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ABSTRACT 
Most stability results in model predictive control are 

based on the assumption that the model describes the real 
plant perfectly. In real systems the model is always 
different to the process and a robust stability analysis is 
needed. In this paper it is shown how the Extreme Point 
Results theory can be used to analyse the robust stability 
of predictive controllers in a natural way with low 
computational cost. 

1. INTRODUCTION 
Stability analysis of Model Predictive Controllers 

(MPC) in closed loop systems is an open and interesting 
research area. A source of criticism for them has been 
that most stability guarantees apply only for limiting 
(with theoretically infinite horizons) or particular (dead- 
beat, mean-level, . . .) cases, and assuming that the model 
describes the process perfectly. In reality the model is 
always different to the process and no mathematical 
model capable of exactly describing a physical process 
exists. Moreover, the behaviour of the plant itself 
changes in time and these changes are rarely captured in 
the models. Whatever the synthesis technique used, 
controllers are always designed based on information 
about the dynamic behaviour of the process and, as this 
is necessarily incomplete, modelling errors may 
adversely affect the behaviour of the control system. 

Because of this model-process mismatch the existing 
theorems, developed for the nominal system, do not 
guarantee the stability of the real system and a robust 
stability analysis is needed. 

This topic has been generally studied assuming that 
the nominal system is under unstructured disturbances 

and therefore applying H2 and H, results. For instance, 
Yoon and Clarke [l], using the small gain theorem, 
propose a relationship between the real plant and the 
model polynomials used to design a Generalized 
Predictive Controller (GPC) that guarantees stability. 

Camacho and Bordons [2] assume a process with 
structured uncertainties and find the limits of the stability 
region by numerically solving the closed loop 
characteristic equation in an iterative way. 

Finally, the theory of Extreme Point Results has been 
used by Mafioso et al. [3] to study the robust stability of 
a family of closed loop characteristic polynomials with 
structured uncertainties. 

This paper focuses on GPC as one of the most 
representative predictive controllers. It emphasises on the 
necessity of a robust analysis of the closed loop 
characteristic equation and points out the application of 
the Extreme Point Results in a simple way with low 
computational effort. To do so, section 2 introduces 
MPC fundamentals, paying special attention to GPC and 
some of its stability results. It is shown how slight 
variations in the process coefficients lead to instability. 
For this reason in section 3 the robust stability analysis is 
performed applying Extreme Point Results. Finally, 
section 4 draws the main conclusions of this paper. 

2. BACKGROUND AND MOTIVATION 
Model Predictive Control refers to a class of 

algorithms that compute a sequence of manipulated 
variable adjustments in order to optimise the future 
behaviour of a plant. 

The methodology of all the controllers belonging to 
the MPC family is characterised by the following 
strategy [4]. Firstly, the future outputs for a given 
prediction horizon, NZ, are predicted at each instant t 
using a process model. Secondly, the set of future control 
signals for the prediction horizon is calculated by 
optimising a given criterion in order to keep the process 
as close as possible to the reference trajectory. Some 
assumptions about the structure of the future control law 
are also made in some cases (for instance, it is assumed 
that it will be constant from a given instant t+ N,, the so- 
called control horizon). Finally, the control signal for the 
current instant t is sent to the process, while the next 
control signals are rejected. This strategy is repeated at 
the next sampling time. 

The GPC method was proposed by Clarke et al. [5], 
[6] and has become one of the most popular MPC 
methods in both industry and academia. It is based on a 
controlled auto-regressive and integrated moving average 
(CARIMA) model: 

A(z-‘)y(t)= B(z-‘b(t-l)+ y,,, (1) 

where A = 1 - z‘l, Ao(zm’) = 1 + aiz-’ + a,z-’ + . . . 
+ anazena, Bo(zd’) = bo + blz“ + b2ze2 + . . . + bngmnb, y(t) is 
the plant output, u(t) is the plant input, l(t) is an 

uncorrelated random sequence and T(z-‘) is a coloring 
filter that does not appear in the closed loop 
characteristic equation. For simplicity and without loss of 



generality, in the following the T polynomial is chosen to 
be 1. 

The control is obtained by minimising the cost 
function 

~~(i)[yp+jll)--l(l+jlf)ll+~a(j)[Au(f+jli)ll} 
j=N, 

(2) 
where E{ .} is the expectation operator and y(t+jlt) is the 
predicted output. N1 and NZ are the minimum and 
maximum prediction horizons, N, is the control horizon, 

~0) and a(J are weighting sequences and r(t+jlt) is the 
future reference trajectory. In the following and without 

loss of generality p.(j) = 1 and 10) = 3L. 
In order to obtain the closed loop characteristic 

equation, the control structure can be always described as 

in fig. 1, where R0 and S0 are polynomials in Z-’ that 
only depend on the controller parameters (N1, N,, NZ and 

h) and the model transfer function B,/A, , but not on the 

real transfer function B/A [7]. 
# , t 

Figure 1. MPC structure 

The characteristic equation of this general closed loop 
system is given by: 

&-I) = R,AA + B&z-’ (3) 

As it was said in the introduction, there exist some 
stability theorems for limiting (with theoretically infinite 
horizons) or particular (dead-beat, mean-level,. . .) cases. 
The stability of a GPC controller with arbitrary values of 

its design parameters N,, N,,, Nz and h cannot be 
guaranteed in advance. (Clarke et al. [5] have proposed 
some thumb rules that work for most situations.) 

Some of these stability results for unconstrained GPC 
can be found in [5], [6]. These theorems are derived 
using a state-space representation of the model 
augmented by an integrator 

x(t + 1) = Ax(t) + bAu(t) 

y(t) = cTx(t) (4) 

where one of the eigenvalues of A is at 1 due to the 
integral state and n, the number of states, is max(n,+l, 

nb>. 

Theorem 2.1 For a stabilizable and detectable process 
which is also open loop stable, the closed loop under 
GPC control is stable and tends to a mean-level law for 

NU=N1 =l,h=OandNz+=. l 

Theorem 2.2 GPC results in a stable state dead-beat 
controller if: 

(1) the above system (A, b, c) is completely controllable 
and observable with state dimension n, and 

(2) Nl = n, NZ 2 2n-1, N,, = n and 3L = 0 + 

Theorem 2.3 The closed loop under GPC control is 
stable if the system model (A, b, c) is stabilizable and 
detectable and if 

(1) N,,,N~+=withN,=N~andh>O,or: 

(2) N,, N2 + 00 with N, = N2-n+l and h = 0, provide 

there is no plant zero on the stability boundary. + 

Part (1) of theorem 2.3 is a standard LQ controller 
whilst part (2) is essentially Peterka’ s control [ 81. 

These theorems are based on the assumption that a 
single linear model can describe the system behaviour. 
Because this assumption is only an approximation, a 
large uncertainty in the value of the process parameters 
might result. The sources of this uncertainty are 
parameters that change in time, unmodelled dynamics, 
etc. Hence it is very important to consider the effect of 
these uncertain parameters on the stability. 

The following examples will show how a slight 
difference between the process and the model 
coefficients can lead to instability, i.e., the application of 
the above theorems is not enough to guarantee the 
stability of a real system with uncertainties. 

Example I: Mean-level controller 
In this example the process and the model are 

described by the following polynomials: 

4 = 1-1.72-l + o.9z-2 

B, = 0.9 - 0.62-l 

After studying its settling time we can conclude that NZ 
equal to 150 is an acceptable approximation for infinite. 
The following controller parameters N1 = 1, NZ = 150, 

N, = 1, h = 0 and T = 1 are selected. When the model is 
equal to the process the closed loop characteristic 
equation is 

6, = 1-1.70422-l + 0.8907~-* 

which corresponds to a stable system (fig. 2) with all its 
poles at the open loop locations due to the mean-level 
control law, according to theorem 2.1. 

Unconstrained WC (1,150,1,0) 

Figure 2. GPC with model equal to process and 

N1=1,N,=150,NU=1,h=0 

Now, let us assume that some of the coefficients of the 
process transfer function have slightly changed: 

A = (1- 1.32-l + O.~Z-~) 

B = 0.9 - 0.72-l 
The closed loop characteristic equation is: 

6 = l-1.30422-’ - 0.6030~-* + 1.3200~-~ - 0.2885~~ 



which corresponds to an unstable closed loop system 

(fig. 3). 
Even if the control horizon is also infinite, as in part 

(2) of theorem 2.3, that is a LQ control problem, the 
system is still closed loop unstable (fig. 4). 
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Figure 3. GPC with model different to process and 

N1=1,NZ=150,NU=1,h=0 

4xld UnconstrainedGPC (1,150.l50.0.00l) 
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Figure 4. GPC with model different to process and 

Nj J, N2 = 150, N, = 150, a = 0.001 

Example 2: Dead-beat controller 
In this example the process and the model are 

described by the following polynomials: 

A, = 1- 2.4752-l + 0.895Oz-* - 0.825~-~ 

B,, =l 

When the model is equal to the process and with the 
following controller parameters Nl = 4, Nz = 7, N, = 4, 

3L = 0 and T = 1 the closed loop characteristic equation is: 

6, =l 

This is the closed loop characteristic equation of a 
stable dead-beat control law (all poles are placed at the 
origin), which corresponds to theorem 2.2. 

On the other hand, for a process with a slight variation 
in its coefficients: 

A = 1 - 252-l + 1.32-* - 1.2~-~ 

B=l 
The closed loop characteristic equation is unstable: 

6 = IOOOO- 0.0252-’ + 0.43002-* - 0.7800~-~ + 0.3750~~ 

+++ 
These examples make clear that the stability theorems 

based on the assumption that the model represents 
perfectly the process cannot guarantee the stability of a 
real system with uncertainties. In practice, a robust 
stability analysis is needed. 

3. ROBUST ANALYSIS 
Let us assume a real plant under structured 

uncertainties, i.e., the uncertainties are in the coefficients. 
Then the numerator and the denominator of the real plant 
are given by uncertain polynomials. Affine linear 
uncertainty structures will be considered. Thus, given a 
set of real parameters qi,i =O ,..., I, which can vary 

between a maximum and a minimum value, 

q; 5qi <q,:,i=o )..., 1, the coefficients of the numerator 

and denominator polynomials are afline linear functions 
of the uncertain parameter vector 

that is 

ai(q)=ol,rif+pi,i=O ,..., m, 

hi(q)= rTij+pi, i =O,...,n (5) 

where ai and yi are 1 x 1 vectors and pi and pi are 

scalars. Then the real plant is defined by the family of 
plants: 

With this structure of uncertainties, A(g,z-*) and 

B(q, z-‘) are polytopes of polynomials in z-r, and 

IQ, z-‘) is a polytope of plants in z-’ . 

The following theorem by Mafioso et al. [3] permit us 
to applied the Extreme Point Results theory to the 
analysis of the closed loop characteristic equation under 
a GPC control law: 

Theorem 3.1: The family of characteristic 

polynomials &z-t) of the closed loop system constituted 

by a GPC predictive controller and the family of plants 

(6) is a polytope of polynomials. + 

Lemma 3.1 The family of characteristic polynomials 
a(~-‘) of the closed loop system constituted by a GPC 

predictive controller with the parameters N, = N1 = 1, 

h = 0 and Nz + 00 (as in theorem 2.1) and the family of 
plants (6) is a polytope of polynomials given by: 

6 = R,AA++A,(l- R,A) (7) 
0 

Prooj 
From theorem 3.1 the closed loop characteristic 

equation of a GPC controller with parameters 

N,, = N1 = 1, h = 0 and N2 + m and a process with 
structured uncertainties as (6) is a polytope. 

Under the assumption that the model, B,/A, , is equal 

to the stable process, B/A, and the controller tuned with 

the parameters N, = N1 = 1, h = 0 and NZ + m, the 
closed loop characteristic equation is equal to the open 
loop characteristic equation (due to the mean-level 
control law), i.e., it is equal to the denominator of the 
transfer function of the process. So (3) can be written in 
the following way: 



6, = R,A,A + B,S,z-’ = A, 

From here S, is equal to: 

(8) 

s 
0 

= Ml-R04 

Boz-’ 

(9) 

If the process is different to the model, (6), the closed 
loop characteristic equation is given by (3), and taking 
into account (9) the closed loop characteristic equation 
can be written as: 

6 = R,AA+$A,(I- R,A) + 
0 

Remark 3.1. If Band B,, and A and A, are different, 

respectively, the closed loop characteristic equation (7) is 
different to the nominal one (8) and thus, even in the 
presence of slight variations in the parameters, the 

stability of (7) cannot be guaranteed by theorem 2.1. + 

Lemma 3.2 The family of characteristic polynomials 
6(z-1) of the closed loop system constituted by a GPC 

predictive controller with the parameters N1 = n, 

NZ 2 2n-1, N, = n and ?L = 0 (as in theorem 2.2) and the 
family of plants (6) is a polytope of polynomials given 
by: 

6 = RoAA ++(l- RoAoA) (10) 
0 

Proofi 
From theorem 3.1 the closed loop characteristic 

equation of a GPC controller with parameters N, = N1 = 

n, 3L = 0 and NZ 2 2n-1 and a process with structured 
uncertainties as (6) is a polytope. 

Under the assumption that the model, B,/A, , is equal 

to the process, B/A, and the controller tuned with the 

parameters N, = NJ = n, 3L = 0 and NZ 2 2n-1 the closed 
loop characteristic equation has all its poles at the origin. 
So (3) can be written in the following way: 

So = RoAoA + BoSoz-’ = 1 (11) 

From here s,is: 

(12) 

If the process is different to the model, (6), the closed 
loop characteristic equation is given by (3), and taking 
into account (12) the closed loop characteristic equation 
can be written as: 

6 = R,AA++(l- R,AA) l 

0 

Remark 3.2. If B and B,, and A and A, are different, 

respectively, the closed loop characteristic equation (10) 
does not place all the poles at the origin, as equation (11) 
did and thus, even in the presence of slight variations in 
the parameters, the stability of (10) cannot be guaranteed 

by theorem 2.2. + 

Note: The study of the stability of &z-l ) is equivalent 

to the study of the Schur stability of 6(z) = S(z-‘)zr, 

where Y is the maximum degree of &z-l). As the product 

of Z’ by 6(z-‘) is a polytope of polynomials in z, it is 

possible to study the Schur stability of a system with a 
predictive controller (GPC) applying all the existing 

results for discrete polytopes. 4 

Robust control theory against structured perturbations 
based on Extreme Point Results has generated a huge 
interest in the last years. Since Kharitonov Theorem [9] 
was introduced in western literature by Barmish [lo], a 
great number of papers have appeared in relation to the 
analysis problem. There are powerful results to analyse 
the stability and the robust performance of families of 
polynomials formed by interval polynomials or by 
polytopes of polynomials. The main Extreme Point 
Results for the analysis of polynomial families are 
Kharitonov Theorem for interval polynomials and Edge 
Theorem [ll] and Rantzer Theorem [ 121 for polytopes 
of polynomials. 

One of the most significant Extreme Point Results is 
Edge Theorem [l 11: given a simply connected domain 

D c C, if all the roots of the exposed edges are inside the 
domain D, then it can be assured that all the roots of the 
polytope of polynomials are inside D. 

Moreover, this theorem is applicable to analyse 
D-stability, i.e., both robust stability and robust 
performance can be studied. Edge Theorem gives 
necessary and sufficient conditions to analyse the 
stability of the complete family, and only the exposed 
edges have to be analysed. 

The analysis method is simple. If all the vertex 
polynomials are stable (otherwise the family is obviously 
unstable) then the exposed edges are tested; if the 
exposed edges are also stable then the family is stable. 

There exist several criteria to study the stability of an 
edge, for both Hurwitz- and Schur-stability [13], [14], 
[3]. The following result from Ackerman and Barmish 
[ 1.51 will be used to show the analysis in the z-domain: 

Given a polynomial 

(13) 
k=O i=l 

the following (n-l) x (n-l) matrix is built: 

a, a,,-, an-2 ... a3 a2 -a0 

0 a,l a,,-, ... a4 -a,, a3 -aI 

S(P)= : : i . . . : 

0 -a, -a, ... a,, - an4 a,,-, -an-3 
-a, -a, -a2 ... -ane3 a,, -an-2 _ 

(14) 
If the coefficients {ak} vary continuously then the 

zeros {zi} of the polynomial P(z) vary continuously [16] 
and if a complex pair of roots crosses the unit circle then 
det S(P) = 0. There are two other ways for crossing the 
stability boundary: P(1) = 0 and P(-1) = 0. The above 
three cases are the critical stability constraints. Based on 
this fact, Ackerman and Barmish [15] propose the study 
of the vertex polynomials and, if they are stable, the 
study of the eigenvalues of the matrices 



s(I$)s-‘(P,.) (15) 

where i and j stand for the different vertex polynomials. 

If there are no real eigenvalues in (--, 0) then the family 
is stable. 

In the following the robust stability of the above 
examples will be studied. Lemmas 3.1 and 3.2 guarantee 
the applicability of Edge Theorem to systems controlled 
by means of these predictive controllers, as the family of 
closed loop characteristic polynomials is a polytope of 
polynomials. 

Example 1 (revisited): Mean-level controller 
Under the same conditions as in example 1, let us 

assume that the process is different to the model. This 
fact is represented by uncertainties in the coefficients of 
the process transfer function: 

A=l+(-1.7+a,)z-’ +(0.9+a,)z-’ 

B=0.9+(-0.6+p)z-’ 

with-l<a,<l,a,=Oand-1Ifisl. 

The polynomials 8 and So are: 

R, = 1.691-3.09482-l 

So = 5.219 - 8.86122-l + 4.6422~-~ 

Expression (3) is used to obtain the following family 
of polynomials: 

s(z,c+q,p) = 1.0000+ (-1.7043+ 1.oooq)z-’ 

+ (-2.9233cz, + 0.89071+ 3.2434p + l.OOOg)z-* 

+ (-2.933% - 5.50698 + 1.9233c~,)z-~ 

+ (1.9233cq + ZSSSOP)Z-~ 

which is the same result as in example 1 when the 
uncertain parameters are zero. 

In order to apply the Edge Theorem to the family of 
characteristic polynomials the stability of the vertices is 
considered in the first place: 

S,(z,ol;,/3-) = l.OOOO-2.70422-l +05706z” 

+ 35835~-~ -2.8850~~ 

6, (z, a,- , p+ ) = 1.0000 - 2.7042-l + 7.0573~-~ 

-7.4301~-~ + 2.8850~~ 

6, (z, a;, /3-) = l.OOOO- 0.70422-l -5.2759~-~ 

+7.43Ol~-~ -2.8850~-~ 

6,(z,a;,P+) = l.OOOO-0.7042z-’ +1.2108~-~ 

- 35835~-~ + 2.8850~-~ 
It can be concluded that the family is unstable as some 

of the vertices are unstable. 

Example 2 (revisited): Dead-beat controller 
Under the same conditions as in example 2, let us 

assume that the process is different to the model. This 
fact is represented by uncertainties in the coefficients of 
the process transfer function: 

A = I+ (- 2.475 + 0.675~~ + 0.3&’ 

+ (0.895 + 0.025~~ + O.OSP)Z-~ 

+ (-0.825 + 0.225~ + O.lp) 

B=l 

with -3.5 I a < -3 and 5 < p I 10. 

The polynomials R, and So are: 

R, =l 

So = 3.4750 + 3.37002-’ + 1.7200~-~ - 0.82500~-~ 

and the family of closed loop characteristic polynomials 
is: 

6( z, a,, a,, ,b> = 1.0000 + (0.3OOOp + 0.67500a)z-’ 

+ (-0.6500~ - 0.2100~)~-~ 

+ (0.2000a + 0.0 lOP)z-’ 

-I- (-0.2250% - O.~OO~~)Z-~ 

which is the same result as in example 2 when the 
uncertain parameters are zero. 

Let us consider two of the four vertices of the family: 

lj(z,a-,P-) = 1.0000 -0.86252-l + 1.225~-~ 

- 0.6500~-~ + 0.2875~-~ 

6,(z,a-,p+) = l.OOOO+ 0.63752-l +0.175~-’ 

- O.~OOZ-~ - 0.2125~-~ 
These vertices are stable, but not all the polynomials 

of the edge that they define 

qa)=ns,(z,a-,p-)+(1-n)s,(z,u-,p+),nEro,ll 

are stable. For example, when h = 0.5 the polynomial 

6* = 1.0000 - O.l125z-’ + O.~Z-~ - 0.625~-~ + 0.0375~~ 
is unstable. 

In order to study the stability of the edge formally, let 
us apply the criterion explained previously. In the fust 
place, the matrices associated to the vertices 1 and 2 are: 

,r 

1 .oooo - 0.8625 0.9375 

S(S,)= 0 0.7125 -0.2125 

- 0.2875 0.65 - 0.2250 I 
1.0000 0.6375 0.3875 

S(6,) = 0 

! 

1.2125 1.2375 

0.2125 0.6 0.8250 I 
The eigenvalues of s(S,)s-‘(6,) are 0.2484, -0.8477 

and -1.7090. The edge is unstable, as some of them are 
negative, therefore the family is unstable. Figure 5 
shows an enlargement of the stability region, which is 

concave, the vertices & y S, and the unstable edge. 

B 20 

Figure 5. Enlargement of the stability region 

+++ 
These examples show how the robust stability analysis 

of systems with predictive controllers is needed to 



guarantee the stability of the closed loop system in the 
presence of structured uncertainties. The Extreme Point 
Results theory is a good choice to deal with this problem 
in a natural way and with low computational cost. 
Moreover, it has been shown that the stability analysis of 
the edges is not superfluous for systems that are 
controlled by predictive controllers. 

To sum up, after designing the predictive control law, 
the control engineer should assume a feasible family of 
real plants -as is given by (6)- in order to study and 
guarantee the robust stability of the closed loop real 
system using the Extreme Point Results techniques 
described in this paper. 

4. CONCLUSIONS 
In this paper it has been shown how the existing 

stability results for predictive controllers, derived under 
the assumption that the model is equal to the process, 
cannot guarantee the stability of real systems with 
uncertainties. Extreme Point Results is a mature and non- 
conservative theory that can be used to analyse the 
closed loop stability of predictive controllers in presence 
of uncertainties with low computational cost. 
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