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Abstract 

Detection of incipient (slowly developing) faults is 
crucial in automated maintenance problems where 
early detection of worn equipment is required. In this 
paper, a general framework for model-based fault de- 
tection and diagnosis of a class of incipient faults is 
developed. The changes in the system dynamics due 
to the fault are modeled as nonlinear functions of the 
state and input variables, while the time profile of the 
failure is assumed to be exponentially developing. An 
automated fault diagnosis architecture using nonlin- 
ear on-line approximators with an adaptation scheme 
is designed and analyzed. 

1 Introduction 

Increased productivity requirements and stringent per- 
formance specifications lead to more demanding op- 
erating conditions of many modern engineering sys- 
tems. Such conditions increase the possibility of sys- 
tem failures which are characterized by critical, un- 
predictable changes in the system dynamics. In gen- 
eral, feedback control algorithms which are designed 
to handle small system perturbations that may arise 
under “normal” operating conditions (typically, in 
the linear regime), cannot accommodate abnormal 
behavior due to faults. Automated maintenance for 
early detection of worn equipment is becoming a cru- 
cial problem is many practical applications. There- 
fore, the development of new design and analysis meth- 
ods for health monitoring and fault diagnosis is a key 
component in the safe operation of advanced engi- 
neering systems. 

The process of fault diagnosis consists of three steps: 
(i) detection deals with determining if a malfunction 
has occured in the supervised system; (ii) diagno- 
sis considers the problem of identifying the location, 
type, and characteristics of a failure; and (iii) accom- 
modation attempts to self-correct a particular failure, 
typically through reconfiguration of the control deci- 
sion policy. 

The design of fault diagnosis algorithms using the 
model-based analytical redundancy approach has re- 
ceived a lot of attention during the last two decades 
(see, for example, survey papers by Prank [4], Gertler 
[5], Isserman [8], and Willsky [15]). Various quanti- 
tative models (such as state-space models, paramet- 
ric models, parity relations), as well as qualitative 
models (such as expert systems) have been used to 
generate a residual vector that provides a measure of 
the deviation between estimated and measured sig- 
nals. In general, a fault is declared if the “size” of 
the residual vector exceeds a certain threshold value. 

The nature of possible failure situations may be 
classified as abrupt (sudden) failures, which are typ- 
ically modeled as step-like deviations, and incipient 

(slowly developing) failures, which are represented by 
drift-type changes. In abrupt type failures, it is cru- 
cial that the fault diagnosis scheme is able to detect 
the changes quickly so as to avoid catastrophic conse- 
quences. In such cases, early detection and accommo- 
dation are the key objectives of fault diagnosis. On 
the other hand, incipient failures are more important 
in maintenance activities where it is required that 
slowly developing problems are detected early enough 
to avoid more serious consequences. Therefore, the 
development of effective fault diagnosis schemes for 
incipient faults plays a key role in the automation 
of inspection procedures and minimization of mainte- 
nance activities and costs. One of the main difficulties 
in dealing with incipient faults is the compensating ef- 
fect of feedback control, which tends to diminish the 
effect of small incipient faults on the tracking perfor- 
mance. 

In this paper, a fault diagnosis methodology for 
incipient faults is developed. We consider nonlinear 
dynamical systems whose dynamics change at some 
unknown time due to a failure. This change is mod- 

eled as an unknown nonlinear function of the state 
and input variables with a time-varying failure pro- 
file. In order to capture the nonlinear characteristics 
of faults, we design a nonlinear estimator using the 
on-line approximation approach [12] with an adap- 
tive scheme for the adjustable parameters or weights. 



The stability and performance properties of the fault 
diagnosis scheme are rigorously established under the 
assumption of full state measurement. These results 
are obtained in the presence of approximation errors, 
that is, errors arising as a result of imperfect mod- 
eling of the system deviations due to faults by the 
on-line approximator. 

From an adaptive theory viewpoint, the objective 
of this paper is to develop a learning methodology 
for incipient failure detection. In this framework, on- 
line approximators (such as neural networks, spline 
functions, wavelets, etc.) are used to monitor the 
system for any deviations due to faults. By using 
the adaptivity capabilities of on-line approximators, 
they can be used not only to detect the occurrence of 
system failures but also to provide an on-line estimate 
of the fault characteristics (diagnosis). 

The paper is organized as follows: In Section 2 we 
outline the class of dynamical systems under study 
and describe the general structure of the nonlinear 
estimator. The synthesis of the fault diagnosis scheme 
is presented in Section 3. In Section 4 we investigate 
the robustness, stability and performance properties 
of the incipient fault diagnosis scheme. 

2 General Formulation 

Most fault diagnosis schemes developed so far have 
dealt exclusively with linear models subject to faults 
that are represented as external additive input signals 
(of time). Although such linear techniques allow the 
derivation of many analytical results, in real engineer- 
ing applications linear-based methods may lead to de- 
graded performance of the fault diagnosis scheme. To 
capture some of the characteristics of practical fail- 
ure situations, in this section we present a nonlinear 
modeling framework for representing failures and de- 
veloping estimation schemes. 

2.1 Representation of Failures 

The class of dynamical systems under study is de- 
scribed by 

@> = %J+>, u(t)> + qt - T)f(x(t), u(t)) (1) 

where x E IR? is the state vector, u E lRm is the input 
vector, 5, f : IR” xlRn” 4IR” are smooth vector fields, 
T 2 0 is the beginning time of the failure, and a is 
a square n x n matrix function representing the time 
profiles of failures. We consider incipient faults that 
are modeled by 

B(t-T) = diag(Pl(t - T), h(t - T), . . . , Pn(t - T)) , 

where for each i = 1,2, . . . , n, 

Pa(7.) = { y- e--pi7 ii ;;; (2) 
- 

and pi > 0 is an unknown constant that represents 
the rate at which the failure in state xi evolves. For 
large values of pi, the time profile function ,L?i ap- 
proaches a step function, which models abrupt fail- 
ures. 

The objective is to design a fault diagnosis scheme 
that processes input and state information to deter- 
mine the presence and characteristics of any incipient 
faults. Since this paper does not address fault accom- 
modation, below we make the standard assumption 
that the control input u and the state vector x remain 
bounded prior and after the occurrence of a fault: 
(Al) There exist compact sets X c lR”, 24 c lR,” 
such that x(t) E X and u(t) E U for all t 2 0. 

The “healthy” system in the absence of any faults 
is described by 

h(t) = J(xla(t), u(t)) := c*(xh(t), u(t))+E”(x&), u(t)>, 

where [* represents the nominal dynamics (known) 
and < characterizes any discrepancy between the ac- 
tual plant and nominal model that may occur due to 
modeling errors. It is well known in the fault diag- 
nosis literature that the presence of modeling errors, 
in general, increases the probability of false alarms. 
During the last few years the design of so-called TO- 
bust fault diagnosis schemes have resulted in a vari- 
ety of tools for dealing with such modeling uncertain- 
ties [lo, 131. An intuitive approach is to use a small 
threshold in the residual error to account for model- 
ing uncertainties; in this case, a fault is declared if the 
residual error is greater than the selected threshold. 
Another approach attempts to decouple the effects of 
faults and modeling errors as a way of improving ro- 
bustness. In this work, we first consider the ideal case 
where c E 0 and then the case where ][(z, u)] 5 [c 
for all (x,u) E (X x U), where <O 2 0 is a known 
constant. In general, the design and analysis of ro- 
bust fault diagnosis architectures based on nonlinear 
modeling techniques requires further investigation. 

2.2 Nonlinear Estimator 

The failure representation described by (1) provides 
a framework for characterizing a wide class of faults. 
In general, the magnitude of faults in practical appli- 
cations depends on the state of the system as well as 
the system input. The nonlinear fault representation 
(1) captures these dependencies of f on the state x 
and the input u. The price that one has to pay for 
the potential to model a larger class of failures is the 
need to approximate unknown nonlinear functions, 
which leads to nonlinear fault diagnosis techniques. 
This can be realized by the utilization of parameter- 
ized on-line approximation structures with adjustable 



parameters. Such an adaptive nonlinear estimator is 
given by 

2 = W4kl (3) 
z = C(vJ) (4 
e” = 7(x,u,ig), (5) 

where W(s) is an n x n stable filter matrix, (3), 
(4) represents an observer-based nonlinear estimation 
scheme, and (5) is the adaptive law of the adjustable 
parameters. Next, we proceed to the design of W(s), 
< and 17. 

3 Fault Diagnosis Scheme 
Following the formulation of [12], we consider a 

nonlinear model-based estimator given by 

i(t) = AS(t)+I*(x(t), u(t))+&(t), u(t); &))-A$) 

where P E lRn is the estimated state vector, f^ is 
the on-line approximation model, 8 E IR? is a vec- 
tor of adjustable parameters, and A is a constant 
n x n matrix that satisfies the Lyapunov equation 
ATII+IIA=-&,withII=IIT>OandQ>O. In 
the framework of the general estimation scheme (3), 

(_4), W(s) = (sl- A)-’ and <(x, u, 8) = J*(x, u) + 

f(x, u; 0) -Ax. The construction of an accurate non- 
linear model based estimator, able to follow any vari- 
ations in the physical system, is a crucial component 
of the overall learning scheme. The nonlinear estima- 
tor described by (6) is based on a series-parallel, error 
filtering scheme [12], which is shown in Section 4 to 
have some desirable stability and performance prop- 
erties. An alternative approach, pursued in [3] for 
fault accommodation, uses the estimated state 2 in- 
stead of the measured state x in the nonlinear esti- 
mation scheme. 

The initial condition for the estimated model (6) 

is s(O) = x(0) and e^(O) = 8’ is selected such that 

f(x, u; Do) = 0 for all I and u. Starting from these 
initial conditions, the objective is to develop a pa- 
rameter adaptive law for 8(t) so that the on-line ap- 

proximator fl(z, u; 8) approximates the function L?(t - 
T)f(x, u). Once this is achieved, then the on-line ap- 

proximator f^ may be used not only to detect failures 
but also to diagnose these failures in the sense of iden- 
tifying their magnitude and dependency on x and u. 
Where appropriate, the on-line approximator may be 
used for failure accommodation. Note that in this 
paper it is assumed that the failure modes, described 
by f, are unknown. In the special case that all possi- 
ble failure modes are known apriori then a multiple- 
model estimation scheme that takes into considera- 
tion the knowledge of each failure mode can be used 
to improve performance [l]. 

During the last few years several on-line approxi- 
mation models have been studied in the context of in- 
telligent and learning control [14]. In addition to con- 
ventional approximation models like polynomials, ra- 
tional functions, spline functions etc., various neural 
network topologies such as sigmoidalneural networks, 
radial basis function networks, CMAC networks etc, 
.and new network structures such as wavelet networks 
have emerged. In the framework of adaptive net- 
works, (x,u) is the input vector to the network, e^ 
is a vector of adjustable parameters or weights, and 
y = f^(x:, u; i) is the output of the network. In this pa- 
per we consider a general class of sufficiently smooth 
on-line approximators; that is, f^ E C”. 

First we-consider the ideal case of no modeling er- 
rors; i.e., [ = 0. Later, we modify the adaptive law 
to handle modeling uncertainty. Using Lyapunov re- 
design methods [9], we obtain the following adaptive 
law 

B = P {rZIIe} , (7) 

where e = x - 2 is the state estimation error, I = 
TT > 0 is the learning rate, 2 is a Q x n matrix given 

by 

Z= mvd) T, [ 1 a6 
(8) 

and P is the projection operator, which constrains 
the parameter 8 to some selected compact, convex 
region M,- of the parameter space III!. 

The projection operator in the adaptive law is used 
to prevent parameter drift of the adjustable weights, 
a phenomenon that may occur with standard adap- 
tive laws in the presence of modeling uncertainty and 
approximation error [7]. As shown in the analysis 
given below, the selection of the compact region M,- 
does not require knowledge of an upper bound on 
the optimal parameter 8*. In the special case that 
MB is chosen to be a hypersphere of size M (i.e., 

Mi = (8 EIIP : $1 5 M}), then the above adap- 

tive law can be expressed as 

&T B = rZIIe - x*rmrzrk, 

where x* denotes the indicator function given by 

‘* = 1 

0 if (Ifi] < M) or ($1 = M & BTIZIIe 5 0) 

1 if (]f?] = M & 8Tl?ZIIe > 0). 

3.1 Robust Fault Diagnosis 

Under ideal conditions of no modeling errors a fault is 
declared whenever-the output of the on-line approxi- 
mator y = f(x, u, 0) becomes non-zero. A straightfor- 
ward and practical way of improving the robustness of 
the algorithm with respect to modeling uncertainties 



is to declare a fault whenever ]y] 2 S, where S 2 0 
is a design parameter that depends on the magni- 
tude of the modeling uncertainties. This approach to 
improving robustness is incorporated into the learn- 
ing methodology developed above by modifying the 
adaptive law (7) as follows: 

e” = P {rZHD[e]} , (10) 
where D[.] is the dead-zone operator [ll], defined as 

D[e] := f 
1 

if ]e] 5 E 
if]e]>e ’ 

where E > 0 is a design constant. The selection of 
the dead-zone size E clearly induces a trade-off be- 
tween reducing the possibility of false alarms (robust- 
ness) and improving the sensitivity to faults. In the 
next section we derive a value for the dead-zone size E 
(in terms of the modeling uncertainty bound lo) that 
guarantees robustness in the presence of any model- 
ing uncertainty satisfying the given bound. 

4 Analysis 

The fault diagnosis scheme described in Section 3 
has some desirable stability, performance and robust- 
ness properties, which are presented in this section. 
These results are obtained for the case of incipient 
failures that occur at some unknown time T and de- 
velop with unknown rates pa. The incipient failure 
changes the dynamics of the system but is assumed 
to retain the boundedness of the state and input vari- 
ables (Assumption Al). 

First consider the ideal case of no modeling errors. 
In the time interval t E [0, T) (i.e., prior to the occur- 
rence of a fault), the state estimation error e = x - 2 

and parameter estimate e satisfy 

t: = Ae-f^(x,u,@ e(0) = 0, (11) 

;i = P{l?ZIIe} d(O) = e”. (12) 

~~~,~~~~~~~~~c~~~~(~~~)~~n=e~u~~b~~~ 

of the above system. Therefore, e(t) = 0 and e(t) = 

8’ for t E [O,T). 
In the presence of modeling errors, (11) becomes 

i=Ae+i(x,u)-f^(x,u,@. (13) 

According to the robust adaptive law (lo), the out- 
put of the on-line approximator remains zero a long 
as [e(t)1 5 c. To determine an appropriate value 
for E, we derive an upper bound for e(t) in the case 

f(x(t), u(t), 8(t)) = 0. From (13), we have 

J 
t 

e(t) = eA(t-‘)$(x(r), U(T)) dr. 
0 

Since A is a stability matrix, there exist positive con- 
stants p and CY such that lIeAt]] _< pemat. Therefore 

le(t)l 5 ~1’ e-cu(t-T)fO dr 

This implies that if the dead-zone size is chosen as 
E = $$c, then e(t) remains within the dead-zone for 
all t < T and the output of the on-line approximator 
remains zero; in other words, the set {(e, 8) : ]e] < 

E, e = 80) is a positively invariant set [9]. 
Therefore, the learning algorithm given by (10) is 

robust in the sense that it is not affected by modeling 
uncertainties that satisfy 1$(x, u)] 5 lo. Furthermore, 
by letting f(x(t), u(t)) = <c for all t, it is easy to verify 
that the selected bound for the dead-zone size E is not 
conservative. 

Next we consider the time interval t 2 T, after 
the occurrence of a fault. Using (l), (6), the state 
estimation error satisfies 

d = Ae+i(x,u)+B(t -T)f(x,u) -f(x,u,@ 

= Ae+.$x,u)+B(t-T)f^(x,u,e*)-f(x,u,@ 

+ v(t) (14) 

where v(t) is the approximation error given by 

v(t) = a(t - T) [f(x(t), u(t)> - &:(t>, 4th Q*,] . 

(15) 
The “optimal” parameter 8* is chosen as the value of 
8 that minimizes the &-norm (energy-norm) distance 

between f(x, u) and f^( x, u; 8) over all (x, u) E X x U 
subject to the constraint that 8 E Mi [12]. It is 
noted that 8* is an “artificial” quantity required only 
for analysis purposes. 

Under smoothness assumptions on f, (14) can be 
expressed as 

1 = Ae+J”(x,u)-[[I-L?(t-T)]f(x,u,e*) 

af^(z,u;J) - 
ae^ (16) 

where A is given by 

A(x,u;B,e*) = f(x,u;@-f(x,u,e*) 
af(x,u;4) - 

ae^ ( > 8 - e* 

Intuitively, A represents the higher-order terms of 
the Taylor series expansion of f^(x, u, 6) with respect 

to 8. Indeed, it can be readily shown using the Mean 
Value Theorem [2] that 



where limi,e, p( x,u,8,e*) = Ofor all (2,~) E Xx24. 
In the specialcase ofa linearly parameterized approx- 
imator (i.e., f(x, u; 0) = Q(x, u)‘0), the higher-order 
term component A is identically equal to zero. Exam- 
ples of linearly parameterized approximators include 
polynomial functions and radial basis function net- 
works with fixed centers and widths. 

By letting e”(t) = 8-e*, w(t) = -A(x(t), u(t); e(t), t9*)+ 

v(t), and using (8), the error equation (16) becomes 

t!=Ae+{(x,u)--cPf(x,u,fl*)-ZTB”+~, (17) 

where Q(t) = I - a(t - T) is a diagonal matrix. 
Clearly, For t > T the matrix Q satisfies 

i(t) = --Pqt) Q(T) = I, 

where P is a constant positive definite matrix given 

by 
P = diag (PI, ~2, . . . , pn) . 

If the norm of the state estimation error is within 
the dead-zone (i.e., ]e] 5 E) then 6 = 0 and hence sta- 
bility follows trivially. In order to analyze the stabil- 
ity and performance properties of the fault diagnosis 
scheme in the case ]e] > E, we consider the Lyapunov 
function candidate 

V(t) = ieT(t)lIe(t) + ~P(t)PI(t) 

+ f trace { A@(t)P-l@(t)} , 

where X > 0 is a constant scalar to be selected later. 
The time derivative of V(t) evaluated along the tra- 
jectories of (17), (7), yields 

e = ieT (ATII + IIA) e - eTIIQf^(x, u, O*) 

- eTHZTB”+ eTHw + eTi(x, u) 

+ gTr-V {l?ZIIe} - trace {Ma} 

= -feTQea? eT((x, u) - eTH@f^(x, u, S*) 

- X*tYT$IZIIe + eTIIw - trace {M(a). 

W 
Using standard techniques from adaptive control [7, 
121 it can be shown that the projection term can only 
make the derivative of the Lyapunov function more 
negative; i.e., 

x 

Now, using the smoothness assumption on f^ and 
the uniform boundedness of x(t) and u(t), there exists 
a finite constant ci such that 

cl = f;F {.&a 4th e*)} . 

The Frobenius matrix norm, defined as ~~A~~~ = 
& ]adj12 = trace{AAT}, satisfies l/All2 5 l/All~ (see 

[S]). Therefore, (18) becomes 

si < -Ami~(Q’le12 - All@ll~ + clll~ll2ll~II~lel - 

+ eTIIw + eTi(x, u). 

By completing the squares and setting X := w 

it can be readily shown that 

e I jbnala 
4(Q’ Id2 - ~ll@ll~ 

- 
[ 

x,i;‘Q’ le12 - eT (IIw + J”(X, U))] 

- 
[ 

x,ii’Q) le12 - c~ll~ll2ll~ll~lel+ $l@llS] 

< - -xmi;(Q)le12 - $/f$ll$ + kllw12 

+ ~2l&, 412> (19) 

where the constants ICI, Ic2 are given by IQ = 2c~m,x[~~)a 
mm 

andkz=&. 

When ~]e(t)12+$]]@]]$ > kr]w(t)12+k2]$x, u)]” 

we have that Q(t) 5 0. Since w(t) and ((x(t), u(t)) 

are uniformly bounded, the above inequality implies 
that there exists a constant k3 such that if le(t)l > kg 

then V(t) 5 0. Furthermore, the projection operator 

guarantees that 4 is uniformly bounded. Thus we can 
infer that V, e, e” are also uniformly bounded. By in- 
tegrating (19) over any finite interval [T, T + r] and 
re-arranging terms we obtain 

J 
T+T 

4 
T 

Ie(t>12dt 5 Amin [V(T) - V/(T + T) 

J 
T+T + k1 14)12 dt 

T 

Sk2 J 
T+T 

I&W WI2 dt T 1 T+T 
I x1+x2 J 14t>12 dt 

T 

J 
T+T 

+A2 I&@>, WI2 dt,(W T 

4 

where x1 = hnin(&) 720 
sup [V(T) - V(T + r)] and X2 = 

8 

%an (Q) 
m={L Grm$w. 

The above analysis guarantees the uniform bound- 
edness of the nonlinear estimator, including the ad- 
justable parameters of the on-line approximator. Fur- 
thermore, the extended &,-norm of the state estima- 
tion error e(t) over any finite time interval is, at most, 



of the same order as the extended &-norm of w(t) 

and J(x(t), u(t)). H ence the inequality (20) gives a 
qualitative relationship between the performance of 
the learning s_cheme and w(t), as well as the modeling 
uncertainty <(x(t), u(t)). 

According to the definition of Q(t).the time profile 
of the failure is required to satisfy @(t) = -P@(t), 

where P is a positive-definite matrix. It is important 
to note that the stability analysis presented above is 
still valid as long as Q(t) 5 -P@(t). Therefore, a 
wider class of failure situations can be treated in a 
similar framework. 

In the special case of linearly parameterized ap- 
proximators, we have A E 0; hence w(t) = v(t). If, in 
addition, v(t) = 0 (that is, the on-line approximator 
can match the fault exactly) or v E La, and the mod- 
eling uncertainty $(x(t), u(t)) = 0 then clearly e(t) is 
square integrable. Therefore, in this case BarbMat’s 
Lemma [7] can be used to show that lim,,, e(t) = 0. 

A nonlinear estimator (adaptive diagnostic estima- 
tor) was designed via Lyapunov redesign methods and 
shown to actually provide a means of both detecting 
and diagnosing the characteristics of the system fail- 
ures described by nonlinear functions of the state. 
Modifications to the adaptation rules were added to 
account for modeling errors in the plant dynamics, 
thus leading to a robust (with respect to false alarms) 
diagnostic scheme. Since the aforementioned diagnos- 
tic estimator required knowledge of the full state, a 
natural extension is to extend the above results in 
the case of partial state information. This would re- 
quire that the nominal input-output transfer function 
be strictly positive real in order to utilize Lyapunov 
redesign methods. This is currently pursued by the 
authors. 
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