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Abstract 
This paper considers the minimization of the f?- 

induced norm of the closed loop in linear multirate sys- 
tems when full state information is available for feedback. 
A state-space approach is taken and concepts of viability 
theory and controlled invariance are utilized. The essen- 
tial idea is to construct a set such that the state may be 
confined to that set and that such a confinement guar- 
antees that the output satisfies the desired output norm 
conditions. Once such a set is computed, it is shown that 
a memoryless nonlinear controller results, which achieves 
near-optimal performance. The construction involves the 
solution of several finite linear programs and generalizes 
to the multirate case earlier work on linear time-invariant 
(LTI) systems. 

1. Introduction 
Multirate sampled data systems arise in many appli- 

cations in which it is desirable to use multiple sampling 
rates for controlling a continuous-time system. The impe- 
tus to use multiple sampling rates could result from, for 
instance, differing bandwidths of input signals or differ- 
ing limitations of the physical sensors and actuators used 
to implement a control algorithm. In addition, if the ex- 
ogenous inputs or the regulated outputs are continuous 
signals, a multirate model can be used to approximate 
these continuous signals to any degree of accuracy. As a 
result, it is important to be able to design controllers for 
multirate sampled data systems that perform optimally in 
some sense. 

In this paper the notion of optimality is with respect 
to eW performance. In particular, we are interested in 
minimizing the &O”-induced norm of the closed loop map. 
In the linear time invariant (LTI) case this amounts to 
minimizing the corresponding @ norm. This !l problem 
can be solved using input-output techniques and dual- 
ity theory (e.g., [5]). For linear multirate sampled data 
(LMRSD) systems the problem is solved in [3] using again 
an input-output viewpoint and lifting techniques devel- 
oped in [6,7,8] that convert the problem to an LTI, how- 
ever nonstandard, problem. 

Although the problem of Loo-gain minimization is 
solved in the input-output framework for both LTI and 
LMRSD systems certain characteristics of their solutions 
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may not be desirable. In particular, considering the f?- 
optimal control problem with full state feedback it was 
shown [4] that, unlike the ‘,V’-optimal case, optimal as 
well as near-optimal controllers can be dynamic and of 
arbitrarily high order. This result motivated a new, state- 
space, approach to the e1 problem when the state is avail- 
able for feedback. Recent work in [9,10] towards this di- 
rection has shown that static nonlinear state feedback per- 
forms as well as linear dynamic feedback. In other words, 
full state feedback el-optimal control need not require dy- 
namics if nonlinear controllers are admissible. Moreover, a 
constructive, finite-step, algorithm for near-optimal non- 
linear state feedback is furnished. The approach in the 
work of [9,10] is to construct controlled invariant sets in 
the context of viability theory and differential inclusions. 
It is precisely this work that we generalize to the multirate 
case in this paper. We show that a memoryless nonlinear 
controller can be constructed to achieve near-optimal per- 
formance. 

The remainder of this paper is organized as follows. 
Section 2 presents some background material. Section 3 
presents the problem formulation. Section 4 discusses the 
notion of a multirate controlled invariance kernel. Sec- 
tion 5 introduces machinery necessary for the construction 
of an 1’-optimal multirate controller, and outlines an al- 
gorithm to construct such a controller. Finally, Section 6 
presents an example. 

2. Mathematical Preliminaries 
First, we give some basic notation : R+ denotes the 

set of nonnegative real numbers and 2+ denotes the set 
of nonnegative integers. For M E Rmxn, let M(i,j) de- 

note the ijth element of M, let M(a,:) denote the ith row 

of M, and let M(,,j) denote the jth column of M. De- 

fine IM(i,:)l := Cyzl I~(i,j)l, and IMI = maxa I~(s,:)l. 
Similarly for z E Rn, let zd denote the it” component 
of z and define ]z] = mm ]zi ] . The appropriate defini- 
tion of 1.1 will be apparent from context. Let er(Z+) 
denote the set of bounded one-sided sequences in Rn. 

For f = {f(o), f(l),fP), . . .I E 4?(2+), define llfll := 
swte+ IN I . A causal operator H : !F(Z+) + fJz(Z+) 

is called stable if ]]H]] := sup jEcp 
j#O 4l-t 

y <oQ. 

A set-valued map F : X ?* Y is a mapping from 
individual points z E X to sets F(x) c Y. The domain 
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of a set-valued map F is defined as dam(F) = {Z E X : 
F(Z) is non-empty}. 

In the sequel, some elements of viability theory will 
be required. For a more complete treatment of viability 
theory, the interested reader should consult [1,2]. 

3. Problem Formulation 
In this paper, the @-optimal control problem for a 

linear multirate system with state feedback available is 
considered. The system equations are given by 

x(t + 1) = Ax(t) + Ew(t) + I?# 

.Z(t> = Gz(t) + &w(t) + Dl24) (1) 

where: z E R” contains the state of the system, w(t) E 72’1 
contains exogenous inputs, u(t) E R” contains control in- 
puts, z(t) E RP contains regulated outputs. The measured 
inputs of the system (i.e. the states) are sampled at rates 
of IIT, 12T,. . .,Z,T. The control inputs are delivered to 
the system at rates of klT, kzT,. . .,lc,T. It is assumed 
that T is the least common sampling interval among all 
of the inputs and the outputs. The noise enters the sys- 
tem discretely at a rate of T time units. The assumption 
that the noise enters at the fastest sampling rate simpli- 
fies the solution of the @-optimal control problem, but it 
is removal through straightforward extensions of the algo- 
rithms which appear in this paper. It is also assumed that 
the sampling intervals of the inputs and the outputs are 
all synchronized, such that the jump discontinuities in the 
inputs and the outputs occur at the same time instant. 
State feedback is assumed to be available such that the 
measured outputs (denoted as y E Rn) are the states. 

The controllers, ICmulta, which are admissible for this 
system are memoryless multirate controllers which are, in 
general, a nonlinear function of the state. By memoryless, 
it is meant that the controllers may be defined without 
introducing additional state variables to the system. And, 
multirate refers to the above stipulation that the inputs 
and the regulated outputs may appear at different rates. 
Given an admissible controller, ICrnultd, define T,, (ICmulti) 
to be the forced dynamics from w to z with zero initial 
conditions. Similarly define T,,,,(Kmulti) and T,,(K,,lti). 

Definition 3.1 An admissible p-periodic controller, 
K,,,,rti, is said to be internally stabilizing with a perfor- 
mance (resp., strict performance) of y if 1) the unforced 
dynamics (w = 0) are globally exponentially stable and 
2) the forced dynamics with zero initial conditions satisfy 

IlZw (Lurti >I1 I Y, (rw., IITzw(Luzt~>ll < Y), with both 
IITku(Lu~ti>ll , llTiw&urti>ll < 00 . 

The optimum performance problem can now be postulated 
as 

Yopt = K%!li {llTZw(k)ll : ICnaultd is admissible 

and internally stabilizing} 

We point out that arbitrary time variation does not offer 
any advantage over multirate if the controller is linear [3]. 
Moreover, it can be deduced from the developments of 
Section 5 that a memoryless nonlinear controller can at 
least match the performance of any linear one. Finally, it 
also can be concluded from the results of Section 5 that 
a dynamic controller does not outperform a memoryless 
periodic one. Hence, the class of admissible controllers is 
not restrictive. 

4. Multirate Controlled Invariance 
In this section, the concept of the multirate controlled 

difference inclusion is introduced. For a particular multi- 
rate controlled difference inclusion, the structures which 
are of particular interest are multirate controlled invariant 
sets. If a multirate system begins within such a set, then 
it will be confined to that set for all time under the ac- 
tion of the associated controlled difference inclusion. This 
invariance property will be exploited in the construction 
of a controller which solves the stated @-optimal control 
problem. Due to the requirements of this control law, 
which will be discussed in the next section, it is necessary 
to consider simultaneously the behavior of the multirate 
system at each step of a time interval of R steps (i.e. RT 
time units), where R = LCM(I1,12, . . . , I,, ICI, R2, . . . , kra). 
As a consequence, the definition of a controlled difference 
inclusion must be appropriately adapted in order to be 
used to model multirate systems. Specifically, it must be 
altered such that the behavior of the multirate system for 
R steps is described. This requirement is met by the fol- 
lowing definition. 

Definition 4.1 Let F : R”z~?,~” ti Rn be a set 
valued map. Define 

Then, x(j + R) E j(z(j)) is the multirate controlled 
difference inclusion defined by F. 

In the above definition, the variables u”, . . . , uR-l repre- 
sent the control inputs at times Rj, . . . , Rj+(R- 1). Also, 
the time interval described by a multirate controlled dif- 
ference inclusion will always begin and end at time steps 
at which the system has access both to all the states and to 
all the controls. Note that the shortest length of time be- 
tween such time steps is in fact R time steps. Another im- 
portant detail of the above definition is that the output of 
the multirate system can only be considered every R steps 
when modeled with a multirate controlled difference in- 
clusion. Therefore, when applied to an @-optimal control 
problem, multirate controlled difference inclusions clearly 
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must also incorporate the required bounds on the outputs 
of intermediate steps. This will be accomplished by appro- 
priately defining the set-valued map F(x, u”, . . . , uRS1). 

As previously indicated, the concept of the controlled 
invariance of a multirate controlled difference inclusion is 
integral to the construction of an @-optimal control law. 
The essential idea is to define a set which will insure that 
the required output loo-norm bounds are met and to then 
search for the largest subset to which the multirate system 
can be confined under some admissible control law for all 
time. If such a set exists, then an @-optimal controller 
can be constructed. Formally, a controlled invariant set 
for a multirate controlled difference inclusion satisfies the 
following definition. 

Definition 4.2 Consider the multirate controlled dif- 
ference inclusion defined by F. A set K c Rn is 
multirate controlled invariant under F if Vx E K, 
there exist ui E Rm,i E (0,. . . , R- l}, such that 
F(x,uO, . . .,nR--l) c K. 

An important type of multirate controlled invariant set 
is the multirate controlled invariance kernel, which is the 
largest multirate controlled invariant set in the sense given 
by the below definition. 

Definition 4.3 Consider the multirate controlled dif- 
ference inclusion defined by F. Let the set K be a subset 
of 72”. The multirate controlled invariance kernel of 
K for F, denoted as CINV(K)R, is the largest closed sub- 
set of K such that for all z E CINV(K)R, there exist ui E 
‘JP, i E (0,. . . , R- l), such that F(c, no,. . . , uRel) c 
CINV(K)R. Here, the term largest implies that CINV(K)B 
contains aJJ other closed subsets of K with the above in- 
variance property. 

An algorithm for the construction of the multirate con- 
trolled invariance kernel is given in the following propo- 
sition, which follows almost immediately from the Con- 
trolled Invariance Kernel Algorithm contained in [ll]. 

Proposition 4.1 Let F : RneRR” -+ Rn be a lower 
semicontinuous set valued map. Also, assume that the 

set U,, F (sn, un) is bounded if and only if the sequences 
{ui,} E 72, i E (0,. . . , R- 1) and zn E Rn are bounded. 
Let K C R” be a compact set. Define KO = K, and 
recursively define the subsets KR~ of K, for j = 1,2,. . ., 

by 
KRj = {Z E KR(j-1) : F(x,u’, ul,. . . ,U R-1) C KR(j-l), 

withu” ERm,iE{O,...,R-1)) 
Then 

CINV(K)R = (lrzo KRj 

The construction of a multirate controlled invariance ker- 
nel CINV(K)R is integral to the construction of the !l- 
optimal control law developed in this paper for multirate 
systems. It is important to note that in the most general 

sense, the definition of multirate controlled difference in- 
clusions allows the control input to be non-causal and to 
depend upon unavailable state information. As discussed 
in the following section, this potential difficulty can be 
avoided by imparting to the multirate controlled differ- 
ence inclusion a form which depends upon the particular 
multirate system of interest, 

5. Construction of Multirate Control 
Laws 

In this section, the multirate controlled invariant set 
CINV(~BJECT:) is defined and it’s role in the construc- 
tion of an admissible multirate controller which achieves a 
performance arbitrarily close to the optimum is described. 
The following assumptions are made for the remaining 
portion of this paper in order to simplify the construction 
of the controller and the arguments of the proofs which 
follow. 

Assumption 5.1 

1. rank(E) = rank (Cl(t)) = n 

d. rank(B(t)) = m 

These two assumptions simplify greatly the construc- 
tion of the control law. It should be noted that is possible 
to remove the rank assumption on E with arbitrarily small 
perturbations to E. The rank assumption on each Cl may 
also be removed, but this must be done by introducing 
new, non-trivial outputs in order to avoid numerical dif- 
ficulties and to insure a reasonable bound on the plant 
states. The final assumption insures that there will be no 
control redundancies, and it may be removed by arbitrar- 
ily small perturbations to B. 

For the remainder of this paper, it also will be assumed 
that both the states and control input only have rates of T 
and 2T, such that R = 2. The states and control variables 
with the same sampling rates will be grouped together, 
such that xi (ui) contains all states (control inputs) which 
appear at rates of T, and 22 (~2) contains all states (con- 
trol inputs) which appear at rates of 2T. This assumption 
that the multirate system possesses only sampling rates of 
T and 2T will greatly simplify and clarify the presentation 
of the multirate control law construction algorithm. But 
the algorithm may be straightforwardly extended to the 
general multirate problem, as will be briefly discussed at 
the close of this section. 

The first step in constructing an &‘-optimal controller 
is to connect the state equations given by (1) to a multirate 
controlled difference inclusion which will be suitable for 
use in Proposition 4.1. As previously indicated, this mul- 
tirate controlled difference inclusion must be peculiarly 
defined in order to insure that the resulting controller is 
causal and that only available state information is used to 
produce control inputs. Writing x(j) as xj, the form of 
this multirate controlled difference inclusion is as follows 
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Yw 2j+11 5 $ : .I clx2j + Dllw2j + D12u2jI 5 i 

and ]Clx 2j+1 + DllW 2j+l+ D12u2j+ll 5 1) 

where 

,%+I = f0(x2j, &G, “23) = Ax% + BUG + Ew2j 

and 

where Est(xy+l,x2j,u2j) is the “estimating set” for 

xF+l. The estimating set is the smallest set to which 

xF+’ can be guaranteed to belong, given the available 

information (i.e. xy+l and the control inputs). This set 
may be constructed by using the techniques used in [ll] to 
contruct @-optimal estimators. It is necessary to use this 
estimating set in place of the actual value of xF+i in the 
definition of the multirate controlled difference inclusion 
in order to unsure that the controller does not depend on 
22 at the odd time steps (at which 22 is not measured). 
By using Est(.), th e controller is forced to achieve simul- 

taneously the control objective for any value of xF+l in 

Est(.). That is, the lack of information about xy+l in- 
duces an extra measure of conservativeness. Also note 
that up+i has been replaced by UT in F-f. This insures 

that ug+’ ( w ic h’ h is not available) is not used as a control 
input. For the above definition of fl, the A and B system 
matrices are divided into blocks which correspond to the 
dimensions of xi, x2, ui and ~2. 

The multirate controlled difference inclusion defined 
by F, is equivalent to two time steps of the system equa- 
tions (1) for ]]w]]~ _< l/y and ]]z]]~ 5 1. Also, note 

thatWs discussed fi does not include xy+‘or uF+‘, since 
22 and ‘112 are only available at times t = Zj, j E (0, 1, . . .}. 
Now, define the set OBJECT; such that 

OBJECT: = {x E Rn : ICla: + DllW + 0124 I 1, 

In can be shown that 
for some u E R” and V lwl 5 $} 

Fr satisfies the assumptions of 
Proposition 4.1, such that the algorithm detailed in 
Proposition 4.1 may be used to construct the multirate 
controlled invariance kernel CINV(~BJECT!$), when it ex- 

ists, of OBJECT: when subject to FT. 

As indicated in Section 4, the concept of the multirate 
controlled invariance kernel is integral to the formation of 
an @-optimal controller. Specifically, the controlled in- 
variance kernel of interest is CINV(~BJECT~). Clearly, if 

the state is confined at time steps 2j to OBJECT:, then the 
4OO-norm of the output at time steps 2j will be less than or 
equal to one. The f?‘-norm of the output at all interme- 
diate times will also be less than one due to the definition 
of the multirate controlled difference inclusion F,. This 
ability to bound the em-norm of the output at all times, 
suggests the following algorithm for the construction of an 
optimal control law. 

The first step is to construct the multirate controlled 
invariance kernel CINV(~BJECT:) for a particular y > 0, 
using the algorithm described in Proposition 4.1. Practi- 
cally, CINV(~BJECT’) will be 
finite intersection $=, Kzj 

difficult to form if the in- 
does not converge within a 

finite and suitably small number steps. An alternative is 
to truncate the invariance kernel algorithm at a point such 
that adding sets to the aforementioned intersection only 
produces an incremental change which is small in some 
sense, as was done for the LTI, single-rate problem in [lo]. 
If it is determined that CINV(~BJECT~) does not exist 

(i.e. CINV(~BJECT~) is empty), then y has been chosen 

too small. In fact, it can be shown that if CINV(~BJECT~) 
does not exist for a particular y, then it is not possible to 
find a controller with a performance level of y. Therefore, 
if CINV(~BJECT~) does not exist, y should be increased, 
and the algorithm should be re-run. 

If y is not too small, then the second step of the algo- 
rithm may be run. This second step is to determine the set 
of all controls by which the state can be confined within 
the multirate controlled invariant set CINV(~BJECT:). 
This may be done by utilizing one step of the algorithm 
in Proposition 4.1, in which KO is initialized as OBJECT:. 

Clearly, ICi will equal OBJECT:, and the set of all control 
values which forces the state from K1 in to Ko may be 
recorded. A memoryless multirate controller may then be 
chosen from this set of potential controls. By construction, 
this controller will have a performance level of y. If this 
performance level is not small enough or a performance 
level closer to the optimal value is desired, then y should 
be decreased by an appropriate value and the algorithm 
should be re-run from the first step. 

The extension to the multirate problem is straight- 
forward, and primarily involves redefining FT to cover R 
time steps of the system, rather than just two time steps. 
Care.must be taken, as in the two rate case, to insure that 
neither unavailable states nor unavailable controls appear 
in the definition of FT. 
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6. Example 
As an example of the construction of a memoryless 

multirate controller, consider the multirate system 

Where 
11 = 1 k1 = 1 

12 = 13 = 2 k2 = 2 

such that x2, x3, and 212 appear at a rate of 2T; and 
xi and ui appear at a rate of T. Choosing y = 4, 
which implies that ]]w]loo < i, the algorithm converges 

to CINV(~BJECT~), which is given by the following ex- 
pression 

CINV(~BJECT~) = x : 1x11 5 1, 1x2] 5 t, 1x3] 5 1 

Having obtained CINV(~BJECT~) for y = 4, a controller 
must be found which insures that the system remains 
within this controlled invariant set. As previously indi- 
cated, a memoryless controller may be constructed by ini- 
tializing Ko = CINV(~BJECT~) and applying one step 
of the algorithm in Proposition 4.1. One possible con- 
troller, which results from this type of construction and 
which achieves a performance of y = 4 has the form 
u(x, j) = (211(x)212(2))‘, where 

w(j) = g2l(x:(j)) 
= .c721(x(j - 1)) 

:for j even 
:for j odd 

u2(j> = sll(x(j)> 

= sl2(xl(j), x(j - 1)) 

and 

:for j even 
:for j odd 

gzl(j) = 3 max{ -1, -4 - x3(j)} + 4 min { 1, 4 - x3(j)} 

gll(j) = 3 ma{-: - q(j), -a - w(j) - ul(j)} + 

+ 4 min { s - xl(j), 4 - xl(j) - w(j)} 

sl2(j) = 9 - xl(j) 

Using the above controller, simulations were run in which 
the disturbance w(t) was chosen with a uniform distribu- 
tion such that ]]w]]~ 5 a. In these simulations, it was 

found that ]]z]lco remains less than one, thereby confirm- 
ing the efficacy of the controller. 

7. Conclusions 

A state-space approach was taken and the concepts 
of viability theory and controlled invariance were used to 
produce a method for the construction of near optimal 
control laws for multirate systems when full state infor- 
mation is available for feedback. As previously discussed, 

the algorithm which was described in this paper may be 
extended straightforwardly to the general multirate sys- 
tem. It should be noted, that the control laws resulting 
from the algorithm presented here only guarantee a per- 
formance of 7 if the noise is fixed at a level of 4. The 
difficulty arises from the formulation of the problem as 
the controlled invariance problem. However, a controller 
with a guaranteed induced norm level can be formulated 
by scaling the state as was done in [lo] for LTI, single-rate 
systems. The resulting optimum control laws are static 
and contain R different piecewise linear elements, where 
R is the least common multiple of all the sampling rates, 
which are sequentially applied to the multirate system. 
This construction method is attractive due to the desir- 
able static nature of the resulting control laws. Thus, it 
can potentially serve as an alternative to the well-known 
input-output synthesis methods. 

References 
[l] J.P. Aubin. Viability Theory. Birkhauser, Boston, 
1991. 

[2] J.P. Aubin and A. Cellina. Differential Inclusions. 
Springer-Verlag, New York, 1984. 

[3] M.A. Dahleh, P.G. Voulgaris and L.S. Valavani. 
“Optimal and robust controllers for periodic and multi- 
rate systems,” IEEE Trans. on Automatic Control, vol. 
AC-37, no.1, pp. 90-99, January 1992. 

[4] I.J. Diaz-Bobillo and M.A. Dahleh. State feedback 
el-optimal controllers can be dynamic. Systems &’ Control 
Letters, 19(2), 1992. 

[5] I.J. D iaz -B b 11 o i o and M.A. Dahleh. Minimization of 
the maximum peak-to-peak gain: the general multiblock 
problem. IEEE Transactions on Automatic Control, AC- 
38(10):1459-1482) 1993. 

[6] D.G. Meyer. A new class of shift-varrying opera- 
tors, their shift-invariant equivalents, and multirate dig- 
‘ital systems. IEEE Transactions on Automatic Control, 
35:429-433, 1990. 

[7] D.G. Meyer. A parametarization of stabilizing con- 
trollers for multirate sampled-data systems. IEEE Trans- 
actions on Automatic Control, 5(2):233-236, 1990. 

[8] D.G. Meyer. Controller parametariztion for time- 
varying multirate plants. IEEE Transactions on Auto- 
matic Control, 35(11):1259-1262, 1990. 

[9] J.S. Shamma. Nonlinear state feedback for @ opti- 
mal control. Systems & Control Letters, 21:265-270,1993. 
[lo] J.S. Shamma. Optimization of the em-induced norm 
under full state feedback. To appear IEEE Transactions 
on Automatic Control A summary in Proceedings of the 
93rd IEEE Conference on Decision and Control, Decem- 
ber 1994. 

[ll] J.S. Shamma and K.-Y. Tu. Set-Valued Observers 
and Optimnal Disturbance Rejection. To appear IEEE 
Transactions on Automatic Control 

P. 5 


