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Abstract 

This paper discusses the properties of reachability and 
observability for linear systems over the max-plus alge- 
bra. Working in the event-domain, the concept of astic- 
ity is used to develop conditions for weak reachability 
and weak observability. In the reachability problem, 
residuation is used to determine if a state is reachable 
and to generate the required control sequence to reach 
it. In the observability problem, residuation is used to 
estimate the state. As in the continuous-variable case, 
a duality also exists between the properties. Finally, an 
adjoint system is generated from the residual calcula- 
tion in the reachability case and utilized to generate a 
solution to the just-in-time (JIT) scheduling problem. 

1 Introduction 

The maxplus algebra can be used to describe, in a 
linear fashion, the timing dynamics of systems that 
are nonlinear in the conventional algebra. Examples 
of such systems include discrete part manufacturing 
lines such as automotive assembly lines and electronic 
circuit board assembly lines, as well as transportation 
and communication systems. The dynamics of these 
types of systems are governed by events rather than 
time as in the more familiar continuous-variable sys- 
tems. Because of their dependency on events, these 
systems have become to be known as discrete event 
dynamic systems (DEDS). For a special class of DEDS 
that do not contain routing decisions, it is well known 
that the dynamics of the timing of events can be writ- 
ten over the max-plus algebra [l, 2, 71. 

This paper discusses the system properties of reacha- 
bility and observability of event-index-invariant, linear 
systems over max-plus without the need of graph-based 
arguments. Analogous to the time-invariant case for 
continuous-variable systems, an event-index-invariant 
system is one in which the system parameters do not 
change with respect to the event index. Because the 
properties discussed here are not as strong as those in 
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the continuous-variable case. definitions of weak reach- 
ability and weak observability are introduced. Also, 
necessary and sufficient conditions for a system to be 
weakly reachable and weakly observable are presented. 
Definitions and conditions for stronger properties are 
under development. 

The paper is organized as follows. Section 2 briefly re- 
views linear systems over max-plus, Section 3 presents 
the system properties of weak reachability and weak 
observability, and Section 4 discusses the solution to 
the JIT scheduling problem. Section 5 concludes the 
paper and discusses further research. 

2 Max-plus Linear Systems 

The max-plus algebra is both a semi-field and a semi- 
ring. Also, it is a dioid [7], i.e., addition is idempotent 
which implies that there are no nontrivial inverses. Be- 
cause a multiplicative inverse does exist, however, the 
algebra is a semi-field. The max-plus structure used 
here is denoted as &,, and is defined next. 

Definition 1 (R,,, ) With R representing the. set of 
real numbers, the set RU { -LXI} with $ defined as max- 
imization and @ defined as conventional addition is a 
dioid and is denoted as R,,,. The identity elements 
for addition and multiplication are E = --o and e = 0, 

respectively. The symbol T is often used to represent 
co. By convention, cx + -CXI = T + E = E. 

In a similar fashion, let R,,, represent the dioid con- 
sisting of the set R U {-oo} U {LX}, and RA,, denote 
Rf U {-oo} where R+ represents the set of nonnega- 
tive real numbers. A natural order is imposed on two 
vectors Z, y E RL,, by defining x 5 y if x @ y = y. 
The Cayley-Hamilton theorem holds over max-plus as 
well, although in a slightly different form than in the 
continuous-variable case. As shown in [3], the charac- 
teristic equation, written in the indeterminate variable 
Z, of a n x n matrix A in Rkzg is given as pi(z) = 
pi (2) , where the coefficients of pi (z) and pi (z) involve 
finding the dominant of a matrix which for space con- 
sideration will not be detailed here (see [2]). Olsder 



and Roos show in [3] that the Cayley-Hamilton theo- 
rem holds in max-plus, that is pi(A) = pi (A). 

The general form of a linear, event-index-invariant sys- 
tem is given by 

X(k + 1) = AX(k) @ BU(k + 1) (1) 

Y(k) = CX(k), (2) 

where k E Nf = {1,2,. . .} is the event index, X(/c) is a 
n x 1 vector of completion times for the kth event, Y(k) 
is a m x 1 vector of system output times, and U(lc) is 
a p x 1 vector of part arrival times. The matrices A, B, 
and C are of the appropriate sizes, are functions of the 
system service and transportation times, and have en- 
tries ranging over IR,,,. The completion times evolve 
over the event index Ic according to (l), and the output 
times of the system evolve as specified in (2). Cohen et 
al. term this approach the “dater” representation since 
the dates or times of events are selected as the quanti- 
ties of interest [7]. A method to generate the algebraic 
model given by (l)-(2) directly from a manufacturing 
system without the need of a graphical construction 
(such as a Petri net) has been developed by Doustmo- 
hammadi and Kamen and is given in [4]. 

3 System Properties 

Working with the system described by (l)-(2), defini- 
tions of weak reachability and weak observability are 
presented along with necessary and sufficient condi- 
tions to determine if a system is weakly reachable and 
if a system is weakly observable. 

3.1 Reachability 
Reachability refers to the issue of steering a system 
from the origin to a specified state using the input. 
For linear time-invariant systems in the continuous- 
variable case, reachability of a system is determined 
by the rank of the reachability matrix. If the rank is 
full, then all states in R” can be obtained. For max- 
plus linear systems, the transfer to any arbitrary state 
is not possible except in very special cases. Hence, un- 
like the continuous-variable case, the event-time state 
space is seldom equal to all of E. 

Using (1) in a recursive fashion, we can write 
the state at event index q as X(q) = AqX(O) @ 
[B AB ... A@B] @ [U(q) U(q - 1) ... U(l)]? 
By defining the reachability matrix, 

rq := [B AB . .. A@B], 

and using a shorthand notation for the input sequence, 
U, = [U(q) U(q - 1) ... U(l)IT, we can write 
X(q) = AaX(0) @ PqUq. Unlike the continuous- 
variable case, the contribution from the initial condi- 
tion X(0) cannot be subtracted out. Consider then, 
the following definition of a reachable state. 

Definition 2 (Reachable State) 
Given X(0) E Rk,,, a state X E lRnis reachable in 
q-steps from X(0) if there exists a control sequence 
{U(l), U(2), ... , U(q)} over R,,, which achieves 
X(q) = x. 

The collection of all such states leads to the following 
definition. 

Definition 3 (Reachable Set) 
Given X(0) E RI:,,, let R,,x(e) be the set of all states 
X E R” that can be reached in q steps from X(O), that 
is, 

Qq,x(o) = {X E R” : X = AaX @l-‘,U,, 
where U, ranges over Rga,}. 

The issue of reachability pertains to whether a control 
sequence {U(l), U(2), ... , U(q)} can be found that 
achieves a desired state. To proceed further, we need a 
result that deals with the solutions of general equations 
of the form A @ X = B, where X and B are column 
vectors with elements in R,,,. The solution involves 
an operation t that acts like an “inverse,” and the min 
function. The operation t, called conjugation in [I], 
represents the negation and transpose operations, i.e., 
for A = {aij}, At = {-aji}. The symbol 8’ represents 
multiplication using the min function, the counterpart 
to 8. From lattice theory, we have the following two 
results [2]. 

Proposition 3.1 Given A E lRg,“,“, B E lRz,,, there 
exists a solution in RL,, to AX = B if and only if 

Z = At 8’ B (3) 

is a solution; furthermore, Z is actually the greatest 
solution. 

Proposition 3.2 Given A E I3=::, B E Rz,,, the 
greatest subsolution in RR,, to AX 5 B is Z = At @ 
B. 

We can use these results to obtain a condition for de- 
termining if a state is reachable. First, however, we 
need to establish a few elementary lemmas. 

Lemma 3.1 Given A E I?~~~ and X E IF&,,,, we 
have A @ (At 8’ X) = (A @ At) 8’ X. 

Proof. See [5]. 0 

Let (U,)j denote the jth element of U,. Then we have 
the following result. 

Lemma 3.2 Given U, = I’! 8’ X, if (U,)j = cm for 

any j I Pq, (u,)j can be set to any value in R,,, 
without changing the value of lTq 18 U,. 



Proof. Since X E R”, each element in the jth row of 
I’; must equal T = oo. Therefore, the jth column of 
I4 must consists entirely of E. Since E is absorbing, i.e., 
E @ a = e for any a E R,,, , we can replace any infinite 
values in U, with any value in a,,. cl 

A necessary and sufficient condition for a state to be 
reachable is given next. 

Theorem 3.1 Given an initial state X(0) E lR;,,,, 
and a state X, then X E I;2,,~(o) if and only if 

ITq 63 (l-i ~3’ X) $ AqX(0) = X, (4 

in which case U, = I?! 8’ X drives the system state 
from X(0) to X(q) = X. 

Proof. If (4) is true, then U, = Pi @‘X. If U, E RP4, 
then obviously X E 0;2,,,(e); otherwise, Lemma 3.2 can 
be invoked and then X E R,,x(e). If X E fl,,x(e), then, 
by definition, some U, exists such that X = AQX(0) @ 
PQUq. Hence, I4 @ U, 5 X. By Proposition 3.2, U, = 
Pi @X is the greatest subsolution; hence, Pq @I (Pi @’ 

X) < X. Now if Pq @ (I’d 8’ X) @ AqX(0) < X, then 

another control sequence q > Pi @X must exist such 

that Pq @~u,A~X(O) = X. But, since Pi @‘X is the 
maximal subsolution, any greater control sequence will 
result in (P, @ q)j > (X)j, for some j, and therefore, 
I4 18 q @ AQX(0) # X; a contradiction. Thus, q 
cannot exist. Because a solution must exist, U, must 
equal I’; 18’ X, and Pq 8 (Pi 8’ X) @ AqX(O) = X, i.e., 
(4) is satisfied. 0 

In the continuous-variable case, a system that is reach- 
able ensures that any state in R” can be reached from 
the origin, i.e., the set of reachable states is all of R”. 
In the max-plus case, because of the max operation, 
AqX(O) CB rqUq cannot be equal to states that are less 
than the unforced terminal state AQX(0). Also, note 
that for reachable systems in the continuous-variable 
case, all components of the state can be set arbitrar- 
ily via the input and each component can be modified 
independently of other components. In the max-plus 
case, it is not possible to ensure that all components 
can be set independently other than for a small class 
of systems. Instead, we focus on systems for which 
it is possible to reach a state whose components are 
greater than the unforced terminal state and call such 
systems weakly reachable. We reserve the term com- 
pletely reachable for systems for which any state in R” 
can be obtained. Thus, we consider the following defi- 
nition of a weakly-reachable system. 

Definition 4 (q-step weakly reachable) A system 
is said to be q-step weakly reachable if given any X(O), 
a control sequence exists such that each component of 
the terminal state X(q) can be made greater than the 
unforced terminal state AqX(O), i.e., there exists U, 
such that (X(q))j > (A”X(O))j for j = 1,2,. . . ,n. 

Before introducing a weakly reachability condition, we 
need to introduce a matrix property defined in [l] called 
asticity. 

Definition 5 (Asticity) A n x m matrix G = {gij} 
is termed row-astic if for each row i = 1,2,. . . ,n, 
@y!, gij E R. Column-asticity is similarly defined. 
A matrix is termed doubly-astic if it is both row and 
column-astic. 

Theorem 3.2 A system is q-step weakly reachable if 
and only if Pq is row-astic. 

Proof. If Pq is row-astic, then with a large enough 
U,, (I’,U,)j > (AqX(O))j for j = 1,2, .. . ,n. Hence, 
a state can easily ‘be found which is greater than the 
unforced terminal state. If a system is q-step weakly 
reachable, then for j = 1,2,. .. , n, we must have 
(l?qU,)j > (AqX(0))j. Thus, (lTqUq)j must be finite 
for each j, and hence Pq must be row-astic. 0 

While it may not be possible to set all components of 
the state independently for a q-step weakly-reachable 
system, it is possible to set one component to an arbi- 
trary value. This result is stated next. 

Corollary 3.1 If a system is q-step weakly reachable 
and X(0) = E, then given any ,0 E R, there exists 
a control sequence that results in at least one compo- 
nent of the terminal state being set to ,0. That is, there 
exists a U, such that (X(q))j = /3 for at least one 
j E {1,2,...,n}. 

Proof. See [5]. 0 

We note that in the scalar case if a system is q-step 
weakly reachable and X(0) = E, then all states in IRn 
can be reached, i.e., the system is completely reachable. 
The number of components that are able to be selected 
independently appears to lead to a possible measure of 
the size of the set of states that can be reached by the 
system. 

Definitions for structural controllability are given in [2]. 
In contrast to the algebraic notions defined in this work, 
these definitions pertain to the graphical representa- 
tions of event graphs. Because of the strong tie be- 
tween event graphs and the maxplus algebra, however, 
the results are closely related. In essence, the required 
row-asticity condition on the reachability matrix l?, en- 
sures that a path exists (over q events) from at least 
one input to each internal transition or state compc- 
nent. Also, Cofer in [6] defines events to be control- 
lable if their execution can be arbitrarily delayed. This 
is equivalent to ensuring a path exists from some input 
to the event. 

In the continuous-variable case, the Cayley-Hamilton 
theorem is used to show that only n-steps need be con- 
sidered to determine the reachability of the system. 



Here, the Cayley-Hamilton theorem in max-plus can 
be used to show that if the system is not weakly reach- 
able after n-steps, it won’t be weakly reachable for step 
sizes larger than n. This result is stated next. 

Theorem 3.3 If a system is not n-step weakly reach- 
able, then the system will not be weakly reachable for 

4 L n. 

Proof. From the Cayley-Hamilton theorem, we have 

P:(A) = P,(A) or A” @ pz-,A”-l @ . . . @ p$E = 

p,,An-l @p;-,AnY2 @. . .~ep, E, where E is the iden- 
tity matrix in max-plus and consists of e along the diag- 
onal and e everywhere else, and the coefficients p:,pa 
are determined from the characteristic equation of A 
[3]. Since 8 distributes over @ and since scalar mul- 
tiplication commutes, we have A”B @ P~-,A”-~B @ 

. . . CB pofB = p,,A’+lB @ p,,A”-2B @ . . . @ p,B. 
In essence, the right-hand side is the check for the 
row-asticity of P, and the left-hand side is the check 
of Pnfl. Since the asticity checks are equal, the row- 
asticity of rnfl will be the same as that of P,. By 
assumption, I’, is not row-astic. Thus, I’,+, is not row- 
astic and the system is not weakly reachable. Proofs 
for q > n follow directly. 0 

Unlike the continuous-variable case, where the Cayley- 
Hamilton theorem can be used to show that the reach- 
able space does not change after n-steps, increasing the 
number of steps may lead to reaching a state that was 
not reachable in fewer steps. This result is stated next. 

Theorem 3.4 If X $ f12,,x(o), then X may belong to 
$x(o) where q > n. 

Proof. See [5]. 0 

This result leads directly to the following realization. 

Theorem 3.5 Increasing the number of steps from n 
may result in reaching a state that was not reachable in 
n or fewer steps. 

Proof. Direct application of Theorem 3.4. 0 

Since increasing the number of steps yields the obtain- 
ment of new states, an important issue is the number 
of steps needed to reach a given state. The next result 
states that given a state not reachable in qo steps, if 
X(0) = E and the last column of Pq is linearly depen- 
dent on the last column of Pqo, it won’t be reachable 
using q-steps, where q 2 qo. 

Theorem 3.6 If Aqo-lB @ D = AqoB, where .D is a 
diagonal matrix, and X 4 R,,,X(o), then X $ Rq,x(o) 
where q 2 qo. 

Proof. By assumption, X # I40 18 (I& 8’ 
X). Now consider qo + l-steps. Since rqo+l = 

[ r,o AQ”B 1, we only need to consider the last p 

elements. The last p elements of PqO+r @ (PLO+i @’ X) 

are AQOB((AqoB)t 8 X) = (AQoB(AQoB)t) @’ X = 
(AqO-lBD(Aqo-lBD)t) I$ X = (Aqo-lBDDt I$ Bt @’ 
(A”“-‘)t) 8’ X = (A”“-‘B((AqO-‘B)t) 8’ X, which is 
the last column of Pqo 8 (Pi0 8’ X). So, adding an- 
other step achieves the same state achieved with qo- 
steps. Extensions to larger values of q are immediate. 
0 

3.1.1 Feasible Systems The results presented 

thus far are for general A,B, and C matrices. Now, 
consider system, input, and output matrices for a real 
or feasible system. A feasible system is one that could 
be implemented in practice. Thus, in a feasible system, 
service times are real and nonnegative and release times 
must be nonnegative. 

Definition 6 (Feasible System) A feasible system 
is a system where the entries of A, B, and C range over 

KLZ > and the diagonal elements of A are nonnegative 
and finite. 

Since E represents a “zero” in max-plus, this definition 
allows entries of e for convenience. 

Because negative release times result in an impractical, 
noncausal solution, a feasible state must result from a 
sequence of nonnegative release times. 

Definition 7 (Feasible State) For X E f12,,~(o), X 
is feasible if the entries of the control sequence U, that 
result in X are nonnegative. 

A sufficient condition that determines if a state is not 
feasible is given next. 

Theorem 3.7 For a feasible system, if 3 j such that 
(rlo @‘X)j < 0, and X E R,,x(o~, then X will not be 
feasible. Furthermore, X will not be feasible for q > qo. 

Proof. Since X E flqo,x(o~, U, = Pi0 8’ X, and so by 
assumption, the jth element is negative; hence, X is 
not feasible. Since Pq = [ Pi, AqOB . . . AQ’-lB ] , 
then (I?; 8’ X)j < 0 and so X will not be feasible after 
q-steps either. 0 

3.2 Observability 
The ability to determine the states of the system from 
measurements of the output is reflected in the property 
of observability. The conditions for state observability 
in the max-plus case are more restrictive than in the 
continuous-variable case. One difficulty arises from the 
lack of an additive inverse. For states that do not di- 
rectly contribute to the output, only an upper bound 
on the event-time state can be determined. 

As in the continuous-variable case, suppose that we 
have a sequence of q output values. Using (l)-(2), we 



can write 

1 
Y(k) 

Y(k + 1) : 1 = 

Y(k +‘4 - 1) 

I : 

& . . 

C’B E . . . 

. . 

1 CAq-'B ... CAB 

1 X(k)@ 
1 

U(k + 1) 
U(k + 2) 

U(k + q - 1) I. 
(5) 

Using a shorthand notation for the output and input 
sequencesYp := [Y(k) Y(k+l) ... Y(k+q-l)lT, 
U, := [U(k + 1) U(lc + 2) ... U(k + q - l)lT, and 
defining the q-step observability matrix, 

c 
CA 

oq:= 

I . I 

. ) 

&q-l 

we have 

Y, = 0,X(k) @ HU,, (6) 

where H is defined appropriately from (5). To begin, 
we define an output that has been generated from the 
system under study as an “observed output.” 

Definition 8 (Observed Output Sequence) A se- 
quence of observed outputs Y, E lRmq is a series of out- 
puts given by Y, = 0,X(k) @ HU, where U, E lRf,& 
and X(k) E akaz. 

The collection of all such sequences leads to the follow- 
ing definition. 

Definition 9 (Observed Output Sequence Set) 
Given U, E lRza,, let 

c q,uq = w, E lRmq : Y, = 0,X(k) CD HU,, 

where X(k) ranges over &k,,}. 

Consider the following necessary and sufficient condi- 
tion for whether an output sequence is an observed out- 
put sequence. 

Theorem 3.8 Given a sequence Y, E Rmq, and an 
input sequence U, E lRza,, then Y, E Cq U if and 3 4 
only if 

O,(O; 8’ Yq) $ HU, = Y,. (7) 

Proof. The proof is similar in nature to that of The- 
orem 3.1. See [5] for details. 0 

Because of the nature of the max-plus algebra, specifi- 
cally because addition is idempotent, determination of 
the actual system state is often not possible. Instead, 

we consider whether it is possible to determine the lat- 
est state that results in the observed output sequence. 
The latest state provides an upper bound on the com- 
pletion times that result in the output sequence. Con- 
sider then, the following definition of the latest event- 
time state. 

Definition 10 (Latest Event-Time State) Given 
a q-length sequence of observed outputs Y, with a se- 
quence of inputs U,, the latest event-time state y(k) 
which results in Y, is 

y(k) := rn~{X(k) E .nz;,, : Y, = 0,X(k) @ HU,}, 

where the max is over each component. 

Because the latest event-time state may not be finite, 
y(k) is defined over RL,,. Since infinite event times 
represent the trivial case and do not provide any in- 
formation about the state, a definition of observability 
should exclude this case by requiring the latest event- 
time state to be finite. This leads to the following def- 
inition of weak observability. 

Definition 11 (q-step weakly observable) A sys- 
tem is q-step weakly observable if for any q-length se- 
quence of observed outputs Y, E Cq U,, the latest 

event-time state y(k) is finite and can be computed from 

Yq. 

A necessary and sufficient condition for a system to be 
q-step weakly observable is given next. 

Theorem 3.9 A system is q-step weakly observable if 
and only if 0, is column-astic. 

Proof. If 0, is column-astic, then for a finite 
Y,, y(k) = 0; @‘Y, is finite. Given any Y, E C,,U,, 

by Theorem 3.8, O,(Od @I’ Yq) @ HU, = Y, and so 
y(k) results in an observable output sequence. On 
the other hand, if the system is q-step weakly ob- 
servable, y(k) must be finite and must be computable 
from a sequence of observed outputs Y,. By Theo 

rem 3.8, O,(Of, 8’ Yq) @ HU, = Y,. In order for 

y(k) = 0: @‘Y, to be finite, 0, must be column-astic. 

Definitions for structural observability are given in [2]. 
As mentioned before, the results here are closely related 
to the graphical constructs given in the cited references. 
The required column-asticity condition on the observ- 
ability matrix 0, ensures that a path exists from each 
internal transition or state to at least one output. 

Similar to the continuous-variable case, the Cayley- 
Hamilton theorem can be used to show that the 
column-asticity of the observation matrix will not 
change by adding rows of higher powers of A. Using 
the Cayley-Hamilton theorem, we have the following 
result. 



Theorem 3.10 If 0, is not column-astic, then O,, 
where q > n, will not be column-astic. 

Proof. The proof is similar in nature to that of The- 
orem 3.3. See [5] for details. q 

The direct result of this theorem is that observing more 
than n output values does not provide more informa- 
tion regarding the latest event-time state. 

Theorem 3.11 If a system is not n-step weakly ob- 
servable, then it won’t be q-step weakly observable for 

4 2 n. 

Proof. Direct application of Theorem 3.10. q 

3.3 Duality 
As in the continuous-variable case, there exists a du- 
ality between the properties of weak reachability and 
weak observability. 

Theorem 3.12 If the system described by (A, B, C) is 
q-step weakly reachable (q-step weakly observable), then 
the dual system (AT, CT, BT) is q-step weakly observ- 
able (q-step weakly reachable). 

Proof. If the system (A, B, C) is q-step weakly reach- 
able, then Pq must be row-astic. In the dual sys- 

r BT 1 

tern, Oqdual = = (I’q)T. Hence, OqdZLal 

is column-astic and the dual-system is q-step weakly 
observable. If (A, B, C) is q-step weakly observable, 
then 0, is column-astic. In the dual system, I’fiaz = 
1 CT -&-CT . . . (AT)aAICT 1 = (O,)T. Hence, 
l$al is row-astic and-the- dual system is- q-step weakly 
reachable. q 

4 Adjoint System 

Control of event-times is typically accomplished 
through the input arrival times or the start times of 
a system. The start times can be viewed as the com- 
pletion time of the zeroth event, i.e., the initial state 
X(0). Consider then, the problem of ensuring the com- 
pletion times after q events are less than or equal to a 
specified target time T 2 0, i.e., X(q) 5 T. By expand- 
ing the residual Pl 8 X in the reachability problem, 
the adjoint system of the event-timing model can be 
generated. Defining W(k) and C(k) as an intermediate 
state and input respectively, the adjoint system is given 

by 

W(k) = A+ @‘W(k+ 1) (8) 
c(k) = B+@‘W(k) k=q-l,q-2,...0 (9) 

with initial conditions W(q) = T and C(q) = B+ @‘T. 
Note the adjoint system evolves backwards in the event 

index k. As seen below, the determination of the start 
times and the latest arrival times can be solved using 
the adjoint system. 

Theorem 4.1 A specification X(q) 5 T can only be 
met if W(0) L 0 and C(k) L 0 for all k, where W(k) 
and C(k) are given by (8) and (9) respectively. Parther- 
more, the latest arrival times U(k) to meet the speci- 
fication are given by U(k) = c(k), k = 1,2,. . . , q, and 
the latest start time state is given by W(0). 

Proof. See [5]. q 

Concepts of adjoint systems are discussed in [2] in 
terms of lattice notation, in [7] in a transfer function 
domain, and in [l] for autonomous systems. 

5 Conclusions 

This paper examined the properties of reachability and 
observability of linear max-plus systems in an algebraic 
fashion. Necessary and sufficient conditions were pre- 
sented for determining if a system is weakly reachable 
and weakly observable. In addition, a necessary and 
sufficient condition was given for determining if a state 
is reachable. Future work centers on further exploring 
the size and linearity of the reachability set, considering 
stronger definitions and conditions for reachability and 
observability, investigating the implications of reacha- 
bility on state-feedback control, and examining ways to 
determine a limit on the required number of steps to 
reach a given state. 
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