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Abstract 

The design of linear time-invariant (LTI) systems in 

state form has traditionally focused on implementations 
that require the least number of state variables. Such 
minimal designs have attempted to limit the required re- 
sources, such as hardware, computation time or power, by 
minimizing the system dimension. In recent years, how- 
ever, the increasing necessity for the design and imple- 
mentation of fault-tolerant systems has proved that “con- 

trolled redundancy” (that is, redundancy that has been in- 
tentionally introduced in some systematic way) can be ex- 
tremely important: it can be used to detect and correct 
errors or to guarantee desirable performance despite hard- 
ware or computational failures. 

Modular redundancy, the traditional approach to fault 

tolerance, is prohibitively expensive because of the over- 
head in replicating the hardware. This paper discusses 
alternative methods for systematically introducing redun- 
dancy for LTI systems in state form. Our approach con- 
sists of mapping the state space of the original system 
into a redundant space of higher dimension while preserv- 
ing, within this larger space, the properties of the original 
system in some encoded form. We provide a complete 
characterization of the class of appropriate redundant LTI 

systems and illustrate through several examples ways in 
which our framework can be used for achieving fault tol- 
erance. 

1 Introduction 

In this paper we explore a design methodology for 
fault-tolerant linear time-invariant (LTI) systems in state 
form. Our approach is based on mapping the state of the 
original system into a larger, redundant space while at the 
same time preserving the properties and information con- 
tained in the original system - perhaps in some encoded 
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form. The redundancy we add into the system can be used 
to achieve error correction or robust performance despite 
hardware failures. 

Traditional system design has aimed at the realization 
of minimal systems, i.e., systems that require minimal re- 
sources (these resources could be hardware, computation 
time, power consumption, system dimension, etc.). Re- 
cently, however, there has been an increasing interest in 
redundant systems that are fault-tolerant. The traditional, 
but rather inefficient, way of designing fault-tolerant sys- 

tems is to use N-modular hardware redundancy (many 
variations of the original scheme introduced by von Neu- 
mann in [l] exist): we perform the desired function in 

parallel by replicating the original system N times. The 
outputs of all replicas are compared, and the final result 
is chosen based on what the majority of them has agreed 

upon. Also, those in the minority are declared faulty. 

Research in communications has extensively explored 
alternative, more efficient ways of utilizing redundancy 
for error detection and correction. Examples of such ef- 
ficient schemes are the error correcting codes that are 
used when one transmits digital data through an imperfect 
channel, [2]: instead of replicating the links between two 
sites, or sending multiple replicas of a message (which 
amount to modular and time redundancy respectively), 
one sends only a fraction of additional or parity bits. The 
receiver uses the relations that govern the additional bits 
to try and correct possible bit-errors that took place dur- 
ing the transmission. In more complex systems that in- 
volve not only simple transmission of the data but also 

some form of processing on the data (e.g., computational 
or DSP systems), the application of such error correcting 
ideas is more challenging. Work in this direction includes 

arithmetic codes (see, for example, [3]) and algorithm- 
based fault tolerance (ABFT) techniques (introduced by 
Abraham, [4]-[6], and subsequently developed by oth- 
ers). These techniques have been quite successful, but 
they have to be cleverly tailored to the specific applica- 
tions under consideration. 

More broadly applicable and systematic approaches for 
introducing redundancy in general computational systems 
were studied recently by Beckmann, [7]-[9], and later by 
us, [lo]-[12]. Beckmann’s work focused on computa- 



tions that can be modeled as abelian group operations’, 
and used group homomorphisms both to introduce redun- 
dancy and to analyze its properties. Our work extended 
Beckmann’s framework and analyzed operations that can 
be modeled as occurring in semigroups or semirings. Even 
though this is a very broad setting, we have been able to 
generalize most of Beckmann’s results and to develop an 
algebraic framework for analyzing a large class of fault- 
tolerant computational systems. 

This paper describes a mathematical framework for the 
design of fault-tolerant LTI systems in state form. Our 
approach, motivated by our earlier work, consists of map- 
ping the original state vector into a higher dimensional 
space in a way that preserves the evolution and properties 
of the original system. This results in an embedding of 
the original system into a larger, redundant system. We 
are able to completely characterize all possible redundant 
systems of this type and to illustrate that our method es- 
sentially amounts to augmenting the original system with 
redundant modes that are unreachable but observable un- 

der fault-free conditions. Because these modes are not ex- 
cited initially, they manifest themselves only when a fault 
takes place. We describe these results in Section 2 and 
present examples of error detection and correction in Sec- 
tion 3. We summarize our presentation and discuss future 
directions in Section 4. 

2 Redundant LTI Systems 

2.1 LTI State-Space Models 

Linear time-invariant systems in state form constitute a 
well studied class of dynamic systems with a variety of 
applications, such as digital filter design, system simula- 

tion and model-based control, [ 13]-[ 151. Throughout the 
analysis in this paper, we assume that the state, input and 
output vectors have elements drawn from R, the field of 
real numbers. Although our discussion is focused on the 
discrete-time case, most of our results and examples can 
be translated to the continuous-time case in a straightfor- 
ward manner. 

An LTI system is represented in state form by the fol- 
lowing pair of equations: 

CE[/C + l] = As[k] + Bu[k] (1) 

I 
y[k] = C2@] + Du[k] (2) 

where k is the discrete-time index, s[k] is the state vec- 
tor, ~[k] is the input vector, and y[k] is the output vec- 
tor. Assume that the vector z is n-dimensional (n is also 
known as the system order), u is p-dimensional and y is 
m-dimensional. Eq. (1) is referred to as the state evolu- 
tion equation and eq. (2) is the output equation; A, B, C, 

‘These results can be generalized to systems whose operations take 
place in a ring or a field, because of the underlying group structure. 

and D are constant matrices of appropriate dimensions. 
One can obtain equivalent state-space models (with n- 
dimensional state vector z’[lc]) through similarity trans- 

formation, [14], [15]: 

z’[k + l] = (T-lAT)z’[k] + (T-lB)u[k] 

s A’z’[k] + B’u[k] 

y[k] = (CT)d[k] + Du[k] 

E C’z’[k] + D’u[k] 

where T is an invertible n x n matrix such that z[k] = 
Tz’[k]. The initial conditions for the transformed system 
can be obtained as z’[O] = T-‘xc[O]. Systems related in 
such a way are known as similar systems. 

Given an input-output specification of an LTI system, 
there exist many possible ways of realizing it, that is, re- 
lating it to a particular state-space representation as in 
eqs. (1) and (2) above. A realization that uses the mini- 
mum possible number of state variables is called minimal. 
The analysis and design of LTI state-space systems has 
aimed almost exclusively at such systems. As we have 
already argued in the introduction, redundancy is not nec- 

essarily undesirable because it can be used to provide fault 
tolerance to a given system. In the next section we study 

ways of systematically introducing redundancy in order to 
achieve error detection and correction. 

2.2 Systematic Introduction of Redundancy 

In order to achieve error detection and correction in an 
LTI state-space system 5’ of dimension n, we embed this 
system in a redundant state-space system S of dimension 
7 = n + d, d > 0. The state vector of S at the k-th time 
step, J[lc], provides complete information about z[/c], the 
state of the original system S at time Ic, but the d addi- 
tional state variables of can be used for error protection. 

We develop this claim in more detail next. For the rest of 
this paper, we essentially ignore the output equation (2) 
and focus on the state evolution equation (1). 

Let the state evolution equation of the original system 
S be given by s[k+ l] = Aa:[k]+ Bu[k], and the evolution 
of the redundant system S by 

([rk + 11 = dJ[k] +Lh[k] 

We wish to ensure that, at every time step Ic, the state vec- 
tor z[lc] (and therefore the output vector y[k]) can be re- 
covered from [[/cl through a constant n x 7 decoding ma- 
trix L, i.e. 

z[L] = L([k] for all k 

(Note that under the assumptions so far the redundant sys- 
tem S can be regarded as a cover for S. The term “cover” 
has been used mostly in the language of finite automata, 

[16]: a finite automaton S is a cover for an automaton S 
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( !/[k] = CZ[k] + Du[k] ) 

Redundant System 

Figure 1: Relationships between original and redundant 
systems. 

if, given the input of S, S is cable of concurrently simu- 
lating S, that is, there exists a mapping that maps the state 
of S at any given time to the corresponding state of S - 
for more details refer to [ 161.) 

In order to achieve fault-tolerance, we impose a de- 
sign requirement on the states of the redundant system S: 
there should exist a constant linear mapping from the set 
of states of S to the set of states of S. This is a natural con- 
straint from the perspective of using the redundancy in S 
in some useful way (though, in general, the mapping need 
not be linear). This linear mapping can be represented by 
an q x n encoding matrix @ which satisfies 

[[k] = @z[k] for all k . 

Under the above assumptions, Lf4 = I, (where I, is 
the n x n identity matrix). Note that this equation by itself 

does not uniquely fix L or a. Fault detection is straight- 
forward: since the redundant state vector I[.] must be in 
the column space of @ under fault-free conditions, all we 

need to check is that at each time step k, [[k] lies in the 
column space of @. Equivalently, we can check that <[k] 
is in the null space of an appropriate parity check matrix 
0, so Oc[k] = 0 under fault-free conditions. We illustrate 
ways of obtaining the matrix 0 later in this section. 

Figure 1 gives a picture of the relationships between 
the original and redundant systems. The dynamics of the 
system S on the left are governed by the matrices A, B, 
C, and D, whereas the dynamics of the redundant system 

S are governed by appropriately chosen matrices sl, Z?, C, 
23. We can move between the two state vectors x[.] and 
c[.] using the encoding and decoding matrices (a and L 
respectively). We are now in a position to prove the main 
theorem of this section. 

Theorem In the setting described above, a system S (of 
dimension 7 = n + d, d > 0) is a redundant version of S 
if and only if it is similar to a standard redundant system 
S, whose state evolution equation is given by 

Here A and B are the matrices in eq. (l), A22 is a d x d 
matrix that describes the redundant modes that have been 
added, and A12 is an n x d matrix that describes the cou- 
pling between the redundant and non-redundant modes. 
Associated with this standard redundant system is the 

standard decoding matrix L, = [ Z, 0 1, the standard 

encoding matrix a0 = I, [ 1 0 
and the standard parity 

check matrix 0, = [ 0 Zd 1. 
Proof Let S be a redundant version of S. From L9 = I,, 
L is a full-row-rank n x 7 matrix and there exists an in- 
vertible q x r] matrix 5 such that Lx = [ I, 0 1. If we 
apply the transformation J[k] = 7i[‘[k] to the system S, 
we obtain a similar system S’ whose decoding mapping is 
L’ = LX = [ z, 0 1, whereas the encoding mapping 

a,’ = p+ = In [ 1 K (where K is a d x n matrix). 

We can simplify things further by applying an- 
other transformation: [‘[k] = 7a[“[k], where 72 = In cl [ 1 K Id * 

We now obtain a redundant system S” (sim- 

ilar to both S and S’) whose state evolution is given by 

["[k + l] = (~-17,-1dX72)<"[k] + (~-17;-'B)u[k] 

G d"t"[k] + f?"u[k] . (5) 

By employing the above transformation, we have achieved 
a system for which L” is still given by [ Z, 0 1, 

whereas the encoding matrix is now G” = ‘7-l@’ = L [ 1 0 . 
Therefore, for all time steps Zc, and under fault-free con- 

ditions, [“[k] = @“z[k] = 44 [ 1 o . Combining the 

state evolution equations of the original and redundant 
systems (eqs. (1) and (5) respectively), we see that 

c”[k + l] = d”.f’[k] + B”u[k] 

s- 

1 AXPI ;B”Pl ] = [ 4f: 4& ] [ “b”l ] 

a; 
+ a; 4JGl . [ 1 

We conclude that the following equations have to hold: 

Az[k] + Bu[k] = d;lx[k] + B$[k] 

0 = d&s[k] + B;u[k] . 

By setting the input u[k] = 0 for all k, we see that dl,l, = 
A and d& = 0. With the input now allowed to be non- 
zero, we conclude that Z?: = B and Z3[ = 0. 

The system S” is therefore in the form of the standard 
system S, in eq. (4) with appropriate decoding and en- 
coding matrices. At this point, however, the check matrix 
0” is given by 

0” = [ 0 P ] 

where P can be any invertible d x d matrix. A trivial 
third similarity transformation will ensure that the parity 
check matrix takes the from [ 0 Zd 1, while keeping the 

system in the standard form S, in eq. (4), except with 



A12 = A:‘,P and A22 = P -'.A& P. The decoding, en- 

coding and check matrices are then as claimed in the state- 
ment of the theorem. 

The converse, namely that if S is similar to a standard 
S, as in (4), then it is a redundant version of (l), is easy 

to show. 0 

The above theorem establishes a complete characteri- 
zation of all possible fault-tolerant designs (subject to our 
restrictions) of a given LTI state-space model. The ad- 
ditional modes introduced by the redundancy never get 
excited under fault-free conditions because they are ini- 
tialized to 0 and they are unreachable from the input. Due 
to the existence of the coupling matrix Alz, the additional 
modes are not necessarily unobservable through the de- 
coding matrix. 

2.3 Error Model 

A more detailed discussion of error detection and correc- 
tion requires a particular error model. In this section we 
describe the sorts of hardware faults that might plausibly 
take place in the implementation of our systems, and the 
way we reflect these faults into our theoretical framework 
(i.e., we describe our error model). 

There are two kinds of hardware faults: transient and 
pemzanent faults, [7]. A transient fault at time step 5 
causes errors at that particular time step, but disappears 
at the following ones. Therefore, if the errors are cor- 
rected before the initiation of step k+ 1, the system will re- 
sume its normal mode of operation. A permanent fault, on 
the other hand, causes errors at all remaining time steps. 
Clearly, a permanent fault can be treated as a transient 
fault for each of the remaining time steps (assuming error 
correction at every single time step), but in certain cases 
one can deal with it in more efficient ways (e.g., reconfig- 
uration). In the examples of Section 3 we will be mostly 
concerned with transient faults; in Section 3.3 we will deal 
with permanent faults. 

The error model does not have to exactly mimic the 
actual fault mechanism. For example, we can model the 
error due to a fault in a multiplier as additive, or that of 
a fault in an adder as multiplicative2. However, efficient 
error models need to be close to reality; otherwise, a sin- 
gle actual fault might manifest itself as an unmanageable 
number of errors in the error model. Therefore, in order 
to evaluate the performance of our redundant system, we 
need to know its actual hardware implementation so that 
we can choose an efficient error model. 

In most of the examples in Section 3 we assume that 
we implement our LTI systems using memory elements 
(delays), adders and multipliers (gains) that we intercon- 
nect in some appropriate way. These realizations can be 

*The faulty result rf of a reahmber multiplier can always be mod- 
eled in an additive error fashion as rf = r + e where r is the correct 
result and e is the additive error that has taken place. Similarly for an 
adder. 
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Figure 2: A delay-adder-gain diagram for a first-order LTI 
state-space system (single-input single-output case). 

represented using signal flow graphs, or delay-adder-gain 
diagrams as shown in Figure 2. Note that the same state- 
space description (matrices A, t?, C, and D for the redun- 
dant system) corresponds to a number of different delay- 
adder-gain diagrams and, consequently, it can have a num- 
ber of different hardware realizations, [13]. This makes 
the connection with hardware failures more complicated. 
For example, in certain implementations a single fault in a 
multiplier or an adder can corrupt more than a single entry 
in the matrices A, B, C, and D (and, consequently, more 
than one state variable). For the delay-adder-gain diagram 
in Figure 2, A = a, B = 1, C = bi + aba, and D = bc. 
Clearly, a failure in a single multiplier can manifest itself 
in many ways: e.g., if the gain bo fails, C and D will be 
incorrect. 

One way to avoid this problem is to assume that we 
implement our systems using delay-adder-gain diagrams 
in which the longest delay-free path is of length one. In 
such a case, the multiplier gains are directly reflected as 
the entries in the matrices of the state-space description, 
[13]. We can then model faults in the multipliers (and the 
adders) as corruptions in individual entries of the matrices 
A, B, C, and ;D. This is the assumption that we make in 
analyzing our examples in the next section3. 

The importance of the actual hardware implementation 
can also be seen from the following example: if our re- 
dundant system is directly implemented in the form (4), 
with the parity check matrix 0, = [ 0 Id 1, then the 
redundancy is quite useless: under the assumptions of the 
previous paragraph, the only faults that are detected are 
the ones that have affected the redundant modes of the 
system at time step k (because the additional modes can- 
not be influenced by the original modes or the input). This 
is pointless, because our objective is to use the redundancy 

to protect the original system, not to protect redundancy it- 
self. However, systems that are similar to the standard one 
can be designed to efficiently provide error protection. 

3A future step is to study more general descriptions by studyingfac- 
tored state variable descriptions, [13]. It is also possible to accommo- 
date for implementations that are based on more general delay-adder- 
gain diagrams by looking at the techniques in Section 3.3, or by employ- 
ing the computation trees in [17]. 



3 Examples of Fault-Tolerant 
Systems 

In this section we present examples of achieving fault 
tolerance using the redundant systems developed in the 
previous section. 

3.1 ‘Ikiple Modular Redundancy 

Triple modular redundancy (TMR) maintains three sep- 

arate copies of the original system. These copies (mod- 
ules) use separate hardware and operate identically under 
fault-free conditions. By comparing their state vectors at 

a given time step, one is able to detect transient or perma- 
nent errors. In fact, single errors can easily be corrected 
using a non-linear, but otherwise simple, voting scheme: 
we select the state agreed upon by two or more systems. 

TMR in our LTI state-space setting corresponds to a 
system of the form 

where the initial conditions are chosen so that the state 
vectors zl[lc], ~~[k] and z3[1c] of the three subsystems 

evolve in the same way as the original one (i.e., z1 [0] = 
z2[O] = x3 [0] = ~[0]). The encoding matrix @ is given h by In , [ 1 whereas the decoding mapping L can be 

I, 
[In 0 O],[O 1, O],[O 0 ln]l,orothers 
(e.g., convex combinations). In this example, we assume 
that L = [ In 0 0 1. The parity check matrix 0 can 

be simply4 -I o I . When a non-zero entry 
[ 

-I, I, 0 1 
appears on the upier (respe:tively, lower) half of the 2n- 
dimensional vector O#], we know that a fault took place 

in subsystem 2 (respectively, 3). When non-zero entries 
appear in both the top and bottom half-vectors, then a fault 
exists in subsystem 1. 

The system is easily shown (for example with 7 = 

I! , J[k] = 7& [ICI) to be similar to 

A 0 0 

0 A 0 

1 
Q[k] + 

[I B 

0 u[k] 
0 0 A 0 

which is of the form described in the theorem of the pre- 
vious section. The initial conditions are now &,[O] = 

40tber parity check matrices are also possible. 

401 
7--l<[0] = 0 [ 1 where x[O] is the initial condi- 

0 
tion associated with the original system. Note that all 
modes of the original system are replicated twice (A22 = 

A 0 [ 1 o A ) and there is no coupling (Al2 = 0). The 

check matrix for the standard system is 0, = 07 = 

[ 

0 I, 0 1 0 0 I, . 
Once the encoding matrix Q is fixed, the additional 

freedom in choosing the decoding matrix L can be used 
to our advantage. For example, when our checking pro- 
cedure detects permanent faults in the first subsystem, we 

can change our decoding matrix from L = [ I, 0 to L = [ 0 I, 

0 ] 

0 1. This will ensure that our overall 
system still outputs the correct result. In fact, this idea can 
be generalized a little bit. We discuss an adaptive frame- 
work with this flavor in Section 3.3. 

3.2 Checksum and Linear Coding 

Checksum 

A scheme for detecting errors in LTI state-space systems 
was presented in [4] under the name “state variable filter”. 
The basic idea was to include an extra state variable, c[/c], 
that forms the sum of all other state variables at each time 
step (i.e., c[!c] = Cy=“=, xi[y). This was accomplished 
using the following redundant system: 

+ )-fbi +I 1 1 
where ai denotes the i-th row vector of the matrix A and 
bi denotes the i-th row vector of matrix B. The encod- 

ingmatrix+isnow [I f..I],whereasthedecod- 

ing matrix is L = 1 In 0 1. The initial condition is 

1 so that under fault-free conditions 

The parity check matrix is given by 0 = 
[l l...l - 1 1, i.e., it checks that the variable c 
is indeed the sum of all original state variables. When one 
of the state variables is updated incorrectly, then the par- 
ity check is not 0 and we are able to detect that a fault has 
taken place. 

The above system is included in our framework. Indeed 
the redundant system is similar to the standard form 

5uP+11= [; ;],,kl+[ f].,kl. 



The transformation matrix we need to use is 7 = 

[ 

In 0 1 1 l...l 1 . 
The initial condition in the standard 

case is Q[O] = 401 [ 1 o ; the parity check matrix of the 

standard system is 0, = [ 0 0. . . 1 ] and simply checks 

that the (n + 1)-st state variable is zero. 
The importance of the actual hardware implementa- 

tion and the need to assume an implementation that cor- 
responds to a delay-adder-gain diagram with delay-free 
paths of unit length (or use the techniques pointed out in 
Section 2.3) can be seen from the following simple exam- 
ple. Suppose that our hardware calculates c[k + l] by first 
calculating all xi [k + l] (which we have to calculate any- 
way) and then setting c[lc + l] = Cy=, xi [Ic + l]. This 
is a perfectly valid implementation. Its delay-adder-gain 
diagram, however, has delay-free paths of length greater 
than one, and an error in the calculation of state variable 
xi [k + l] will also appear in c[k + 11. In fact, our system 
will not be able to detect the error because the parity check 
will still be valid. It is crucial that c[lc + l] be calculated 

a different scheme, otherwise we run the risk of adding 
redundancy that checks itself. 

Linear Codes 

The checksum scheme above is a very basic one because 
it only provides single-error detection. Using our frame- 
work, we can develop schemes that provide detection and 
correction of multiple transient faults. The following is a 
simple motivating example to illustrate the idea. Let the 

original system be 

r.2 0 0 01 r 31 

This system can be protected against single transient er- 
rors in the state variables. First consider using three ad- 
ditional modes, implemented in the standard redundant 
form: 

.2 0 0 0 0 0 0 
0 .5 0 0 0 0 0 
0 0 .l 0 0 0 0 

Q[k+ 11 = 0 0 0 .6 0 0 0 Q[k] 
0 0 0 0 .2 0 0 
0 0 0 0 0 .5 0 
0 0 0 0 0 0 .3 

+[ 3 -1 7 0 0 0 O]%[k]. 

Error detection in this form requires checking that 
Oo&[k] is 0, where 0, is the parity check matrix given 
by 0, = [ 0 1s 1. However, as we argued in the pre- 
vious section, redundant systems in standard form can- 
not be used for detecting or correcting errors in the origi- 

nal modes: given a faulty state vector <,f [k], the fact that 

@&[k] # 0 will simply mean that an error took place in 
the calculation of the redundant modes. What we would 
really like is to protect against errors that appear in the 
original modes. One way to achieve this is to employ a 
system similar to the standard redundant system, but with 
the following parity check matrix: 

[ 

1110100 
o= 1101010. 1 (7) 

1011001 

The choice of this 0 is motivated by the structure of Ham- 
ming codes in communications, see [2]. With a suit- 
able similarity transformation, the corresponding redun- 

dant system is 

<[k + l] = 

.2 0 0 0 0 0 0 
0 .5 0 0 0 0 0 
0 0 .l 0 0 0 0 
0 0 0 .6 0 0 0 
0 -.3 .l 0 .2 0 0 

.3 0 0 -.l 0 .5 0 

.l 0 .2 -.3 0 0 .3 

+ P -1 7 0 -9 -2 -10 ]‘z@c] . 

Using this equivalent system, we can detect and locate 
transient faults that cause the value of a single state vari- 
able to be incorrect at a particular time step. To do this, we 
check for non-zero entries in the vector e[lc] = OJ[k]. If, 
for example, 81 [k] # 0, 02 [ICI # 0, and 0s [ICI # 0, then the 
value of <i[S] is corrupted; if 0i[k] # 0, e2[k] # 0, and 
&[/cl = 0, then a fault has corrupted &[[k]; and so forth. 
Once the erroneous variable is located, we can easily cor- 

rect it using any of the parity equations in which it ap- 
pears. For example, if <s [k] is corrupted, we can calculate 
the correct value by setting 52 [k] = -51 [k] - (3 [ICI - &, [ICI 
(i.e., using the first parity equation). Since the faults are 
transient, the operation of the system will resume nor- 

mally in the following steps. 
The above approach uses a parity check matrix that 

forms a Hamming code, as we noted. Such codes can 
perform single-error correction very efficiently: instead of 
replicating the whole system, we only need to add a few 
redundant modes. In fact, as long as 2d - 1 > 77 (where 

11 = n + d is the dimension of the redundant system), 
we can guarantee the existence of a similar system that 
achieves single-error correction. 

In contrast to the binary coding scheme presented 
above, the authors of [17] have developed a real coding 

scheme. This scheme (also included in our framework) 
performs single-error correction using only two additional 
state variables, but needs more complicated error detec- 
tion and correction mechanisms5. The additional modes 
in the fault-tolerant scheme in [ 171 are set to 0. Clearly, as 

% would be worthwhile to compare the numerical properties and 
limitations of the two schemes imposed by finite precision arithmetic. 



the example of this section has demonstrated, this is not 
necessary; in fact, in the next section we make use of the 
additional non-zero modes to design a scheme that adapts 
to permanent faults during operation. 

3.3 Adaptive Decoding 

Let us examine the TMR example in eq. (6) a little closer. 
A permanent fault in any subsystem can be detected us- 

ing the parity check matrix 0 = I -I, In 0 
-I 

n 0 I, . The 1 
corrupted state variable(s) can be Corrected e.g., by dimple 
majority voting or by using any of the valid parity equa- 
tions. However, since the fault is permanent, we would 
like to be able to avoid the overhead of error correction 
at each time step. In the TMR case, this can be done 
in a straightforward way: for example, once a fault per- 
manently corrupts the first subsystem (by corrupting en- 
tries in its A or B matrices), we can switch our decoding 
matrix from L = [ I, 0 O]toL=[O In o] 

(or L = [ 0 0 I, ] or others) and ignore the parity 

checks that involve variables in the first subsystem. This 
ensures that the output of the redundant system is still cor- 
rect. We can continue to perform error detection, but have 
lost the ability to do error correction. We now formalize 
and generalize this idea. 

Once we have detected a fault at the i-th state vari- 
able, we know that our new decoding matrix L, (if it 
exists) should not make use of state variables with in- 
dices in Mif. Equivalently, we ask the question: does 
there exist a decoding matrix L, such that L,fJa = I,? 

Here, aa is the same as the original encoding matrix Cp 
except that @a (j, I) is set to zero for all j in Mi, , with 
1 in {1,2, . . . . n}. If aa is full-column-rank, such an L, 

exists. In this case, our redundant system can withstand 
corruption of entries in the i-th row(s) of A and/or B; any 
L, that satisfies L,+,, = 1, is suitable. 

Examples 

TMR is clearly a special case of the above formulation: 
corruption of a state variable of the tirst subsystem is guar- 
anteed to remain within the first subsystem. Therefore 

Mj C {1,2, . . . . n} and (very conservatively) 

Consider again the redundant system S whose state 
evolution equation is given by eq. (3). Under fault-free 
conditions, x[lc] = L#] and <[lc] = 9x[5] for all k. Sup- 
pose that we implement this system using a delay-adder- 
gain interconnection with delay-free paths of unit length. 
A permanent fault in a multiplier of the system manifests 
itself as a corrupted entry in the matrices A or B: the i-th 
state variable &[k] (and other &[.I at later steps) will be 
corrupted if some of the entries6 d(i, 11) and/or B(i, 22) 
for some 21 in {1,2, . . . . n}, and some Zs in { 1,2, . . . . p} are 

corrupted right after time step k - 1. We assume that we 
can locate the faulty state variable through the use of some 
linear error correcting scheme as in the previous section. 
We are allowed to adjust the decoding matrix L to a new 
matrix L,, but we do not have control over the entries in 
A and B. We would like to know which entry corruptions 
can be tolerated, and how to choose L,. 

0 
fQa= In . [ 1 I, 

Two possible L,‘s are (among others) L, = 

[0 1n O]andL,=[O 0 In]. 

Less obvious is the following case (based on the linear 
coding example of the previous section). Suppose 

<[It + l] = 

.2 0 0 0 0 0 0 
0 .5 0 0 0 0 0 
0 0 .l 0 0 0 0 

0 0 0 .6 0 0 0 
0 -.3 .l 0 .2 0 0 
.3 0 0 -.l 0 .5 0 

.l 0 .2 -.3 0 0 .3 

ml 

+P -1 7 0 -9 -2 -10 ]%[k] 

The answers are rather straightforward. First, however, 
we need to find out which state variables will be corrupted 

eventually. If at time step Lc we detect a corruption at the 
i-th state variable, then we know exactly the end result: at 
time step kc + 1, state variable & [Ice] will corrupt the state 
variables that depend on it (let Mi, be the set of indices of 
these state variables - including i); at time step Ice + 2, 
the state variables with indices in set Mi, will corrupt the 

state variables that depend on them; let their indices be in 
set Mi, (which includes Mi,); and so on. Eventually, the 
final set of indices for all corrupted state variables is given 

where L = 14 0 ] and 9 is given by 

1 0 0 0 

0 1 0 0 
0 0 1 0 

0 0 0 1 
-1 -1 -1 0 
-1 -1 0 -1 
-1 0 -1 -1 

6We use A(i, 1) to denote the element in the i-th row and the l-th If d(2,2) (whose value is .5) becomes corrupted, then 
column of matrix A. the set of indices of corrupted state variables is clearly 

by the finite set Mir (note that Mif = Mi, = Mil u 

Mi, U Mi3.e. 
in {1,2, . . . . 

U Mi,). The sets of indices Mir for all i 
r,~} can be calculated in an efficient manner by 

computing R(d), the reachability matrix of A, as outlined 
in [18]. 



Mzr = {2,5} and aa is given by 

1 0 0 0 
0 0 0 0 

0 0 1 0 

aa= 0 0 0 1 

0 0 0 0 

-1 -1 0 -1 
-1 0 -1 -1 

A suitable L, is given by 

100 00 
L, = 1 -1 0 0 -1 0 

0 0 
-1 0 

001 00 0 0 . 

000 10 0 0 I 

Using this L,, the redundant system can continue to 
function properly (that is, provide the correct state vector 
z[k] for all future Ic) despite the corrupted entry d(2,2). 
We can still use the parity check matrix of eq. (7) for 
fault detection, except that the checks involving the sec- 
ond and/or fifth state variables (i.e., the first and second 
checks in OJ[k]) are invalid. 

4 Conclusion 

We have outlined a systematic procedure for introduc- 
ing controlled redundancy into linear time-invariant sys- 

tems in state form. Our approach maps the state vec- 
tor of the original system into a larger, redundant space, 
while ensuring that the evolution in the redundant space 
will preserve the evolution and properties of the original 
system. The added redundancy, through proper hardware 
implementation, can be channeled towards achieving er- 
ror detection and correction under hardware faults. We 
have demonstrated ways in which this can be achieved by 
several examples. Moreover, we have characterized all 
appropriate fault-tolerant designs for such systems. Our 
current work focuses on extending some of our results to 
redundant Petri net models, max-plus state-space systems, 
and other classes of dynamic systems in state form. 
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