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Abstract 

This paper introduces the solution to the problem 
of maximum likelihood (ML) scale estimation. The 
result is obtained using coupled Karhunen-Loeve ex- 
pansions, which were recently introduced in [l-3] to 
solve the problem of ML displacement (or time delay) 
estimation. The coupled Karhunen-Loeve expansions 
lead directly to intuitively reasonable signal proces- 
sors associated with ML displacement and ML scale 
estimation. Simulation results that demonstrate the 
performance of ML scale estimation are included in 
this paperl. 

1 Introduction 
The problems of scale and displacement estimation 
arise in diverse applications such as zoom and trans- 
lational motion estimation in image processing and 
bearing/bearing-rate estimation in passive sonar. 
Scale and displacement are also fundamental concepts 
in wavelet signal representation, and therefore, the 
problems of estimating scale and displacement seem 
complementary. A simple and intuitively satisfying 
solution to the problem of maximum-likelihood (ML) 
displacement estimation has been recently obtained 
using the new concept of coupled Karhunen-Loeve 
expansions (COLE) [l-3]. In the present paper, we 
use the CKLE to find the maximum-likelihood (ML) 
estimate of scale. 

We define the problem of scale estimation as that 
of estimating an unknown scale factor, a > 0, from 
observations: 

[ r$; ] = [ $) ] + [ ::;:; ] i t E 7 0) 
where s is a random signal process, n is noise, and 
the observation domain is 7 = [-T/2,T/2] where T 
is the observation time. Note that s(at) is a time- 
expanded (or low frequency) version of s(t) for a < 1, 
and a time-compressed (or high frequency) version of 
s(t) for a > 1. Different regions of the signal are in- 
cluded in ri (t) and rs (t) for a # 1 because the obser- 
vation interval, 7, is the same for both observations. 

If we represent the observations (1) with a vector 
T, then the ML estimate of scale, &L, is given by the 
A for which the conditional probability density func- 
tion (pdf) or likelihood function, prla (RIA), is max- 
imum. We use upper case to denote assumed quanti- 
ties and arguments of pdfs. To obtain p,la (RIA), we 
must have a statistical description for the signal and 
noise. We assume that s(t) is a zero-mean gaussian 
process having covariance function E {s (tl) s (t2)} = 
K, (tl, t2), and nl (t) and ns (t) are independent nor- 
mal processes having power spectral density functions 
Nl/2 and N2/2 respectively. 

The problem of scale estimation is complementary 
to that of displacement estimation. Displacement es- 
timation is well known in passive sonar, where the 
displacement, d, is the propagation time-delay of a 
signal received at two points in space. The observa- 
tions have the form: 

[ ;:[:i ] = [ ,(t”od) ] + [ :;I:; ] ; t E 7 (2) 
Historically, the elements in T for the passive sonar 
application were equated to the coefficients in com- 
plex Fourier series expansions of ri (t) and r2 (t) [4-61. 
Assuming stationary processes and the limit T + m, 
this Fourier representation led to a generalized cross 
correlator as the ML estimator of delay [6]. Exten- 
sions of this classic result were obtained by equat- 
ing the elements r to the coefficients in a generalized 
Karhunen-Loeve expansion of [rl (t), r2 (t)] [7,8]. Cou- 
pled Karhunen-Loeve expansions were recently shown 
to provide simpler, more intuitive, processor struc- 
tures for time delay estimation (TDE) for arbitrary 
T, [l-3]. 

By applying a method similar to that in [6], Knapp 
and Carter found the ML estimator of scale for sta- 
tionary processes in the limit T + cm [9]. In the 
present paper, we apply the CKLE to find the ML es- 
timator of scale for nonstationary processes and any 
T. The theoretical development is given in Sections 2 
and 3. The experimental performance of a simulated 
ML scale estimator is described in Section 4. 

‘This work was supported in part by NSF Grant MIP- 
9223020. 



2 Likelihood Function 

We can write (1) as 

[ :$] = [ .g)] + [ ;$]; te7- (3) 

where 
a(t) = s(t), (4) 

sa(t;a) = s(at) (5) 

Coupled Karhunen-Loeve expansions can be used to 
represent ri (t) and r2 (t) by N-element vectors p1 
and r2. The coupled Karhunen-Loeve expansions are 
defined as the limit as N + oc of: 

r;(t) = ~rl,khk(t), r;(t) = ~r2,u#m(t;A) 
k=l k=l 

(6) 
t E 7, where 

Tl,k = J Tl (+?hk(t)& T2,k = J T2(t)d2k(t;A)dt 
l- 7- 

(7) 
The representation vectors are the coefficient vectors 
ri = ri,l, ri,2, . . -&, i = 1,2. The functions &k(t), 
k = 1,2,. . . N, are the normalized solutions (eigen- 
functions) of 

X;khk(t) = J -&,(t,+#'lk(~)d~; (8) 7 

where Xi, = V-‘Wsl,k}, &,(t,~) = E{sl(t)s~(~)}, 

and t E 7. The functions &($A) are the normal- 
ized solutions (eigenfunctions) of 

&b+#?a(t;A) = J -&,Ir&~; &,A)hn(~Ak 7 (9) t E ‘T, where 

K salrl,a(t,~;~lr4 = E{ [s&a) - Et(t;A,rl>] x 

[s2(r;a)-~2(r;A,rl)]la=-A,rl =Rl}, (10) 

with 

&(t; A, RI) = E {sa(t; u) 1 a = A, r1 = RI} ; (11) 

and Xi,(A) = VAR{sz,k I a = A, r1 = RI}. The 

CKLE leads to a tractable factorization of the likeli- 
hood function 

P w&Gr~214 = ~431)~,,1,.&~2 I RI, 4 
(12) 

and this yields the log-likelihood function [3], 

L = -ek” + .ep + p + e R 
g”’ 

(13) 

where 
$1’ = _1. 
R N J 1 7 

rl(t)&pW, (14) 

a(l) = -$ JTt: (t)dt, B (15) 

pl1) = 2 
R N J 2 7 

r2(t)Z2p (t; A)dt - $ 2 r~;ldt;4dt J 
+& J7[r2(t) - Gp (k A)lg(t; A)& (16) 

p) - 
B 

1 
N J E:(Wdt- (17) 

2 7- 
In the (14) - (17), 

ql(t) = J hill (t, +-l (+k (18) 
I- 

&11 (t; A) = J kll(t, 7; Ah (+r, (19) 7 
and 

.Z(t; A) = J he (4 7; 4 b-2 (4 - 5p(~ A)ld7 (20) 
7 

are, respectively, the noncausal MMSE estimates of 
sl(t) from ri(T); of s~(t; u) from ri(T) given a = A; 
and of e(t;A) = sa(t;a) - i$l(t; A) from rz(T) - 
Z211 (7; A) given a = A, where t, 7- E 7. J: (t) and 
<E(tl A) are, respectively, the mean square errors re- 
sulting from the causal MMSE estimates of si (t) from 
rl (r) and of e(t; A) from rg(T) - &li (T; A) given a = 

A. Since 1g’ and e$’ do not depend on A, the MLE 
of a is the A maximizing 

f = @l) + @‘, 
(21) 

If we assume that an upper bandwidth limit on r2(t) 
exists with negligible distortion of sz(t;a), then we 
can subtract k &. ri(t)dt, from .P without affecting 
&n. After multiplying this difference by -Nz/T, we 
obtain 

6=--$ k--$-Lrz(t)dt] =c?~--$@~’ (22) 

where 

1 
61 = - J Tl- 

[n(t) - Gp(t; A)I[e(t) - &,2(t;A)ldt 

(23) 
with 

j=211,2(t; A) = Z2’211 (t; A) + Z(t; A). (24) 

.!’ of (21) is maximum when S of (22) is minimum. Se 
quential estimates of ss (t; a) are involved in obtain- 
ing Si. First, a MMSE estimate, Z21i (t; A) of s2 (t; a) 
is made from Q(T), -T/2 5 r 2 T/2 based on the 



assumption that a = A. Then ra(t) is used in “inno- 
vations”, r2(7-)-Q1(qA), -T/2 5 7 5 T/2, toform 
the MMSE estimate, E(t; A), of the estimation error 
e(t; A) = sa(t; a) - S211(t; A) given a = A. The quan- 
tity Tii211,2(t; A) is the MMSE estimate of sa(t; a) from 
both rl(T) and rz(T), where -T/2 2 r 5 T/2, based 
on the assumption that a = A. Since the processes 
involved are gaussian, the signal estimates Z211(t; A) 
and Z2i1,2(t; A) can be obtained using optimum, non- 
causal linear filters. 

3 Signal Estimates 

The determination of Z211(t; A) is straightforward. We 
first apply an optimum linear smoother to obtain i?(t) 
from rr(T), -T/2 5 t, 7 5 T/2. For any A < 1, we 
make the substitution t + At to obtain the MMSE 

l- 
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Figure 1: Derivation of s^(At);A = 0.5,T = 1. 
(a)rl(t), (b)S(t), (c)O(At) (Expanded from (b)), and 
(d)s^(At), t E [-T/2,T/2]. 

estimate of the time-expanded signal Z(At), -T/2 5 
At 2 T/2 + -T/ (2A) 5 t 5 -T/ (2A). Because 
ns (t) is independent of both s (t) and nr (t), we set 
Z211 (t; A) = Z(At) , -T/2 5 t 5 T/2. This process 
is illustrated in Figure 1 for A = a = 0.5. (In Fig- 
ures 1-8, the observation interval, T, is taken to be 
1. We depict the signals as sinusoidal and the noise 
as small ripples for simplicity.) Figures la and lb 
illustrate rr (t) and S(t). The time-expanded signal 
estimate 3(At) is shown in Figures lc and Id, for 
-T/ (2A) I t I -T/ (2A) and -T/2 5 t 2 T/2, 
respectively. 

For A > 1, we need to optimally extrapolate i?(t), 
-T/2 5 t 5 T/2 forward in time to obtain Z(t) for 
T/2 < t < AT/2 and backward in time to obtain 
Z(t) for -AT/2 5 t < -T/2. We then make the 
substitution t + At to obtain the MMSE estimate of 
the time-compressed signal 3(At), -AT/2 < At < 
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Figure 2: Derivation of a(At); A = 2.0, T = 1. 
(a)rr(t), (b)?(t), (c)i?(t) with extrapolation (dashed), 
and (d)s^(At), t E [-T/2, T/2], (compressed from (c)). 

AT/2 + -T/2 5 t 5 T/2. Finally, we set Z$(t;A) = 
ii?( -T/2 5 t 5 T/2. These steps are illustrated 
in Figure 2 for A = a = 2. Figure 2a and 2b depict 
rl (t) and Z(t), -T/2 5 t I T/2. Figure 2c depicts 
the optimally extrapolated Z(t) for -AT/2 5 t 5 
AT/2. The compressed version of this optimal signal 
estimate, &(t;A) = Z(At), -T/2 5 t 5 T/2, is 
shown in Figure 2d. 

We next consider S2p2(t; A). The determination 
of Z2~1,2(t; A) is facilitated by applying a reversible 
transformation [rr (t) , r2 (t)] f) [ri (t) , rh (t)]. We 
derive a sufficient statistic, /J (t), from [ri (t) , r; (t)] 
and obtain Z211,2(t; A) by optimally smoothing e (t). 
The forms of the reversible transformation and the 
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Figure 3: Steps leading to r{ (t) and r;(t) for A < 1. 
The figure assumes A = a = 0.5, T = 1. (a)rl(t), 
(b)rr(At) (expanded from (a)), and (c)rz(t). 

sufficient statistic depend on A. For A 2 1, 

[ ;$;; ] = ; [ ;;[;;; : ;$; ] ; (25) 



where ItI < T/2; and 

[ ;;i:; ] = [ ‘i(gAt) ] ; (26) 

where T/2 5 ItI 5 T/(2A). The steps leading to 
r; (t) and rh (t) are illustrated in Figure 3 for A = 
a = 0.5. Figures 3a and 3b illustrate r1 (t) and ri (At) 
respectively. Figure 3c illustrates r2 (t). 

Figures 4 and 5 illustrate ri (t) and ri (t), respec- 
tively, as defined in (25)-(26). 

-1 -0.6 -06 -04 -0.2 0 0.2 0.4 0.6 0.6 I 

Figure 4: r{(t) of (25)-(26). 

If a. = A, then (25)-(26) simplify to 

[ ;$; ] = [ ‘(“$$ (t) ] ; (27) 

where ItI 5 T/2; and 

s(At) + n1 (At) 
,O 

where T/2 < ItI 5 T/(2A). n;(t) and n;(t) are de- 
fined by 

-1 -I 
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Figure 5: r;(t) of (25)-(26). 

The sufficient statistic for the estimate Z2,1,2(t; A) 
for A 5 1 is 

e(t) = ri (t) - iii(t) 

where ItI 5 T/(2A), and 

(30) 

G”i’(t) = NA-‘-Nz , 
1 NIA-’ + Nzr2(t) (31) 

is the MMSE estimate of nl, (t) from r;(t) z n;(t)_ 

For A 2 1, 

where ItI 5 T/(2A); and 
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Figure 6: Steps leading to r; (t) and rh (t) for A > 1. 
The figure assumes A = a = 2, T = 1. (a)ri(l), 
(b)ri (At) (compressed from (a)), and (c)rz(t). 

where T/(2A) < ItI 5 T/2. The steps leading to r; (t) 
and rh (t) are illustrated in Figure 6 for A = a = 2. 
Figures 6a and 6b illustrate ri (t) and r1 (At) respec- 
tively. Figure 6c illustrates rs (t). Figures 7 and 8 
illustrate ri (t) and rk (t), respectively, as defined in 
(32)-(33). 

-05 a.4 -0.3 4.2 41 0 0.1 0.2 03 04 0.5 

Figure 7: r:(t) of (32)-(33). 

-1. 
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Figure 8: r;(t) of (32)-(33). 

If a = A, then (32)-(33) simplify to 

[ ;g; ] = [ s(At$t;“;(t) ] ; (34) 

where If.1 5 T/2; and 

[ a;; ] = [ s(At) ; m(t) ] ; (35) 

where T/(2A) < ItI 5 T/2. The sufficient statistic 
for the estimate Z2;211,2(t; A) for A > 1 is given by (30) 
where ItI 5 T/2. 

Simulation results for ML scale estimation are pre- 
sented in the following section. Corresponding simu- 
lation results for ML di.spEacement estimation appear 
in [l-3,8]. 



4 Simulation Experiments 

We investigated the performance of ML scale esti- 
mation by means of digital simulation experiments, 
written in MATLAB@ [lo]. We assumed that the 
continuous-time (CT) signal, s (t), being simulated 
was a stationary, zero-mean, gaussian process with 
autocorrelation function 

R,(T) = gz exp { -k]T]} (36) 

where (~2 is the variance and k is the 3 dB bandwidth 
of the signal process in radians per second. The noise 
equivalent bandwidth [ll] is 0.25k in Hertz, and the 
signal process correlation time is r, = k-l. Hence, 
there are kT correlation intervals in the observation 
time T. The CT noise processes, nl (t) and nz (t), 
were assumed to have equal power spectra, Nl/2 = 

N2/2 A N/2. 

The discrete time signal was generated using the 
recursion 

z(i) = exp {-kAt} z(i - 1) + y(i) (37) 

where /j(i) is a zero-mean, stationary gaussian se- 

quence, and i0 was sufficiently large for s(iAt) 2 z(i- 
is) to be stationary for iAt E 7. The noise sequences, 
n1 (iAt) and nz(iAt) were zero mean iid gaussian se- 
quences, each having variance U: = [N/2] x [l/At]. 
Thus, the signal to noise ratio (SNR) in the noise- 
equivalent signal bandwidth is SNR = a;/[2 x 

0.25 kN/2] = 4$/(kN) = [2/(kAt)] [a:/m:] = 
[ 2N/(kT)] [$/oil where N = T/At. We took N = 
20kT. Thus, in decibels (dB), 

SNRI,, = 5 + 16 
n dB 

(38) 

The N = 20kT samples sa(iAt; a), (3), and rr(iAAt), 
(32)-(34), were generated from pversampled versions, 
s(jdt) and rr (jst), of s(t) and ~1 (t) respectively, where 
6t = At/64. 

Signal estimates Z2i1 (iAt; A) and $2,1,2(iAt; A) were 
obtained, respectively, from the length N sequences 
rr(iAt) and [(iAt) as described in Section 3 using 
optimal processing [12]. The simulation experiments 
assumed true scale, a, in the range (0.125, 0.25, 0.5, 
1, 2, 4, 8}, and trial scale, A, in the range {ai/8; i = 
4, 5, . . . , 16). Any “endpoint estimates” iL = a/2 and 
iL = 2a were declared anomalous and discarded, but a 
count of the percentage of anomalous estimates was 
made. 

Five hundred independent simulations were con- 
ducted for each set of parameters. The scale estimates 

Table 1: Simulation Results: oz/oi = 3 dB 

] a 1 PA 1 EA 1 ESD 1 

Table 2: Simulation Results: ~:/a: = 6 dB 

were refined using a three-point quadratic interpola- 

tion [13]. The bias, Cg”), was not computed. 

Tables l-4 list the percent anomalies (PA), the ex- 
perimental average (EA) and experimental standard 
deviation (ESD) of the scale estimates as a function 
of a, with flz/og]dn = 3, 6, 10 and 20 and kT = 4. 

We see from the statistical performance results given 
in the tables that performance improves with increas- 
ing SNR, as expected. A remarkable feature of the 
results is that performance degrades significantly as 
the true scale, a, is increased beyond 1. We attribute 
this degradation to the fact that extrapolation is re- 

Table 3: Simulation Results: az/cri = 10 dB 



Table 4: Simulation Results: a:/~: = 20 dB 

quired to form the signal estimate %2/i(t; A) = Z(At) 
for A 2 1 as explained in the text surrounding Figure 
2. 

5 Concluding Remarks 

We have used the recently introduced CKLEs to 
obtain the first solution to the problem of ML scale 
estimation and have studied the performance of ML 
scale estimation by means of simulation experiments. 
This paper complements previous work of ML dis- 
placement estimation appearing in [l-3] and demon- 
strates further the usefulness of CKLEs for developing 
algorithms for ML parameter estimation. 
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