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Abstract 

This paper shows how the simulated annealing (SA) 
algorithm provides a simple tool for solving fuzzy 
optimization problems. Often, the issue is not so much 
how to fuzzify or remove the conceptual imprecision, 
but which tools enable simple solutions for these 
intrinsically uncertain problems. A well-known linear 
programming example is used to discuss the suitability 
of the SA algorithm for solving fuzzy optimization 

problems. 

Keywords: fuzzy optimization, simulated annealing, 
fuzzy linear programming, fuzzy multiple objective 
decision making. 

1. Introduction 

This paper shows how the simulated annealing (SA) 
algorithm provides an innate method for solving fuzzy 
optimization problems. Traditional optimization models 
have to be constructed crisp and unambiguous, 
characteristics achieved through reduction and 

assumptions from the ill-structured reality. Fuzzy 
optimization has been focusing, first in solving models 

which reflect real life uncertainty, and second on 
transforming them into equivalent crisp problems to 
benefit from efficient existing solving algorithms. This 
second stage of removing the conceptual fuzziness of the 
problem also removes the real-life vagueness and 

fuzziness of the human reasoning process. As Zeleny’s 
states “humans do not maximise functions, but search 
for recognisable patterns” [ll]. It is important to have 

methods capable of directly handling all types of fuzzy 
optimal problems. 

Simulated annealing is a stochastic algorithm with a 
physical analogy of “melting” the system being 
optimised (a solid) using “high temperatures”, and then 

proceeding by slowly lowering the temperature until the 
system “crystallises/freezes” and no more changes occur 
[7]. The melting process can be viewed as stretching the 

constraints of an optimization problem which are a direct 

result of their fuzzification, and the crystallisation as the 
search for the “best” solution. The simulated annealing is 
considered a good tool for solving crisp optimization 
problems that are NP-complete [7]. Here it is discussed 
its extension to fuzzy optimization problems. 

The focus is on fuzzy linear optimization problems and, 
specifically, on problems with a single objective. The 
first method for solving fuzzy linear programming 

problems was proposed by Zimmermann [12]. The 
author first, constructs a crisp model of the problem; 
second, obtains its crisp results using an existing 
solving algorithm; third, uses the results obtained to 
fuzzify the problem by considering subjective constants 
of admissible violations for the goal aspiration level and 
for the constraints; fourth, defines an equivalent crisp 
problem using an auxiliary variable that represents the 
maximisation of the minimisation of the deviations 
(violations) on the constraints. Zimmermann used 
Bellman and Zadeh’s [l] interpretation that a fuzzy 
decision is a confluence of goals and constraints, denoted 
the max-min model because it considers that the best 
fuzzy decision is the union of the aggregated 

intersections of goal and constraints. Since this approach 
is well-known, Zimmermann’s example [ 131 of deciding 
on the size and structure of a truck fleet is selected, in 
order to compare the results obtained with the simulated 
annealing algorithm. This paper also emphasises that the 
generality and independence of the SA algorithm makes 

it well-suited for dealing with other forms of fuzziness 
found in optimization problems. 

The paper is organised in five sections. First this 

introduction, second a section introducing the main 
concepts involved in fuzzy linear programming 

optimization and third a section describes the simulated 
annealing (SA) algorithm as well as its modification for 

handling these type of problems. The fourth section 
discusses the comparison of results obtained with the 
max-min approach and with the SA algorithm and the 

fifth section presents the conclusions of this work and 
future developments. 



2. Fuzzy Optimisation 

Traditional optimization is associated with problems of 
maximising or minimising a utility function, subject to 
constraints representing limited resources. The aim is to 

maximise or minimise an objective function while 
satisfying the problem constraints. Essentially, 
traditional optimal concepts such as, 

Max f(x) subject to x E X 

are based on unique solutions and existence of complete 
information. An illustration of this problem is the linear 
programming model. 

Fuzzy optimization’s main aim is to find the “best” 
solution (decision alternative) under incomplete 

information, i.e. imprecise information and/or vague 
resources limits. There are many forms of imprecision 
when dealing with fuzzy optimization. For instance, 
coefficient variables that are not known precisely (e.g. 
production time of about 2 hours to make a shirt) or 
constraints satisfaction that should be around a limit 
(e.g. total available production time should be around 
200 hours). The current challenge is to enable the 
construction of models using everyday imprecise and 
vague language that can be translated into a fuzzy 
quantitative method which can provide the best solution 
possible. 

The concepts of fuzzy goal and fuzzy constraints were 
first introduced by Bellman and Zadeh [l]. The authors 
state that a fuzzy decision can be viewed as the 
intersection of fuzzy goal(s) and the problem constraints 
- since they are all defined as fuzzy sets in the space of 
alternatives. The “optimal” decision is the point at which 
the intersection of fuzzy goal(s) and constraints take the 
maximum membership value. This method is usually 
called the max-min approach. A systematic description 
and classification of problem types, methods and 
approaches proposed in the literature can be seen in [8]. 

In general the fuzzification of the linear programming 
model includes six forms of imprecision as depicted in 
table 1 (more subtle distinctions are made in [S]). 

This paper discusses the first three cases of imprecision 
using Zimmermann’s example of the truck fleet [ 131 and 
solves it with the simulated annealing algorithm. To 

cope with the imprecise information three approaches are 
followed. First, maximisation/minimisation of the 
objective function subject to fuzzy constraints. Second, 

consideration of fuzzy constraints as well as a fuzzy goal. 
Third, maximisation of the aggregated deviations from 
the boundaries of the fuzzy goal and fuzzy constraints, 

represented by the membership values of the goal and 
constraints inequalities satisfaction. It was also tested the 

imposition of a threshold to reflect a satisfactory 
constraint level, which is equivalent to an alpha-cut on 
the function. The third approach described is identical to 
the one proposed by Zimmermann, hence this is tested 
and the results obtained with the SA algorithm and with 

Zimmermann solution procedure are compared. The 
fuzzification of cases 4), 5) and 6) is not discussed in 
detail here. 

Table 1. Modes of Imprecision in Fuzzy 
Optimisation 

Case 
1 

Case 
2 

Case 
3 

Case 
4 

Case 
5 

Case 
6 

Imprecision in the constraints boundaries. 
This implies the fuzzification of the 
inequalities limits, C. E.g. “the total time of 
painting should be considerably fewer than 

100 hours ( cj is 2 100)“. 

A fuzzy goal is imposed on the objective 
function. Essentially this implies fuzzifying 
the utility function by considering a limiting 
goal (similar to goal programming). E.g. “the 
total budget for the project should be kept 

well below 100,000 ECU (Z ~100,000)“. 

Compound imprecision. This implies 
combinations of the above sources of 
imprecision. 
The parameters (coefficients) of the variables 
of the constraints are not known precisely. 
This means that the coefficients are fuzzy 
numbers. E.g. “the cost per hour of producing 
a shirt (x) is around 10 ECU ( aii G 20)“. 

The coefficients of the variables in the 
objective function are not known precisely. 
This means that coefficients are fuzzy 
numbers such as in 4). E.g. “the selling price 
of product x is around 100 ECUs per item”. 
All possible combinations of uncertainty. 

Considering the first three types of fuzzification, the 

general conceptual process for any optimization problem 
is: 
1) Depending on the type of problem, formalise it as a 

linear programming problem or as a multiple 
objective problem, or even as a non-linear 
programming problem. 

2) If the intention is to fuzzify of the objective(s), define 

the goal(s) for those objective(s). 
3) Define the membership functions for representing the 

fuzzification of each constraint. E.g. triangular, 
sinusoid, trapezoidal and so forth. 

4) Define thresholds for the degree of acceptance of 
deviations on the constraints satisfaction. 

5) Define the aggregation operator to combine the 



constraints (and goals when dealing with the 
symmetric model) as for example any t-norm. 

6) Solve with the simulated annealing algorithm. 

In addition it should be noted that if the symmetric 

model of Bellman and Zadeh [l] is used, there is no 
difference between objectives and constraints in the 
problem model, as well as no difference between single 
or multiple objectives. With the symmetric model a 
mathematical programming problem becomes a 
constraint satisfaction problem, where a decision is a 

confluence of constraints and objectives: 
Find x such that 

cgjxj {s,+> z 
j 
pijxj (&Z,G} ci 
j 

xj 20 

Hence, the maxmin model of the fuzzy problem is: 

where pk(X) is the membership values of the goal and 

constraints satisfaction. 

The problem of embedding fuzziness, where necessary, to 
deal with imprecision leads to the consideration of an 
extension of the fuzzy optimization problem to accept 
fuzzy coefficients. The norrnalisation of the combination 
of the fuzzy constraints and objective(s) with the fuzzy 
variables coefficients leads to the symbolical robust 
fuzzy model: 

Yk ’ ak where ak are fuzzy numbers 
k 

With this specification and using the same solution 
procedure, the results obtained with the SA algorithm are 

also successful [9]. Since it is beyond the scope of this 
paper to address fuzzy coefficients no further details are 

discussed here. 

Most of the literature on fuzzy optimization is concerned 
with fuzziness at the modelling level, from goal 

preferences to goal priorities. The majority of authors 
follow the maxmin approach, using the equivalent crisp 
model of selection of the best (“max”), which represents 
the aggregation of the minimum deviations from the 

model levels (e.g. Z). In summary, they do not propose a 
fuzzy solution but an equivalent crisp one (overview in 

[S]). However, some attempts were made to spread the 
benefits of using algorithms appropriate to solve fuzzy 
optimization problems, such as simulated annealing (see 
for example [S]). 

3. Simulated Annealing 

Simulated annealing is a stochastic algorithm used for 
optimization problems where the objective function 
corresponds to the energy of the states of a solid [4]. The 

SA algorithm requires the definition of the 
neighbourhood structure as well as the parameters for the 
cooling schedule. The temperature parameter 
distinguishes between large and small changes in the 
objective function. Large changes occur at high 

temperatures and small changes at low temperatures. It is 
an evolutionary process moving in small steps from one 
stage to another, avoiding the problem of getting stuck 
in a local minimum by allowing uphill and downhill 
moves for the temperature. 

SA is a good tool for solving optimization problems 
considered NP-complete, i.e. computationally inefficient 
since the search for the optimum is an exponential 
function of the size of the problem [7]. Some good 
examples on the capabilities of the simulated annealing 
algorithm to solve optimization problems can be found 
in [2, 3, 4, 71. 

According to [7] the four basic requirements for using the 
SA algorithm in combinatorial optimization problems 
are: (a) concise description of the problem; (b) random 
generation of the changes from one configuration to 
another; (c) an objective function containing the utility 
function of the trade-offs; (d) the initial state, the number 
of iterations to be performed at each temperature and its 
annealing scheme (for a detailed discussion of the 
algorithm see [4, 71). When discussing fuzzy 
optimization none of the basic requirements are affected 
because the fuzziness is usually expressed either in the 
stretching of constraints or as fuzzy coefficients in the 
variables. 

Two implementations of the SA algorithm have been 

developed. One maximises the aggregation of the 
tolerance intervals (membership values of the goals and 
constraints), i.e. the fuzzification of both the objective 

and constraints (case 2 and 3 of table 1). The other only 
handles the fuzzification of constraints (case 1, table 1). 

The objective of the first implementation of the 

simulated annealing algorithm is to solve the maxmin 
model by maximising the aggregation of the 
membership values of the goals and constraints. This 
solution procedure is equivalent to Zimmermann’s 



proposal [12] Its implementation is defined in pseudo- 

code 1. 

Pseudo-code 1. Simulated Annealing maxmin 

Set Nr = number of constraints; 
Select a initial state x E X; 
Select a initial temperature T > 0; 
Set temperature change counter t = 0; 
For k := 1 to Nr do p(k) = membership value of the 
constraint Rk(x); 
Miul= aggregation@(l), . . ., l.t(Nr)); 
Repeat 

Set repetition counter n =O; 
Repeat 

Generate state y, a neighbour of x; 
k := 1 
Repeat 

p,(k) = membership value of the constraint 

Rk(y) ; 
k := k+l; 

until k > Nr or p.(k-1) = 0; 
Ify(k-l)#O 

then 
Miu2 = aggregation (p(l), . . ., p(Nr)); 
Calculate 6 = Miu2 - Miul ; 
If 6 > 0 then x:= y; Miul := Miu2 

else If random(O, 1) c exp(G/T) then 
x:= y; Miul := Miu2 

n := n+l 
until n = N(t) 
t:=t+ 1 
T = T(t) 

until stopping criterion true. 

Ihe variable k is a counter for the number of constraints. 
It is used to calculate the memberships of each constraint 
p(k). Miu represents the aggregation of the memberships 
of the fuzzy constraints. Any aggregation operator could 
have been considered, here the t-norm min is used. The 
variable 6 depicts the difference between the previous the 
new Miu and the last Miu obtained. This represents the 
old and new energy states difference. The probability 
function of moving to a smaller energy state (the goal) is 
given by the exponential of 6 divided by the control 
parameter T. The smaller the temperature T the less 

probable any change will occur. The N(t) represents the 
number of neighbours generated as possible solutions to 
be tested. The T(t) is the decreasing function of the 

temperature. Usually, this decreasing factor is around 
0.9. 

The second implementation of the SA is similar except 
that the 6 is obtained by the difference between the new 
and old values for the objective function value and some 
other small details. Hence, we will not detail this 

implementation any further. 

The membership functions of the fuzzy goal and 
constraints used in the two implementations are 
triangular functions. This choice was based on the 

necessity of obtaining results compatible with 
Zimmermann’s example. Any other membership 
function (e.g. sinusoidal) could have been used since 
there are no limitations of linearity when using the SA 

algorithm. For example, for the case I the the function 
is: 

R,(X) + ck 

d, 

RL(x) > ck + d, 

ck <R,(x)Ic,+d, 

where Rk =zakjXj or cgjxj and dk are the 

j j 
deviations from the crisp value. 

In summary, the main advantages of using simulated 
annealing (SA) for solving fuzzy optimization problems, 
as can be observed in both implementations, are (a) its 
convenience and easy development; (b) its flexibility 
regarding fuzzy linear or non-linear problems (see 
example in [lo]); (c) its easy modelling of the problem 
because no rigid structure is required; (d) and it does not 
require mathematical modifications on the problem for 
reasons of equivalence or others. The main disadvantage 
of the simulated annealing algorithm is the need to define 
the initial states that satisfy the constraints, for each 
variable. Another disadvantage is the tuning of the 
temperature because it can imply a bigger search and 
consequently more computing time. 

4. Example of fuzzy linear 
optimization 

4.1. Introduction 

Zimmermann’s example [13] is selected because it is a 
standard linear programming problem well-known and 
discussed in the literature [6, 81. The crisp linear 

programming example, to be tested with the SA 
algorithm is: 
Min 41400x1 +44300x, +48100x3 +49100x, 

s.t. 0.84~~ +1.44x, +2.16x, +2.4x, 2 170 

16x, +16x2 +16x, +16x, 2 1300 

x, 26 

x~,x2,x3,x~ 2o 

The crisp solution presented by Zimmermann is: 

Crisp solution: x1 = 6; x2 = 16.29; x3 = 0; x4 = 58.96; 
Z = 3,864,983. 



After obtaining the crisp results Zimmermann fuzzifies 
the problem, considering the following tolerance 

intervals: 

Lower Bound Deviation Upper bound 
(b+d) 

Z=bl= 3,700,OOO dl= 500,000 4,200,OOO 

c2= 170 d2= 10 180 

c3= 1,300 d3= 100 1,400 

c4= 6 d4=6 12 

In order to solve the problem the symmetric model of 
Bellman and Zadeh [l] is assumed, which considers that 
in a fuzzy environment there is no difference between 

goals and constraints. Within this model the objective 
moves into a constraint with a defined stretched boundary 
such as any other fuzzy constraint. The resolution 
process proceeds to transform the problem into a crisp 
one, using for objective the maximisation of the 
minimisation of the membership values of the 
constraints deviations, determined with functions similar 
to the ones presented on point 3. After, Zimmermann 
transforms the fuzzy problem into a crisp equivalent one 
(see details in [ 131) using an additional variable L, which 
represents the maximisation of the minimisation of the 
deviations, in the sense of the maxmin model. 

In order to compare Zimmermann results with the ones 
given by the simulated annealing algorithm the min and 
max operators were used. The results comparison of the 
two methods are depicted in Table 2 and Table 3 and 
discussed in section 4.3. 

4.2. SA Implementation Choices 

In the implementation of the SA algorithm it is 
necessary to choose the following parameters: how to 
generate a state y a neighbour of x; the aggregation 
function - Miu; the number of neighbour generated - 

N(t); the decreasing temperature function - T(t); and 
finally the stopping criterion. 

The choice of how to generate a state y as a neighbour of 

x, is done by defining a new state which is a random 
point y where the distance to the point x is random and 

less than t, defined by 

t<100 
loo~t<150 
150st<250 
250st<350 

t 2 350 

the operator used in this implementation is the t-norm 
min. The intersection represents the logical “and” to 

signify that all the constraints must be satisfied. As 
defined by Bellman and Zadeh [l] a decision is 
represented by the confluence of goals and constraints 
(intersection) and the best decision is the one with the 
maximum value. 

The choice for number of neighbours to be generated, 
N(t), follows the heuristic of generating 200 neighbours, 
if t < 400, and generating 250, if t > 400. This heuristic 

takes in account that more sons should be generated 
when the temperature, T, decreases to have more options 
to test. The temperature’s function T(t), is a function 
which uses a decreasing factor of 0.99. The stopping 
criterion used for the two implementation is reached 

when the temperature is less than 0.0001. 

4.3. Results Discussion 

First, we solved the crisp problem with the simplex 
algorithm and the SA. The results obtained for the 
objective function Z are equivalent, though with different 
solution for the variables because there are multiple 
solutions for the crisp problem. Secondly, we tested the 
fuzzy Zimmermann approach with the fuzzy SA 
approach. Table 3 depicts the results for the fuzzy 
solutions. 

The fuzzy results obtained for the Maxmin approach with 
the SA algorithm are also equivalent to the ones obtained 
with the Zimmermann method (table 3), considering the 
same aspect of having multiple solutions for the same Z. 
Table 3 also depicts two other results obtained with the 
second implementation of the SA (case 1 of table 1). For 
the first test it is set a threshold of 0.43 to compare with 
the aggregated value obtained in the Zimmermann 
solution. For the second test it is used a threshold of 0.6 
to verify the quality of the solution if the contraints are 

less violated. The results of the constraints violations are 
depicted in table 4. 

Comparing the results for the two implementations of 

the SA (case 1 and 3 of table l), the fuzzy-constraints 
with ~0.43 and the Maxmin, it can be inferred that the 
objective function results (respectively Z= 3,986,458 and 

Z=3,987,394) and the deviations for the constraints 
limits are quite close, except for constraint number C3. 
However, the implementation that considers degrees of 

satisfaction for its constraints is less demanding on the 
user since it does not require to pre-define a goal for the 
objective function and, moreover, a solution which 

ensures a degree of satisfaction for its constraints seems 
more reliable. 

The aggregation function selected is the intersection, and 



The second test performed with the SA (Case 1, table 1) 
using a better satisfaction degree for its constraints 
(p>O.60) presents a worse result for the objective 
function (2=4,035,284) but still well below the goal 

limit of the 4,200,OOO and has the advantage of ensuring 
an overall degree for the constraints satisfaction of 60%. 

Table 3 - Problem Results 

IC3 1 17.4 1 15.213 1 16.83 1 17.28 

Table 4 - Miu Results 

Miu* is the ggregated (intersection) memberships of the 

constraints and goals for Maxmin results. 

Observing now table 4, we can see that the SA provides 

several advantages regarding the Zimmermann approach. 
First, it tell us all the contraint violations and not only 
the aggregated value. Second, if it is used the 

implementation where the thresholds can be defined, the 
decisor can select the degree of satisfaction for his/her 
constraint, i.e. the degree of violation allowed. 

In summary, the use of SA seems more flexible and 

adaptable to fuzzy optimization problems than the crisp 
mathematical transformations required in Zimmermann 
method. The implementation of only fuzzyfying the 
constraints and leaving the objective function crisp, has 

the advantage of not having to stipulate a goal and the 
respective deviation. Many times it is quite dificult for a 
decisor to set a goal, since what he wants is the 
maximum or a minimum for his/her problem. The main 

disadvantage of the SA approach regarding the 
Zimmermann one is the last ensures the optimum while 
the former gives the best approximate result. 

5. Conclusions 

This research contributes to the quest of improving fuzzy 
decision support models. As Zeleny rightly states: “the 
question is no longer how to formalise, reduce or remove 
the conceptual imprecision and fuzziness (the ‘crisp’ 
treatment of ‘fuzzy’ systems), but how to enhance, 
amplify and utilise natural vagueness and fuzziness to 
reflect the purposes of human communication, co- 
operation and knowledge production.” [l 11. 

This paper shows that the simulated annealing algorithm 
is a good candidate tool for solving fuzzy linear 
optimization problems without requiring mathematical 
reductions or transformations. A fuzzy linear example is 
compared with Zimmermann’s first fuzzy approach and 
the simulated annealing one, in order to highlight their 
main differences. 

In a future work the authors are planning to solve fuzzy 
optimization problems with genetic algorithms to 
evaluate the performance of the simulated annealing 
algorithm. Another interesting comparison, under 
consideration, is to evaluate the results obtained with the 

SA and the Tabu search algorithm. 
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