also be said from the
same data that ‘a particular action did NOT occur to a
degree of 1/4’.  This is known as the compliment of
fuzzy value B, or BC.

Figure 2.1.  Function f Maps Value A From Domain X to
Fuzzy Value B.

       Probability works in much the same way, except for
one major distinction.  Instead of mapping to what
degree an action occurred, probability maps ‘the
likelihood an action will occur’.  They are, in essence,

two different ways of observing the same action.  This
difference can be seen better through an example.  Say
that a person has been told that he has a fuzzy value and
probability value of 0.7 that his dinner tonight will be
good.  As more information comes in (smelling the food
being cooked, eating appetizers), the probability value is
likely to change.  This change continues until the action
is complete (after dessert) at which time the probability
will be restricted to either 0 or 1.  But throughout the
dinner, the fuzzy value remains at 0.7, even after dessert.
This is because the fuzzy value is describing to what
degree the meal is good, not predicting if it will be good
or not.

       But due to the virtue of its definition, the fuzzy
values assigned are not known with certainty.  Hence if B
is not known with certainty, then neither is its
compliment, BC.  This produces an overlap and underlay
that do not exist in probability theory.  In other words,
Aristotle’s laws of noncontradiction and excluded middle
do not hold in fuzzy logic.  This can be stated as
follows:

≠CBBI ∅ (2-1)

B BCU ≠ 1 (2-2)

These two equations violate the basic rules that
probability theory is based on.  Hence many of the
definitions in probability theory do not hold in fuzzy
theory.  For example, the definition for set product and
union in fuzzy logic are given by the following
equations:

B B B BC CI = min( , ) (2-3)

B B B BC CU = max( , ) (2-4)

Using the example given in Figure 3.1, the following
evaluations can be made:
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3.  Simulation Description

 A program written in C was developed to test the
reliability of fuzzy logic on collision avoidance for
stationary and moving obstacles alike.  The operating
environment is a hypothetical indoor room with a hard,
smooth floor surface.  This type of surface ensures good
maneuverability for the robot.  The room is divided into
X-Y coordinates 1 through 90. The heading of each robot
ranges between 0 and 360 degrees with 0 being
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referenced to the right side of the room.  This layout is
shown in Figure 3.1.

Figure 3.1.  Specifics of Robot’s Domain Including Co-
ordinate and Heading Information.

       This simulation supports up to four robots at any one
time.  The robots operate independently of one another in
a decentralized system.  This is in contrast to a
centralized system in which a single master robot dictates
the actions of several slave robots.  A decentralized
system has the advantage that it does not rely heavily on
the functionality of the master robot, adding a level of
fault tolerance to the entire system.

      The robots themselves are square in shape with each
side being one coordinate in length.  Its current position
in the room is referenced from the vehicle's centre, with
each of its sides stretching out one half a coordinate.  It is
assumed the robots are able to determine its current
position and heading at all times.  This is easily realized
with the use of wheel encoders and a direction
determining device such as a gyroscope.  The vehicles
are able to move forwards or backwards and may reach a
top speed of one coordinate per second.

       During simulation runtime the current position,
heading, and velocity for each robot are calculated and
displayed.  While the heading and velocity values are
floating point values, the positions of the robots and the
obstacles are rounded to integer values.  Therefore two
robots or a robot and an obstacle are able to get within
two obstacle lengths of one another before colliding.

4. Obstacle Detection

To avoid a collision with any of the other robots, each
robot must know the current status of the other vehicles.
Therefore a global communication scheme needs to be
implemented in order for the robots to share information.
By exchanging current data with the other vehicles a
robot can determine the next several positions of any of
the vehicles.  That way if it knows a collision with
another robot is about to occur, it can act accordingly to
prevent it. It accomplishes this by using the current
position, velocity, and heading values of each robot.

Determining another robot’s future positions, or
traversing vector, is calculated with the following
equations:
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=
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(4-2)

where X(i)n and Y(i)n are the nth X and Y positions of
robot i, V(i) is the velocity of robot L�� �i) is robot i’s
heading, and X(i) and Y(i) are the current X and Y
positions of robot i.

      In addition to the other vehicles, each robot needs to
be able to sense the stationary obstacles as well.  To
determine the location of any of these obstacles each
robot is equipped with three ultrasonic sensors.  One
sensor is pointed directly ahead with the other two facing
90 degrees off on either side (Figure 4.1). These
proximity sensors are able to determine the distance to an
upcoming obstacle by sending out an ultrasonic pulse
and measuring the time it takes for the reflection to be
received.  Each sensor has a range of four coordinates.

Figure 4.1.  Configuration and Range of Ultrasonic
Sensors on the Robot.

5.  Design of a Fuzzy Controller

 While the fuzzy controller is easy to control and
understand, it can be quite difficult to design.  There is
no structured design theory to follow, therefore a good
working knowledge of the system is required.  When
designing the controller, three basic tasks need to be
accomplished.

      The first of which is to determine the system's
linguistic variables.  These variables are the input and
output signals used to control the system properly.  The
designer needs to decide what the important signals are
and how to transform these signals into linguistic
descriptions.  In this simulation, the input signals are
from the three ultrasonic sensors and the position,
heading, and velocity data from the other robots.  The
output signals are the vehicle's speed and heading.
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       The second step in the design is the production of
the fuzzy associative memories (FAM).  A FAM rule
maps the association of the system’s inputs to the outputs.
Each one is structured in an if...then manner and uses
linguistic descriptions to describe the data.  For instance
in the case of stationary obstacles, a rule might be if the
middle sonar reading is ’positive medium’ and the left
sonar reading is ’positive large’, then the change in
heading is positive small (to the left) and the change in
velocity is negative small.  This simulation uses the
seven descriptions listed at the bottom of Table 5.1.
Incorporating these with the three sonar measurements
gives a total number of 64 if...then rules for stationary
obstacles.  A short-hand tabulation of the 64 rules is also
listed in Table 5.1.

Table 5.1.  Short-hand List of the Fuzzy Associative
Memories with Their Linguistic Adjectives.

     A similar table is also made for the moving obstacles.
It is nearly identical to Table 5.1 except that changes in
the vehicle’s heading and velocity are more abrupt.  This
is due to the simple fact that a collision with two robots
will occur faster than a collision with a robot and a
stationary obstacle.

      The final step in the process is the development of
the membership functions.  In other words, assigning all
of the input and output values to membership groups.
Each value is placed in one or more linguistic groups and
given a degree of membership.  The degree of
membership states how much a particular value belongs
to a certain group.  These values typically range from
zero to one, with one being 'full membership'.  The plot
for this experiment's sonar membership function is shown
in Figure 5.1.  Note that all of the groups overlap one
another, enabling some values to belong to more than
one group.  Research has shown that it is generally a
good idea to have these groups overlap by 25% (Kosko
1993).

Figure 5.1.  Membership Function for the Sonar
Readings of Stationary Obstacles.

      During normal operation of the system, sensor values
are read and 'fuzzified' into its membership groups.  The
if...then rules are then evaluated to produce fuzzy output
results.  These values then must be 'defuzzified' to an
analog value in order to adjust the output.  One method
of defuzzification is to use the FAM correlation-
minimum inference procedure, or center of gravity

method.  The fuzzy centroid, B , is calculated by the
equation: (Kosko 1992)
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where y is the output value which corresponds to the
membership function with a value of one, and m is the
minimum degree of membership of all the inputs.  An
example of this method of defuzzification is shown
graphically in Figure 5.2.  Here the values MS = 1.45,
RS = 0.8 , and LS = 1.15 result in a fuzzy centred value
of  0.51 for velocity and 0.0 for heading.  These values
are then added to the current readings which results in
the system's new output.

       When the robot first starts, it calculates the angle it
must turn in order to face the destination.  It immediately
makes this its current heading and tries to head straight
towards its target point.  Next it reads its sonars to
determine if there are any stationary obstacles in the way.
If so, it adjusts its heading and velocity accordingly.
After doing this it then receives data from the other
robots and determines if a collision is about to occur.
Once again the heading and velocity are adjusted
according to the data.  Finally the robot moves for one
second based on its adjusted heading and velocity.  The
entire procedure is then repeated.
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Figure 5.2.  Calculation of Output Adjustment by the
Max-prod Method and Defuzzification.

6.  Results

Several test runs of the simulation revealed that the robot
exhibited intelligent behavior in avoiding the obstacles
and robots and was able to reach the destination every
time using nearly the shortest path possible.  This is quite
impressive considering the low amount of data
bandwidth that is used.

      Several types of configurations were used when
testing system.  The ability of the controller to perform
successfully on a variety of problems exhibits the
adaptability that fuzzy logic can provide.  This is a highly
desirable aspect since the unpredictability of real world
situations will require such adaptive characteristics.

      Figure 6.1 shows a synaptic-vector histogram of
which if...then rules were used for several test runs of the
simulation.  It can be seen that H = ZZ, V = PL is by far
the most frequently used output. The fact that the
equilibrium rule was the most widely used shows the
quick adaptive nature of fuzzy logic. In other words the
controller was able to find an efficient solution and it was
able to find it rather quickly.  This is very important for
situations in which time and efficiency are important.  It
can also be seen that some of the if…then rules are not
even used.  This point highlights the robustness of the
system.  Hence the design of the controller does not have
to be perfect, or even complete, for it to work properly.
But on the other hand if…then rules that are rarely used
could be quite difficult to debug.

       Figure 6.2 shows the affect the number of obstacles,
moving and stationary, has on the number of iterations
required to complete the task.  As expected, the number
of rules increased with the number of obstacles, but this
increase is surprisingly small.  Again this displays the

adaptive nature of fuzzy logic in that the controller is
able to quickly find a solution, no matter how many
obstacles are used.

Figure 6.1.  Synaptic-vector Diagram of Fuzzy
Rule Base.

Figure 6.2.  Effect the Number of Obstacles has on the
Number of Rules Used.

       While this particular system was successful for four
robots, increasing this number any further tended to
cause it to run into problems.  With five or more robots,
strange and complicated configurations can be made.
But as long as the initial setups were relatively ‘normal’,
the simulation was able to successfully handle up to ten
robots.  This fact suggests the problem does not lie in the
fuzzy logic itself but rather in the collision avoidance
algorithm used.  Again this exemplifies the importance of
having good previous experience when designing a fuzzy
system.  Perhaps a more complicated algorithm, such as
the one suggested in by Nijhuis et al. (1992) would
provide for better results.

7. CONCLUSIONS

This paper presented a fuzzy logic control scheme in an
environment that contained both stationary and moving
obstacles alike.  Overall, the fuzzy logic controller
proved to be a satisfactory control strategy for a sensor-
based method of navigation.  It provides an easy to
understand controller without having to define an
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analytical control model.  This is due to the fact that
approximate solutions to the problem are acceptable.  It
is also easy to debug since specific if…then rules can
simply be manipulated to correct a part that is working
unsatisfactorily or improve performance.

      One major disadvantage is the fact there is no
straightforward way to design a fuzzy control system.
This demands that the designer has previous experience
and a good working knowledge of the situation.  Another
disadvantage is the large number of if…then rules
needed for the rule base.  The amount of rules required
for a given system is based on the expression:

N AI= (7-1)

where N is the number of if…then rules, A is the number
of linguistic adjectives in the system and I is the number
of inputs in the system.  For instance, to avoid stationary
obstacles three input sonars and four linguistic adjectives
are used.  This results in a total of  43 = 64 if…then rules.
However if a fourth sensor were added to this simulation,
the number of possible rules would jump from 64 to 256.
Likewise, if a fifth linguistic adjective were used, a
system with three sensors would have 125 rules.  But it is
usually quite easy to summarize these rules by writing
them in shorthand form just as in Table 5.1.

      Due to the nature of fuzzy logic the solution
presented in this paper is just one out of an unlimited
number.  As more experience is gained, improvements to
the controller can be made.  It is hoped the design
presented will eventually be implemented in a physical
system.
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