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Abstract 

A set-valued observer (SVO) produces a set of possi- 
ble states based on output measurements and a priori 
models of exogenous disturbances and noises. Previ- 
ous work considered linear time-varying systems and 
unknown-but-bounded exogenous signals. In this case, 
the, sets of possible state vectors take the form of 
polytopes whose centers are optimal state estimates. 
These polytopic sets can be computed by solving sev- 
eral small linear programs. A SVO can be constructed 
conceptually for nonlinear systems, however the set of 
possible state vectors no longer takes the form of poly- 
topes which in turn inhibits their explicit computation. 
This paper considers an “extended SVO” . As in the ex- 
tended Kalman filter, the state equations are linearized 
about the state estimate, and a linear SVO is designed 
along the linearization trajectory. Under appropri- 
ate observability assumptions, it is shown that the 
extended SVO provides an exponentially convergent 
state estimate in the case of sufficiently small initial 
condition uncertainty, and provides a non-divergent 
state estimate in the case of sufficiently small exoge- 
nous signals. 

1 Introduction 

Constructions of observers for nonlinear systems 
often rely on some form of underlying linear dy- 
namics. The extended Kalman filter (EKF) [5] lin- 
earizes the state trajectory about the current state es- 
timate, resulting in approximate linear time-varying 
error dynamics. Output injection methods [7] em- 
ploy a state-transformation to obtain exact linear 
time-invariant error dynamics. Similarly, reference 
[4] employs a state-transformation to obtain exact 
linear time-varying error dynamics where the “time- 
variations” actually are due to a measured endoge- 
nous signal. See references [lo, 11, 151 and references 
therein for a further overview of nonlinear observers. 
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A guaranteed state estimator, alternatively called 
set-valued observer (SVO), assumes a priori bounds on 

exogenous disturbances and noises and constructs sets 
of possible states which are consistent with the a priori 
bounds and current measurements. The survey article 
[9] presents a historical account of such methods. See 
also the text [2] and collection [8]. References [13, 
141 also consider the construction of SVO’s for linear 
time-varying systems. The authors present a recursive 
method to construct these sets of possible states and 
show that the centers of these sets represent optimal 
state estimates in an em-induced norm sense. 

In the linear case, sets of possible states generally 
take the form of (convex) polytopes. While it is possi- 
ble to define conceptually a SVO for nonlinear systems 
[2], an explicit construction of the set of possible states 
is essentially prevented by the generality of (possibly 
disconnected) shapes. 

In this paper, we mimic the EKF and construct an 
extended SVO for nonlinear systems. As in the EKF, 
the extended SVO linearizes the state equations about 
the current state estimate. Unlike the EKF, the ex- 
tended SVO does not neglect the linearization errors. 
Rather, the linearization errors are considered as ex- 
ogenous disturbances and are used to bound the set 
of possible states. An attractive feature of this ap- 
proach is that the linear SVO optimally minimizes the 
effect of exogenous disturbances, and hence possibly 
the effect of linearization errors, on the estimation er- 
ror. The main shortcoming of the extended SVO is 
the real-time computational burden of solving several 
small linear programs. 

This paper is an abridged version of 
Jeff S. Shamma and K.-Y. Tu, “Approximate set- 
valued observers for nonlinear systems”, to appear, 
IEEE Dansactions on Automatic Control, 1997. 
which contains all proofs. 

2 Notation 

For x E Rn, let xi denote the ith component of x, 

and define ]z] = maxi [xi]. The closed unit box in 



Rn centered at x0 is denoted B(xO). Define KR~ to 
be the set of all (nonempty) compact subsets of R”. 
Then KR~ is a metric space when equipped with the 

Hausdorff metric [12, p. 2791. 
Let 2+ denote the set of non-negative integers. For 

a sequence {x(0),x(l), x(2), . . .} c Rn, define 

Ilxllp = ;y+ Ix(k)1 7 

and 

where kz = co is possible. 
For f : R” + R”, Df denotes the Jacobian ma- 

trix. For notational simplicity, Df also denotes the 

Jacobian matrix of f(., k) when f : Rn x 2+ + Rn. 
For f : Rn x RP x 2+ + RQ, Dlf denotes the Q x n 

Jacobian matrix with respect to the first variable. 

3 Nonlinear SVO 

Consider a nonlinear system of the form 

x(k + 1) = f(x(k),d(k),k), x(O) E MO 

y(k) = WG), n(k), k), (1) 

where d(k) E R”d is unknown process noise, y(k) E 
Rng is the measured output, and n(k) E %? is mea- 
surement noise. The effects of a known input can be 
incorporated as time-variations. Initial conditions are 

restricted to the set A& c Rnz. 
We make the following a priori assumptions on (1). 

Assumption 3.1 There exist bounding functions 
d max, %nax : 2+ 4 IT!+ such that for all k E 2+ the 
signals d and n in (1) satisfy 

Id(k)1 I d,,(k), In(k)1 5 nmax(k). 

We are interested in constructing the set of possible 
states, denoted X(k), which are consistent with the 

current measurement trajectory and a priori Assump- 
tion 3.1. 

First define the set z(k) by 

T?(k) = {x E R”- : 

y(k) = h(x, n, k) for some InI 5 nmax(k)}. 

In words, x(k) represents the set of possible states 
at time k based on the single measurement y(k) only. 
Similarly, define 

X,,,(k + 1) = {x : x = f&d, k), 
for some H E X(k), IdI 5 dmax(k)}. 

In words, X,,,(k + 1) denotes the anticipated set of 
possible states at time k + 1 based on measurements 

up to time k. Note that X, r?, and X,,, all depend 
on the current measurement trajectory. However, this 
dependence is not explicitly expressed for the sake of 
notational simplicity. 

Algorithm 3.1 (SVO) Let 
{y(O), y(l), y(2), . . .} be a measuyement trajez 
tory of the system (1) under Assumption 3.1. Suppose 
x(0) E X, E K~nz. 

Initialization 

-qm(O) = x0, 

X(O) = X, f-p(0). 

Propagation 

X(k) = XpG4 n %k) 

{x : x = f(Z,d, k), for some Z E X(k - l), 

I4 5 dmax(k - 1)) r)w4. 

I 
Note that the SVO algorithm is causally dependent on 
the measurement trajectory. 

Associated with the set X(k) is the central estimate 
z&(k) defined as follows. For each component, xi(k), 
with i = 1,. . . , nz, define 

&i(k) = max{xi(k) : x(k) E X(k)}, 

gi((k) = min{xi(k) : x(k) E X(k)}, 

Then the central estimate is defined as 

&(k) = in(k) + ix(k). 

Optimality properties of central estimates are consid- 
ered in [9, 13, 141. 

4 Extended SVO 

In the nonlinear case, the SVO algorithm must prop- 
agate general sets in Rnz . This essentially prevents 
any computational implementation of the algorithm. 
In this section, we mimic the EKF and construct an 
extended SVO for nonlinear systems. 

We will consider the simplified nonlinear system 

x(k + 1) = f(x(k), k) + d(k) 
y(k) = Cx(k) +n(k). (2) 

Having the disturbances, d, enter linearly can always 
be satisfied at the cost of higher order dynamics by 
augmenting the system with a delay. The linear output 
assumption is made with some loss of generality. In 
some cases, the output can be part of the state vector 
after an appropriate transformation. 



Assumption 4.1 For any k E 2+, the function 
f(., k) : 7?‘, t Rn= in (2) is continuously differen- 
tiable, and for all x0, x E TX, 

f(x, k) = f(xo, k) + Df(xo, k>(x - xo) + R(x> xo, k), 

where 

IWx, xo, k)I 5 Y Ix - ~1~. 

Assumption 4.1, as stated, requires that the 
linearization residuals are uniformly quadratically 
bounded. In fact, the forthcoming extended SVO only 
requires that these residuals are uniformly bounded 
over all state/estimate trajectories. This essentially 
reflects that the system evolves over a (not necessarily 

small) compact set. 
The forthcoming extended SVO will produce sets of 

states, Xc(k), which bound the actual sets of possible 
states, i.e., 

X(k) c X,(k). 

Let &(k) denote the central estimate based on X,(k). 
Linearizing (2) about 5&(k) leads to 

x(k + 1) = f&(k), k) + Df(&(k), k)(x(k) - C(k)) 

+ R(x(k), C(k), k) + d(k), (3) 

Based on this linearization, the bou_nding sets X,(k) 
can be computed as follows. Define X(k) as before. It 
will be convenient to express the sets X,(k) as devia- 
tions from their centers. Towards this end, define 

X;(k) = {w : 5%(k) + 2, E X,(k)} 

and 

p(k) = sup 14. 
VEX:,(k) 

Algorithm 4.1 (Extended SVO) Let y 

{y(O), y(l),y(2), . . .} be a measurement traje, 
tory of the system (2) under Assumptions 3.1 and 4.1. 
Suppose x(0) E X0 E KR=, . 

Initialization 

~~(0) = ~(0) n x0. 

Propagation 

X&f) = %k) n { x : x = f(&(k - l), k - 1) 

+Df(&(k - l), k - 1)~ + r + d, 
for some ZI E XL(k - l), IdI 5 d,,,(k - l), 

Id I YP2(k - I>>. 

I 

We see that the extended SVO bounds the 
sets X(k) by considering the linearization residuals, 

JWk),k(k), k) as exogenous disturbances. This is 
unlike the traditional EKF which simply ignores the 
linearization residuals (although it is possible to in- 
clude “expected” residuals in a “second order” EKF). 
If available, tighter bounds may be used in place of 
yp2. In fact, the residual bounds can be a function 
of the current set-valued state estimate (at the cost of 
increased computational burden). As with the linear 
SVO, the sets Xc(k) are polytopes and can be com- 
puted by solving several linear programs. 

It can be shown that the extended SVO estimate, 
f,, has the following convergence and non-divergence 
properties under appropriate observability assump- 

tions: 

a In case d, n = 0, 

f%(k) -+ x(k) 

for sufficiently small initial condition uncertainty. 

l In case d, n # 0, 

11% - &ll,cw 5 Y II@JdIle- 7 

for sufficiently small initial condition uncertainty 
and sufficiently small I] (d, n) ]lem. 

Details may be found in the full journal version of this 
paper. 

5 Special Cases 

Two special classes of systems previously considered 
for nonlinear observers are nonlinear systems whose 
dynamics after state transformations take the form 

x(k + 1) = +b(k)) + Ax(k), 

y(k) = Wk), 

or more generally 

xc(k + 1) = @/(k)) + 4dk)WL 

y(k) = Cx(k). 

The first system, considered in [3, 71, represents a 
nonlinear system which is state equivalent to a lin- 
ear system with output injection. The second system, 
considered in [4], represents a special structure which 
resembles a linear time-varying system whose “time- 
variations” are actually due to the measured output. 

For either structure, it is possible to generate error 
dynamics which are either linear time-invariant or re- 
semble linear time-varying dynamics via the observer 

g(k+l) = ~(y(k))+A(y(k))x(k)+H(k)(y(k)-C~(k)). 



Let e(lc) = z(k) - g(k). Then 

e(k + 1) = (A(y(k)) - H(k)C)e(k). 

The underlying linear error dynamics then greatly sim- 

plify observer design. 
It turns out that for these classes of systems, the 

extended SVO actually generates the exact set of pos- 
sible states. In particular, consider 

Y(k + 1) = &km h) + 4kJC) 
z(k + 1) = MY(~), k) + A(Y@), kk(k) + d,(k) 

Y(k) = (AL, 0)X(~)> (4 

where the state vector is partitioned z(k) = Y(k) 

( > 
Z(lc) , 

and there is no measurement noise. Note that equa- 
tion (4) includes both previous structures, but after 
appropriate state transformations have been made. 
Proposition 5.1 Consider Algorithm 4.1 applied to 
the nonlinear system (4) with y = 0. The sets X,(k) 
exactly represent the nonlinear SVO of Algorithm 3.1. 

Example 5.1 Consider the dynamics of a freely ro- 
tating rigid body 

til = aw2w3 

h2 = Pww3 

ti3 = YWW2 

y = Wl. 

These dynamics were considered in [6] as well as [4]. 
Both references derived state transformations which 
linearize the error dynamics, however the transforma- 
tion considered in [6] relies on a priori knowledge of 
maximal and minimal values of y. 

A discretized version of these dynamics yields 

wl(k + 1) = WI(k) + h-‘b(k)w3(k) + h(k) 
wz(k+ 1) = w2(k) + hWl(k)W3(k) + dz(lc) 

W3(JCfl) = w3(k)+haw1(k)w2(k)+d3(k) 

which are already in the form of (4) without any state 
transformations. The quantities di can be used to re- 
flect discretization errors. 

6 Simulation Example 

We will consider state estimation for a discretized 

Van der Pol equation 

x2 

-9z1+/J(l- x4)x2 

which was also considered in [l]. Performing a dis- 
cretization of step size h leads to 

(;$!$;) =f(x)+ (;)W 
Xl(k) + hx2(k) 

zz(k)+h(-9X1(k) +p(1-xf(k))ZZ(k)) 

where d and n denote discrete-time noises. Note that 
these equations are in the form of (4) in case n = 0. 

Let e = x - x0. Linearizing the above right-hand- 
side about x,, leads to 

f(x) = f(G)+ 
1 h 

-9h - 2hpxo,lx,,z 1 + ph - phx:,, > 
e 

+R(x, x0), 

where 

R(x,x,) = -I.Lh (eT(zl;: +>l)e+eTez)’ 

The simulated extended SVO followed Algo- 

rithm 4.1 except that it exploited maximal values of 
x(k) -&(k) to bound on R(z(k),z,(k)). An EKF as 
described in [15] also was included in the simulations. 

The following simulation parameters were used for 
Simulations 1-4: 

l System parameters: h = 0.02, /-I = 2, x(0) = 
5 

0 0 . 

l Noise bounds: d,,, = n,,, = 1. 

l SVO initial condition: X(0) = 
(b’:::$)- 

0 Initial a priori covariance matrix: P(0) = 

(“O’ OYl). 

0 Initial a priori state estimate: Z(0) = 
0 

t . 

The particular simulations are described as follows: 

1. Constant Noise: E[d2(k)] = E[n2(k)] = l/3; 
d(k) = n(k) = 0. 

2. Constant Noise: E[d2(k)] = E[n2(k)] = l/3; 
d(k) = -1; n(k) = 1. 

3. Uniform Random Noise: E[d2 (k)] = E[n2 (k)] = 

l/3 ; d(k),n(k) E [-I, 11. Y=xl+%, 
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Sim”*.d.iO” svo EKF svo 

$:: 1.00 0 4.40 3.09 x 10-J 1.74 4.41 x 10-e 4.18 7.96 x m-4 

#3 5.87 x 10-Z 2.25 x 10-Z 3.75 1.51 
#4 5.16 x 10-S 1.21 x 10-1 2.13 6.10 

Table 1: Mean Square Estimation Error 

4. Bang-Bang Random Noise: E[d2(k)] = 

E[n2(k)] = 1; d(k),n(k) E (-1, +l}. 

Both the EKF and extended SVO generally follow 

the state trajectory, however the SVO state bounds are 
very conservative. Figure 1 illustrates these bounds for 
Simulation #l. Figure 2 of Simulation #2 shows that 

the true state initially follows the SVO lower bound. 
Figures 3-4 show the various time responses in Simu- 
lation #2. 

Table 1 summarizes the mean square estimation er- 
rors starting after time Ic = 0. The extended SVO 

seems to outperform the EKF whenever the simula- 
tion significantly departs from the stochastic structure 
for which the linear Kalman filter is optimal. This in- 
cludes Simulation #4, in which the extended Kalman 
filter was provided with the correct variances. 

The following simulation parameters exhibiting 

large initial condition uncertainty led to divergence of 
the EKF while the extended SVO locked on to the true 

state within 2 time steps: 

l Noise Bounds: d,, = 0.0001, nmax = 1. 

l SVO initial condition: X(0) = i z z: 2 ii 
> 

0 Initial a priori covariance matrix: P(0) = 

(Oil ,4)- 

0 Initial a priori state estimate: Z(O) = 
( > 

fi . 

l Uniform random noise: d(k) E [-&ax, dmxl; 

n(k) E [-nmax,nm,l; E[d2(k)l = dmax/3; 
E[n2(k)l = nmax/3. 

Despite these results, it is unclear whether either 
observer generally exhibits superior convergence and 
performance. The extended SVO does have a signifi- 
cantly larger computational burden. 

7 Concluding Remarks 

In this paper, we have considered an extended SVO 
for nonlinear systems and derived guaranteed conver- 
gence and non-divergence properties. The main short- 
coming of the extended SVO is the significant com- 
putational burden of solving several linear programs. 

The number of variables for these linear programs ap- 
proximately equals the number of state variables and 
exogenous disturbances. The number of constraints 
depends on the complexity of the resulting sets of 
possible states. Theoretically, this number could in- 
crease with the number of measurements. In the sim- 
ulation example, however, the number of constraints 
was rarely larger than 20 and usually less than 10. 
Given this computational burden, real-time applica- 
tion seems unlikely for systems with fast dynamics. 
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Figure 1: State trajectory x2(k) and extended SVO 
error bounds (Simulation #l) 

Figure 2: State trajectory 22(k) and extended SVO 
error bounds (Simulation #2) 
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Figure 3: State trajectory xi(k) with extended SVO 
and EKF estimates (Simulation #2) 
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Figure 4: State trajectory x2(k) with extended SVO 
and EKF estimates (Simulation #2) 


