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Abstract 

For a direct-sequence spread-spectrum (DS-SS) sys- 
tem we pose and solve the problem of maximum- 
likelihood (ML) sequence estimation in the presence 
of narrowband interference, using the expectation- 
maximization (EM) algorithm. It is seen that the 
iterative EM algorithm obtains at each iteration an 
estimate of the interference which is then subtracted 
from the data before a new sequence estimate is pro- 
duced. Both uncoded and trellis coded systems are 
studied, and the EM-based algorithm is seen to per- 
form well, outperforming a receiver that uses an op- 
timized notch filter to remove the intereference, espe- 
cially for large interference levels. 

1 Introduction 

With the proliferation of wireless communicationprod- 
ucts and the crowding of the radio frequency spec- 
trum, the problem of combatting interference has be- 
come more pronounced. For example, in the unlin- 
tensed industrial, scientific and medical (ISM) bands, 
in which the so-called FCC Part 15 devices (cordless 

phones, wireless ethernet cards, etc.) operate, users 

must be able to sustain interference. Many of the sys- 
tems in these bands use spread spectrum technology, 
which is known to be robust to narrowband interfer- 

ence and multipath. Spread spectrum alone, however, 
is not enough to alleviate the interference problem, 
and further steps are needed to combat it, especially 
in severe interference environments. 

There are in general two ways to further reduce 
interference: 1) by preventing it from entering the 

receiver front-end through appropriate antenna de- 
sign (i.e. “smart antennas”), and/or 2) by suitably 
processing the received signal in order to negate the 
effects of interference. The work we present next be- 
longs to the second category of interference rejection 

techniques. In contrast to most algorithms, however, 
which focus on estimating the interference (using one 
technique or another) and then subtracting it from 
the received signal, in this paper we pose the prob- 

lem as one of maximum-likelihood (ML) sequence es- 

timation (i.e. we use a minimum error probability 
criterion). 

To make the problem of obtaining ML estimates 
tractable, we use the expectation-maximization (EM) 
algorithm [l, 21, and apply it first to the simple prob- 
lem of single-tone interference, where the interfering 
frequency is known, but either the phase or the am- 
plitude are unknown. This problem is admittedly not 

realistic, but it does serve to illustrate the use of the 
EM algorithm and to assess its potential performance 
compared to other techniques. For the single-tone 
interference problem, an obvious (but suboptimal) 
technique for combatting the interference is to use 

a notch filter, which however, besides suppressing the 
interference, also suppresses part of the signal. We 
will see next, that the EM-based algorithm signifi- 
cantly outperforms the notch filter approach, partic- 
ularly at large interference levels. 

For an excellent tutorial on interference rejection 
techniques the interested reader is referred to [3]. Other 
applications of the EM algorithm to communication 
scenarios include [4]-[lo]. 

Section II introduces the EM-based algorithms, Sec- 
tion III looks at performance and makes comparisons, 
and Section IV conlcudes. 

2 The EM-based algorithms for 
interference rejection 

The EM algorithm is based on the notion of complete 
and incomplete data. The incomplete data consist of 
the data actually oberved, from which a ML estimates 
must be obtained. The complete data is a set of de- 

sirable data, whose availability makes the estimation 
problem easy in some sense. 

The EM algorithm proceeds as follows. Suppose x 
and y are the complete and incomplete data respec- 
tively, and b is a parameter vector to be estimated. 
The two-step iterative algorithm at the i-th iteration 
is: 

l.E - step : Compute &(bIbi) = E[lw(xIb)ly,bil, 



2.M - step : Compute b i+l = argmbaxQ(bJbi), 

where b” is the estimated parameter at the i-th step, 
and P(xJb) is th e conditional density of x, given b. 

We apply the algorithm to the case of single-tone 
interference next. 

A. Single-tone interference zuith random phase 

Let the single-tone interference be 

J(t) = B cos(wt + 0). (1) 

where 0 is a uniformly distributed random phase, and 

B and w are known amplitude and frequency respec- 
tively. The received signal in an additive white Gaus- 
sian noise n(t) of spectral density No/2 is then 

r(t) = S(t; a) + J(t) + n(t), (2) 

where 

S(t;a) = ACE aiCkp(t - kT, - iT) (3) 
i k 

is the baseband spread spectrum signal, {ck} is the 
spreading sequence, p(t) is the baseband pulse, T, 

and T are the chip and bit, intervals, respectively, A 
is the signal amplitude, and {ai} is the data sequence 
with data taking values in {-l,+l}. The problem 
is to estimate a from r(t), using the EM algorithm. 
Towards this end, we choose the complete data as 
[r(t), 01. Then the E-Step of the EM iteration is: 

Q(4ak) = E[logp[r(t),~lallr(t),ak], (4) 

where ak is the sequence estimate at the k-th itera- 

tion, and logp[r(t), e/a] is the log-likelihood function 
for the complete data. After some simplifications and 

manipulations, we obtain 

Q(alak> = / [r(t) - j(t, a”)] S(t, a)& (5) 

where 

A I1 [Cbk)l 
J(t, ak) = B &,[[C(ak>] 

cos [wt - &a”)], (6) 

+oO 

Wk) No 
=2B 

s 
[r(t) - S(t, a”)] cos(wt)dt, (7) 

-co 
+-J 

Cz(ak) = +f 
s 

[r(t) - S(t, a”)] sin(wt)dt, (8) 

C(ak)-Ij/Cz(ak) + Ci(ak), (9) 

(10) 

Here the 10[.] and II[.] are the zeroth and first, order 
modified Bessel functions respectively. 

The data sequence can be obtained by maximizing 
Q(ala’) over all data sequences a. This can be done 
efficiently through symbol-by-symbol detection when 
no coding is used, or by using the Viterbi algorithm 
if trellis coding is used. In initializing the algorithm, 
we assume (at the start of the iteration process) that 

e= 0. 
The general structure of the EM-based algorithm 

is shown in Figure 1. 

I Itention 1 

Figure 1: Structure of the EM-based receiver. 

B. Random amplitude interference 

As another application, we assume here that only 
the amplitude B of the tone interferer is random. We 
consider two example cases, but others can be solved 

as easily: 1) when B is uniformly distributed over 
a known interval; and 2) when B is Rayleigh dis- 
tributed. In other words, 

PB@) = L, 
rl 

OlBltl (11) 

for a uniform distribution, and 

p&B) = Be-g (12) 

for a Rayleigh distribution. 
It is easily seen that equation (5) still holds (in fact 

it holds in general for any interference J(t)), where 

j(t, ak) = S cos(wt + 0). (13) 

Skipping the derivations, we have: 

0 Uniform case: 

IBe- KdB- &12dB 

B= Oq 

J-e- 
KG- &)‘dB 

(14) 

l Rayleigh case: 

where, 

ITI = $1 [r(t) - S(t, a”)] cos(wt + B)dt, (16) 



(17) 

(18) 

Kz = &- cos’(wt + t9)dt, 
0 J 

Ks= TB &B-(Ka+$)B’dB, 

i 

+=J 

KS = J B2e”+(&+;)B’dB. (19) 
0 

All the time-integrals above are over the data se- 
quence length. 

We look at performance next. 

3 Simulation results 

In this section, we investigate the error-probability 
performance of the EM-based algorithms for both 

coded and uncoded systems and compare it to that 
obtained using a notch filter. Simulations are run 
for various parameters, such as the observed data se- 
quence length, processing gain, and interference strength. 
A sampling rate of 10 samples per chip (more than 
adequate) was used in the simulations. The frequency 
offset of the tone interferer from the carrier was fixed 
to about l/6 of the chip rate. Other offsets were also 
tried, but it was seen that there was no observable 
difference in the performance of the EM-based algo- 
rithms as a function of frequency offset. 

In the figures, J/S is the interference to signal ratio 
in dB, defined as the ratio of the interference power 
to the signal power, and L is the observed sequence 
length in bits. Fig. 2 shows the performance of the 
EM algorithm for interference levels of 10 dB and 20 

dB. The comparison is to a conventional detector that 
ignores the interference, and to the performance of a 
ML detector in the absence of intereference. 
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Figure 2: Performance with and without the EM- 
algorithm. 

It can be seen from Fig. 2 that the EM estimator 
is effective for interference rejection for a large range 
of interference levels, even when L = 1. 

Fig. 3, which plots performance as a function of 
interference for an SNR of 8 dB, illustrates this fur- 
ther. 
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Figure 3: Performance as a function of intereference 
level for L = 1. 

Fig. 4 shows the influence of the observed data 
sequence length L for an interference level of 3 dB. 
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Figure 4: BER as a function of window length. 

The figure indicates that a window size of about 5 
achieves most the possible performance gain. 

Fig. 5 shows performance for different chip rates. 

It can be seen that the EM-based algorithm performs 
well, even at small processing gains. 

Fig. 6 shows coded performance for a rate l/2 4- 

state convolutional code and for both soft and hard- 
decision decoding. The structure of the EM-based 
algorithm allows the use of the Viterbi algorithm for 

efficient decoding. 
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Figure 5: Performance comparison under different 
precessing gains. The L = 1 and J/S = 10 dB. 
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Figure 6: Performance for coded systems. 

The EM-cased algorithm was seen to converge mostly 
within two to three iterations. Results for the random 
amplitude case have also been obtained and are sim- 
ilar to those presented above for random phase. 

Finally, we compare the performance of the EM 
algorithm with that of a notch filter, implemented 
as a two-sided transversal filter and optimized as de- 
scribed in [2]. Fig. 7 compares the performance of 
the notch filter receiver and the EM-based algorithm 
for both the random phase and amplitude cases. 
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Figure 7: Comparison between the EM algorithm and 

the notch filter receiver. 

Here the filter is implemented using 13 taps, the 
processing gain is 31, and the interference to signal 
ratio is 10 dB. The observation window length for 
the EM algorithm is 5. It can be seen that the per- 
formance is improved by using the EM algorithm, but 
at the cost of increased computational complexity. 

4 Conclusions 

We have applied the EM algorithm to the problem of 
sequence estimation in the presence of narrowband in- 
terference. The EM-based algorithm performed very 
well, achieving near-optimal performance for a large 
range of interference levels, at the cost, however, of in- 
creased complexity. This increased complexity prob- 
ably means that the EM-based algorithm will not re- 
place the simple notch filter algorithm for rejecting 

tone interference. However, the overall success of the 
EM algorithm does provide motivation for applying it 

to more general and realistic models of interference, 

where the increased complexity may be justified by 
the improved performance compared to alternative 
algorithms. 
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