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Abstract 

A new embedded control system hardware and 

software architecture suitable for an AUV is presented. The 

proposed scheme is based on the shared memory principle 
and consists of three components, a supervisory controller, a 
functional and a hardware/execution component. Off-the- 
shelf technology has been used to build and implement the 
described AUV control architecture. Key features of the 
proposed architecture include: autonomy, learning, recovery, 
multiple goals in a single mission and use of multiple sensors 

for data collection. This embedded architecture is modular, 
reconfigurable, expandable, upgradable and cost-effective. 

1 Introduction 

The reported research has been motivated by the 

challenge to design and implement a sensor-based hardware 
and software control architecture for an Autonomous 
Underwater Vehicle (AUV). The central research objective is 
that the AUV will operate autonomously in coastal and 
shallow water sensitive environments like wetlands, shallow 
water fisheries and polluted environments. Such an AUV is 
expected to be used for offshore oilfield platform and 
pipeline inspection and maintenance, wetlands gain/loss 
detection, shallow water fisheries monitoring, coastal studies, 
monitoring environmental pollution due to industrial wastes, 
thus, assisting in preserving the nation’s ecosystems. 

The AUV’s practical use and functionality 

constraints have been determined based on operational needs 
specific to the Gulf Coast Region and the more shallow 
waters of Louisiana. Key features of the proposed 
architecture include: autonomy, learning, recovery, multiple 
Goals [ 11, multiple Sensors [ 11, modularity/expandability. 

The rest of the paper is organized as follows: 

Section 2 reviews some of the existing AUV architectures, 
compares and summarizes their advantages and 

disadvantages. Section 3 gives a detailed description of the 
proposed control architecture. Iu Section 4 the 
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implementation process of the proposed architecture is 
explained. Section 5 gives a case study example and 
demonstrates the system’s functionality. Finally section 6 
concludes the paper. 

2 Comparison of Existing AUV Architectures 

The dynamics of AUVs are typically nonlinear and 
uncertain [3]. Nonlinearities arise from the hydrodynamic 
forces as well as cross coupling between vehicle states. 
Uncertainties arise from changes iu the environment that the 
vehicle interacts with. To meet the demanding control 
requirements of AUV control four major control 
architectures have been developed, called hierarchical 
architecture, heterarchical architecture, subsumption 
architecture and hybrid architecture. 

Hierarchical Architecture: In a hierarchical architecture, the 
various system components are arranged in levels, with 
higher levels commanding lower levels. The higher levels are 

responsible for all mission goals and lower levels are 
responsible for solving smaller problems that are needed to 
accomplish the mission [2]. The hierarchical architecture is a 
representation of a top-down approach which is extremely 
rigid [3]. Each level in the hierarchy receives commands 
from the level directly above it and sensory information horn 
the level directly below it. The information exchange rate 
decreases from the bottom to the top of the hierarchy. Non 
adjacent layers can not communicate directly with each 
other. This results in long processing times, unreliable 

sensory information and unknown reactions to unpredictable 
events [3]. The t&level control architecture of the NPS 
Phoenix AUV is an example of a hierarchical architecture. 
For a more detail description of the NPS Phoenix the reader 
is referred to [5,6]. 

Heterarchical Architecture: To overcome the communication 
overhead of hierarchical control architectures some 
researchers have proposed heterarchical control architectures. 

The individual functional modules are treated as cooperating 
equals with possible direct communication without any 



supervisor. The advantage of this architecture is that 
knowledge and sensory information can be easily integrated 
into any module. However, the control representation aspects 
are difficult to address and relatively complicated issues such 
as chaotic behavior may arise [27]. 

Subsumption Architecture (Layered Control): Layers of 

control are used to let the robot operate at increasing levels 
of competence [l]. Layers are made up of modules that 
communicate over low bandwidth channels. Higher level 
layers can subsume the roles of lower level layers by 
suppressing their outputs. In the subsumption architecture 

there is no high-level supervisor (high level of control). Data 
and control are distributed through out all layers and each 
layer processes its own information (sensory and 
commands). The subsumption architecture is decomposed 
based on the task achieving behaviors of a system. All 
behaviors are explicitly implemented and then tied together 
to form a robot control system. Bellingham and Consi [7] 
modified the subsumption architecture and derived the state 

configured layered control architecture. The main 

disadvantage of the subsumption architecture is the difficulty 
associated with synchronization and timing of the various 
modules (layers). This difficulty is due to the fact that there 
is no high-level control. This makes it hard to verify 
correctness and stability of the system. Another disadvantage 
is that the complexity of the system increases significantly as 
the number of behaviors increases. The expandability and 
robustness that this architecture offers is a great advantage. 
The real advantage of the layered control architecture is that 
the behavior network has a relatively low computational 
overhead. An example of a system that uses the subsumption 

architecture (in a modified manner), is the Sea Squirt AUV 
that was developed at MIT [7]. 

Hybrid Architecture: In hybrid control different levels of 
abstraction are used for system modeling and control 
purposes [4]. The hybrid architecture is a combination or 
modification of the other two architectures. The hybrid 

architecture integrates both low and high level control in a 
coherent structure [3]. The lower levels of the system have 
similarities to the subsumption architecture while the desired 
higher level control (missing from the subsumption 
approach) has similarities with hierarchical system modeling. 
An example of a hybrid architecture, is the control 
architecture of the Ocean Voyager II developed by the 
Florida Atlantic University [8]. 

Nine AUV control architectures have been 
reviewed: Texas A&M’s Autonomous Underwater Vehicle 
Controller (AUVC) [9], Florida Atlantic University’s 
OcearVoyager ZZ [8], Massachusetts Institute of 
Technology’s Sea Squirt AUV [7], Naval Postgraduate 
School (NPS) PHOENZX AUV [5, 61, Znstituto Superior 
Technic0 ‘s Marine Utility System (MARZUS) Programme 
AUV [lo], Monterey Bay Aquarium Research Institute 
(MBAZU,) and Stanford University Ocean Technology’s 

Testbed for Engineering Research (OTTER) AUV [l 11, 
Massachusetts Institute of Technology Sea Grant’s Oc&ssey 
AUV [21], University of New Hampshire’s Experimental 
Autonomous Vehicle (EAVE) ZZZ [16], University of 
Technology at Sydney’s ERIC AUV [16], and Woods Hole 
Oceanographic Institution’s Autonomous Bentic Explorer 
(ABE) AUV [ 161. These AUVs have been chosen because the 
proposed hardware and software sensor based control 
architecture (presented in the next Section) draws upon the 
operational and functional principles of the reviewed AUVs. 
Table 1 compares their control schemes. 

3 State Configured Sensor Based Embedded 
Control Architecture for AUVs 

The proposed embedded control architecture 
consists of three components: a supervisory control, a 
functional control and a hardware/execution component, as 
shown in Figure 1. The supervisory control component is 
responsible for the coordination of the overall AUV. It 
monitors and coordinates the order of module task execution 

(of the functional component). The functional component is 
responsible for specific task/operations occurring in a 
mission. Each module performs a well defined set of tasks. 
The hardware/execution component consists of the actual 

electrical, mechanical and sensory components of the AUV 
and it is directly controlled by the functional component. 

The described control architecture is modular and 
the functionality of each module is determined based on 
specific tasks performed. All modules share a common 
communication bus for data storage and retrieval. There is no 
direct communication between individual modules. 
Information exchange is accomplished through shared 

variables. The overall control system architecture 
functionality is based on state diagrams that define specific 

AUV operations. A state diagram is responsible for 
determining the sequence of AUV tasks/operations through 
the mission various phases. A major advantage of this design 
scheme is that not all system modules are located at the same 
level, thus minimizing the delay between sensor readings and 

data transfer. This delay may be further minimized if the 
sensor control module (of the functional component) is 
integrated within the supervisory control component. In such 
case, the only delay time involved is the time required by the 
supervisory control component to transfer data from one 
module to another. 

Supervisory Control Component 

The supervisory control consists of the Master 
Controller (MC) and the Shared Memory. Figure 2 shows the 
internal structure of the MC. The MC contains a main/central 

processor (Intel Pentium), a local memory unit (for execution 
purposes) and the following four software processes that 
coordinate the operation of the AUV. 
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i. Shared Memory Management (SMAfl process: It takes 
care of all variable transfers between the modules and the 
shared memory. These variables are used to transfer 
information between the modules. Such information is 
the parameters supplied by the sensor control module 

(sensor data), the current map file generated by the map 
generator module, etc. 

ii. Interrupt Handling (ZH) process: It monitors the shared 
memory for interrupt variables that are sent by the 
Monitoring and Recovery module if a software or 
hardware malfunction takes place. If an interrupt occurs, 
it performs the necessary action (usually stops operation 
and initiates some kind of recovery function from the 
Monitoring and Recovery module). 

iii. Monitor External Signals (MES) process: It monitors the 
shared memory variables for the signals that the modules 
send to the MC. These signals include requests for 
variables, acknowledge signals, and so forth. 

iv. Mission Scheduler (MS) process (state configured 
operation): It coordinates the operation of the AUV by 

transferring control among the modules. The transfer of 
operation is based on state diagrams. State diagrams 
represent the mission of the AUV. 

The means of communication among the system 
modules is the shared memory system of the Supervisory 
Control component. The goal is to make sure that data 
integrity and synchronization is maintained at all times. This 

is done using mutual exclusion by employing semaphores 
[2]. Each variable is assigned a semaphore. To avoid 
corruption of the shared memory, thrusted functions are used 
to guaranty that the only relevant parts of the shared memory 
are accessed by the various processes. The shared memory 
system is accessible by all the modules of the system. The 
MC is responsible for the coordination and management of 
the shared memory (shared memory management process). 
The various modules need not know about the function of 
other modules. The only information a module needs is the 
data stored in pertinent variables is shared memory. 

The Functional Component 

The functional component is composed of modules 

that function independently of one another. These modules 

are: 

i. Sensor Control module: Controls the activities of the 

sensors and receives information from the sensors. It 
makes necessary calculations and generates results that 
are needed by the rest of the modules of the system and 
sends the results to the shared memory of the Supervisory 
Control component. 

ii. Map Generation module: Generates maps of the 3-D 
environment based on data obtained by the sensors and 

on any previously known information of the 
environment. 

iii. Navigation and Task Execution module: Responsible for 

generating collision free paths, trajectories over the paths 
and avoiding obstacles. It generates global paths (from 
point A to point B), and local paths (sub-point paths 
between A and B). It is also responsible for performing 
necessary mission tasks (i.e. pick object, scan object, 
etc.). It controls the motors, fins, thrusters, gyros, servos, 
end effector of the vehicle. 

iv. Object Recognition and ClassiJcation module: Obtains 
the information generated by the Sensors Control module 
and classifies the objects detected by the sensors. After 
classification, the objects are stored in the Knowledge 
Base (KB) of the AUV. The KB database is located in a 
physical storage device (solid state disk). 

v. Global Positioning System module: Calculates the correct 

location of the vehicle in relation to the world 
(environment). 

vi. Monitoring and Recovery module: Studies the overall 

functionality of the system. It locates malfunctions, either 
software or hardware, and initiates recovery procedures if 

necessary. It also initiates recovery procedures when the 
vehicle runs into situations that normal operation is 
impossible (avoid obstacles, etc.). 

vii. Acoustic Modem module: Communicates with external, to 

vehicle, operators or computers. This allows monitoring 
of the system by external sources. 

The Hardware/Execution Component 

The hardware/execution component consists of the 
actual mechanical, electrical, electronic components of the 
AUV. It is beyond the scope of this paper to discuss the 
actual mechanics of AUVs. Only the communication 
procedures (protocols) and message/data passing between the 
hardware and functional components are considered. 

3.1 Discussion 

Given the configuration of the proposed 
architecture, the functionality and operability of the vehicle 
is divided into phases (states). A state diagram, that resides in 

the control level, transfers operation from phase to phase. 
Each phase requires the coordination and functionality of 
specific modules. In state configured control, only the goal 

oriented modules pertinent to the specific phase of the 
mission are active. The others remain inactive. In this way, 
power consumption requirements are minimized. The 
responsibility for ensuring that the modules are activated at 
the right time and with the right priority is delegated to the 
state diagram of the MC. The example in Section 5 clarifies 
such issues. A similar approach was used by Bellingham and 
Consi in [7]. The main differences of this design are that the 
communication between the various modules is 
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accomplished by using shared memory variables, and that the 

overall operation of the system is coordinated by the MC. 

The shared memory is controlled by the MC. Since 

access to shared memory variables is controlled using 
semaphores and automatic logging of variables needs time 
stamps, every variable is accompanied by a semaphore 
variable and a time stamp variable. Every module has its own 
local memory (for execution purposes). A process keeps a 
local copy of any shared memory variable that it needs to 

access. Before accessing a shared memory variable, a process 
must set its semaphore and reset it after the variable data is 
transferred to the local copy of the variable. 

This architecture is a state configured embedded 
control architecture. Single Board Computers (SBCs) are 
used for one of the modules. Each SBC has its own on board 

memory and access to any peripherals that it needs. A real- 
time operating system (QNX) is responsible for the operation 
of the whole system. The use of SBCs allows the system to 
be easily expandable, easily upgradable, modular, reliable 

and very inexpensive. 

4 Implementation 

After reviewing existing technology, it was decided 

to use the QNX real-time operating system (OS) for software 
development and the use of single board computers (SBCs) 
with the STD-32 and CompactPCI standards as the hardware 
platform for the proposed embedded control architecture. 

4.1 The QNX Operating System 

The QNX is one of the most powerful real-time 
operating systems (OS) for embedded control systems. QNX 
is a UNIX-like operating system suitable for applications 
where real-time multi-tasking performance is an important 
criterion. QNX Software Systems has updated the initial 

release of QNX to provide POSIX capabilities and a scalable 
architecture, two features often required for embedded 
applications [12, 13, 141. 

For embedded applications, the modularity of the 
OS allows the developer to omit unneeded system processes. 
With its real-time performance, a reduced-size QNX system 
becomes comparable to a real-time executive, while 

delivering the functionality of a POSIX runtime and 
development environment. In a minimal system, only the 
micro-kernel, process manager, and system shared library 
need be present. All other system processes are optional and 
can be dynamically started and stopped at runtime, or 
statically bound in at boot time for ROM-based applications. 
With the addition of the small QNX networking module, an 
embedded system can become a network-transparent 
extension of a larger QNX environment for distributed 
applications, booting either from ROM or from the network 

[141. 

With its micro-kernel, message-passing architecture, 
QNX can take a network of computers and present them to 
applications as a “single logical machine,” regardless of how 

many physical computers are joined by the network. 
Applications developed for this “single logical computer” 
will run without changes even as the number of computers is 
scaled to suit the scope of the application. This scalability is 
possible because QNX encourages applications to be 
designed as a team of cooperating, communicating processes 
on a single machine. When run on a QNX network, those 
processes can be configured to run throughout the network, 

while QNX provides network-transparent messaging between 
those processes. The networking allows any process to use 
any resource on any computer on the network. Disk-less 
machines can also boot from the network and then use any 
resource, anywhere. Mission-critical applications are aided 
by using the network-distributed messaging to implement 
“hot standby” systems. Multiple redundant network links 
between network nodes provide protection from network 

failures as well. 

4.2 STD-32 SBCs 

The STD bus has been the standard bus for 
industrial control systems since the 1970s. The STD-32 Bus 
combines a small, industrial strength architecture with the 
functionality and performance of today’s high-end personal 
computers. This versatile 8-, 16- and 32-bit scalable 
computer is the right choice for demanding real-time control 
and data acquisition applications where small system size 
and cost are important. STD 32 is an open, well designed 
standard with a wide range of processors, peripherals, 
industrial I/O, enclosures and complete systems from 
numerous manufacturers [ 12, 191. 

The STD 32 Bus can run at 32 Mbytes per second 
for very high-speed data processing applications. Its EISA- 
like architecture provides more than just a high-performance 
data path. Other performance characteristics include: 
Multiprocessing, with centralized arbitration logic to monitor 

access to the bus, allows the implementation of multiple 
processors in a single STD 32 system. The 32-bit throughput 
of the bus is crucial to inter-processor communication in 
real-time multiprocessing applications; 32-bit addressing and 
pipelining dramatically improves throughput for block data 

transfers by reducing bus cycle time and increasing bus 
bandwidth; High-speed Direct Memory Access (DMA) over 
the backplane streamlines the operation of data-intensive 
applications; Slot-specific interrupts expand the number of 
available system interrupts for servicing systems requests. 

A critical component in an STD-32 system is the 
backplane. The backplane design incorporates several 
important features including increased backplane signal 
impedance. A higher backplane signal impedance means 
“cleaner” signals are sent across the backplane. That is, 
ringing and reflections are minimized. This is especially 
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important during signal transitions between the TTL 

threshold regions of 0.8V and 2.OV. Figure 3 shows a typical 
STD-32 system. The system shown here is the STD 32 
STAR System that is available by Ziatech Corporation. It is a 
simple, yet extremely powerful approach to the design of 
real-time control computers. It includes multiple PC- 
compatible CPU cards in a single card cage (backplane). 
Each CPU has its own memory and operating system, but 
shares backplane memory, disks, video and I/O with other 

CPUs in the system. 

4.3 CompactPCI SBCs 

The newest standard for PCI-based industrial 
computers is called CompactPCI. It is electrically a superset 
of desktop PC1 with a different physical form factor. 
CompactPCI utilizes the Eurocard form factor popularized 
by the VME bus [20]. It is defined for both the 3U (1OOmm 

by 160mm) and the 6U (160mm by 233mm) card sizes. 
CompactPCI has the following features: standard Eurocard 
dimensions; high density 2mm Pin-and-Socket Connectors 

IEC approved and Bellcore qualified; vertical card 
orientation for good cooling; positive card retention; 
excellent shock and vibration characteristics; metal front 

panel; user I/O connections on front or rear of module; 
standard chassis; uses standard PC1 silicon manufactured in 
large volumes; staged power pins for Hot Swap capabilities; 
eight slots in basic configuration (easily expanded with 
bridge chips). 

CompactPCI is intended as an industrial bus for 
applications in telecommunication, telephony, real-time 
machine control, industrial automation, real-time data 
acquisition and other applications requiring high speed 
computing, modular and robust packaging design and long 
term manufacturers support. The CompactPCI bus provides 
the features and benefit of the PC1 bus specifications. Its bus 
is 32- or 64-bit and its bandwidth is 132 or 264 MB per 

second [20]. 

4.4 AUV Embedded Control System 
Implementation 

For the design of the sensor based control 
architecture of the AUV the use of the STD-32 and the 
CompactPCI bus architectures are chosen. STD-32 offers the 
use of multiple CPUs (SBCs) within the same system. Each 
one of the CPUs will function as a module of the overall 

system. SBCs offer the flexibility, upgradeability, 
expandability, modularity and reliability that is desired for 
this system. Using SBCs eliminates a big part of the design 
process and also the risk of developing a not so reliable 
control system. The QNX real-time operating system is also 
chosen as the operating system of the AUV control system. 
Each module of the system is represented as a CPU in an 
STD-32 bus configuration. The Ziatech STD 32 STAR 
System is chosen as the backplane of the control architecture. 

The STAR System (shown in Figure 3) resembles the control 
architecture of the AUV shown in Figure 1. 

Figure 4 shows the overall system design using the 
STD-32 STAR System, STD-32 modules and CompactPCI 
modules. The SSD module is the Solid State Disk that holds 
the control software of the system and the QNX operating 
system. It is from this device that the system boots up. The 
SSD device is also used for storage purposes. When the 
system starts operation, each one of the modules transfers its 
execution functions (stored in the SSD) into its local memory 
and starts execution. The common memory, shown in Figure 
4, is accessible to all CPUs for communication. The CPUs 
operate from local memory for maximum speed. 

Currently, the conceptual embedded control 
architecture design has been completed. An URV, the 
Phantom S2 ROV (from Deep Ocean Engineering) has been 
acquired. Its architecture is being modified to convert it to an 
AUV. 

5 Example 

A simple example, presented in this section, 
demonstrates and clarifies the functioning of the embedded 

state configured control architecture. 

Consider the simple AUV mission: “Move from 
location A to location B”. Figure 5 shows the different 
phases the AUV has to go through and the modules activated 
within each phase. The AUV is required to generate a global 
path from A to B, and local paths between A and B 
depending on the state of the sensed environment, follow the 
derived path(s) avoiding obstacles and possibly perform pre- 
specified tasks at certain points between A and B (for 
example, stop and take a picture of the surrounding 

environment). Figure 6 shows the state diagram for this 
mission and illustrates how control is transferred between the 
various phases of the mission. 

6 Conclusion 

The described embedded control architecture is 
simple and cost effective. This architecture is based on 
individual modules with a master controller (MC) serving as 

the coordination module for the overall operation of the 
AUV. 

The described design utilizes off-the-shelf 
components thus minimizing development time. The STD-32 
and CompactPCI standards have been tested in many other 
applications, and they have been widely adopted. Given the 
hardware platform, the actual control algorithms are 
implemented at the software level. 

Major advantages of the described architecture 
include: 
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i. Learning Capabilities: The system has a knowledge base 
(KB) that keeps information that can be used for the 
current mission or for future missions. 

ii. Recovery Capabilities: Recovery techniques can be used 
to bring the system out of unpredictable situations. 

iii. State Configured Modification of the mission is easily 
done by modifying the state diagram. The modules do not 
need to know about any modifications. All of the mission 
modifications are done at the control level (MC). 

iv. Expandability/Modularity: The functionality of the 
system is easily upgraded or modified. This can be done 
by removing or adding new modules. Only minor 
modification to the overall system are necessary in such a 
case. Only the functionality of the phases and the state 
diagram need to be changed in order for the system to 
have a new functionality. 
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Table 1: Comparison of Existing AUVs 

AUV Developer Hardware Software Advantages Disadvantages 

AUVC Texas A&M. Processors (nodes) arranged in 18 Sofhwre processes Knowledge Base System (KBS) allows Very complex software. 
Plannar-2 Network Topology. control the AUV it to learn and refer back to its 

functionality. environment. 
Great recovery procedures. 
Capabilities to achieve multiple goals 
simultaneously with its many 
processors/processes that function 
independently. 

Ocean Florida Distributed control system that Each node has its own The distribution of the system increases No recovery techniques 
Voyager Atlantic divides the system into control software and reliability and capability while and no learning 

II University individual control subsystems communication software complexity decreases. capabilities. 

(F-W. (nodes) composed of that allows it to Simple software. 
sensor(s), actuator(s) and a communicate with the Modular system (software and 
micro-controller. The nodes other nodes. hardware). 
are arranged in a serial 
communication network. 

Sea Massachusetts GESPAC 68020 computer. OS-9 real time operating Ability to accomplish multiple goals 
Squirt Institute of Micro-controller based system. simultaneously. 

Technology subsystems. State configured layered Modular system. 

WV . control. Expandable system. 
NPS Naval GESPAC M68030, computer, A t&level sofhvare Simple software. No learning capabilities 

Phoenix Postgraduate SUN SPARC-4 computer and control architecture The execution level offers great Recovery techniques are 
School (NPS). SGI Indigo Elan. comprising strategic, expandability. not very sophisticated. 

tactical and execution 
levels. 
Execution level is based 
on the layered control 
architecture. 

MARIUS Institute Hierarchical architecture. Libraries of primitives Simple guidance system that makes it Many systems 
Superior (elementary tasks). easy to navigate and operate. coordinate the operation 
Tecnico The libraries of primitives allows (it can lead to 

OS-0 expansion. unpredictable 
situations). 

OTTER MBARI / A network of UNIX Object Based Task Level Simple operation since all functions are No reasoning or 
Stanford workstations. Control (OBTLC). performed in the task level. judgment. 
University. Operator is responsible 

for issuing tasks. 
Odyssey Massachusetts GESPAC 68020 computer. OS-9 real time operating Simple software. 

Institute of Micro-controller based system. Expandable system. 
Technology subsystems. State configured layered Modular system. 

MT) Sea SAIL local area network. control. 
Grant. 

EAVJZ III University of Four level layered hierarchical Four Levels of hierarchy. Levels are divided according to required Complex operation. 
New architecture. Each level has a speed for data manipulation and action Complex 
Hampshire action control and data control. communication between 

manipulation. Modular. the levels and modules. 
ERIC University of Three level subsumption Three levels of software Simple software. Timing problems that 

Technology architecture. each responsible for a Expandable system. are associated with 
in Sydney different part of the Modular subsumption 

operation. architecture. 
ABE Woods Two layers distributed Individual modules of Modules are divided into two levels Not easily expandable. 

Oceanographi hierarchical architecture. software. according to computational capabilities. 
c Institution Modular. 
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