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Abstract

Numerical operations on and among rationa matrices
aretraditionally handled by direct manipulation with their
scalar entries. A new and sometimes numerically attrac-
tiveaternativeis proposed herethat is based oninterpola
tion. The procedure beginswith evaluation of therational
meatrices in several complex points. Than al the required
operations are performed consecutively on constant ma:
trices corresponding to each particular point. Finaly, the
resulting rational matrix is recovered from the particular
congtant solutions viainterpolation. It may be computed
either in polynomia matrix fraction form or as matrix of
rational functions. The operations considered include ad-
dition, multiplication and computation of polynomial ma
trix fraction form. The standard and the two interpolation
methods are compared by experiments.

1 Introduction

Rational matrices (such as transfer matrices of linear
multivariable systems) are often expressed in the form of
polynomial matrix fractions, i.e.

H(s) = W (s)Vi(s) = Va(s)Wg " (5)

where H(s) is a rational matrix and Wr(s), Wgr(s),
Vi(s), Vr(s) are polynomial matrices.

The polynomia matrix fractionsare natural generaliza-
tion of scalar polynomia fractions describing single-input
single-output (SISO) systems. They make it possible to

use all algebraic methods developed originaly for SISO
systems. However, they also have severa disadvantages:

o Individual transfer functions between particular in-
puts and outputsare not directly visible.

¢ Even very basic operations, such as addition or mul-
tiplication of rationa matrices, appear to be rather
complicated when expressed via polynomia matrix
fractions.

e The degrees resulting in the polynomia matrix frac-
tion are usually much higher than degrees encoun-
tered in the original rational matrix. For this reason
numerical problems may often arise.

Toillugtratethelast item, consider a3 x 3 transfer ma-
trix having all itsfractions coprimewith mutually coprime
denominators of degree 2. Such atransfer matrix belongs
to asystem of order 3 x 3 x 2 = 18. Theresulting poly-
nomial matrix fraction consists generically of polynomia
matrices with degrees 6.

To avoid this degree blow up during numerical compu-
tation with rational matrices, it may sometimes be conve-
nient to deal with the original description using the matrix
of rational functions, when the rational matrix

nij (5)]
H(s) = J
(#) [dm’(S)
is stored via other two polynomia matrices the matrix of

denominators D(s) = [d;;(s)] and the matrix of numer-
ators N(s) = [n;;(s)]. When employing interpolation




technique each of the two representations above can be
achieved.

2 Interpolation

Let us briefly summarize the idea of polynomial and ratio-
nal matrix interpolationpioneered by Antsaklisand Gaoin
[1]. Let usrecall, that the interpolation of scalars runs as
follows: we chose the sufficient number of interpolation
pointss; , then we eval uate the interpol ated obj ect in these
pointsand finally recover it from both series of values. To
generalize thisprocedure for matrices, we moreover post-
multiply the evaluated matrices by some vectors ;. This
simplifiestheinterpol ation of polynomial and rational ma-
trices.

Let usdenoteS(s) := blockdiag[1, s, ..., s%]? where
d;, i = 1, m, arenon-negativeintegersand let a; # 0 and
b; be(m x 1) and (p x 1) complex vectors, respectively,
and let s; be complex scaars.

Theorem 1 (Polynomial matrix interpolation) [1]:
Given interpolation (points) triplets (s;, a;, b;),j = 1,1,
and non-negativeintegersd; with! = % d; + m such that
the (5" d; + m) x [ matrix

Sp = 1[S(s1)a1, ..., S(s1)ai]

has full rank, there exists a unique (p x m) polynomial
matrix Q(s), withi-thcolumn degreeequd tod;,i = 1, m
for which

Q(sj)aj = bj, j=1,1

@Q(s) can bewritten as
Q(s) = Q5(s)

where @ (p x (3_ d; +m)) containsthe coefficients of the
polynomial entries. () must satisfy

QS =0,

where U; := [by, ..., b;]. Since S; isnon-singular, ¢ and
therefore Q(s) are uniquely determined.

Forp = m = 1, .5; is called Vandermonde matrix. In
the multidimensional case, we shdl cal it block Vander-
monde matrix.

Quite naturaly, rational matrix interpolation can be
handled as a specia case of polynomia matrix interpolea-
tion.

Theorem 2 (Rational matrixinterpolation) [1]: Assume
that interpolation triplets (s;, a;, b;), j = 1,1, where s;
arecomplex scalarsand a; # 0, b; complex (m x 1), (p x
1) vectors respectively, and non-negativeintegersd;, i =
1,p + m, withl = " d; + m are given such that the
- di + (p+ m)) x I matrix

Sp = 1[S(s1)er, ..., S(s1)a]

where¢; = [a],b7]", has full column rank. There ex-
istsa unique (p x m) rational matrix H(s) of the form
H(s) = W; '(s)Vi(s) where Wr(s), V.(s) ae (p x p)
and (p x m) polynomia matrices respectively and the col-
umn degrees of the polynomia matrix [Vi(s), —WWr(s)]
ared; i = 1, p + m, with the leading coefficient matrix of
D(s) being I, (non-singular), which satisfies

H(sj)aj:bj j:l,l
The solution can be determined by solving the equation
Ve, =WL]S, P]= [0, K]

where [V (s), —Wr(s)] = [V, —WL]S(s) with S(s) :=
blockdiag [1,s,...,s%]" i = 1,p + m. Equations
[V, —W]P = R expresses the additional constrains on
the coefficients.

3 Computing polynomial matrix
fractions

The first task to be discussed is the calculation of left?
polynomia matrix fraction

Wi (s)Vi(s) = H(s)

to agiven rational matrix H(s).

Traditiona procedure[3] consistsin puttingin each row
all the fractions to their least common denominator d; =
lem(d;;) that, in fact, generically equalsto their product.
Then the matrix Wi (s) = diag{d;} together with Vz(s)
computed accordingly form aleft polynomia matrix frac-
tion description of H(s). Moreover, thisfractionis gener-
ically coprime.

Alternatively, the interpolation can be employed as in
Theorem 2. From the computationa point of view, thecrit-
ical stepinthisalgorithm appearsto betheinversion of the
block Vandermonde matrix (:S; in Theorem 2). Thismatrix
iseven worse conditioned than the classical Vandermonde
matrix and itsdimension growsvery quickly. Itscondition
number depends heavily on the choice of theinterpolation
points.

As experimentsreveal, the choice of real numberswith
magnitudes depending on the coefficients of the H (s) that
are balanced around zero with even distancesimprovesthe
condition number considerably. To be more specific, ara
tional matrix interpolated at unbalanced points has typi-
cally the same condition number as a rational matrix with
twice higher degrees interpolated at balanced points.

This procedure for computing polynomial matrix frac-
tion works well for arational matrix of dimension (2 x 2)
with element numerators and denominatorsof degree 4 for
which the resulting polynomia matrix denominator has

1The dual case of right fraction can be handled similarly.



degree 4. The corresponding block Vandermonde matrix
is(34 x 34) and exhibitsconditionnumber about 10*°. The
computation takes® 3 seconds and its relative accuracy of
the result isabout 105,

When Theorem 2 is applied to interpolate scalar ratio-
nal functions, then degrees up to 20 can be efficiently pro-
cessed.

Inthe generic case of al fractionsin H (s) coprimeand
all their denominatorsof the same degree and mutually co-
prime, theresulting polynomia matrix fractioniscoprime.
If thisis not the case, none of the two procedures men-
tioned above guarantees directly that resulting polynomial
meatrix fraction is coprime. In the standard procedure, co-
primeness can only be accomplished by additiona oper-
ations of computing and then extracting the greatest com-
mon | eft divisor of polynomial matrices Vz (s) and Wy (s).
This step does not exhibit good numerical properties®.
When using interpol ation, however, coprimeness depends
on our ability to estimate the lowest existing degree of
the denominator polynomial matrix Wi (s), for which of
course, the fraction is coprime. The following procedure
is recommended to obtain the coprime polynomial matrix
fraction:

1. Determinethehighest possibledegreeof theresulting
matrix fraction and interpolateit;

2. Then decrease the estimated degree and compute the
new matrix fraction.

3. Check (e.g. by evaluating therational matrix and the
resulting matrix fraction), if the result is correct. If it
is, continueby step 2.; if itisn't, take the last correct
meatrix fraction.

Thisprocedure consistsof several runsand just the last but
oneof themisfinally used. The number of itspredecessors
have therefore no impact on fina precision of the result.

The problem is, that we have to estimate the degree of
each column of matrix fraction. So the procedure men-
tioned above gives the coprime matrix fraction only if al
columns have the same degree. If thisis not the case, the
procedure degree cutting becomes heuristic one.

Numerica experiencewiththetraditional method based
on the least common multiples of denominators in each
row are as follows: If the result need not be coprime ma-
trix fraction, this procedure has no numerica limitation
but the resulting degrees become out of control. When a
coprime matrix fraction is desired, some limitations arise
by computing the greatest common divisors. By itsnature,
the procedure is relatively slow. For the example consid-
ered above, thissimple method transfers that rational ma
trix inabout 6 secondswith higher rel ative accuracy (about
10~13).

2 All computing mentioned throughout the paper was made on arela-
tively slow PC with Pentium 65 MHz 16MB RAM and MATLAB 4.1.
3The well-known problem of “amost common factors’.

The comparison of the two agorithms for computing
can be summarized as follows: For relatively smal ra
tional matrices (up to (2 x 2) with elements of degree 4)
the interpolation method is quicker and sufficiently accu-
rate. For larger matrices and/or higher degrees, interpola
tion brings no particular advantage when compared to the
traditional method.

Let us now illustrate the use interpolation on a simple
MATLAB session®.

Example 1:
% The 2 x 2 rational matrix H with degrees

%2 is expressed by the matrix of its
% nuner at or s

N =
11 0 -7 0 2 -15 2
6 3 16 17 8 -8 0
0 0 0 0 0 0 NaN

% and the matrix of its denom nators

D =
12 5 -2 -13 -1 -8 2
-7 -4 -14 9 -8 8 0
0 0 0 0 0 0 NaN

% To get the left polynonmial natrix
% description W."{-1}*WL,
% we run the macro 'rinter’
>> [W, VL] =rinter (N, D)
W =
Colums 1 through 4
7.5000 0. 0000 -20.7500 0. 0000
0. 0000 -0.4375 0. 0000 0. 1094
0 0 0 0
Colums 5 through 8

-9. 3750 0. 0000 3. 6250 0. 0000

* Here the Polynomial Toolbox [2] isemployed. It usesthefollowing
polynomial matrix format: A polynomia matrix N(s) = No + N1s +
-+ -4+ Ny s™ isstored by the block row of the matrix coefficient and an ex-
trarow of and column zeroshaving the degree » in the upper right corner
and NaN inasingle Matlab element N given by

No Ny . Np

0---0l0---0[0---0]0---0 NaN




0. 0000 2. 3437 0. 0000 2.8750
0 0 0 0

Colums 9 through 11

1. 0000 0 4. 0000
0 1. 0000 0
0 0 NaN

VL =
Colums 1 through 4

6.8750 0.0000 -22.2500 0. 0000
0. 3750 0. 3281 0. 1562 2.5156
0 0 0 0

Colums 5 through 8

1.6250 -22.5000 3. 7500 3. 7500
-2.5000 3. 2187 -3.1250 0. 3750
0 0 0 0

Colums 9 through 11

-2. 0000 1. 8750 4.0000
-1. 0000 -1. 0000 0
0 0 NaN

4 Sum of rational matrices

For sum of two (or more) rationa matrices, three algo-
rithms are considered: standard element-wise procedure
and two modifications of the interpolation (the whole ma-
trix interpolation or €l ementwise one).

In the first method, the sum

F(s) =G(s)+ H(s)
isachieved by adding the particular scalar el ements

NG | NHi _ Naijdigg +nmeijde )
Jij Jij

=+ =
daij  dH,ij da,ijdH,ij

The second method, the whole interpolation, runs as
follows: At first,

m+p

np:m—l—Zdi
i=1

of interpol ationpointsischosen wherep and m isthenum-
ber of rows and columns in F'(s), respectively while d;
is the estimated degree of i-th column in the composite
polynomial matrix [V W] describing F'(s). Then, for
Jj=1,...,ny, thepoints are substituted and the resulting
constant matrices are added

F(Sj) = G(Sj) +H(5j)’ J=1mn

Finally, thedesired sum F(s) isrecovered by interpolation
asin Theorem 2. Therational matrix resultingfromthein-
terpolation can, infact, be obtained intwo different forms:
either in theform of polynomial matrix fraction (Theorem
2) or as a standard rationa matrix. However, the former
can only be used for very small matrices with low degrees
whilethelatter handleswell quitelargedegreesand, by na-
ture of the matrix addition, is completely independent of
the matrix dimensions.

The reason can be easily explained. The maximum size
of theblock Vandermonde matrix resulting from addition®
onecan ‘invert’S is about 20 x 20. This size corresponds
toa2 x 2 rational matrix with degrees 2, that is, the sum of
two 2 x 2 rational matrices with degrees 1! Although the
conditioning can dightly be improved by using Tcheby-
chev polynomial bases, this does not qualify the methods
for larger matrices.

This iswhy we prefer the third method: Interpolation
element-by-element consists of a series of scalar rationa
interpolations where the corresponding elements of (s)
and H (s) are separately evaluated, added

fz’j(Sk) = gij(sk) + hi]'(Sk), k=1, np;

and finally interpolated. Here the resulting degree can be
estimated separately for each particular element.

By this procedure, one can interpol ate arational matrix
with degrees 18. This corresponds to the sum of two ra-
tional matrices of arbitrary dimension with degrees9. The
resulted rational matrix isin the form of the matrix of nu-
meratorsand the matrix of denominators. It can be shown,
that the computation takes the same timefor both interpo-
lation methods.

To compare relative accuracy and time consumed by
computation for the last two described methods (el ement-
wiseinterpolation and definition based method), let usthe
sum of two (2 x 2) rational matrices with elements of the
degree 9. The interpolation method computesthe result in
25 seconds with relative accuracy 10~7, the on definition
based method computes the result in 45 seconds with rel-
ative accuracy about 10713,

Let us summarize advantages and disadvantages of the
proposed method for the sum of rational matrices. We
have studied only the case, when the rational matrices are
originaly given element by element. The interpolation
giving the resulted rational matrix in the form of poly-
nomial matrix fraction is useful only for relatively small
matrices (up to (2 x 2) with elements of degree 4). To
add larger matrices and/or higher degrees, we recommend
to employ the interpolation giving the sum element by
element or the traditional method. The former is much
quicker, but its relative accuracy is alittle lower and de-
greeislimited. Thelatter haslimitation neither on dimen-
sion nor on degrees. If reduced form of rational matrix is

51t is usually worse conditioned than for arandomly generated ratio-
nal matrix.
6 Despite the balancing mentioned above.



required, the interpolation is namely convenient if oneis
able to estimate the degree of each element correctly.

Let usnow illustratetheinterpolationresulting in poly-
nomial matrix fraction on asimple MATLAB session.

Example 2:

% The 2 x 2 rational matrix Gwth
% degrees 1 is expressed by the matrix
% of its nunerators

NG =
11 11 6 -2 1
-11 -8 8 5 0
0 0 0 0 NaN

% and the matrix of its denom nators

DG =
-2 -11 14 2 1
5 -8 -7 -16 0
0 0 0 0 NaN

% The 2 x 2 rational matrix Hwith
% degrees 1 is expressed by the matrix
% of its nunerators

NH =
-11 12 4 3 1
-5 8 -13 3 0
0 0 0 0 NaN

% and the matrix of its denom nators

DH =
-5 -3 9 1 1
-8 9 11 4 0
0 0 0 0 NaN

% To get the left polynomial natrix
% description W{-1}*VL of the sum
% F=G+H, we run the nacro ’'raddint’
% (using the interpol ation)
>> [W, VL] =r addi nt ( NG, DG, NH, DH)
W =
Colums 1 through 4
-1.1187 0. 0000 9.9791 0. 0000
0. 0000 0. 5844 0. 0000 -0.1932
0 0 0 0
Colums 5 through 8

-15. 2021 0. 0000 1. 0000 0. 0000

0. 0000 -2.3198 0 1.3084
0 0 0 0

Colums 9 through 11

1. 0000 0 4. 0000
0 1. 0000 0
0 0 NaN

VL =
Colums 1 through 7

3.6916 5. 5933 9.9588 -47.2852
-0. 9205 1.1039 0. 8912 -1.9351
0 0 0 0

Colums 5 through 8

-13. 8209 53. 5959 0. 7446 23. 0000
4. 2451 -0.7786 - 3. 6006 1.5412
0 0 0 0

Colums 9 through 11

0.8730 2. 0000 4. 0000
-2.3247 0. 4375 0
0 0 NaN

5 Product of rational matrices

For multiplicationof two (or more) rational matricesare
considered the same type of agorithms as in the case of
their addition are considered, i.e. standard (on definition
based) procedure, interpolation of the whole matrix and
element-wiseinterpolation. We assume again that rational
matrices to be multiplied are originaly given element by
element.

For computing the product

F(s) = G(s) = H(s),

the first method follows the definition so that
Fi =D gin* hij.
k

where the sums and products are computed in common
way.

Alternatively, interpolation method can be used in two
different ways as we have seen in the previous chapter.
Thefirst procedure, thewhole matrix interpolation, returns
theresulting rational matrix in theform of polynomia ma-
trix fraction

F(s)=G(s)* H(s) = WL_1VL.



isachieved in the following steps: At first,

m+p

np:m—l—Zdi
i=1

of interpolationpointsischosen wherep and m isthenum-
ber of rows and columnsin F'(s) respectively while d; is
the estimated degree of i-th column in the composite poly-
nomia matrix [Vz, Wi]. Then, forj = 1,... n,, the
points are substituted and the resulting constant matrices
are multiplied to get

F(s;)=G(s;)xH(s;), j=1,...,n,.

Finally, the desired polynomia matrices W and V are
recovered by interpolationasin Theorem 2. Practically,the
procedure can only be used to multiply scalar rational
functions (say both with degrees up to 8). Multiplication
of two 2 x 2 rational matriceswith degrees 1 correspondsto
polynomial matrices W and V. with degrees 8. For their
interpolation, the the corresponding block Vandermonde
matrix is 34 x 34 and its condition number 10'° does not
guarantee a correct result.

The second interpol ation procedurereturnstheresulting
rational matrix element by element: At first,

np =1+ H}E}X(d@g(npyij) + deg(drpi;))
of interpolation pointsischosen. Then, forj = 1,... n,,
the points are substituted and the resulting constant matri-
cesare multiplied

F(s;) =G(s;)«H(s;), j=1,n,.

Finally, each element f;; of the product F'(s) is recovered
separately by scalar rational function interpolationfollow-
ing Theorem 2. Here the resulting degrees can be esti-
mated separately for each particular element. This algo-
rithm allowsto multiply two 2 x 2 rational matrices with
elements of the degree 4.

To compare multiplication by definition with element-
wise interpolation, consider the product of two 2 x 2 ra
tional matrices with degrees 4. The method based on def-
inition givesthe result with relative accuracy about 10~ 14
and the computation takes 15 seconds. The interpolation
method performed element by element achieves the rela-
tive accuracy about 10~® and its computation takes 8 sec-
onds. If rational matrix with coprime fractionsis required,
interpolation is efficient if one is able to estimate the de-
gree of each element correctly. Otherwise, both the meth-
ods will require computation and extraction of greatest
common divisor in each element.

Let us now summarize our experience with rational ma-
trix multiplication. We have considered the case of ratio-
nal matrices originaly given e ement by element and ex-
ercised three different algorithmsto get their product. The
whole matrix interpolation appears unsuitable for rational

meatrices matrices. The procedure based on definition can
be used for arbitrary dimensions and degrees of rational
matrices to be multiplied, but its very slow. The interpo-
lation performed element by element isfast and useful for
small matrices and/or low degrees.

6 Morecomplex operationswith
rational matrices

More complex operations on and among severa ratio-
nal matrices are currently being tested such as inverse
(F~1(s)), closed-loop transfer matrix (G(s)H (s)(I —
G(s)H (s))~1), sengitivity and complementary sensitivity
functions and alike. It is expected, that the more opera-
tions can be performed within constant matrices, the rel-
atively lessimportant become possible difficulties arising
during interpolation of their final result.
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