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Abstract 

This paper presents the impulse control approach 
intended to urgently return to the stability basin the 
system states affected by abrupt changes in certain 
system coefficients on a short time interval. Because 
of its short duration, the modeling of both the fault 
and controller involves 6 - functions significantly sim- 
plifying analysis and control of fault phenomena. The 
design of an impulse controller is based on the tech- 
nique for computing fault-induced jumps of the sys- 
tem states, which is described in the paper. A sample 
impulse controller instantaneously returning states of 
a Van-der-Pol system to the stability basin is de- 
signed. 

1. Introduction 

The impulse control technique based on 6 - func- 
tions as controls was applied to the optimal control 
problems in the field of spacecraft navigation [l] and 
heat conduction [2], the filtering problems over dis- 
continuous observations [3], and others. This paper 
makes an attempt to extend the application domain 
of impulse control to the problems of fault description 
and compensation as well as stability control. 

An impulse control approach that is applied to a 
dynamic system in the case of urgent necessity to 
change back a system state affected by fault is de- 
veloped. It is assumed that system fault significantly 
affects the operation of a relatively small subsystem of 
the initial system on a short time interval and clears 
up at the end of this interval. Such fault results in 
pseudoimpulsive behavior of a relatively small num- 
ber of the system coefficients, which abruptly increase 
to the peak values and abruptly return to the nomi- 
nal values, as it occurs in transient stability problems 
for power systems. The pseudoimpulsive coefficients 
can be modeled by 6 - functions. Thus, the initial 

basin@unr.edu 

system-governing equation becomes the equation in 
distributions, which describes the system fault. The 
solution of an equation in distributions is defined as 
a vibrosolution [4-S], whose jumps occur at points 
where S - functions are activated. A number of ex- 
amples, where jumps of the system state can be com- 
puted analytically, are given in the paper. Otherwise, 
system state jumps are computed through numerical 
integration of a subsystem, which is significantly re- 
duced in comparison with the initial one. 

An impulse control method is designed to urgently 
return the system states affected by fault to the sta- 
bility basin. For this purpose, an impulse controller 
introduces 6 - functions into the system equation. 
This method is applied to a Van-der-Pol system, 
where the impulse controller generates a jump of the 
system state into the stability basin, thus preventing 
the system state from transition to infinity. 

The paper is organized as follows. A fault model 
is described in Section 2. The basic technique for 
computing jumps in system states affected by fault 
is given in Section 3. A number of examples where 
analytic computation of jumps is possible are given in 
Section 4. The impulse control method is presented 
in Section 5 and applied to a Van-der-Pol system in 
Section 6. Properties of the proposed method are 
discussed in Section 7. Section 8 concludes this study. 

2. Fault Modeling 

Let us first describe the application of 6 - functions 
to modeling of a system fault on a short time interval. 

Consider an equation governing a dynamic system 

i(t) = ~l(t)fl(z,t)+k2(t)f2(Z,t)+...+IC,(t)f,(Z,t), 

a = XO, x E RN, fi(x, t) E RN, 

k%(t) E RNX N, i = 1,. , . n (1) 



Assume that, due to a short system fault, a relatively 
small number of the coefficients Icr(t), J~z(t), . . . , k,,(t), 
say h(t),..., km(t), change in a pseudoimpulsive 
manner on a short time interval [to, to + At]. Namely, 
the coefficients kl(t), . . . , km(t) abruptly increase to 
their peak values and return to the pm-fault values. 
This induces abrupt changes in the system state on 
the interval [to, to + At]. The problem is to find the 
post-fault system state x(tc+At), or the system state 
jump x(te + At) - x(to), provided that a prefault 
state I is given. The determination of the post- 
fault system state or system state jump is necessary 
for forming the impulse control. 

Suppose that a fault affects coefficients only from 
a small “fault” subsystem of the initial system. Be- 
cause of lack of accurate knowledge and observation 
of the faulted coefficients kl(t), . . . , km(t), these coef- 
ficients are represented as S - functions with the cor- 
responding intensities, which are assumed the peak 
values of the faulted coefficients or estimated using a 
data record of the fault behavior. Such modeling of 
pseudoimpulsive behavior of the faulted coefficients 
is physically motivated and simplifies computation of 
state jumps. 

3. Computation of System State jumps 

The coefficients kl (t), . . . , km(t) of (1) are replaced 
by 6 - functions with intensities ~1, . . . , pu,. The in- 
tensities are measured or computed as pj = MjAt, 
where Mj = SUP kj(t), t E [to, to + At]. Then, the 
equation (1) takes the form: 

k(t) = ~1f1(x,t) + .. . + hf?7a(X, t)lW - to)+ 

km+l(t)fm+l(x, t> + . . . + kn(t)fn(x:,t), 
x(to> = x0, (2) 

where km+l(t), . . ., k*(t) are nonimpulsive coeffici- 
ents. Let us note that the equation (2) is an equa- 
tion in distributions, whose solution is a discontinu- 
ous function of bounded variation. The solution can 
be defined and its jumps can be computed by virtue 
of the theory given in [4-61, whose application to the 
equation (2) yields the following propositions. 

Proposition 1. Let 1) the functions prfr(x, t), . . ., 

~mfm(x:,t), km+l@>fm+l(x,% . . ., k,(%(x,t) be 
piecewise continuous in x, t and satisfy the oneside 
Lipschitz condition in x [7], 
2) functions fr(x, t), . . ., fm(x, t) have piecewise 
continuous derivatives in x and t: W1(x:,t>l~x, 

afl(x:,t>l& * * *> dfm(x, t)/h afdx, t)/& and 

3) the N x N - dimensional system in differentials 

dJ(z, w, P, 21, s> 
du = wYt74 +. . . +Pumfm(E,s), 

6(w) = z, (3) 
where p = (~1,. . . , pm) is a vector of intensity matri- 
ces, be solvable for arbitrary initial values w E RN, 
z E RN inside a cone of positive directions K = (u 2. 
wIUiLWi,i=l,...,N)ands2to. Then: there 
exists the only solution x(t) (called a vibrosolution) 
that is the only limit in the *-weak topology of the 
bounded variation functions space 

* - limz”(t) = x(t), 

for all pm-limiting solutions x:“(t) corresponding to 
absolutely continuous nondecreasing approximations 
d(t) of a Heaviside function x(t-to), dx(t-to)/dt = 
qt - to): 

@(t) = ~lfl(xk,t)+ . ..+ pnJm(&t)]iLk(t)+ 

+k,+l(t)f,+l(xk, t) + . . . + k,(t)&(x”, t), 

xk(to) = x0. 

Remark. The *-weak convergence in the bounded 
variation functions space 

* - hmx”(t) = x(t), t 2 to, 

takes place if and only if the following conditions hold 
l)lim ]] x”(to) - x(to) II= 0, t > to, 
2) lim ]] x”(t) - x(t) I]= 0, t 2 to, in all continuity 
points of the function x(t), 

3) supk Vur[to, T]x”(t) < 00 for any T 2 to, where 
Var[a,b]f(t) d en0 t es variation of a function f(t) on 
an interval [a, b]. 

Proposition 2. A vibrosolution is also the only so- 
lution of the following equation with a measure 

h(t) = (km+l(t>fm+l(x, t) + . . . + kn(t)fn(x,t))dt+ 

+CG(xoj,O,~,l,tj)dX(t-tj), x(h) =XO, (4) 
% 

where G(z, w,~, u, s) = c(z, w, p, w + U, s) - Z, and 
t(z, w, p, U, s) is a solution of the system in differen- 
tials (3); ti are points where 6 - function is active, 
X(t - tj) is a Heaviside function, xoj is a value of the 
state x(t) before a jump. 

Thus, the equations (3) and (4) enable us to com- 
pute the jumps of the equation (1) state x(t), which 
are induced by pseudoimpulsive behavior of coefh- 
cients kl(t), . . . , km (t). Explicit analytic formulas for 
a jump Ax(to) = G(xo,O,p, 1, to) can be obtained 
in special cases, and numerical simulation of the sig- 
nificantly reduced fault subsystem yields the jumps 
values in other cases. The stability of a vibrosolu- 
tion (in particular, a value of its jump) with respect 
to *-weak approximations of a Heaviside function 
enables us to use any approximation for numerical 



computation of a jump. For example, a pseudoimpul- 
sive coefficient Icj (t) with intensity pj At can be rep 
resented as a constant pj on an interval of length At, 
2pj on an interval of length At/a, or another *- weak 
approximation of a Heaviside function. All possible 
approximations yield the same limit, which is equal 
to a vibrosolution jump as At + 0. Moreover, it can 
be proved that if fr(z), . . . , fm (x) are time-invariant, 
kj((t) remain constant during a time interval with 
length AT, and kj AT = pj At, then the integral ex- 

to+AT 
pression x(t) = s (kl(t)fi(z)+. . .+k,(t)f,(z)dt, 

to 
which should be used for numerical computation, is 
the same as for computing a jump by virtue of the 
equation (4). 

The numbers of both coupled equations. and terms 
in each of these equations in the fault subsystem, 
which is used for computation of a vibrosolution 
jump, are significantly reduced in comparison with 
the initial system. This allows fast and, possibly, on- 
line numerical computation of the state jumps. 

4. Examples of Explicit Computation of 
State Jumps 

In Examples 1 and 2, only the fault subsystems are 
given. The terms with nonimpulsive coefficients are 
insignificant for computation of jumps. 
1. Let us consider a system 

i = k(t)?, x(to) = x0, x E R, 

which will be used later for design of an impulse con- 
troller in a Van-der-Pol system. Assuming that the 
intensity of the coefficient k(t) is equal to /L, we obtain 

AX = ((l-n)~+z~-n)ll(l-“)-zo, if n # 1, and 

Ax = xo(exp(p) - l), if n = 1. 

This result readily follows from the fact that 6 = 
((l-n)~~“+2~-~)ll(l-~) and c = x0 exp(pu) are the 
solutions of the systems (3) in these cases, respec- 
tively. For n > 1, Ax is equal to 00, if x0 and /.L 
satisfy the condition 

X0 ‘4 = (n - l)p. 

2. Consider another system equation related to the 
theory of transient stability of power networks 

2 = kl(t) sin(ax)+kz(t) cos(ux), x(to) = x0, x E RN, 

where ~1 and ~2 are intensities of kl(t) and kg(t) at 
a point to. Since 
E = a-l{2 arctan[exp(a(pf + &‘/“U) + tan((ax0 + 

0)/2)] - 0) is the solution of the system (3) in this 
case, we obtain 

Ax = a-l{2 arctan[exp(a(pT + /&l/2)+ 

tan((ax0 + 0)/2)] - 0) - x0, 

where 8 = py1p2e, and e = (1,. . . , 1) is the unit N - 
dimensional vector. 
3. Finally, consider a Hicatti equation for the esti- 
mate variance in the Kalman-Bucy filter 

i, = AP + PA* + GG* - PC*HCP, 

P(tr,) = PO, P E RNxN, 

where P is the estimate variance, G and H are vari- 
ances of Gaussian noises, and C is a transition matrix 
in an observation equation. If H changes pseudoim- 
pulsively on an interval [to, to + At], then the corre 
sponding jump of the variance matrix P is equal to 

AP = Po[l + C*hCPo]-’ - PO, 

where h is the intensity matrix for the matrix H, and 
I is the N x N-dimensional identity matrix. The 
function 5 = Po[l + C*hCPou]-’ is the solution of 
the system (3) for this example. 

Thus, the application of 6 - functions to computa- 
tion of the fault-induced jumps of system states en- 
ables us either to obtain explicit analytic formulas or 
to significantly simplify their numerical computation. 

5. Impulse Control Approach 

The impulse control approach is applied to a dy- 
namic system in the case of urgent necessity to change 
back the system states affected by fault. The nom- 
inal equilibrium position of the system is considered 
stable with a compact stability basin, whose bound- 
ary can be estimated. Let us assume that the system 
state leaves the stability basin due to short fault and 
its further motion produces severe problems in the 
system operation. The fault modeling via 6 - func- 
tions, described in Section 2, motivates design of an 
impulse controller based on 6 - functions, which ur- 
gently returns the system state to the stability basin 
and adequately responds to the pseudoimpulsive be 
havior of the faulted system. 

An impulse controlled dynamic system can be writ- 
ten in the form 

2(t) = blfl(X, t) + . . . + /-hfm(~C,t)l~(t - h> 

+fm+l(x,t) + - - * + fn(xC,t)7 

x(tl) =x*, x E RN (5) 



wherepI,..., pm are impulse control intensities, tl is 
the point where impulse control is active. If fl(~, t) = 
. . . = fi-r(x, t) = fi+r (x, t) = . . . = fm(x, t) = 0 and 
fi(x, t) = 1, the impulse control is additive. 

The equation (5), as well as (2), is an equation 
in distributions. The solution of (5) is defined as a 
vibrosolution, and its jumps are computed in accor- 
dance with Propositions 1 and 2. As noted, jumps 
of the impulse controlled system state (5) can be an- 
alytically computed in special cases. A number of 
examples are given below, where the impulse control 
method is applied to a Van-der-Pol system. Even if 
jumps of the system state (5) cannot be analytically 
computed, the number of terms necessary for numer- 
ical jump computation is reduced in comparison with 
the total number of terms in (5), from n to m. 

Let us note that the faulted system (2) is gov- 
erned by the same equation as the impulse control- 
led system (5). Thus, one can readily design the 
impulse control G(t) compensating for the fault ac- 
tion. For example, if the pseudoimpulsive coefficients 

h(t), . . . , km(t) affected by fault are represented as 6 
- functions with intensities y, . . . , u,, then the im- 
pulse control returning the system to the pre-fault 
state can be designed by assigning the intensities 
--y,..., -urn, i.e., G(t) = (--yb(t-tl), . . . , -um6(t- 

a)- 
Consider a general method for design of an impulse 

control G(t) = (plG(t - tl), . . . , pm6(t - tl)) moving 
a state of the system (5) into its stability basin. The 
system (5) can be written in the compact form 

k(t) = f(x, t) + b(x, t&(t), x(h) = x*, (6) 

where h(t) is an impulse control, 

60) = (fiW)> . - -7 fm(xC,t)) E R Nxm, f(x,t) = 

fm+r(x, t) + . . . + fn(x, t) E RN. The second addition 
in (6) is equal to 0 everywhere, except for the point tl 
where impulse control is active. Let the initial state 
x* be disposed outside the stability basin. Assume 
that there exists a Lyapunov function L(x, t) such 
that 

S(x, t) = ax, t)Pt Ik(t)=f(z,t) < 0 

for t > tl, x E w c WO, and wo is the stability basin 
of (6). To move a state of (6) into the stability basin, 
an impulse controller should generate a jump of the 
state in such a way that the Lyapunov function is 
negative at the post-jump state x1 

Sk, t) k,t=tl < 0, xl = x* + Ax@,). (7) 

In accordance with Proposition 2, the jump corre- 
sponding to an initial point x* and an intensity vector 

CL = (Pl,. * *, y,) is equal to 

Ax:(h) = G(x*, 0, P, 1, h), (8) 

where G(z, w,p,u, s) = ((z, w,~, w + u, s) - Z, and 
E(z, w, /J, 21, s) is a solution of (3). Thus, the expres- 
sions (7) and (8) compose a closed system for deter- 
mination of an intensity vector p and, therefore, an 
impulse control G(t). The optimal impulse control 
can be determined from the following system 

S(x, t) Iz=zl,t=tl+ mjn, xl = x* + Ax(h), 

Ax(h) = G(x*, 0, P, 1, h), 

where the function S(x, t) should be minimized over 
all possible intensities. 

6. Impulse Control of a Van-der-Pol system 

Let us consider the application of the impulse con- 
trol method to a Van-der-Pol oscillator, where the 
control objective is to return the system state to the 
stability basin, preventing it from transition to infin- 
ity. 

Consider a system described by the Van-der-Pol 
equation 

d2x/dt2 + wx + adx/dt - &!x/dt)3 = 0, 

x(to) =x0, a, p > 0. (9) 

This system has the stable equilibrium at the origin 
with the stability basin bounded by the limit cycle 
x2 + (dz/dt)2 = TV, where r = m. Upon intro- 
ducing the variable v = dx/dt, the equation (9) can 
be written as the system of first-order equations 

dx/dt = v, dv/dt + wx + av - pv3 = 0, 

x(to) = x0, v(to) = dx(to)/dt. (10) 

Each trajectory outgoing from the interior of the limit 
cycle approaches zero, i.e., Ilx(t)II --+ 0, as t --+ co, if 
xi+vi < r2, and each trajectory starting from a point 
outside the cycle tends to infinity, i.e., Ilx(t)II ---) 00, 
as t --+ oo, if xi + vi > r2. Assume that the initial 
point (xo, vo) jumps out of the limit cycle due to fault. 
The control objective is to urgently return the system 
state to the stability basin, i.e., the interior of the 
limit cycle. A number of impulse controllers solving 
this problem are considered below. 

1. Assume that additive impulse control is avail- 
able. If a fault moves the system state to a posi- 
tion (0, ve), where vo > T, then an additive control 
G(t) = p6(t - to) solving the problem is included in 
the second equation of (10) 

dv/dt + wx + cxv - ,8v3 + G(t) = 0. 

The intensity p of C(t) should belong to the range 
vo-T<<<vo+T. 



If a fault moves the system to a position (x0,0), 

where xo > T, then an additive control is included in 
the first equation of (10) 

dx/dt = v - c(t). 

The intensity p of G(t) should belong to the range 
x0-r<p<xo+r. 

Both equations of (10) should be controlled, if a 
fault moves the system state to a position (XO,VIJ), 

zo # 0, ve # 0, zi +vi > r2, which is located beyond 
the phase plane axes and stability basin. 

2. Assume that multiplicative impulse control 
ti(t) = av - pv3, where Q and p are impulsive co- 
efficients, is available. Let a = p-ls(t - to) and p = 0. 
The value of p returning the system state to the inte- 
rior of the limit cycle is determined as follows. Due to 
Proposition 2, the jump Av(to) inspired by the con- 
trol p6(t - to)v is equal to Av(to) = -vo(exp(p) - 1). 
Thus, the desired intensity is /.L = ln(1 - Av(to)/vo), 
where I Av I > I vo - dm I. This result readily 
follows from Example 1 of Section 4 for n = 1. 

Analogously, if (Y = 0 and p = -$(t - to), then 
the jump Av(t0) inspired by the control p6(t - to)v3 

is equal to Av(te) = vo - (-2p+vi2)-lj2. Thus, the 
desired intensity is p = (1/2)(v~~ - (ve - Av(to))-2), 

where I Av I> ( vo - dm I. This result readily 
follows from Example 1 of Section 4 for n = 3. 

7. Discussion 

Using an additive impulse control C(t) with an 
appropriate intensity, it is possible to return a sys- 
tem state to the stability basin from any post-fault 
state. The resource of additive impulse control can 
be insufficient to return a system state to the stabil- 
ity basin from any post-fault state (for example, if 
Vur[to, T]u(t) < C = con&, where C(t) = @(t - to), 
i.e., impulse control intensity p < C). In this 
case, several additive controllers pou(t - to), plu(t - 

h), * ", ,umu(t - tm) operating subsequently at t = 

Wl, * . . , t, solve the impulse control problem. If 
additive impulse control cannot be used, the ques- 
tion whether it is possible to return a system state to 
the stability basin from any post-fault state is more 
complicated. However, the investigation is simplified 
in the case of analytic computation of state jumps. 

Modeling of short impulsive behavior of system or 
controller coefficients by 6 - functions is physically 
motivated and highly simplifies subsequent mathe- 
matical analysis. Intensities of an impulse control 
correspond to the controller objectives. Design of 
an impulse controller requires only observation of the 
state jumps in the fault subsystem. The jumps can 
be measured directly or, as shown in Section 3, can 

be computed if intensities of the faulted coefficients 
are estimated. 

8. Conclusion 

This paper presents the impulse control approach 
intended to urgently return the state of a dynamic 
system affected by fault to the stability basin. A 
method for design of an impulse controller is ad- 
dressed and applied to a Van-der-Pol system, thus 
preventing its state from transition to infinity. The 
technique for computing the fault-induced jumps of 
the system state is described. The fault-modeling 
procedure based on this technique is designed. 
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