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Abstract The uncertainty model validation paradigm - 
a morepreciseterm is unfalsification - is reviewed. It is ar- 
gued that unfalsification of an uncertainty model consist- 
ing of disturbance and dynamic uncertainty is the natural 
replacement for system identification when the intended 
use of the model is robust control. The result is that any 
finite data record will generate a family of uncertainty 
models, all of which are unfalsified, i.e., each one could 
have reproduced the data. It is shown an “uncertainty” 
tradeoff curve can be computed quantifying the relation 
between the dynamic uncertainty and disturbance uncer- 
tainty of each unfalsified model. Hence, the family of 
unfalsified models can be used in an iterative approach 
to system identification and robust control design. 

1 Introduction 

Many attempts have been made to transfer the rules by 
which we learn to an automated procedure for improv- 
ing the performance of our machines and systems, e.g., 
the dual control concept [4], [l, Ch. 71, the windsurfer 
approach to adaptation and learning, [ll, 121. A sur- 
vey of schemes based on iterative identification and con- 
trol, sometimes referred to as iterative adaptive control, 

is given by Gevers in [6]. 
The work described here is a review of [8, 91 and a 

preview of [lo] which address the problem of how uncer- 
tainty model unfalsification, as first described by Poolla 
et aZ.[17], could be used to replace the system identifica- 
tion step in iterative adaptive control. A variety of other 
methods for using unfalsification in iterative adaptation 
have been suggested, e.g., [3], [13], [18]. 

Notation Let Se denote the set of real sequences of 
length !, i.e., 2 = {xl,. . . , XL} E Se. The norm of z 6 Se 

is defined as 11x11 = (Eli=, x:)~“. A subsequence is de- 

noted by ~1:~ = (21, . . . , Q}, and the norm of a subse- 

*Research supported by DARPA, Applied Computation & Math- 

ematics Program under AFOSR Contract No. F49620-93-C-0019. 

quence is denoted by I~zII~:~ = 11~1:tll. Let S denote the 
set of infinite sequences with finite norm. 

2 Uncertainty Model Validation 

Problem 

The generic uncertainty model validation problem is as 
follows: 

Given scalar “data” sequences 

e = {el,...,ee} and u = (~1,. . . , ue}, (1) 

establish necessary and suficient conditions for 

the existence of a sequence 

w={W1,...,tuL}EW(u) 

and a causal system 

(2) 

A E A(6) 

which are consistent with the data, i.e., 

(3) 

et=wb+(Au)t, Vt=l:e (4) 

The sets W(a) and A(&) denote, respectively, a set of 
sequences with norm bounded by (r and a set of causal 
systems with gain bounded by 5. The data sequence e 
is often obtained as the “error” between the output of 
a model of the system with input sequence u and the 
sensed output of the actual system, with the same input 
sequence u. The sensed output could be replaced by the 
simulation output of a high order or more complicated 
model, in which case, uncertainty model validation is a 
step in model reduction. 

Observe that the error is modeled as consisting of the 
sum of a “noisy” sequence w plus a term depending on the 
input, Au, which arises from modeling errors. Certainly 
other forms could be considered, this being the most ba- 
sic. 
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2.1 Disturbance Uncertainty 

There are many ways to characterize the disturbance set 
W(a). For example: 

l Rms-bounded noise 

W (5) ; lbl12 F CT2 

l Time-domain white noise [16] 

W wht-time = {W E Se 1 Irw(~)l 5 y-W(O)} (6) 

where ~~(7-) is the auto-correlation of w, 

rtlJ(7) = f 5 wtwt+r, v’r=o:m-1<e (7) 
t=1 

Observe that rw(0) = ]]w]]~ /L 

l Frequency-domain white noise [15] 

W wht-freq - -{w& 1 ]~{Rna(w)}/~2-l]<E} 

(8) 
where X(e) denotes eigenvalues and 

rw(0) ... r,(m- 1) 

; . . . ; 1 E Rmxm 

ru(m- 1) ... rw (0) 

(9) 

The disturbance set W rms(u) is the simplest of choices 
for deterministically characterizing “noise.” The main 
advantage is that it is a convex set and therefor easy to 
handle in optimization. However, there are no restrictions 
preventing correlation with inputs and so the “worst- 
case” can occur. As shown above, characterizations of 
deterministic sets which resemble white noise have been 
examined in [15] in the frequency domain with applica- 
tion to system identification and in [16] for both time 
and frequency domains with application to robust con- 
trol. The set Wwht-time(Y, m) is essentially one of the 
standard white noise test where y is chosen from x2 dis- 
tribution tables; m is the lag window used to smooth the 
correlation function. The set Wwht-freq(b, m, E) is shown 
in [15] to also be useful for white noise testing; m again is 
the lag window, a2 is the rms-level of w and hence, the av- 
erage level of the spectrum of w, and E E (0,l) determines 
the “flatness” of the spectrum. Clearly these latter sets 
do preserve the character of white noise, but they are not 
convex. However, they are no worse than quadratic and 
so may be quite amenable to cojugate-gradient methods 
of optimization. 

2.2 Dynamic Uncertainty 

Uncertain dynamics can also be characterized in a num- 
ber of ways. Consider the following causal gain-bounded 
dynamic uncertainty sets: 

l Gain bounded, linear time invariant (LTI) 

ALTI(~>= {A E LTI I IlG~ll 5 Sllull ,V'u E S) 

(10) 

Since G E LTI, the gain bound condition is equiva- 
lent to 

llao I 6 (11) 

l Incrementally gain bounded, nonlinear, time- 

invariant (INTI) 

AINTI = {A E TI 1 ]]Au - Av]] 5 S ]]u - VI], Vu, v E S} 

(12) 

l Gain bounded, 

(NW 

nonlinear, time-invariant 

ANTI = {A E ‘I’1 I ll4l 5 5 Ilull , Vu E s 1 (13) 

There are clearly many variations one could include, as 
well as considering combinations and uncertainty struc- 
tures descibed by the more inclusive linear fractional rep- 
resentation familiar in robust control design. 

3 Uncertainty Model Unfalsifica- 
tion 

In this section we use state the necessary and sufficient 
conditions for solving the complete uncertainty model val- 
idation problem (l)-(4) with disturbance uncertainty set 
W rms and dynamic uncertainty sets ALTI, AINTI, and 
ANTI. We also present the optimal uncertainty tradeoff 
curves for each of the uncertainty sets. The interested 
reader should refer to [8, 9, lo] and [17] for the proofs of 
the results. 

3.1 Unfalsification Test 

Given sequences 

u={ul,..., ut}, e={el,..., ee} (14) 

there exists a sequence 

w = {w1,...,we} (15) 
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and a causal system A which are consistent with 

the data, that is, 

e=w+Au 

with w E Wrms(u) if and only if 

w 

(17) 

and such that: 

l A E ALTO if and only if, 

(c? - W)T(f - W) - S2UTU 5 0 (18) 

with (E,U, W) the 1 x ! Toepditz matrices 

formed from the sequences (e, u, w), respec- 

tively, e.g., 

el 0 ... 0 

e2 el ... 0 
E= . . ._ . 

I I 

. . . . . : 

ee ee-1 ..f el 

l A E Armor if and only if Vm-n # 0 : ! 

and Vt = 1 : !, 

II(Zn - Zm>(e - w>lLt I 6 IIV - ~v4II:t 
(19) 

where zk is the k-forward shift operator, 

i.e., if x = {z~,Q,. . .} then zkx = 

(0,. . ., 0, xl,x2,. . .} with k-zeros. 

l A E ANTI(~) if and only if W = 1 : e, 

IIYIL I 6 II41:t f (20) 

3.2 Uncertainty Tradeoff 

As shown in [8, 9, lo], a tradeoff between disturbance and 
system uncertainty is obtained by solving the following 
optimization problem. 

Given data (e,u), jix S and perform the opti- 

mization: 

w E W(a) 
6(S) := r$ijig subject to A E A(6) 

e=w+Au 

(21) 

The graph of k(5) versus 5, referred to as the uncer- 

tainty tradeoff curve, establishes a tradeoff between the 
model uncertainty bound, 5, and the minimum possible 
corresponding disturbance uncertainty bound k(6). Ev- 
ery point on the curve depends on a different choice of the 
uncertainty pair (w, A). The shape of the curve depends 

on the choice of the uncertainty sets W(u),A(S). We 
can examine W rms(n) together with any one of An~r(6) 
,Ar~~r(a), or ANTI(S), thus leading to three tradeoff 
curves: ~.LTI(~), &NTr(6), and &rr(S). Since the un- 
certainty sets are convex, it follows that (21) is a convex 
optimization, and hence, all the tradeoff curves are convex 
functions. In addition, as shown in [lo] they are nested, 
i.e., 

cNTI(b) < hNTI(b) < bLTI(b), vh > 0 (22) 

The nesting occurs because the extremes of the convex 
functions are similarly ordered. At 5 = 0, the optimal w 
is equal to e, and hence, all three minimum rms levels are 
identically zero, i.e., at 6 = 0, 

kLTI(o) = hNTI(O) = eNTI(O) = llellrrns (23) 

At the other extreme when the rms level is zero (w = 
0), the corresponding uncertainty bounds, denoted by 
SNTI,SINTI, 6~~1, are the minimum possible to satisfy the 
constraints. But as shown in [lo] these are ordered as fol- 
lows: 

&NT1 < &NT1 < SLTI (24) 

This follows from the fact that the condition for which 
A E ALTI is more restrictive than for A E AINTI, which 
is more restrictive than for A E ANTI. 

4 Unfalsificat ion with Parametric 
Models 

To apply the unfalsification approach to models that in- 
clude unknown parameters consider the single-actuator, 
single-sensor prediction error (PE) uncertainty model 

18, 91: 

I 

BE@ 
Y = G(e)u + ff(B)(w + Au) w E W(a) (25) 

A E A(6) 

where y and u are, respectively, the observed output and 
input sequences, G(B) and H(6) are causal, linear-time- 
invariant systems, initially at rest, each dependent on a 
parameter vector 0 E 0. The prediction error associated 
with the above uncertainty model is, 

e(0) := H(O)-‘(y - G(B)u) (26) 

and clearly decomposes into: 

e(th) = w + Au 

The set 0 is a subset of 

(27) 

0 stab = (0 E Rp 1 H(B)-’ and H(0)-‘G(0) are stable} 

(28) 
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Parameters in @stab insure that the predzctor associated 
with (25) is stable [14]. 

Observe that the PE uncertainty model (25) is char- 
acterized by three types of parameters, (0, c, S), i.e., un- 
certainty arises from transfer function parameters, dis- 
turbance, and dynamics. In contrast, the standard PE 
model is characterized by two types of parameters, (0, a), 
i.e., uncertainty is due to transfer function parameters 
and disturbance only. 

discretize the space may lead to huge dimensions even for 
a few parameters. For this reason we restrict attention to 
a more easily paramtrized set of unfalsified uncertainty 
models as described next. 

As shown in [8, 91, an uncertainty tradeoff between dy- 
namic and disturbance uncertainty is obtained by solving 
the following optimization problem: 

Fix 6 and perform the optimization: 

The form of the model implies that the dominant 
plant dynamics are well approximated by the LTI sys- 
tern G(B),H(B). If A = A LTr, then the model implies 
that the system is LTI but uncertain. This may be a rea- 
sonable assumption in some cases, e.g., flexible systems 
undergoing small dispalcements. But in many circum- 
stances the model error is due to inherent nonlinearities. 

g(S) := min cr, 
0, u, w 

subject to (29) (30) 

The minimizing values of 0 and w are given by: 

6-(S) = 

For example, consider the case where the center of the 
uncertainty model, (G(B), H(B)), is LTI, but dynamic un- 

(32) 

certainty is possibly nonlinear. where 

For robust control design, (0, c, S) are known. In some 
cases 6’ can also be uncertain,i. e., 0 E 0. This is im- 

e(r) = argm~]]e(B)]]T, T E [l : !] (33) 

portant particularly if 0 represents uncertain physical pa- r(6) = arg max 
rameters. In most cases of system identification, 6 is used 

TE[l:eI (~~4w~~, - 6 IIUIIJ (34) 

to encode the LTI system (G(B),H(B)), the center of the 
uncertainty set. Remarks 

Classical system identification poses an optimization 

problem in (6,a), and does not deal with the dynamic 
uncertainty set A(@ which is of critical importance for 
robust control. In contrast, a model is said to be val- 

idated if and only if it could have produced the data. 
Validation is perhaps a misnomer, as one can never prove 
that a model will be able to accurately predict the fu- 
ture. More precisely, the data can falsify a model, i.e., the 
model may prove to be incapable of fully explaining the 
data. Hence, instead of validation, as already discussed, 
we use the more precise, but awkward term: unfalsifica- 

tion. Clearly unfalsification is a feasibility problem - find 
a the model set whose members are consistent with the 
data. As shown in [8, 171, and reviewed in the previous 
sections, this philosophical shift allows the dynamic un- 
certainty bound S to be estimated (unfalsified) along with 
6’ and g. 

Using the specific uncertainty sets Wrms(u) and 
ANTI(S), the uncertainty model (25) is unfalsified by the 
!-point data sequences (y, u) - or equivalently by the data 
sequences (e(Q), u) - if and only if there exists 6’ E 0 and 
an f-point sequence w, such that: 

IMI 5 CA 
(29) 

Ile(@> - 41t 2 6 l141t , Vt E P : 4 
Uncertainty models in the unfalsified (feasibility) set sat- 
isfying the above inequalities may not be unique. In ad- 
dition, there is no easy parametrization, and attempts to 
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1. The graph of e-(5) versus S, referred to as the uncer- 
tainty tradeoff curve, establishes the tradeoff between 
model uncertainty, 5, and the minimum possible cor- 
responding disturbance uncertainty e(5). 

2. To every point on the tradeoff curve there is a dif- 
ferent set of nominal transfer functions (G(B), H(B)) 
because 0 E 6(s). 

3. The tradeoff curve separates the unfalsified and fal- 
sified uncertainty models based on the current data. 

4. The model uncertainty bound, S, can range between 
the two extremes: when the prediction error is due 
only to the disturbance (5 = 0) and when it is due 
only to the dynamic uncertainty (u = 0). 

5. For the special case when b = 0, the corresponding 
uncertainty model on the tradeoff curve, 0(O), g(O), 
is precisely the usual least-squares prediction error 
transfer function estimate. 

6. In general, the tradeoff curve is not convex because 
e(6) is not affine in B except in the case where 
(G(B), H(B)) are paramtrized via an ARX model. 

7. Notice that no mention has been made about the 
“true” system which generated the data. All that is 
claimed is that there exists a set of possibly nonlinear 

uncertainty models, centered at an LTI model, each 
of which could have produced the data. 
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