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On Singular Phenomena in Certain Time-Optimal 
Feedback System Operating by Discontinuous 

Resistance 

Wladyslaw Hejmo ’ 

Abstract. The purpose of this paper is to present the solution of 

selected time-optimal problems of the controlled object the dynamics 

of which is given by: X = y, j, = S(x) + u , where 14 I1 and motion 

resistance function f(x)=0 if x<O, and f(x) =-A if x>O 

where 0 I A < 1. That model describes dynamics of a very 

important class of industrial installations. As the tune-optimal 

problem will be understood a transfer of the initial state 

z,, =CX,,Y,, d* to the target state 2, = (x,, y,). x, 2 0 in a 

minimum time t’ < 00 There has been shown that in the formula 

deftig resistance function f(x) there exists a rational value A = 

A, > 0 that plays an essential role in time-optimal structure 

formation. Namely, ifA 5 A, then the time-optimal control process 

is typical, analogous as in classical case B= u, Ia/ I1 , i.e. there 

exists a switching curve formed by the trajectories of time-optimal 

solutions reaching the target state and the time-optimal process is 

formed by at most one switching operation. 

For the case A > A, we will examine two following singular 

phenomena. 

a) Ifthe target state 2, = (0,O) then there exists the switching curve 

dividing the state plane into two sets, however only one its branch is 

formed by the time-optimal solution reaching the target z, = (0, 0) 

and generated by the control u = - 1. None of solution forms the 

second branch of switching curve. It is formed by a state-locus 

depending on the value of A only. In dependency of the starting state 

z,, the time-optimal control process is generated by bang-bang 

control with none, one or two switching operations. This is the first 
singular phenomenon, because any small decrease of the value A 
over A, requires to change the structure which would be able to 

generate the time-optimal process. 

b) The paper shows, that if the target state z, = ( x, ,0), x, > 0 

then there exists a set ofthe starting states from which there starts two 

trajectories reaching the target in the same minimum time. This is the 

second singularphenomenon. 
Finally, some suggestions as to practical applications have been 

given too. 
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Industrial devices, such as saddles of machine tools, tracer 
machines, industrial manipulators, several parts of 
industrial robots, or the position mechanisms of industrial 
automata, need to change their position in a minimum 
time, particularly when it is necessary to move the 
mechanism before another technological operation can 
proceed. Synthesis of a time-optimal control structure 
becomes therefore an important, economical problem. 

Dynamics of the above devices, called position 
mechanisms depend essentially on motion resistance. From 
technical point of view we distinguish motion resistance 
depending on velocity of the mechanism or on its position. 
If the first type of that motion resistance is a case then the 
dynamics of the controlled object is given by [5],[6],[7]: 
i = y, j, =fcv) + u, where x, y is position and velocity of 

the mechanism respectively, f is a function of motion 
resistance, u is a control function. In order to define as 
large as possible class of motion resistance, in particular all 
types of friction, we assume that function f is piecewise 
continuous. Discontinuity of the right-hand side of the 
above model makes the classical theory of differential 
equation, as well as the maximum principle, impossible to 
apply to the time-optimal problem. This problem has been 
solved with the use of differential inequality theory by 
assumption that both the control function and co-ordinates 
y and j, are constrained. The solution mentioned above, 

has been used for feedback control system creation, based 
on the concept of regular closed-loop system synthesis 
[2],[7]. The closed-loop system created in such a way is 
operating analogously as that created for the classical type 

of the dynamic object: j; = u, 1~1s 1. 

If the second type of motion resistance is a case i.e. if 
they are depending on the position of the mechanism only, 
then the dynamics of theposition mechanisms is defined by 
the following differential equation: i = y, Jo =f(x) + u. In 

this paper we will work with the following mapping of 
position mechanism dynamics: 

i = y, x(0) = x0; j = f(x) + u, y(0) = y, (l.la) 

by 1~1 I 1 and motion resistance function given as follows: 

f(x)=O,x<o; f(x)=-A,x>O (l.lb) 
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The model (1.1) describes dynamics of a very important 
class of industrial installations, namely manipulators with 
counterweight, outriggers of position mechanisms and a lot 
of the like devices. 

The work deals with selected cases of the time-optimal 
problem of the system (1.1) that will be understood as a 

transfer the initial state z0 = (x0 , y,, ) E R* to the target 

state zt =(x1,0), x, 2Oinaminimumtime t*<oo. 

There has been shown that in the formula (1. lb) 
defining motion resistance function there exists a rational 
value A = At, that plays an essential role in time-optimal 

structure formation. Namely, if A I Ab then the time- 

optimal control process is typical, analogous as in classical 

case K = 24, IuI S 1 Thus, in the state plane there exists a 

switching curve formed by standard solutions of (1.1) 
reaching the target z, . The control process is of bung-bung 

type and to each state belonging either to several branches 
of this switching curve or doing to the sets resulting from 
partitioning the state plane by that switching curve there 
are admitted the time-optimal controls u = +l and u = -1. 
The time-optimal control process is of bang-bang type with 
at most one switching operation. 

For the case A > Ab we will examine two following 

singular phenomena. 
a) If the target state z, = (0,O) then there exists also the 

switching curve, dividing the state plane into two sets, 
however only one its branch is formed by the solution of 
(1.1) reaching the target z, = (0, 0) and generated by the 

control u = -1. None of (1.1) solution forms the second 
branch of switching curve. It is formed by a state-locus 
depending on the value of A only. In dependency of the 
starting state z0 the time-optimal control process is 

generated by bang-bang control with none, one or two 
switching operation. This is theprst singularphenomenon, 

because any small decrease of the value A over Ab requires 

to change the structure which would be able to generate the 
time-optimal process. 

b) The paper shows, that if the target state z, = (xi , 0), 

x1 > 0 then there exists a set of the starting states from 

which there starts two different trajectories reaching the 
target in the same minimm time. This is the second 
singular phenomenon. 

Knowing the time-optimal solution of (1.1) we will tray 
to create the feedback control system that would have the 
properties like to those which have the closed-loop systems 
created in accordance with the principle of the following 
concept. 

i = f(z,u), z E R=, UEUCR~ (1.2) 

where u is a control vector-function, if there exists a 

vector-function v: R” + U such that: 

a) Each time-optimal solution of the open dynamic 
object (1.2) is a standard (Caratheodory) solution of the 
closed-loop system 

i = f(z,v(z)) (1.3) 

b) Each standard solution of the closed-loop system 
(1.3) is a time-optimal solution of the open, controlled 
object (1.2). n 

For the desirability of implementing the above closed- 
loop optimal system the following reasons are given: 

i) There is no need to compute the optimal control for 
every initial state separately; 

ii) The controller acting upon (1.2) is sensitive to 
instantaneous perturbations, i.e. of at any instant of the 
control process the system is deviated from its optimal 
trajectory, the rest of the process will again lead to the 
desired$nal state (target) and will be optimal with respect 
to this new initial state. 

Lemma 1.1. 
Given controlled object (1.1). Time-optimal control 

function u transferring any starting state z,, = (x0, y,) E R2 

toanytargetstate z, =(xt,~t)EIO,ao)xO inminimumtime 

tmin < 00 is of the bung-bung type, i.e. u =& 1. 

PROOF: The detailed way of proving shows paper [8]. n 

2. PRELIMINARIES 

Notations 2.1. 
a) The solutions of the system (1.1) generated by the 

control function u = +l and u = - 1 starting from any 

point zi will be denoted as q+ (t; zi ) and q- (t; zi ) 

respectively or shortly (in particular in the figures) by 

symbols q, and q- . 

b) Trajectories of the solutions q+ (t; zO) and 

q- (t; zO) reaching the target state z, will play an 

essential role. They will be called Terminal Trajectories, 

will be denoted T+ and T- respectively and will be 
defined by: 

T+ =c q+(t;q, 2 o} 
Dejinitiota 1.1. We will say that there exists the time- 
optimal regular synthesis of the open system [2],[7] T- = { q- (t; z1 >, I 0 } (2.2) 
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Trajectory T- intersects the positive semi-y-axis in the 
point noted zY = (0, y, ), where yY 2 0. 

c) The negative and positive semi-y-axes will be noted 

B+ and B+ respectively 

The y-axis B = B- u B+ forms the bound of motion 

resistance zone and divides the state-plane into two 

following half-planes: S- if x < 0 and S+ if x > 0. n 

Remark 2.2. Properhes of the solutions q- and q, . 

a) The co-ordinates of the solution qq(t; zo) has got the 

following properties. Let yn > 0. Then, there exists a time 

tt > 0 such that y-(t, zO) is decreasing function on [O,oO ), 

y, ( tl ; z0 )( = 0, but x-(t, z,,) is increasing function on 

[0, tl ] and is decreasing one on [ tl ,oo ). 

b) The co-ordinates of the solution q+(t; z,,) has got the 

following properties. Let y, < 0. Then, there exists a time 

tl > 0 such that y+(t, z,,) is increasing function on [0, tl 1, 

y+ (t, , z0 ) = 0, but x+(t,x,,) is decreasing function on 

[0, f, ] and increasing one on [ tl , 00). n 

Lemma 2.3 
Given controlled object (1.1). The time-optimal control 

u* bringing the controlled object from any z0 E R* to the 

target state z, = (x1 , 0), 0 5 x1 is of bung-bung type, i.e. 

the control function u E +l and u E - 1. 

If the target state z, = 0 is a case then the terminal 

trajectories are defined by (2.2). Minimum time taken for 

the’ transfer the state z0 E T- to the target z, = 0 

(obviously along the terminal trajectory T- ) results from 
(3.1) after setting zt = (0,O). 

At first we will examine the time-optimal trajectories 

starting from z0 E Tf . There will be distinguished two 

following cases of the motion resistance function: 

i> A E[O,A~I, ii>A E(A~, 1) (3.1) 

where A,, is a certain rational value, Ab E [0, 1). 

Now, we are going to show that if motion resistance 
function satisfies (3.1, i) then there exists the time-optimal 

switching curve T = T+ u T- where T+ and T- are 

defined by (2.2). However, if motion resistance function 
satisfies (3.1, ii) then there exists the time-optimal 

switching curve T = T, u T- where T- is given by 

(2.2). The branch T, is a special state locus which cannot 

be created by whatever solution of the system (1.1). It will 
be defined in what follows. The switching curves shown 
above play the same role as that in classical time-optimal 
closed-loop system controlling the dynamic object 

described by: 2 = u, 1~14 1 

AY 

PROOF: The way of proving is given in the paper [8]. n X 

3. SINGULAR SWITCHING CURVE 

Lemma 3.1. 

Given controlled object (1) and terminal trajectory T- 

(2.2). Then, from each z0 ET there starts the unique 

solution qq(t;zc) that lies totally in terminal trajectory 

T- and reaches the target z, in a minimum time t* < 00. 

PROOF: The above thesis has been proved in the paper 

PI. W 

T; -- 

Figure 1. Control process with two switching operation 

Lemma 3.2 
Given the controlled object (1.1). Let starting state 

z. E Tf and the target state z, = (0,O) = 0. 

Now, we are going to investigate time-optimal solution of 

the object (1.1) for selected both starting point z0 and the 
Thesis a) If A E ( A6, 1) then the transfer of the object 

target zt . 
from z0 E T+ to the target zt = 0 in minimum time 

t* < 00 is performed along the trajectory of the q-(t;z,) 
3.1. Time-optimal problem for the target solution 

z1 = (0,O) = 0 
to a state zm E SC, afterwards along the 

trajectory of the q+ (t; z, ) solution to zn E T- and 
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finally from z,, along the curve T- to the target z, (see 

Fig. 1). 
Thesis b) If A E [0, Ab ] then the transfer of the object 

from z,, E T+ to the target z, in minimum time t* < 00 

is performed along the trajectory of q+(t;z,) solution, i.e. 

along the curve T+ . 

PROOF: A way of argument grounded on Lemma 3.1, 
Remark 2.2 and is given in the paper [8] n 

Let us perceive that if A E ( Ab , 1) is a case then the 

locus of the states zm forms a switching curve noted (in 

accordance with the Fig.1) T, . This switching curve T, 

is defined by the following formula: 

Let us define in the state plane some special sets for the 
cases of motion resistance function quoted above, that will 
be of use in the next part of the text. 

T, = f(w): x =&% Y dy,>Ol) (3.2) 
Figure 2. State plane partitioning 

where g : R’ + R’ and zI = (0, y,) is a point in which 

the trajectory T, intersects negative semi-y-axis. B- . 

It should be emphasised that the switching curve T, is 

none of the trajectories which may be formed by any one 
solution of (1.1) (see Fig. 1). 

Remark 3.3 
From Lemma 3.2 it follows that if motion resistance 

function satisfies inequality (3.1, i), i.e. A E [0, AJ then 

the time-optimal transfer of each state z0 E Tf holds along 

the trajectory of q+(t;z,) solution, i.e. along the curve T+ 

without any switching of the control function 24. 

However, if A E ( Ab , 1) then the time-optimal transfer 

of the object from z,, E T+ to the target zi = 0 must be 

performed with two switchings of control function u, i.e. 

from z0 E T+ there starts the trajectory of the q-(t;z,) 

solution which reaches the state zm E T, c S+ where the 

switching operation is being executed. From zn there 

starts the trajectory of the q, (I; zm ) solution the trajectory 

of which intersects semi-y-axis B- , penetrates into S- set 

and tends to reach the curve T- in the point 

z,, ET nS- where there should be executed the second 

switching operation. From zn there starts the trajectory of 

the trajectory of q-(f; z,,) solution which brings the object 

along the curve T- to the target zi = 0. n 

(1) If A E [0, Ab ] then we will note (see Fig. 2): 

T, =T-UT+ (3.2) 

Rf = 
i 
(x, y): (x’, y) E TI a x > x’ 

1 (3.3) 

R; = 
1 
(x,y):(x’,y) ET, =x <x’ 

I (3.4) 

(2) If A E ( Ab , 1) then we will note (see Fig. 3): 

T,,=‘I-uTm (35) 

R;, = 
t 
(x,y): (x’,y) 6TIl ax > x’ 

I (3.6) 

R;, = 
I 
(x,y): (x’,y) ET,, +x < x’) (3.7) 

Theorem 3.4 
Given controlled object (1.1) and target state 

z1 = (0,O) = 0. 

Thesis a). If the motion resistance function (1.2) satisfies 
inequality (3.1, i), i.e. A E [0, Ab] then the time-optimal 

control function 

u*(x,y) = 
+I, (x,y) ET+ uR; 

-1, (XJ) ET- uR; 
(3.8) 

where T+ , T-, Rl, R; are defined by (2.1),(2.2),(3.3) 

and (3.4) respectively. 
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Thesis b). If the motion resistance function (1.2) satisfies 
inequality (3.1, ii), i.e A E ( Ab , 1) then the time-optimal 

control function 

u*(&Y) = 
+l, (w) sTm uRt; 
-1, (x,14 E’I- uR,, 

(3.9) 

where T- , T, , Rt, and R;, are defined by (2.1)(2.2), 

(2.16), (3.6) and (3.7) respectively 

PROOF: The detailed way of proving has been given in the 
paper [S]. W 

T- 

___\\\_ 

A 

I, 
\ 

Y 

=1 X 

Figure 3. State plane partitioning 

3.2. Time-optimal problem for the target state 
z1 = (x, , O), x, > 0. 

For this case of the target state zr the terminal 

trajectories are defined by (2.1),(2.2). In this chapter we 
will examine the time-optimal trajectories starting from 
z0 = (0, 0) = 0. As previously, there will be distinguished 

two cases of motion resistance function defined by (3.1). 

Lemma 3.6 
Given the controlled object (l.l,( 1.2). Let starting state 

z. = 0 and the target state z, = (x, ,O), x, > 0. 

Thesis a) If A E ( A*, 1) then the transfer the object from 

starting state za = 0 to the target z, in minimum time 

I* < 00 holds along the trajectory of the q-(f;z,) solution 

to a certain state zs E S- next along the trajectory of the 

q+ (I; zs ) solution over the point zW= (0, y, ) E B+ to 

zn = (x,, y,) ET and finally from zn along the curve T- 

to the target z, (see Fig. 3). 

Thesis b) IfA 5 Ab then the transfer the object from z0 to 

the target zr in minimum time t’ < 00 is performed along 

the trajectory of q+(t; za) solution to a point zn E T- and 

finally from zn along T- curve to the target zr (see Fig. 

4). 

PROOF: The proof bases on Lemma 2.3 and the properties 

of q- and q+ solutions shown in Remark 2.2. The 

detailed way of proving may be found in the paper [S]. n 

. w 

Figure 4. Time-optimal process with one switching operation 

Remark 3.7 
If the motion resistance function satisfies (3.l,i), i.e. A 

E [ 0, A,] the optimal transfer of the object from z,, to 

the target z, should be executed along the trajectory of 

q+(t;z,) solution to the point zn E T- and from zn along 

the trajectory of q- (I; zn ), i.e. along the curve T- to the 

target z, . This control process is realised with one 

switching operation in the state zn E T- 

If the motion resistance function satisfies (3.l,ii), i.e. 

A E ( Ab, 1) then the optimal transfer of the object from 

z,, to the target z, should be executed along the trajectory 

of q-(f;z,) throw the set S- to the point zs E S- , from 

z, along the trajectory of q+ (t; zn ) solution over the 

point zn E T- and from zn along the trajectory of 

q- (t; zn ), i.e. along the curve T- to the target z, This 

control process is realised with two switching operations 

executed in the points zs and zn one. n 

4. NON-UNIQUENESS PHENOMENON 



paper 078 

Let us denote 7 the trajectory of such q-(t;z,) 

solution that reaches the target z, = 0 (see Fig. 5). This 

trajectory has been already described by (2.2) after setting 

0 + zi Obviously, T c S- u (0). 

Figure 5. Non-unique trajectories 

Theor em 4.1 
Given controlled object (1.1). Let us assume that 

A E ( Ab, 1). There exists such a point z0 E q \{O} from 

which there start two different bang-bang solutions the 
trajectories of which reach the target z, = ( x, , 0), X, > 0. 

in the same minimumtime t* < 00. 

PROOF: The detailed way of proving may be found in the 
paper [S]. n 

This phenomenon has been shown in the Fig. 5. The 

first time-optimal trajectory starting from z0 E ‘I;; after 

intersecting semi y-axis B+ in the point z, E B+ 

penetrates into the set S- and tends to intersect the curve 

T- in the point zn E T- and from that point reaches the 

target z, along T- The second time optimal trajectory 

starting from the same state z0 E T runs over the set 

S- u (0) and after executing the switching operation in 

the point zs E S- reaches the point zI, E T- n S- along 

the trajectory of q+ solution. From this point the system is 

brought to the target z, along the curve T- . 

Repeating the same way of computing as that done in the 
proof of Theorem 4.1 we state that there exists a subset of 

the states z,, = (x0 , v, ) E S- from which there start the 

trajectories of non-unique time-optimal solutions. These 
co-ordinates x,, , u,, may be found from solution of 4-the 

degree algebraic equation. Unfortunately, those co- 
ordinates cannot be defined in an open form such as that in 
the proof of Theorem 4.1. They may be calculated in 
numerical way only. 

From the point of view of time-optimal closed-loop 
system synthesis knowing the values of these co-ordinates 
does not play an essential role. More important is 
knowledge, that in the state plane there does exist the state 
from which there start the non-unique time-optimal 
trajectories. The singularphenomenon of existence of non- 
unique time-optimal trajectories will be a basic point in the 
next paragraph where there will be given some proposals 
as to practical applications. 

5. CONCLUDING REMARKS 

In a real dynamic system unexpected variations of 
resistance may appear. This fact and singular phenomena 
shown above imply to create sub-optimal closed-loop 
system, with the same properties as those of the system 
created in accordance with regular Jynthesis. Such a 
system should reach the target in a time close to minimum 
one. Thus, we estimate a possible interval of resistance 

function variations A E [ &,A~~] . Next, we create the 

curves T- , T+ and T, substituting into their descriptions 

& + A. Denote these curves by T, , Tti and Tm, 

respectively. The model (4),(S) with the switching curves 

Tti + T- , T& -+ T+ and Tm, + T, becomes a 

differential equation with discontinuous right-hand side. 
Thus, the classical method of solution of this differential 
equation becomes inappropriate. None of standard solution 
may map cited new curves. Analysis of control process 
generated by closed-loop system formed in such a way 
requires to use an other concept of solution. Here, 
following idea of generalised solutions of non-linear and 
discontinuous differential equations is applied. 

Definition Let x : I+ R” (I is an interval in R’ ) be an 

absolutely continuous tknction on each compact subinterval 
of I. Then x is called a solution of differential equation 

i(t) = g&x(t)), g : R’ x R” + R” 

iff jr(f) E F(g(t,x(t)) almost everywhere on I where: 

operator 

FW>xN = n n cvx g(t, (x + EB) \ Z) , 
&>Op(Z)=O 

B is the open unit ball in R” , p(Z) is Lebesgue measure 

of the set Z, G M denotes closure of the convex hull of 

M c R” . The solution formed in such a way is called F- 
solution. n 

For each A E (&,A,,] the trajectories ‘I& , TA,, 

are formed by F-solution only which are unique ones. 
Technical interpretation of the F-solution will be done for 
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x,, E Tti The structure of the control function (3.8) [ or 

(3.9) ] by ‘I-,, -+ T- , Tk + T+ implies that from each 

x0 E Tti there starts the standard solution generated by u 

= - 1 the trajectory of which should penetrate into R+ 

and implies also that none of the above solution exists in 

R+ . Practically, the trajectory of this solution on leaving 

x0 E Tti penetrates into x0 E ‘I&, R+ where it is 

immediately forced to re-penetrate ‘I&, . The real closed 

-loop system generates therefore a trajectory which starts to 

oscillate around Tti with a certain frequency and 

amplitude depending on the delay time inherent in the 
switching operation, which evidently exists in every real 
structure. This trajectory of F-solution is therefore a limit 
of the real oscillatoty process (sliding, chatten’ng) when 

the delay time tends to zero, i.e. when the frequency tends 
to infini@. The same interpretation may be offered for F- 

solution forming the curve T& . The closed-loop-system 

formed in accordance with presented concept is 
independent from whatever variation of resistance. 
Numerical simulations shown that the controlled processes 
are close to the minimum time ones. 
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