
A SIMPLEX TRAINED NEURAL NETWORK-BASED ARCHITECTURE FOR SENSOR FUSION AND
TRACKING OF TARGET MANEUVERS

Yee Chin Wong and Malur Sundareshan
Department of Electrical and Computer Engineering

University of Arizona
Tucson, AZ 85721-0104

Tel: (520) 621-2953; Fax: (520) 621-8076
Email: sundareshan@hermes.ece.arizona.edu

ABSTRACT
One of the major applications for which neural

network-based methods are being successllly employed
is in the design of intelligent integrated processing
architectures that efficiently implement sensor fusion
operations. In this paper we shall present a novel
scheme for developing fused decisions for surveillance
and tracking in typical multi-sensor environments
characterized by the disparity in the data streams
arriving from various sensors. This scheme employs an
integration of a multilayer neural network trained with
features extracted from the multi-sensor data and a
Kalman filter in order to permit reliable tracking of
maneuvering targets, and provides an intelligent way of
implementing an overall nonlinear tracking filter without
any attendant increases in computational complexity. A
particular focus is given to optimizing the neural
network architecture and the learning strategy which are
particularly critical to develop the capabilities required
for tracking of target maneuvers. Towards these goals, a
network growing scheme and a simplex algorithm that
seeks the global minimum of the training error are
presented. Validation of these methods comes from
several tracking experiments involving targets executing
complex maneuvers in noisy and clutter environments.
Results tiom one such experiment is included here for
illustration.

INTRODUCTION
A variety of sensing devices ranging from radar

systems to lasers and optical imaging systems are
presently being developed for surveillance and tracking
operations. The limitations of using a single sensor in
these operations, such as limited accuracy and lack of
robustness, have motivated the trend towards designing
surveillance and tracking systems with multiple sensors
deployed on the same platform (an airborne or
spaceborne reconnaissance platform or a tactical missile
seeker, for instance) which can provide large amounts of
useful data to detect, track, and identify targets of
interest. However, current surveillance and tracking
algorithms usually use information from only one sensor
(such as Track-While-Scan (TWS) radar) or attempt to
combine information from different sensors in an ad hoc
manner. While it is intuitive that using additional data
available can result in improved detection, classification
and track maintenance performance, attempting to

include this data efficiently will require novel processing
methods which need to be carefully tailored due to the
disparate forms of data collected. Development of such
processing methods aimed at enhancing the tracking
performance even in scenarios where a typically
noncooperative target is executing complex maneuvers
is a particularly challenging task.

A major limitation precluding the integration of
additional data, perhaps of a disparate form from the
main data form being used, is the resulting complexity of
the needed processing. For the particular case of target
tracking, it is rather well known that while simple linear
processing algorithms employing a Kalman filter for
target state estimation can be synthesized for processing
radar data, inclusion of a different form of data (image or
image-format data, for instance) will require a nonlinear
processing method (such as an Extended Kalman
filtering algorithm) [11. The enormous processing
complexity could render the implementation impractical
due to the real-time processing requirements underlying
the tracking function and the need to keep up with the
rapid target motions during the maneuvers.
Consequently, an intelligent architecture that facilitates
successful fusion of the diverse data forms to result in
improved tracking performance in the face of complex
target maneuvers is highly desirable.

Our interest in this work centers on the
development of feature level fusion architectures that
can assist in efficiently performing target surveillance
and tracking, since such architectures will not only
permit fusion of data from sensors which could have
diverse characteristics (such as integration of radar data
and image - format data, for instance) but also will
present interesting and nontrivial questions to be
investigated. The two major steps in the design of such
architectures are, (i) feature extraction and (ii) feature
integration. In particular, an architecture (as depicted in
Fig. 1) that subjects the data stream coming from each
sensor to a feature extraction operation (perhaps after
some preprocessing to align, order and/or reformat the
data as desired), which in turn followed by a feature
integration operation to arrive at a fused decision for
surveillance and tracking, constitutes the backbone for
intelligent integrated processing of multisensor data in
these applications.

Some of our recent studies 12-41 have helped
obtaining an understanding of the ability of neural

networks to fuse information from different sensors to
assist in simple implementations of target detection and
tracking algorithms. The primary focus in this paper is
on developing an optimized neural network architecture
and an efficient training scheme that endows the neural
network the capability to perform fusion of target
measurements in order to reliably track target maneuvers
executed in severe clutter and noise environments.
Towards these goals, we shall introduce a network
growing scheme and implementation of a simplex
optimization algorithm for training a multilayer neural
network. Unlike the more commonly used approach of
error backpropagation [5], the simplex optimization
approach enables one to more efficiently seek the global
optimum in the training task, and consequently, permits
the trained network to process a set of features extracted
from the sensor measurements in order to rapidly make
the necessary association with certain critical parameters
representative of the target maneuver. A target tracking
system architecture is developed by integrating the
trained neural network with a Kalman filter that
performs the target state estimation function.

NEURAL NETWORK-BASED ARCHITECTURE
FOR SENSOR FUSION AND TARGET
TRACKING

The basic building blocks of the tracking
scheme shown in Fig. 2 are the neural network and the
Kalman filter. The neural network accepts as inputs a
set of features extracted from the sensor data and is
trained to output estimates of a set of maneuver
parameters characterizing the target maneuver that is
represented in the feature set. Since features abstracted
from the measurements obtained from dissimilar sensors
are typically used as inputs to the neural network, the
processing of data by the network implements a feature
integration process and thus performs sensor fusion. The
neural network outputs are fed to a Kalman filter which
implements a recursive state estimation algorithm based
on a linear model of the target dynamics. For the sake of
illustration of specific details regarding the features
extracted and the training conducted with these features,
Fig. 2 depicts a msion environment comprising of a
range radar and a Doppler radar. It is to be emphasized
that this is only for simplicity in discussing the details
and will not limit the type of sensor that may be brought
in to provide target measurements.

Training of the neural network for providing
maneuver estimates is implemented with three features
extracted from the measured data. Two of these features
ui(k) and up(k) are obtained from the measurements of
the range radar (a TWS radar, for illustration) and the
other feature ug(k) is obtained from the measurements
from the Doppler radar (as shown in Fig. 2). More
specifically, the signal vi(k) is constructed by
normalizing the two components of the innovation data
with respect to the covariance as

y(,+&+- zj? (k)
&x(k) SW(k)

where F(k) = [‘Z,.(k) Yy(k)]’ = z(k) - IE(k lk - I), z(k) being

the measurement and i(klk-1) being the state estimate
generated by the Kalman filter. S,(k) and S’@) are the
diagonal elements of the covariance matrix which is
used for Kalman gain computation. Signal u2(k) is the
change in the heading estimate computed as

u2#)=aLT @)-aLT &-l)

where o&k) and &k-l) are the heading estimates
computed by the method of least triangles from using
three past data points. Finally, the third input feature
ug(k) is extracted Corn Doppler radar and is computed as
the change in Doppler shiR normalized by its variance,
i.e.,

03(k)=- aid Lfd (k) - fi (k - 01 where fd (9 = $ @iI

provides a measure of the radial velocity, d(i) , at instant

i (h denotes the wavelength of the transmitted wave) and
ozfd, variance of the Doppler shift.

Performance evaluation studies conducted
earlier [2,3] provide ample evidence that the three
features contain adequate information to train the
network to provide reasonably accurate maneuver
estimates when the target maneuvers involve
longitudinal accelerations of arbitrary magnitudes. This
performance has been tested in several tracking
scenarios comprising of various degrees of clutter and
noise. Furthermore, the resulting performance levels
have been shown to compare favorably with some
classical maneuver tracking schemes [3].

OPTIMIZATION OF NEURAL NETWORK
ARCHITECTURE AND TRAINING
Neural Network Training By Simplex Algorithm

Perhaps the most significant characteristic that
enables a neural network to serve as a useful
computational device is its learning capability.
Implementation of an appropriately tailored learning
algorithm, i.e. a rule for adjustment of the network
parameters (specifically the interconnection weights) can
endow the network the ability to develop the needed
structure to result in a corresponding desired
computation. The knowledge acquired by the network
during this learning is stored in the set of weights.

A number of alternate procedures exist for
training a neural network with the available data and
different training algorithms usually yield different sets
of interconnection weights. While the error
backpropagation approach is perhaps the most popular
approach [5] for training multilayer neural networks, it
has a few shortcomings as well. The backpropagation

approach, being a gradient-based search algorithm, is
sensitive to the initial starting point (i.e. preliminary
selection of weights to start the algorithm). Also
because of the gradient-based search property, it is
normally trapped by the first optimal point reached and
has the tendency to converge to a local minimum. This
is generally undesirable since it implies that the
knowledge acquired by the network is not optimal. To
counter this problem, modified backpropagation
algorithms have been developed which include a
momentum term that can kick the parameters out of sub-
optimal solutions. However, with these algorithms one
has to fiddle around with the momentum term and hope
that, with the selected starting point, a globally optimal
solution can be reached. In general, there is no
guarantee of achieving a global optimum.

In our quest to improve the efficiency of the
neural network learning, which we believe is critical in
equipping the network with the knowledge required for
reliably recognizing complex target maneuvers, we have
implemented the Linear least Squares Simplex (LSSIM)
algorithm developed by Hsu et. al. [6]. This algorithm
employs concepts from simplex optimization and is
conducted by splitting the 3-layer neural network into
two portions - a linear portion and a nonlinear portion.
The connections between the input layer and the hidden
layer form the nonlinear portion, while the connections
between the hidden layer and the output layer constitute
the linear portion. The simplex optimization method is
used to find the optimal weights in the nonlinear portion,
while a linear least squares minimization is used to
determine the optimal weights in the linear portion of the
network [6]. For implementation in the present context,
the algorithm can be designed with two distinct stopping
criteria. The search for the weights in a specified
network structure can be terminated either when the size
of the simplex is smaller than a prespecified threshold or
the number of iterations performed exceeds a preset
threshold.

As described by Hsu et. al. , implementing the
simplex algorithm described above with multiple restart
operation (i.e. reinitializing the simplex and executing
the algorithm on the new simplex points) has global
search property and hence prevents the training
procedure to be trapped by local minima of the error
function. Furthermore, as discussed in [7], multiple
restarts of the simplex search each time a convergence to
a small cluster is attained, guarantees that the procedure
will find a globally optimal solution with probability
approaching 1 .O.

Network Growing for Optimal Size
The accuracy with which a neural network

models a certain process characterized by an input-
output mapping or recognizes a set of input patterns
depends on a number factors, the principal one being the
size of the hidden layer (or layers in a network which is
configured with more than three layers). Only general

guidelines however exist for arriving at the optimal
architecture to be used in a given application. The more
complex the input-output mapping to be approximated,
the larger is the hidden nodes required, which determines
the network size. Employing a larger sized network than
necessary has its own drawbacks in that while such a
network can learn the input-output mapping presented in
the training data, it will attempt to memorize the training
patterns used and has poor generalization abilities, i.e.
provide the correct functional representation for input-
output data not included in the training pattern set [5].

In arriving at a network architecture of optimal
size for a given application, two approaches are
generally possible. One is to start with a larger number
of hidden nodes than necessary and later prune the
network by removing redundant nodes. The other is to
start with a small sized network initially (with the least
number of hidden nodes, for instance) and to
progressively grow until a desired degree of accuracy in
modeling is achieved. Both of these approaches have
been used by various groups of researchers in tailoring
an optimal sized network for the specific application at
hand.

In our present application in training the
network to recognize target maneuvers, we have chosen
to use the latter approach for a number of reasons, the
principal ones being the following. First of all, the task
of training here is a significant one due to the number of
feature vectors that may be used for obtaining an
adequate representation of complex maneuvers.
Consequently, the former approach of starting with a
network size larger than required can result in
unnecessary increased training complexity, with
increased learning times and cost particularly at the
initial stages. Secondly, and more importantly, a
systematic network growing approach can be built into
the overall training algorithm with a convergence
condition (stopping rule) being declared when the
optimal values of the weights in the correct sized
network are obtained.

Such a network growing approach can be
integrated with the simplex algorithm described in the
last section resulting in an overall training scheme
depicted by the flow-chart shown in Fig. 3. For
implementation in estimation of maneuver parameters,
one starts with the simplest network architecture with
one node in the hidden layer, while the input layer
comprises of a number of nodes equal to the number of
features used for training and the output layer comprises
of a number of nodes equal to the number of maneuver
parameters to be estimated (which are in turn input to the
Kalman filter algorithm). The simplex algorithm is then
executed to find the best weights for this structure. Once
the weights are found, the mean square error (MSE)
associated with this structure is computed and stored
together with its weights. The network is then allowed
to grow its hidden layer by adding one node and the
simplex algorithm is executed once again with the same

training data as before. Once the weights for the new
structure are found, the MSE for this structure is
computed and compared to the stored MSE for the
previous structure. If the new MS is smaller than the
previously stored MSE by a preset value, the new
structure together with its weights and MSE are stored
replacing the previous values. The network is than
grown by an additional hidden node and the entire
process is repeated. If at any stage of this process, the
new MSE is worse than the previously stored MSE or is
not better by a preset value, then an optimal structure is
claimed to have been found and the training is
terminated.

A multiple restart of the simplex search can be
executed as a part of the overall training process in order
to ensure attaining a global minimum of the objective
function and hence optimize the training efficiently. The
various steps underlying the training process are
depicted in the flow-chart given in Fig. 3.

TRACKING PERFORMANCE OF NEURAL
NETWORK-BASED SCHEME

To perform validation studies that confirm the
efficiency of the training scheme used, several tracking
experiments were conducted. The following parameter
values were employed for the simulations:

(i) Radar scan period = 10 seconds
(ii) Standard deviation of range = 100 meters
(iii) Standard deviation of angle = 0.0003 radian
(iv) Doppler radar wavelength = 8.57~10~~ meter

In order to evaluate any possible degradation in tracking
performance due to clutter, simulations of both
clutterless and clutter environments were made. The
primary difference between the two cases is the use of a
standard Kalman filter for the clutterless environment,
whereas a Probabilistic Data Association Filter (PDAF)
is used to replace this in scenarios that include clutter
[8]. For simulations of tracking experiments in clutter
environments, the following parameter values were used:

(i) Spatial clutter density = 0.0009
(ii) Validation gate size = 16 (&-square distribution)
(iii) Probability of detection = 0.9
(iv) Probability of target inside gate = 0.9997

It may be noted that the choice of the validation gate
corresponds to a rather heavy clutter environment. In
the following we shall briefly present results from only
one experiment due to page restrictions.

In this experiment, the target is initially
detected at the location (1.5x103m, 1.5x103m) in
Cartesian coordinates and its flight path is at an angle 45”
with respect to the x-axis. The target travels at a
constant velocity of 25Om/sec during the first three scans
and is radially moving away from the radar. The
maneuver consists of a sharp acceleration of 5m/sec2
performed at the 4* scan (i.e. t=40sec) and lasting for 1
scan period (i.e. 10 set), after which the constant
velocity flight is resumed until the 20* scan.

The tracking performance under these
conditions is shown in Figs. 4a-c. The plots of the
position errors in the x- and y- directions shown in Fig.
4a indicate that the corrected state estimates are fairly
accurate and the rather large error at the onset of the
maneuver (at the 4’ scan) is well corrected. Althougb
the position error plots show a trend for increasing error,
it must be noted that the target is moving away form the
radar. Thus, although the absolute value of the error
appears to increase, the relative error is quite small. For
instance, at the end of the trajectory (20” scan) the target
is at the location (2.18x103m, 2.18x103m) and the
relative error at this instant is only 0.01%. The apparent
divergence in the position is also partly due to the
occurrence of a false alarm as can be seen from the
acceleration plots in Fig. 4c. The true prediction of the
target acceleration during the maneuver by the neural
network deserves a particular note.

REFERENCE

1.

2.

3.

4.

5.

6.

7.

8.

D.D. Sworder, “Image enhanced tracking”,
IEEE Trans. Aerospace and Electronic Systems,
Vol. AES-25, pp. 701-710, 1989
M.K. Sundareshan and F. Amoozegar, “Data
fusion and nonlinear tracking filter
implementation using multilayer networks”,
Proc. of IEEE Int. Co@ On Neural Networks
(lChrN’ 95), Perth, Australia, November, 1995.
M.K. Sundareshan and F. Amoozegar, “Neural
network fusion capabilities for efficient
implementation of tracking algorithms “,
Optical Engineering, Vol. 36, pp. 692-707,
March 1997.
F. Amoozegar and M.K. Sundareshan,
“Constant false alarm rate target detection in
clutter: A neural processing algorithm”, Proc.
SPIE Int. Symposium on Optical Engineering
and Photonics in Aerospace Sensing
(Applications of Artificial Neural Networks),
Orlando, FL, April 1994.
M.T. Hagan, H.B. Demuth and M. Beale,
Neural Network Design, PWS Publishing Co.,
1996.
K.L. H&t, H.V. Gupta and S. Sorooshian,
“Artificial neural network modeling of rainfall-
runoff process”, Water Resources Research,
Vol. 31, pp. 2517-2530, 1995.
Q. Duan, H.V. Gupta and S. Sorooshian,
“Effective and efficient global optimization for
conceptual rainfall-runoff models “, Water
Resources Research, Vol. 28, pp 1015-1031,
1992.
Y. Bar-Shalom and X.R. Li, Estimation and
Tracking, Artech House: 1993.

Fig. 1. Backbone processing architecture for intelligent integrated pro&sing
of multisensor data in surveillance and tracking

- .T=q .J7-8

I
,--

+

u---------u---- -a --

! L rr) !

Furrd Dadabn
kt.%mwbna
AndTracung

I *
1’. ----__--_-_-_-_----------- I

I .

Fig, 2. A neural network-based fusion architecture for backing target
maneuVel5

TUQOlSlmW.
aww

Fig. 3. Flow-chart depicting the training scheme

-23 23

II0 II0

- m m 2 2

m m

- lw lw t
_w

E’. -z F
l -51 l -51

n
n f f

: jj n jj

-s -s

. l

I

l A
P A 0 :

-St -St
I

n n 0 . 0 .

I - 1 - 1
s s

m m

E- l - l -w. -w.
E ‘E

l l

i-m n -w -w

n n

.z
B

4

f
8 P
I

S
5

. -E

I!

In 0 *
l

I-!
I83 cu

l

s
0 0 3

s s�
(!3/w) ,Ll A&&A ⌧

m
i!

l wE
PW

0

%

3

n
ii

l h

l ! l
m

n

l

n

m

l

l .

n

a

m

w

m

8

no

m -w F

l

- io ,w

m

- n ,*

m ..

- l 2

n

- n

n

- n -w

n

- n -W

m

- aI 0 -*

l .

- 10 -(Y

n

I I I
0 0 s 8
c

s so
(s/w) A3 &WA A

1

a

n

n

W

m

n

i

l

m

.m

.m

n

n

l

l

i ,c

n ’

Ial

n

