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EXPONENTIALLY-WEIGHTED ITERATIVE SOLUTIONS FOR 
WORST-CASE PARAMETER ESTIMATION * 

A. H. SAYED, A. GARULLI, V. H. NASCIMENTO, AND S. CHANDRASEKARAN 

Abstract 
This paper proposes an iterative scheme for worst-case 

parameter estimation in the presence of bounded model 
uncertainties. The algorithm distinguishes itself from 
other estimation schemes, such as errors-in-variables and 
H, methods, in that it leads to less conservative designs 
since it explicitly incorporates an a-priori bound on the 
size of the uncertainties. It also employs an exponential 
weighting scheme where data in the remote past are given 
less weight than the most recent measurements. This fea- 
ture is especially useful in tracking problems where re- 
cent observations carry more information about the cur- 
rent value of the unknown parameter. Simulation results 
are included to demonstrate the performance of the recur- 
sive scheme. 

1. INTRODUCTION 
In recent work [l]-[3], we have introduced a new formu- 

lation for parameter estimation in the presence of bounded 
uncertainties in the data matrix (or regression vectors). 
Compared to earlier approaches in robust estimation, such 
as H, and errors-in-variables methods (or Total Least 
Squares) [4]-[9], th e new formulation incorporates an ad- 
ditional bound on the size of the mismatch between the 
nominal model and the accurate model. In so doing, the 
resulting solution is guaranteed to be robust with respect 
to uncertainties that lie within a specified domain, thus 
avoiding an overly conservative design. 

A complete closed-form solution for the new estima- 
tion problem, in terms of the unique positive root of a non- 
linear equation and the SVD of the nominal data matrix, 
has been obtained in [13-[2]. A recursive procedure that 
is useful for on-line estimation contexts has been derived 
in [3] by establishing that some of the fundamental equa- 
tions in [l] induce a contractive mapping. By invoking the 
Contraction Mapping Theorem [lo], the reference [3] fur- 
ther showed that the unique fixed point of the mapping 
can be approximated to good accuracy via an iterative 
scheme. In this way, an approximate recursive solution, 
similar in nature to RLS (recursive least-squares) [11,12], 
was derived that allows to update the solution of the new 
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estimation problem without the need for explicit SVDs 
and for the solution of the nonlinear equation. 

In this paper, we provide an overview of some of these 
results and then address some new issues by modifying the 
original formulation in order to incorporate exponential 
weighting of the data. This modification is better suited 
for tracking applications, where the unknown weight vec- 
tor may vary with time and, correspondingly, the effect 
of earlier regression vectors on the current solution should 
be minimized. 

2. PROBLEM FORMULATION 
Let II: E R” be a column vector of unknown parame- 

ters, b E Rm a vector of measurements, and A E Rmx”, 
m > n, a known full rank matrix. The matrix A repre- 
sents nominal data in the sense that the true matrix that 
relates b to x is not A itself but rather a perturbed version 
of A, say b = (A + 6A)x + w. The perturbation 6A is not 
known. What is known is a bound on how far the true 
matrix (A + 6A) can be from the assumed nominal value 

A, say 11~412 I rl ( in t erms of the 2-induced norm of 6A, 
or equivalently, its maximum singular value). 

For example, x can denote the coefficients of an FIR 
filter, the rows of A + SA can denote the successive state 
vectors, and the entries of b will then denote the result- 
ing noisy measurements of the output of the filter. Due 
to several reasons (e.g., measurement errors, modeling er- 
rors), we do not have access to the true rows of (A + SA) 
but only to the nominal data A. The perturbation in b 
is therefore due to both w and the mismatch between the 
nominal and true data. 

We pose the problem of finding an estimate 2 that 
performs “well” for any possible perturbation 6A. That 
is, we would like to determine, if possible, an P that meets 
the worst-case criterion 

,,6y,rs17 II (A + W .g - bllz . 2 > (1) 

Any value that we pick for 2 would lead to many residual 
norms, ]I (A + SA) . 2 - bl]s, one for each possible choice 
of A in the disc (A + 6A). We want to determine the 
particular value(s) for 2 whose maximum residual is the 
least possible. It turns out that this problem always has 
a unique solution except in a special degenerate case in 
which the solution is nonunique. 

The problem also admits an interesting geometric for- 
mulation that is described in [1,2]. 

1 



3. AN ALGEBRAIC SOLUTION 
It can be verified that problem (1) reduces to the 

equivalent minimization problem: 

m,@ (IIA .P - 412 + rl. 11~112) , (2) 

where the costs function L:(g) = [IA * ii - bll2 + 77 . II412 
is convex in li. Note that it involves the Euclidean 
norms of certain vectors rather than their squared 
Euclidean norms (as in regularized least-squares prob- 
lems). For this reason, the solution is more involved. The 
following theorem is a special case of the main result in [l]. 

Theorem 1. Assume that b does not belong to the column 
space of A. Then the solution of the min-max estimation 
problem can be constructed as follows. Introduce the SVD 
ofA: A=&[ CT 0 1’ . VT, partition the vector UTb 

into UT.b = [ cT dT I’, where c E R” and d E Rm+, 
and introduce the secular equation 

where 

f2 = f(Q) (3) 

1 II d II; + a2. 
f(Q) = rl 

11 (c2 + a!I)-l c ll;}1’2 

11 c (C2 + aI)-l c 112 . (4 

Define r = w. Then 

1. If n > r, the unique solution of (1) is 4 = 0. 

2. If n < r, the secular equation (‘3) has a unique posi- 
tive solution & and the unique solution of (1) is given 

by 
P = (ADA + BI)-l ATb . 

It also follows that & is equal to 

& = rl II A4 - b II2 
II~ll2 . 

(5) 

(6) 

Remarks. The assumption that b does not belong to the 
column space of A is equivalent to d # 0. It also requires 
m > n since A is assumed full rank. If b belongs to the 
column space of A, then the solution of problem (1) is 
only slightly more involved (see [l] for details). The basic 
task, however, is still to find the unique positive solution 
of the secular equation (3). 

Also, expressions (5) and (6) correspond to two equa- 
tions in the two unknowns li and 8. By substituting (5) 
into (6), and using the SVD of A, we obtain the nonlinear 
equation (3) and (4). 

Observe further from (5) that the expression for P 
has the form of a regularized solution, except that the 
regularization parameter & is not given a priori but has 
to be determined as the unique positive root of a secular 
equation. In this sense, we say that the solution involves 
automatic regularization. 

4. EXPONENTIAL WEIGHTING 
The rows of the data matrix A can be further weighted 

in order to give more or less significance to individual rows. 
Consider, for example, a tracking application where it is 
required to keep track of a weight vector z that might be 
changing with time. In this case, additional data measure- 
ments, in the form of additional rows to the data matrix 
A and additional entries to the data vector b, are contin- 
uously collected and used in updating the estimates for 
x. It is then natural to require that the top rows in A 
and the top entries in b, which correspond to data in the 
remote past, be given less weight than the most recent 
measurements since the latter measurements carry more 
information about the current value of the unknown x. 

We use here one particular form of data weighting 
that has been used extensively in the adaptive filtering 
literature, viz., exponential weighting [11,12]. 

Let 0 << X < 1 be a number that is close to one and 
define A, = diag{Xm-‘, Am-‘, . . . , X, 1). Introduce also 
the weighted quantities 

ii = hz2A, 6 = Az2b, 152 = hg26A 

Since ]]Az2]]2 = 1, it still holds that ]]&A]] 5 r]. We can 
then pose the weighted min-max problem 

mp ,,ay,~50 II (A + sA) .p - 6112 
( 

. 
2 > 

The solution is still given by Thm. 1 with A replaced by 
A, the SVD of A replaced by the SVD of A, and b replaced 
by 5. 

5. EXACT TIME-UPDATES 
We now apply the above results in the context of re- 

cursive estimation. So consider the linear regression model 

yt=(at+Sat)Tx+vt ) t=1,2,... (8) 

where yt E R is the output, (ut + Sat) E R” the regression 
vector, x E R” the unknown parameter vector, and vt E 
R a measurement noise affecting the output. 

Assume that the regression vector is not known ex- 
actly, while at and yt are observed and a bound on the 
perturbation 6at is available, say ]]6at]]s 5 e for all t. 

At each time instant t, we construct the quantities 

At=[;], bt=[l]; 6At=[:$].Pj 

They contain the data up to time t. We then pose a min- 
max estimation problem of the form: 

min It ,,6z,p57)t II (At + JAt) xt - bt II2 (10) 

for some bound r]t on the size of SAt. The corresponding 
solution is denoted by &, and it is the best estimate that 



can be obtained in the above sense by using the data up 
to time t. Now, in view of the properties of matrix norms 
[5], we have 116At 112 5 E . &, which provides a possible 
choice for T]t in terms of the given value of E. This choice 
might be inconvenient since it grows with time. 

We instead pose an exponentially-weighted min-max 
problem, with 

jj 
t 

zz A112A 
t 

t , bt = A;12bt , &it = A;126At . 

In this case, we easily verify that 

II&l12 I 

J 

‘&k2 = c. /s < mm& . 
j=l 

Hence, we can use vt = E 

problem of interest become? E ” for a11 t7 and the 

min -mu zt IlWlzL~ II (At + a) xt - 6 112 (11) 

We shall also denote its solution by Pt. We further assume 
that, for all t, bt does not lie in the range space of At in 
order to avoid degenerate solutions. 

We solve (11) for time instants t > n so that the 
successive matrices & have more rows than columns (as 
required by the statement of Thm. 1 and the remark 
after it). So let t, denote our initial time instant (say, 
t, = n + 1). Let {?t}& denote the successive solutions 
fort=tc,.. . , N of problem (ll), viz., 

ft = (ATA, + btI)-l q-lit ) 

where, in view of (6), & is related to & via 

Likewise, at time (t + l), the optimal solution is given by 

&+1 = (g+Jt+l + &+d)-l A;+,,&+1 , (14) 

where &+I satisfies a similar relation to (13) with time t 
replaced by (t + 1). Using (12) and (14)) we can find an 
expression that relates the optimal solution &+I to the 
optimal solution & as follows. Define 

ht+l = (A:+‘,,&+, + &I)-1 A:+,,&+1 . 

Comparing with the expression (14) for &+I we see that 
ht+l approximates kt+i by using & instead of &+I. By 
further noting that 

AT-+,A+1 = AA:& + at+lar+l , 

$+1&+1 = #-6 + at+1yt+1 ) 

we obtain the following result for t 2 t,. 

Theorem 2. For t 2 t,. 
IW-iitll2 

Let 11 = e/JCX If q 2 

,,i,,,, then &+i = 0. Otherwise, 

ht+l = & + 
X-s%+1 

1 + X-la~++lP,a,+, (Yt+1 - a:+,%) , 

ft+1 = [I - (&+I - &)Pt+l] ht+l , 
pt$l = M-l + a,+1a,T,, + (&+I - X&t)1 , (15) 

where {&,&+I} are the unique positive solutions of the 
respective secular equations cxt = ft(at) and at+l = 
ft+1 (at+1 1. 

n 

The recursive algorithm of Thm. 2 still requires the 
computation of the unique positive solution &t of the secu- 
lar equation equation (3) at each time instant t (using the 
exponentially weighted data). The complexity of this task 
can be reduced if we replace the exact solution & by an 
approximate solution, say Zt. In the next section, we first 
derive such an approximate scheme and then justify our 
reasoning by noting that it relies on a useful contractive 
property of the secular function ft. 

6. APPROXIMATE TIME UPDATES 
Recall that the optimal value of &+I is given by (cf. 

(13)) 
&t+l = rl II ~t+p-Pfl II2 , 

(16) 

where &+I is given by (14). If we replace (14) into (16) 
we obtain the secular equation whose unique positive root 
is &+I. We would like instead to come up with an ap- 
proximate procedure that avoids the need for explicitly 
working with the secular equation. 

For this purpose, assume that we have solved the es- 
timation problem exactly up to time t, and hence have 
available {lit, ht+l, &t}. We then replace Pt+i in the ex- 
pression (16) for bt+i by its approximation ht+l and, in 
this way, define an approximate value for &+I. We shall 
denote this approximate value by &+I, 

Et+l = rl II A+;;;1 yt+l II2 
(17) 

t+1 2 
This step amounts to applying one iteration of the secular 
function ft+l using as initial condition &, 

%+1 = ft+1(&) . (18) 

The resulting value is taken as an approximant for &+I. 
We shall show in Sec. 8. that, for any positive initial con- 
dition &, if we repeatedly apply ft+i we can get arbi- 
trarily close to the desired optimal value &+I. This fact 
provides an analytical justification for the approximation 
(18), except that here we are limiting ourselves to a sin- 
gle iteration for ease of implementation. More iterations 
would certainly lead to different procedures, with higher 



complexity and better accuracy. Simulations in [3] show 
the good accuracy of the single iteration procedure. 

Once Zt+l is obtained, we need to proceed to the next 
step and evaluate &t+z. Now, however, we do not have the 
exact value for &+I, but only its approximation. For this 
reason, we can not compute the exact quantity ht+z but 
only an approximant for it, say 

%+a = (A;+&+2 + Et+& @I&+2 . 

This in turn is used in an expression similar to (17) to pro- 
duce i&+2, and so on. In summary, our iterative procedure 
takes the form 

Et+2 = rl II At+;:;2 ;,a,+2 112 ) 
(19) 

t+2 2 

which corresponds to Z&+2 = ft+2@t+d. Let 

% = (AT& + ZJ)-lAr& denote the resulting ap- 
proximation for & at time t. [Note that we are using long 
overbars for approximate quantities, and short overbars 
for exponentially weighted quantities]. The following 
recursions for the approximate quantities hold. 

Iterative Algorithm. Set ?&,, = &, and ?%‘tto = &to, 

and let pt, = (AZ&,, +~t~l)-‘, z$,, = llbt,,IIg, and q = 
e/m. That is, at time t, we have an exact weighted 
min-max solution. Now, for t = to,. . . , N we repeat: 

h-1 = 
i 

X-l7 a 
zt + 

t t+1 

1 + X-ia,T+,Ftat+i 
(yt+l - a,T+,%) 

I 

2 
%+1 = x2; + y;+1 

Pt = E~+l(AF~l + at+laT+l - X&l)&+1 

Qt = Z+l CAFl’Tt + at+lyt+l) 

a+1 = ,, Et:, ,,2 kZ+1 +pt - Qtl 
l/2 

--1 
P 

--1 

t+1 = Apt + at+laF+l + [Zt+l - &]I (20) 

%+1 = [I - C&+1 - ~~t)R+1] Et+1 

7. A FAST ITERATIVE ALGORITHM 
The recursions can be interpreted as follows. The al- 

gorithm computes an ht+i first. Its expression is very sim- 
ilar to the update expression of an exponentially-weighted 
recursive least-squares (RLS) algorithm that updates an 
estimate Ct to a new estimate ?&+I according to the rule: 

i 

X-l7 a 
%+1 = zt + 

t t+1 

1 + X-la,T+,Ftat+l 
(Yt+l - aT+l%t) . 

1 

The corresponding FFil in RLS would be obtained via a 

rank-one undate of the form Fz,‘, = XFyl + at&l aL,. 

The iterative min-max algorithm, on the other hand, up- - 
dates ?i?t into ht+l first and then uses ht+i to compute the 
new estimate ?&+I. The value of &+r is further used to 

update Et to &+I. Moreover, the new matrix PFil is ob- 
tained from the older matrix not just through a rank-one 
update but also through an additional scalar multiple of 
the identity matrix. 

Since the min-max iterative scheme requires the in- 

version of the (n x n)-matrix FL1 at every step, we see 
that the computational complexity of a single iteration is 
O(n3) as it stands. This is an order of magnitude higher 
that the traditional recursive least-squares (RLS) algo- 
rithm. The lower cost in RLS is obtained by propagating 
Ft rather than its inverse through a (simplified) Riccati 

recursion. This is possible in RLS since F$ is obtained 

only through a rank-one update of AFL’. 
For the iterative min-max algorithm, however, the fact 

that the computation of FL:, also involves a multiple of 
the identity matrix does not allow for an immediate fast 
recursion for the explicit update of Ft+i. 

A way out of this difficulty is to employ a numerically 
stable O(n2) algorithm developed in [13] for updating the 
SVD of rank-one matrix updates. This would allow us 
to reduce the computational cost to O(n2). It can be 
achieved as follows. 

Let U&U~ denote the eigendecomposition of XFF’. 
Let also VtI’tVtT denote the eigendecomposition of the 

rank-one update X7;’ + at+1 aT+i. The algorithm devel- 
oped in [13] allows us to update Ut to Vt and At to It in 
O(n2): 

ix--+ vt, At --+ l?t in O(n2) operations . 

Now recognizing that 

X~~l+at+la~+,+(~t+l-X~t)l = V,[rt+(Et+,-&)I]VtT 

we see that we can make the identifications: 

ut+1= t, V At+l = xrt + x(zt+l - xz,)I . 

This allows us to update {Ut, At} to {&+I, At+,} in 

O(n2). The {&,A,} completely specify {Ft, p;‘} and 
the algorithm can be completed in this way. 

8. CONTRACTION MAPPING 
We now return to our earlier remark after (18) that 

if the function ft+r is applied repeatedly to an arbitrary 
positive initial condition, then the result gets arbitrarily 
close to its unique positive root. This fact was used to 
justify the approximation (18). 

Indeed, returning to Thm. 1, we now argue that a 
good approximation for & can be obtained by alternatively 
iterating the man defined by f [3]. 



Define the recursive equation 

Ql(i+l) = f(&‘) , &) - - positive initial condition. (21) 

The following result can be established by invoking the 
Contraction Mapping Theorem [lo]. 

Theorem 3. Consider the setting of Thm. 1. Assume 
7 < r. For any positive initial value a(O), it holds that 
limi,, Ji) = h, where 13 is the unique positive solution 
of the secular equation (3). 

A proof is given in [3]. Here we demonstrate the va- 
lidity of the the theorem in the scalar-case, i.e., when x is 
one-dimensional (and therefore a scalar). So let 

A=aERmX1, E=x@kR, 

ATb=aTb=&%. c, CER , dERm-‘. 

Using the identity jlbll$ = dTd + c2, we can verify that 
expression (4) for f(a) reduces to 

f(a) = /3 1 da2 + 2a~ + (aTa)n , 

where we have defined 

+lm 
la*bl ’ 

n = (aT4(dT4 
bTb ’ 

It is clear that p < 1 since q < T, and 0 5 IE 5 (aTa) since 
(dTd)/(bTb) 5 1. The unique positive root & satisfies 
& = f (6). It then follows from (21)) and from the mean- 
value theorem, that 

(Ji+l) - & = f(&‘) - f(&) = f’(b) . (Q(i) - &) , 

for some point d between CE(~) and &. Here, f’ denotes 
the derivative function. We claim that 0 < f’(a) 5 ,b < 1 
for all o > 0. Indeed, the expressions for the first- and 
second-order derivatives of f are given by 

f’(4 = P(a + k) 
a2 + 2a6 + (aTa)K ’ 

and 
,d[(aTa)fc - K”] 

f”(a) = [a2 + zalc, + (aTa)K]3/2 2 ’ . 

This shows that f’(o) is a non-decreasing function of a. 
However, 

f’(0) = g I P and dim f’(a) = ,L3 . 

We therefore conclude that 0 < f’(o) 5 p < 1 for all 
a > 0 and 

,cP+l) - &, 5 p . ,a@) - 6, ) p < 1 . 

This relation establishes the convergence of crci) to 8 from 
any positive initial condition c&O). In the vector case, the 
argument is a bit more involved (e.g., [3]). 

The result of Thm. 3 suggests that recursion (21) can 
be used to approximate the exact solution of the min-max 
estimation problem. Starting from any a(‘) > 0 and com- 
puting p iterations of the map (21), we can approximate 
P in (5) with x (P) = (ATA + &‘)I)-‘ATb. We have used 
an approximation that is based on a single iteration in 
(18). Several simulations on randomly generated data 
have shown that in general good approximations can be 
obtained with very few iterations [3]. This is particularly 
useful in recursive estimation contexts, as we explained 
in an earlier section. 

9. SOME SIMULATIONS 
In [3] we compared the performance of the iterative 

algorithm with the exact solution of Thm. 2. Here we 
provide alternative simulations that compare the perfor- 
mance of the algorithm with TLS and RLS. 

To begin with, consider an FIR filter that is perturbed 
by an additive noise term vt, 

Yt = Xl% + xfut-1 + vt , 

where x = [zr x2] is the vector of unknown parameters 
that we want to estimate. Assume that at time t, noisy 
measurements are available for the {ut}, say {ut + 6ut}, 
where vt and 6ut are taken as i.i.d. noise sequences satis- 
fying ]vt] < v,,, ]Sut] < wmax, respectively. 

The recursive min-max estimation algorithm can be 
applied by setting 

At=if:~ u;!;f;ml], /I_[ fl, 

and by taking E = fi wmax and rl= E&. 
In Fig. l(a) and (b), the estimates provided by the 

recursive min-max algorithm (solid lines) have been com- 
pared to those obtained using the well-known Total Least 
Squares algorithm (dashed lines). In the simulations, a 
square wave of amplitude 1 has been chosen as the input 
ut, and the noise sequences have been randomly gener- 
ated with w,~ = 0.1 and v,, = 1. The reported re- 
sults are averaged over 10 different noise realizations. It 
can be noticed that the min-max estimates outperform 
the corresponding TLS estimates in this case. One rea- 
son for this behaviour can be found in Fig. l(c), where 
the worst-case min-max residual (solid line) has been com- 
pared to the corresponding TLS square error (dashed line) ,. 
II(At + SAtPtls - b t 2, where JAAt is the TLS estimated II 
correction for the matrix At. This correction results overly 
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Figure 1: (a),(b) M’ - 272 ma2 (solid lines) and total least 
squares (dashed lines) estimates of the FIR parameters. 
(c) Comparison between the residuals. 

conservative, especially when the measurement noise vt is 
much greater than the input noise wt. 

In another set of simulations, we have compared the 
performance of the min-max recursive solution with the 
exponentially weighted RLS solution. Figs. 2-4 show some 
typical results. They plot the norm of the error vector 
x - ??t as a function of time, averaged over 40 trials. The 
numerical values used were n = 5 and X = 0.95. 
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Figure 2: Dashed line is the RLS weight error norm, while 
the solid line is the min-max weight error norm. This 
simulation used e = 0.25, IlAllz = 20.7, r] = 1.34, and 
x = [-0.0134, -0.0316,0.0265, -0.0114,0.0132]T. 
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