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Abstract rewritten in a recursive form as 
In this paper, a comparison is made between the 

novel Generalized Minimum Variance and established 
Generalized Least Squares estimation algorithms. The 
emphasis of the Generalized Minimum Variance al- 
gorithm is on the proper treatment of measurement 
noise for dynamical system identification. The al- 
gorithms are compared in carefully performed, re- 
producible experiments which include measurement 
noise. Differences are apparent under small measure- 
ment samples, but the two appear to produce statis- 
tically similar results under sufficient excitation. 

A(z-l)yl, = B(z-~)u~ (2) 

or 

Yk = wk-1 + a2yk4 + . . . + anyken + 

bourz + b1we-l + bzukpz + . . . + bnUkpn (3) 

To identify the parameters of the discrete time sys- 
tem, one need only solve the following system of 2n+ 1 
equations in the a and b parameters 

1 Introduction 

In this paper, a comparison is made between the novel 
Generalized Minimum Variance (GMV) and estab- 
lished Generalized Least Squares (GLS) identification 
algorithms. The experimental data consists of a fi- 
nite number of input and output measurements of 
a discrete-time plant, which is representative of the 
pitch dynamics of a transport aircraft. Also, sensor 
noise has corrupted the measurements of the output. 
The GLS method is described in [l], and is basically 
the same as the method proposed in [2]. 

The paper is organized as follows. The GMV and 
GLS identification schemes are briefly described in 
Section 2. The setup of the experiment is discussed 
in Section 3. The performance of the proposed sys- 
tem identification algorithm, as well as a comparison 
to the GLS algorithm in [l], are then discussed in 
Section 4. Concluding remarks are in Section 5. 

2 Time Domain Estimation 
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2.1 GMV ID Problem Formulation 

Unfortunately, the values for yk, and sometimes also 
Uk, cannot be directly measured. Rather, we can 
measure the noise corrupted Yk, where the noise is 
assumed Gaussian: 

yk =yk +vk, ‘t& = N(o, CT:) (5) 

which changes Eq. (3) to 

Yk - ?& = al&- - t&-l) + . . . + G(Yk-n - vk-n) 

+bourc + blurt-1 + * * * + b&k+ (6) 

or 

Consider the discrete time transfer function given by yk =alYk-l+.“+U,Yk-,+boUk+...+b,Uk_,+Bk 

(1) 

where us = 1, and the 2n+ 1 parameters al . . . a, and 

where 
(7) 

@I, = ‘Uk - alvk-j, - . . ’ - ‘invkpn 63) 

b. . . . b, are unknown. This transfer function can be This expression is now in a form that can be set up 

*This DaDer is declared a work of the U. S. Government and 
in a statistical Linear Regression equation given by 

is not subject to copyright protection in the United States 
z=H6+v, v = N(O,R), R>O (9) 
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2.2 LS System Identification 

The Least Squares (LS) method assumes that R = 
~~1, and the estimate of the system above is then 
given by 

ii,, = (H~H)-~ ~~2; (10) 

and the parameter estimation error covariance is 

PLs = g2 (H’H)-~ (11) 

This estimate is incorrect for a linear regression cor- 
rupted by measurement noise because of the correla- 
tion introduced by that noise. One method that has 
been used to overcome this correlation is a simpli- 
fied version of the Generalized Least Squares (GLS) 
algorithm. 

2.3 GLS System Identification 

In the GLS method, a whitening filter is used to re- 
duce the correlation in the linear regression so the 
LS estimate becomes more accurate. For the case of 
output measurement noise only, the following model 
is correct; see, e.g., Eqs. (7) and (8): 

A(r?+)yl, = B(&)t‘k + A(z-‘)ek (1% 

where ek is a white Gaussian sequence. Since the LS 
estimate is only valid for uncorrelated white noise, 
an attempt to match an LS model is made by “divid- 
ing” the operator equation (12) through by A(z-I), 
leading to 

A(z-l) & = B(z-l) & f ek 

However, since the actual A(.z-‘-) is not known, what 
is actually done@ to filter the input and output with 
the estimate l/A(,z-l). In other words, 

fjk = &&-1. + ?$jk-2 + * * ’ + &&-n + Yk 

& = &ii&l + &ii/+2 + ’ ’ * + ?&ii&, + ‘,& 

The filtered output and input values, y” and ii, are 
then substituted for Yk and I.Q in the H and z matri- 
ces, and the LS estimate is calculated. This process 
is repeated until the parameter estimate converges. 

2.4 GMV System Identification 

In contrast to the GLS method, the GMV method in- 
corporates knowledge of the measurement noise struc- 
ture in Eq. (3) to form a minimum variance type es- 
timate. The minimum variance estimate of a param- 
eter vector 0, as described in Eq. (9), is given by [3] 

SMV = (EI~R-~H)-I H~R-‘~ (13) 

and the parameter estimation error covariance is 

pMv = (H~R-~H)-~ (14) 

The R matrix is the expected value of vvT, and if 
the noise Vk is assumed white, then the R matrix will 
be an N x N Toeplitz matrix with a non zero diagonal 
and n non zero off diagonal terms above and below 
the diagonal. Unfortunately, R is not known a priori, 
because in addition to the dependence on the given 
sensor’s measurement error gv, it is a function of the 
(as yet unknown) coefficients of the system’s transfer 
function, i.e., R = R(0). Therefore, we use Eq. (13) 
to search for a possible estimate. The Generalized 
Minimum Variance (GMV) estimate is given by the 

point GGMV such that 

GGMV = 
( 
HTR-l(ii GMV)$ -’ HTR-l (&MV)Z 

(15) 
There are many different ways of searching for fixed 
points like 6GMV, but the following simple iterative 
algorithm has been effective in finding the correct 
fixed point for signal-to-noise ratios approaching 0 
dB. This algorithm is motivated by the iteration for 
fixed points of contraction mappings, for which the 
existence of a fixed point is guaranteed [4]. 

Step 1 - Set i = 0 and calculate an initial parameter 
estimate using LS. 

iii = Go = (HTH)-l HTz 

Step 2 - Calculate R(&) = E {vvT}. 



Step 3 - Calculate s,+r via Eq. (13). 

iii+l = (HT~-l(~~)~)-l~T~-l(~~)z 

Step 4 - If I] G,+r -ii, ]I is less than some acceptable 
value, proceed to step 5. Otherwise, increment 
i and return to step 2. 

Step 5 - Set ij~~v = Gi+r. 

Step 6 - The error covariance of the estimate GGMV 
is then given by 

in 
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(HTR-l(iSCMV)H)-l (16) Figure 1: Discrete Bode Plot of Given Plant 

A fixed point for Eq. (15) does exist, at least for 
the problems of linear dynamical systems. Also, the 
algorithm has converged within the numerical limits 
of Matlab for all problems examined thus far. The 
number of iterations required is quite small for small 
noise levels, but does increase as the noise level in- 
creases. 

Problems do arise as the noise levels increase, as 
is common in system identification problems at low 
signal-to-noise ratios. In this work, it is common for 
one other fixed point to appear at higher noise levels, 
and possible methods of dealing with this are dis- 
cussed in [5]. However, the GLS method of identifi- 
cation tends to suffer at these noise levels as well. 

3 Second Order System 

For investigative purposes, we now restrict our atten- 
tion to the general second-order dynamical system 
given by 

T(s) = 
4.8s + 1.44 

s2 + 0.84s + 1.44 (17) 

In this scenario, and according to the GMV paradigm, 
the equation error noise vector in Eq. (8) is given by 

fik = Vk - al?&-1 - a2Vk-2 

To obtain the equation error covariance matrix R, 
one calculates 

I 

@,” (l+af+a;), 7=o, 

E {fi,&-,} = 
0," (ala2 -al), 7 = 1, 

0,” (-a21 > r = 2, 
(19) 

0, 7 > 2. 

which means that the equation error covariance is the 
pentadiagonal matrix R = c&k., where 

1+ u:: + a; --a1 +a1a2 ... 0 

--a1 + a102 1+ u: + a; . . . 0 
-a2 --a1 +a1a2 ... 0 

*. 

0 0 -.: 1 +a; +a; 

which is representative of an transport aircraft’s el- 
evator to pitch rate transfer function [6]. For this 
paper, it is assumed that the control is being passed 
through a zero-order hold with a 10 Hz sampling rate, 
making the discrete time transfer function for this 
alant 
r--p- 

T(z) = 
0.46632 - 0.4525 

z2 - 1.90562 + 0.9194 (18) 

The input to the system is the sum of two sinusoids; 
the minimum number of sinusoids to be persistently 
exciting for a second-order system with a zero. Thus, 
the elevator deflection: 

u(t) = sin(3t) + sin(0.5t) 

4 Algorithm Comparison 

In this section, the GLS and GMV estimates are com- 
pared. To do this, Matlab’s [7] randno function is 
initialized with a seed of zero and used to generate 
noise with a covariance cr,” = (0.01)2. This noise is 
then added to the true output obtained from the sys- 
tem shown in Fig. 1. The noise corrupted output is 
shown in Fig. 2. 

Figure 3 displays the denominator estimates for 
a 100 run Monte-Carlo (MC) analysis, which upon 
evoking the weak law of large numbers [8], renders 
a gauge of the identification algorithm’s estimation 
bias. The estimation results are first normalized by 
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Figure 2: Plant Output with Representative Noise 

dividing each estimate by the true estimate, and then 
plotted. Ellipses are plotted representing each esti- 
mation method’s actual one sigma variation. The el- 
lipses’ axes are centered at the average estimate for 
each method. The algorithm predicted estimation er- 
ror covariances are not plotted, because they are close 
to the actual one in each case. 

M=40 
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Figure 3: Denominator Estimates for 40 Measure- 
ment Linear Regression 

As can be seen, the GLS estimates are quite a bit 
better than the GMV estimates for the case where 
40 measurements are taken (~4 set worth of data). 
However, this does not tell the whole story. When 
100 measurements (M 10 set of data) are used, both 
estimates are better, and the statistical results are 
virtually the same, as seen in Fig. 4. 

Another point that is not evident in Figs. 3 and 4 
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Figure 4: Denominator Estimates for 100 Measure- 
ment Linear Regression 

is the fact that the GLS method requires, in general, 
more measurements to obtain an accurate estimate. 
Figures 5 and 6 contain a representative estimation 
error and covariance for the GMV and GLS algo- 
rithms respectively. Each plot shows the pertinent 
values as measurements are added one at a time. As 
can be seen, the GMV algorithm produces an esti- 
mate for M < 10, but the GLS algorithm does not 
produce an estimate for all 100 noise realizations until 
M = 13. 

10 15 35 40 

Figure 5: Estimation Error and Covariance - GMV 

A scenario that causes additional trouble for the 
GLS method is the elimination of the initial tran- 
sient data. When one allows the system to run for 10 
seconds before taking data, the results in Fig. 7 are 
obtained. As can be seen, the two methods produce 
statistically similar results even for M = 40 here. 
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Figure 6: Estimation Error and Covariance - GLS 
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Figure 7: Denominator Estimates for 40 Measure- 
ment Linear Regression - Initial Time Removed 

For this scenario, the initial differences are even 
more pronounced. As seen in Figs. 8 and 9, the GMV 
is producing accurate estimates for M < 10, while the 
GLS method is not even producing an estimate un- 
til M = 17. The dependence on the initial transient 
somewhat detracts from the GLS method’s appeal, in 
light of the latter’s operator theoretical/asymptotic 
argument-based derivation. 
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Figure 8: Without Initial Time - GMV 
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Figure 9: Without Initial Time - GLS 

An additional advantage of the GMV method is 
its adaptability to other linear regression type frame- 
works. If there had been noise on the input as well, 
then the GLS derivation would have been completely 
incorrect. The GMV algorithm can, however, be eas- 



ily adapted to handle input noise simply by modifying 
& to include the new noise. 

5 Conclusions 

In this work, the performance of the Generalized Mm- 
imum Variance and Generalized Least Squares esti- 
mation algorithms is compared. Gaussian measure- 
ment noise is assumed, as is customary in statistical 
filtering and system identification work. The novel 
minimum variance estimate equations are derived and 
applied to a nonlinear estimation problem. The re- 
sults are then compared to the established General- 
ized Least Squares estimate for a second-order system 
that is representative of an aircraft’s pitch dynamics, 
which is used for inner-loop flight control system de- 
sign. 

While the GLS method requires more measure- 
ments initially to obtain an estimate, it appears to 
produce a better estimate at this point than the GMV. 
Additionally, the GLS algorithm’s performance is found 
to be sensitive to the initial transient in the data. 
However, the two methods appear to be statistically 
equivalent as more measurements are added. One 
distinct advantage of the GMV method is its abil- 
ity to produce valid estimates at small measurement 
samples, and in general, under conditions of poorer 
excitation. 

The GMV and GLS estimates outperformed the LS 
estimate in all cases. The LS estimate did, however, 
provide a useful, albeit sometimes dangerous, starting 
point for iterating the parameter estimate. At small 
noise levels, it does not matter where the algorithms 
are initialized, but as noise levels increase, there is 
an additional point of convergence that can trap the 
estimate. In high noise cases (low signal-to-noise ra- 
tio), it becomes necessary to examine the final result 
to see if it is a valid estimate. Obviously, at very low 
SNR, there must be at least a small amount of prior 
information about the plant for a valid estimate to 
be obtained. 

In conclusion, the least squares estimate is not an 
effective one, even in cases of small measurement noise. 
It does, however, serve as a useful starting point for 
initializing the GLS and GMV algorithms at higher 
SNR. The GLS and GMV provide much more accu- 
rate estimates, and the GMV seems to provide esti- 
mates with much fewer measurements. Additionally, 
the GMV is more readily adaptable to differing iden- 
tification requirements. 
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