
The Finite Inclusions Theorem: A Tool for Robust Design 
T. Djaferis 

Department of Electrical and Computer Engineering 
University of Massachusetts, Amherst, MA 01003 

djaferisQecs.umass.edu 

Abstract 

Methods for robust controller design, are an in- 
valuable tool in the hands of the control engineer. 
Several methodologies been developed over the years 
and have been successfully applied for the solution 
of specific robust design problems. One of these me- 
thods, is based on the Finite Inclusions Theorem (FIT) 
and exploits properties of polynomials. This has led 
to the development of FIT-based algorithms for ro- 
bust stabilization, robust asymptotic tracking and ro- 
bust noise attenuation design. In this paper, we con- 
sider SISO systems with parameter uncertainty and 
show how FIT can be used to develop algorithms for 
robust phase margin design. 
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1 Introduction 

Over the last thirty years, a multitude of techniques 
have been suggested for robust controller design. Some 
the most popular are Hm, LQG, Parameter Space 
Methods, QFT, each with its own special characteri- 
stics and strengths. In recent years, we have been pro- 
moting a robust control synthesis method [l], which 
is Nyquist Theorem based and employs the Finite 
Inclusions Theorem. It exploits properties of polyno- 
mials and has been used to solve problems of robust 
stabilization, robust asymptotic tracking and distur- 
bance rejection, for systems with parameter uncer- 
tainty. It has also been applied to problems with 
multi-objective performance specifications (see [l]. FIT 
synthesis, takes a given design problem and formula- 
tes it as a simultaneous polynomial family stabiliza- 
tion problem. The controller is then computed itera- 
tively, where at each iteration (for SISO systems) a 
set of linear inequalities is solved. In this paper, we 
demonstrate how a design problem with robust phase 
margin specifications can be solved using FIT synthe- 
Sk 

For a stable feedback loop, the phase margin is one 
of the most important system parameters. Firstly, it 
provides information on what it might take in order 

to destabiie the system. Secondly, it characterizes 
indirectly the transient response to external inputs. 
For this reason it is quite common for design requi- 
rements to include a specification on phase margin. 
Its importance has long been recognized by control 
engineers and for SISO systems without uncertainty, 
any good undergraduate control text will include al- 
gorithms for design. Usually, these are frequency do- 
main techniques which are implemented by trial and 
error. One can also find quite elegant results [2, 31, 
that in certain cases give formulae for achievable gain 
and phase margins and also provide constructive me- 
thods for controller design. 

The design for guaranteed phase margin becomes 
much more complex, when the plant description in- 
volves uncertainty. The phase margin requirement 
can be taken into account by including additional pa- 
rameter uncertainty in the plant dynamics. After in- 
corporating this in the plant uncertainty, the overall 
structure may not conform to that required by exi- 
sting robust synthesis techniques for “tight” results. 
One is then faced with a decision: Either express the 
design problem in an “exact” manner but then have 
no computationally efficient techniques for solving it, 
or introduce some type of “overbounding,” which de- 
stroys ‘exactness,” but makes the design problem 
computationally tractable. It is clear from this di- 
scussion, that it is best to develop problem formula- 
tions that both reduce conservatism and lead to com- 
putationally attractive controller synthesis methods. 

In this paper, we deal with the SISO problem of 
controller synthesis for guaranteed phase margin, when 
the plant includes parameter uncertainty. We first 
formulate the problem it in terms of polynomial fa- 
mily stabilization. The resulting family of polynomi- 
als can be thought of as having real parameter un- 
certainty and complex coefficients. Having posed the 
design as a robust polynomial stabilization problem, 
we then show how the Finite Inclusions Theorem [l] 
can be used to develop algorithms for robust con- 
troller synthesis. These are iterative algorithms, in- 
itialized by a certain controller that achieves some 
phase margin, which is less than the desired. At each 
iteration, a new controller is computed that achie- 
ves larger phase margin. The procedure is termina- 
ted when (if) the desired margin is reached, or some 



“stopping” criteria are met. The robust phase margin 
design problem can certainly be attacked using H, 
techniques (in addition to others). This however, will 
require rather conservative overbounding. When no 
plant uncertainty is present, very precise results have 
been reported in [2] (based on techniques developed 

iIl PI). 

In Section 2 we show how to formulate the phase 
margin problem as a robust polynomial stabilization 
problem. In Section 3 we state the Finite Inclusions 
Theorem which provides the foundation of our syn- 
thesis algorithms. In Section 4, a FIT-based synthesis 
algorithm is presented. In Section 5 we apply these 
algorithms to examples, and in Section 6 present some 
conclusions. 

2 Formulation 

Consider the feedback system shown in Figure 1: 

Figure 1: Unity Feedback Configuration, Parametric 
Uncertainty 

The plant family is strictly proper and given by: 

P(s a) = np(S, 9 
444 4 

where $(~,a) is manic of degree fi, and a is a k- 
vector of parameters, taking values in some given set 
0, C Rk, (R denotes the set of real numbers). Spe- 
cifically, let Sl, = {a E R’ IaL 5 cq 2 c$, 15 i 5 k}, 

ai < 0, (Li+ > 0, 1 < i 5 k. The coefficients of 
nJs, a), $(s, a) are in general polynomial expressi- 
ons of the uncertain parameters. The numerator and 
denominator polynomials are coprime for all values 
of a E Q, and the plant, when a = 0, will be 
referred to as “nominal.” The controller is given by 

CM = #, and the loop transfer function is: 

L(s, a) = w = $#$$j. The closed loop 

characteristic polynomial can then be expressed as: 

4(s, a) = dr(s,a) + nz(s, a) (2) 

Let b be the complex parameter which takes values 
on the unit circle in the set: &, = (e-je] - 81 5 8 5 19r}, 
where 81 is some given angle in the range 0 < 81 5 z. 
One can immediately state the following result: 

Proposition 1 The feedback loop in Figure 1 is ro- 
bustly stable and each plant has phase margin greater 
than 81 if and only if the polynomial family &,(s, a, b) 

=h(s,a) + b nl s, a ( ) is robustly stable for all a E n, 
and b E f&,. 

Proof A 
Let us first show that the result is true for the no- 

minal plant and nominal characteristic polynomial. 
The proof for the entire plant family follows directly, 
as ‘we can repeat the “nominal” arguments for each 
member of the plant family. 
Suppose first that &,(s, 0, b) = dr(s, 0) + bnr(s, 0) 
is stable for all b E nb. Since the set nb includes the 
value 1 the closed loop will be stable. Let us first as- 
sume no poles or zeros of the loop transfer function on 
the imaginary axis. Stability of the nominal implies 
that the image of the Nyquist Path encircles the -1 
point an appropriate number of times. Suppose then 
that the phase margin is less than 01. This implies 
that the image of the Nyquist Path (under L(jw, 0)) 
intersects the unit circle at a point with phase in the 
range (n - 81, x + fir). In particular there exists a 
frequency wr and a point br in nb such that: 

n&wl, ‘1 -b 

dz(h,O) = ’ 

This implies that (“*” denotes complex conjugate): 

or equivalently that: 

dr(s,O) + b;nr(s,O) = 0 (5) 

This means that the polynomial &(s, 0, b;) has a 
root on the imaginary axis which is a contradiction. 
A similar argument can be used for the case of ima- 
ginary axis poles or zeros. 

We now prove the converse. Suppose that di(s, 0) 
+ nr(s, 0) is stable and the loop has phase margin 
greater than 81, but assume that &(s, 0, b) = dr(s, 0) 
+ bnr(s, 0) is not stable for all b E nb. Since 
&,(s,O, 1) = dl(s,O) + nr(s,O) is stable and the 
coefficients of &,(s, 0, b) depend continuously on b, 
there must exist a br E @ and a frequency wr such 
that: 

dl(jwl,O) + bm(jwl,O) = 0 (6) 
If dl(jwI, 0) = 0 then nl(jwr, 0) = 0 and 4,nr 
would not be coprime. Therefore, dr(jwr,O) # 0 
and we must have: 

m(jw, 0) 
di(jwl, 0) = -l/h 



But this contradicts the assumption that the phase 
margin is greater than Br . 0 

3 The Finite Inclusions Theo- 
rem 

Consider a polynomial family 4(s, a) with real para- 
meter uncertainty where the coefficients may lie in 
C, the set of complex numbers. The Finite Inclu- 
sions Theorem can be used to investigate robust l% 
stability. Specifically, let 

4(s, a) = 40(s) + 4441(s) + 4442(s) + 

. . . + 4a)hU(s) (8) 

where the q&(s), 0 5 i 5 u are given polynomials. 
Suppose that the parameter a takes values in the hy- 
percube n,. Further assume that ai( 1 5 i 5 u 

are polynomic in a and such that ai = 0. Denote 
by int I? the interior of some set I’. For such a family 
the following result (see [l]) holds: 

Theorem 1 (The Finite Iyclusiotis Theorem, FIT) 
Let 4(s, a) = Cy=, txj(a)d, a E Sa, n > 0, and 
(Yj : il, + C. Further, let I’ c C be a closed Jordan 
curve such that int I’ is convez. Then for all a E 
Q,, 4(s, a) ia of degree n and has all its roots in int 
I? if there ezists m 2 1 intervals (ck, dk) C R and a 
counterclockwise sequence of points Sk E P, 1 5 k 5 
m, such that 

vl<k<mmUX{dk+l - Ck,dk - Ck+l}<r 

maz(d, - (Cl + 2x4, ((a, + 2x4 - cm} 5 u 

vl 5 k 5 m$(Sk,n,) c sn; A (7+++‘> 0,8 E (Ck,dk)} 

As stated, the Finite Inclusions Theorem is much 
broader than what is needed for robust phase mar- 
gin design. Here we are just interested in Hurwitr 
stability. Furthermore, one can immediately see that 
it can be used to express conditions for simultaneous 
stability of a finite number of polynomial families. 

It is evident from the above discussion, that FIT 
leads to conditions for robust, stability that are ex- 
pressed in terms of fitting polynomial value sets in 
sectors. There are no restrictions as to what should 
be the shape of these value sets. However, checking 
whether a value set with a %urved” boundary lies 
in a sector would in general involve a fair amount of 
computation and would certainly complicate the de- 
sign. If, on the other hand, the value set is a polygon 
checking whether it lies in a sector can be done by 
examining just the value set vertices. This fact intro- 
duces significant simplification and will be exploited 
in the development of design algorithms. 

4 An Algorithm.For Robust De- 
sign 

We are now in a position to state a FIT based algo- 
rithm for robust phase margin controller design. Let 
the controller in the feedback loop of Figure 1 be gi- 
ven by: 

C(s) = $j = 

.x2q+1sq + x2qs 
q-1 + 

SQ + xqs’l-l + 

*** + Xq+l ($q 

xq-1.w2 + . . . + Xl 

Let the controller parameters be grouped in the 
vector x = (21, x2,. . . , xzq+l) E Rd where d = 2q + 1. 
Now, polynomial family &ph(s, a, b) will have degree 
n = ii + q and one can immediately see that it has 
coefficients that are a&e expressions in x. This fact 
is crucial in our development, as it will allow us to 
use FIT and carry out an iterative controller design 
by solving linear inequalities. 

As mentioned above, FIT does not place any re- 
strictions on the structure of the parameter uncer- 
tainty in the plant. However, if we desire to use FIT 
as the basis of a controller synthesis procedure, it 
becomes advantageous to make some assumptions. 
Specifically, we will assume that the parameter un- 
certainty a, appears in the numerator and denomi- 
nator of the plant family in a multiafine manner. 
We also overbound the set nb by some polygon &, 
(the simplest and most conservative being a single 
rectangle). This will ensure that the corresponding 
value sets can be easily overbounded by convex poly- 
gons, and the polynomial &,(s, a, b), can be thought 
as having real parameter uncertainty and complex co- 
efficients. In view of these two assumptions, locati- 
ons of value sets can be deduced from the location 
of their extreme points (a finite set). This dramati- 
cally reduces the computational burden of the con- 
troller synthesis procedure. However, this comes at 
the expense of introducing conservatism in the solu- 
tion. Let a& = 62, x &,. Let us now pose the 
following robust controller design problem for the sy- 
stem in Figure 1: 

l Robust Phase Margin Problem: Find (if possi- 
ble) a controller of order q that robustly stabi- 

l&es #&s, a, b), for (a, b) E nab. 

This can be attacked directly using FIT, as it is a 
robust polynomial stabilixation problem. We do this, 
using an algorithm suggested in [l]. One needs to 



first choose an initial‘controller x(l), which robustly 
(l) stabilises f&,(9, n,b , x (l)), where nsl = !$l x 

n$) C nab. The controller can be designed by em- 
ploying any design technique. T,his controller is then 
iteratively improved upon using FIT. At each itera- 

tion, frequencies k$j’ are found which place the value 

sets &h(j@, n$.), x(j)) in their corresponding sec- 

tors SF’. By FIT, this guarantees the robust stability 

of &,(s, nyi, x(j)). At each iteration the uncertainty 

set D$) is enlarged. Initially, only the b parameters 
are affected until (if possible) for some j, the desired 

phase margin is attained @ = n,. Once this is 
accomplished the procedure continues this time with 

an enlargement of Slz) where the a parameters are af- 
fected and the b parameters remain unchanged. The 

algorithm terminates when (if) n$’ > &, with x(j) 
being the desired controller. In what follows, ExtS, 
denotes the extreme points of the set S. 

Robust Phase Margin Synthesis Algorithm 

Let x(l) E Rd and nrbJ C flab be such that 

&,(s, n$), x(l)) is stable and set j:=l. 

Determine m(j) > 1 sectors SF),1 5 k 2 m(j), 

and frequencies $ along the jw axis 

such that &,h(~k , Ext ntb),&)) c Sf) 

(j) BY FIT, hd% &, ,x (j)) is stable. Each WY) 
should roughly center (angularly) the set 

fPph(Wf 1, Eat n$;,(j)) b sf’. 

Choose a slightly larger set a%“’ > Sap’. 
First this should affect the b parameters. 

When (if) @’ .I &,, the enlargement 
in the b-direction terminates and the 
enlargement in the a-direction commences. 
Compute new vector of controller parameters 

x(j+l) such that &,h(jwf), Ext Slfb+‘), &+l)) 

csp for all k. Note, this is equivalent to 
solving a system of linear inequalities in &+l). 
If no solutions exist to this system of 
inequalities, return to Step 3 and choose 

a smaller D$+l). 

otherwise, go, 10 Step 2.‘” ’ Dab’ stopi 
Let j:= j+l andif. 

This is one of several FIT-based algorithms that 
can be suggested. Clearly, as stated, the algorithm 
may never terminate but appropriate “stopping” con- 
ditions can be added. We should also note, that se- 
veral possibilities exist for the choice of the polygon 
that overbounds &,. Some choices do allow for a 
synthesis procedure that guarantees a robust phase 
margin as well as some robust gain margin. This is 
immediately true if one uses a rectangular overbound 
of nb (see Example 1, in Section 5). 

Very frequently in control design., one is faced with 
having to satisfy a number of requirements (including 
one on phase margin) simultaneowly. The FIT-based 
approach, would formulate .each as a robust polyno- 
mial stabiiation problem and then employ the Si- 
multaneous Stability Finite Inclusions Theorem (see 

rg>. 

5 Exampies 

EXAMPLE 1 
In our first example, the plant does not include any 

uncertainty. It is given by the transfer function: 

44 
s-l 

P(S) = dpo = 3 - s - 2 (10) 

which is unstable and nonminimum phase (see [2]). 
Our design objective is to design (if’possible) a first 
order controller that has phase margin of at least 25O. 
This implies that the set nb = {es@] - 25O 5 8 < 25’ 
The problem will be solved, if a first order controller 
can be found, that robustly stabilizes the polynomial 
family: 

&ph(s,b) = .4(s) + h(s) (11) 
for all b E Db. In order to apply the FIT-based al- 
gorithm suggested earlier, we need to overbound the 
set nb by some polygon. The simplest, but most con- 
servative way, is to overbound it by a single rectangle, 
as shown in Figure 2. 

Im 

t 

Figure 2: Rectangular Overbound of the set fl+ 

Note, that in robustly stabilising &,(s,&,), we 
will not only be achieving the desired phase margin, 
but impacting the gain margin as well. The FIT- 
based algorithm suggested in Section 4, can certainly 
be used. A number of possibilities exist for imple- 
menting the suggested algorithm and the one used 



here, takes a “reduced” set nap, and iteratively ex- 
pands it. In addition, we employ software written for 
implementing a version of this algorithm (see [l]). To 
initiate the process, the algorithm requires an initial 
controller. Using pole placement, we designed the 
controller: 

Co(s) = 
50.25s + 45.25 

s - 37.25 (12) 

that places the closed loop poles at: -1.5 f jl;-9. 
With this controller the phase margin (using MAT- 
LAB) is: -13.25’. With this initial controller, the 
software computed the controller: 

C(s) = 51.75s +’ 68.22 

9 - 40.11 (13) 
One can determine that this controller guarantees 

23.6’ of phase margin. However, overbounding has 
been introduced and the actual phase margin is lar- 
ger: -25.31’ at w = 1.293, which achieves our design 
goal. The Nyquist plot of the loop transfer function 
is given in Figure 3. 1 0.8 - ,/- -4-,* j - *. 0.4 ,0’ - I’ ‘\\ j 02 4 1” 
o.6; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . ,., \, : ..,.,........................... i I -02 \ -0.4 ‘NC- ’ -0.0 9.8 ~ m -1 -2 -1.5 FdAxk -05 0 

Figure 3: Nyquist Plot of Loop Transfer Function 

Some remarks are in order: First, there is no gua- 
rantee that a first order controller exists that pro- 
vides the required phase margin. Second, even if 
one did exist, there is no guarantee that our itera- 
tive algorithm would have computed it. It is clear 
that we have introduced conservatism in the solu- 
tion using the single rectangular overbound. Other, 
arbitrarily less conservative overbounds can also be 
used, which will however lead to additional computa- 
tions. Third, suppose that a higher order control- 
ler was allowed, would it improve the phase mar- 
gin? Exa mining Figure 3, we can speculate that this 
could be possible. In fact, one can show [2], that 
e rup = -2sin-l(1/3) = -38.94’. A word of 
caution should be stated at this point. Indeed, one 
can envision a controller design that “stretches” the 
Nyquist plot in order to achieve a larger phase mar- 
gin. Since phase margin is the only requirement, this 

“stretching” could reduce the gain margin to unrea- 
sonable levels. Therefore, the overall robustness pro- 
perties ‘of the loop could be compromised. Care must 
be taken so that this does not happen. 

EXAMPLE 2 
In this example we introduce plant uncertainty in 

the transfer function of Example 1, and solve the fol- 
lowing problem. Let 

‘(” a’) = ~~~‘~~~ = 92 + (-1 +“,,‘s - 2 - 2a I 1 _. . 
-. (14 

be an unstable and nonminimum phase plant family, 
where -.2 < al 5 .2. Our design objective is to 
design (if possible) a first order controller that pro- 
vides a robust phase margin of at least 15O. This 
implies that the set nb = {de1 - 15O 5 0 5 15O). 
This problem will be solved, if a first order controller 
can be found, that robustly stabilizes the polynomial 
family: 

&ph(s, al, b) = 4(s,al) + h(s) 05) 
for all b E fib and all al. To apply the FIT-based 
algorithm we overbound the set fib by a rectangle 
as in Figure 2. As an initial controller we use the 
one computed in Example 1, (13). Running the FIT 
software algorithm generates the controller: 

C(s) = 
49.76s + 60.83 

s - ‘40.28 (16) 

which guarantees a robust phase margin of -14.48’. 
Again because of the overboundmg introduced, the 
actual robust phase margin is: -15.5O, which meets 
the robust phase margin objective set. Figure 4, dii- 
plays the loop transfer function Nyquist Plots for a 
number of al parameter values. 
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Figure 4: Nyquist Plots of Loop Transfer Functions 



6 Conclusions 

In this paper we formulated and solved the robust 
phase margin design problem. The formrdation ex- 
ploited the fact that this problem can be posed as 
robust polynomial stabilisation problem. once that 
was done, a robust synthesis algorithm was suggested 
which is based on the Finite Inclusions Theorem. The 
algorithm was demonstrated on academic examples. 
Other design objectives could also have been included 
and the interested reader is directed to [l] for more 
details on how this can be accomplished. 
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