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Abstract

In this paper we introduce the sufficient statistic algebra
which is responsible for propagating the sufficient statis-
tic, or information state, in the optimal control of stochas-
tic systems. Certain Lie algebraic methods widely used
in nonlinear control theory, are then employed to derive
finite-dimensional controllers. The sufficient statistic al-
gebra enables us to determine 4 priori whether there exist
finite-dimensional controllers; it also enables us to classify
all finite-dimensional controllers.

1 Introduction

The DMZ equation of nonlinear filtering of diffusion pro-
cesses is a linear, stochastic, partial differential equa-
tion (PDE) which describes in a recursive manner the
evolution of the unnormalized conditional distribution of
the state process, {z(t);t > 0}, given the observations,
{y(¢);t > 0}. If this distribution has a density function,
say, {m(z,t);t > 0}, then

(1.1)

Consequently, {m(z,s);0 < s < t} evolves forward in
time with initial condition 7(z,0). Here, Lo is a certain
second-order differential operator related to the drift and
diffusion coefficients of the state process, the Kolmogorov
forward operator, and h(z) is a zero-order differential op-
erator related to the signal in the observations.

%w(w, t) = Lon(z,t) + h(z)7w(z,t) o %y(t).

Brockett and Clark [1], proposed that due to the analogy
between (1.1) and the control system z(t) = f(z(t)) +
g(z(t))u(t), the Lie algebraic methods might be applica-
ble to (1.1) as well. In particular, they proposed that the
finite-dimensionality of solutions to (1.1) can be deduced
from the Lie algebra generated by the operators Lo, h.
Moreover Ocone [2], noted that if the Lie algebra gen-
erated by the operators Lo, h, is finite-dimensional, then
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(under certain conditions) the Wei-Norman method can
be used to derive the structure of the recursive filters,
(see [2, 3, 4, 5]. Recently, gauge transformations have
been introduced in [6, 7, 8], to identify nonlinear control
problems with finite-dimensional controllers.

In the present paper we point out how the Lie alge-
braic methods can be used to address the question of
finite-dimensionality of optimal controllers in problems
of optimal control of partially observed stochastic sys-
tems. Note that in the absence of control optimality,
this framework can be used to address the question of
finite-dimensionality of optimal (in least-squares sense)
observers for nonlinear stochastic control systems. This
framework would enable us to investigate the question of
classification and finite-dimensionality of optimal controls
a priori, by investigating the Lie algebra of certain opera-
tors associated with the model at hand. The Lie algebra
method yields new classes of nonlinear systems which are
not a subset of our earlier classes in [6, 7, 8].

In particular, the observation that leads to these devel-
opments is that for optimal control problems (with usual
integral cost function) affine in the control inputs, the in-
formation state satisfies a controlled version of the DMZ
equation, namely,

d
d—tﬂ’u(iﬂ,t) = Loﬂ'u(w,t) + qu(x,t)u(t’y)

+ R Sy, (12)

where u(-) is the control input and L is certain first-
order differential operator. Therefore, by analogy with
finite-dimensional nonlinear affine control systems, we
view (1.2) as a bilinear equation with control inputs
u(-), %y(-). This gives rise to the investigation of the Lie
algebra generated by the operators Lo, L, h, which we call
sufficient statistic algebra. In fact, from certain results of
realization theory, we deduce that if the sufficient statistic
algebra, £s = {Lo,L,h}r. 4., is finite-dimensional, then
(under certain conditions) the optimal controller is finite-
dimensional.



2 Mathematical Constructs

Consider the Ito stochastic differential system

do(t) = f(@(®)dt + 37, 95(x(t))u;(t, y)dt

Y o @) (), a@)ewr, &P

dy; (t) = hj(z(t))dt + db;(t), y;(0) =0€R, (24)

1< j <d. Here {w;i(t);t € [0,T]} and {b;(¢);t € [0, T]},
are mutually independent standard Brownian motion pro-
cesses, for all 1 < 7 < m,1 € 7 < d, which are
also independent of the random variable z(0). () =
[wi,us2,...,us] () is a vector of control processes. All
stochastic processes are defined on a probability space
(Q, F, P*) equipped with a complete filtration, {Fo,;t €
[0,T]}, and a finite-time interval, [0, T7].

The usual optimal control problem addresses the mini-
mization over the controls u(-) € Uaq, (see Definition 2.3
), of the integral cost criterion J(u):

T
J(u) = E* {/ f(m(t),U(t,y))dt+w(x(T))}- (2.5)

Notation 2.1

" denotes transposition of a matriz, Ir denotes k x k
identity matrices, {o;}7—1,{ci}i=1 denote finite se-
quences in R;

C™(M) denotes the vector space of all infinite differen-
tiable real-valued functions defined on an n—dimensional
differentiable manifold M;

9(z) = [g1(2), 92(z), - . ., gel (%), [9]i.5 (=) = gij(2), h(z) =
[hl) h27 o 7hd]l($)7y(t) = [y17 Y2,... yd]l(t);

®:R" = R is C® with compact support;

{F5,::t €[0,T]} denotes the complete filtration generated
by the observations o—algebra, o{y(s);0<s<t}, B E
denote ezpectations w.r.t. measures P*, P, respectively.

Assumptions 2.2
U is a compact subset of R¢;
f: R > R g : R - R0 : " - ",

£,1 < j < m, are C*(R") vector fields, h
1< j5<d, are C®(R"™) functions, and

1<:i<
R 2 R,

If1 + 15 + 1gil + |he] < By (L+|zl), Vi, j,k;

LR XU->Re:R" >R L20,02>0, and
|6z, w)| < k2 (1+ |o] + [u])**, |o(2)] < ka (1+ |2])™s;

The random wariable x(0) has distribution Ilo(dz) =
wo(z)dz, with mo(-) € L2(R™).

Definition 2.3 The set of admissible controls de-
noted by Usa is defined by Uwa = {u();u()€
LZ([0, TT; RY), u(t,y) € U € R, a.et, P —a. s}

2.1 Sufficient Statistic

Let I1¢(®) = E* [®(x(t))|F4,]; let

d t d t
Ko = exp (Z / hj(x(s))dyj<s>—§§j / h;‘f(m(s))ds)-

Intfoduce the Radon-Nikodym derivative, (see [9, 8]),

28 | %0 = Ao,7. By a version of Bayes formula we have:

E [®(z(t)) Aot 7S]
E [Ao,t]fg’t]

Here II;(-) and m:(-) are measure-valued processes; the
latter is the unnormalized version of the former.

. ﬂ't(cb)
- 7I't(1) ’

IT,(®) = (2.6)

Theorem 2.4 [9, 8] Let ® € C*(R™) and suppose ms(-)
has a density function m: R* x Q x [0,T] = R. Then

(@) =F [‘I’(:v(t))Ao,t]}'g’t] = /n b(2)w(z,t)dz, (2.7)

where w(-) is a solution of the controlled version of the
DMZ equation (Fisk-Stratonovich form):

w(z,t) = ﬂ'(m 0) +f Lon(z,s)ds

+ZJ 1f Liw(z, s)u;(s,y)ds (2.8)
+3°0, [ (@)=, 5) 0 dy; (s),
A@)(@) = 3 20 52 (1005 @) (@)
+ 25 (fis + 5 (5) @), 9

Li(®) (@) = ~ 3.7 (96552 + 2 (905)) () (),
1<7<6 L@ = (-3 T2, 1) @)@).

Moreover, for uw € U,q the cost function (2.5) has the
representation

Jo,r(u) = E{ I fon €z, u(t, y)) (2, t) dadt (210)

+f§Rn (2)m(= T)dz}

In the formulation of Theorem 2.4, the conditional density
is an information state, or a sufficient statistic. Therefore,
by construction (2.8) propagates the information available
to the controller. In the sequel we assume the measure-

valued process m:(-) has a unique density = (-) satisfying
(2.8).

Definition 2.5 Let XY : C*(M) — C™(M), be dif-
ferential operators with C*° coefficients. The vector space
of all differential operators (with C™ coefficients) is a Lie
algebra with the Lie bracket of X,Y defined by

[X,Y](®) = X (Y(®)) - Y (X(®)), V& € C°(M).



Definition 2.6 The estimation algebra Lg of the filter-
ing problem (2.8), (2.4) (with u; = 0,1 < j < £), is the
Lie algebra generated by, {Lo, h1,hs,...,ha}, defined by
Lr ={Lo,h1,hs,...,ha}; 4 - (2.11)
The sufficient statistic algebra Ls of the control
problem (2.8)-(2.5) is the Lie algebra generated by,
{LQ,L1,L2, N ,Le,h1,h2, e ,hz}, deﬁned by

Ls ={Lo,L1,La,...,Le,h1,he,... 7hd}L.A. . (2.12)

3 Sufficient Statistic Algebras

Assumptions 3.1 Assumption 2.2 hold, m = n, and
[01,02,...,00][01,02, ...,0u) (&) = I, that is, o(z) is
orthogonal; in the scalar case it is assumed that o = 1.

Define
Di=z2Z —fi, 1<i<nm,
e O n 2 w—d (3.13)
n= Zi=1 E%Ifl + Zi:1 fz2 + Zi=1 h?.
Then
1 n
- = 2 _
Lo =3 (Z D? n) . (3.14)
i=1

We shall need the following calculations.

Lemma 3.2 Let
53] 15} .
wi,j(z) = 6_:::,-fj(x) - 6iji($), 1<4,j<n.

Then

[D2, 1] = 25 (hy) + 252 (hs)Ds,
1<i<n, 1<j<d;
[Lihj]l = = 3 py Ghiga-(hy), 1 i< £, 1< < d;
[D?,D;] = 2w;,iDi + 52— (wj3), 1<4,5<m;

[L(),Dj] = %Z::l (211)]',,'1)-; + a%z(w,‘,))
+iae (M), 1<i<n

n 2
[Di, Lj] = = 3", (_Ba:?ﬁwk (9r.5) — gk,j%(fi)
e (es)als ), 1<i<n 1<5<h

[02,15] = = Xy { saoer (00)
+2 50y (95) [ — ] + Zx (90s) 5%
+252- (98.,7) % — 2fi g2 (9r.3) 32
+0h,3 55 (£) + 2085 52 () [ — fi] } :
1<i<n, 1<5<4

n 2
[Li, L] =300 0 Dok {gm,iamf,—azk (9k.5)
2
~9k.j ape (Gm.i) + 9mi o (9k.5) a%,;
1<4,j<4

a
~Gk,j 5 (Gm.i) T } ,

3.1 The Linear Case
Here we analyze the linear control system

da(t) = Fa(t)dt + 3_;_, Byu;(t,y)
+ >0 Gidw; (),

dy;(8) = 370, Hjsws(t)dt +db;(t), 1<j<d

(3.15)

Lemma 3.3 (Scalar case). Suppose n=~£=d=m = 1.
The sufficient statistic algebra has dimension 4 with basis

1
Ls = Span {Lo = E(DZ —-n),z,D = b% — Fz, 1} (3.16)

The non-zero commutative relations are
10
[Lo,m]-—-D, [LO:D]_D+§$(77)7 [D’m]_l

Moreover, Ls = Lg.
Proof. See Theorem 3.4.

Theorem 3.4 (Multidimensional case). The sufficient
statistic algebra has dimension at most 2n + 2 with basis

Ls = Span{Lo =5 (X7, DI —n),

3.17
Z1,T2,...,%n,D1,D2,...,Dp,1}. ( )

The non-zero commutative relations are
[Lo,z;] = Dj, [Lo,Djl=3", (Fi; — Fj:) D;

L9 D 1) L oaf 1=,
+2azj(7l)’ 1<ji<n [Dz,-’b‘g]—{ 0, if iJ

Moreover, Lg = Ls.
Proof.
Y = (Lo, ) = § S0, [DF 1] = X0, 3D,

ADksme] = 3 py HiwHig, 1<4,5<d;



Therefore, D1, D, ...,
from the computation

Z; = (Lo, V3] = > 7 i[LOiHJ iDi| =30 >

D,, and 1 are elements of Ls. Also,

(Fii — Fir) D + 5 > iy Hiizee (1), 1<J<d
we deduce that z1,x2,...,%, are also elements of Ls.
Now,
Yie = V5, Yl = D00 D0 [HjiDi, Hy e Di]

- Zz_l Ez L HjiHigwes, 1< 5,k <d.
Proceeding we calculate

Lo; = [Lo, Lj] = [E?:l D} —n,— 3 ¢y Br; %]

= = X T { Bros () (2 - £) |

—3 21 Brig (), 1< <E

Hence, Lo; is a linear combination of elements
D1,Dy,...,Dpn,x1,%2,...2Zn,1. In addition,
[Lj7hi]— ZZ 1Bk,JH'Lka 13]33,1525611
[Lj,Di]— En By i Fik, 1<5<4,1<i<d;
[Lj,}/i] Zk 1Bk,]H1,k, 1<5<4,1<i<d.

Therefore, we deduce that Ls is finite-dimensional with
basis as specified, and that Lr and Ls generate the same
algebra.

3.2 The Nonlinear Drift Case
Here we investigate the nonlinear control system

da(t) = f(a(t))dt + 3, Byu;(t,y)dt
+ Y0, 05 (w(t))dw; (1),

Z?:l H; ix:dt 4 db; ®),

(3.18)

dy; (t) = 1<j<d

Lemma 3.5 (The two-dimensional case). Suppose n =
2,m=24=d=1, and

= E_;'Lzl P jz5, f2= f2($1:m2)a
w;,j = constant, fori # j.

B21 =0, (3.19)

1 I

n= Z?:l E%fl + E?:l fzz + h%

3.20
= Quadratic function of (z1,z2) >0, (8.20)

then the sufficient statistic algebra has dimension at most
6 with basis

g g
[:s = Span{Lo,xl,wg, a—xl,Dz = 0_2 — f2, 1} - (3.21)

2. Ifhi=Hiiziandn=A4A nor%negative quadratic func-
tion of (z1,z2) + Y(z2) for some v € C(R), then the
sufficient statistic algebra is given by (8.21).

Moreover, Lg = Ls.

The non-zero commutative relations are

[Lo,2:] = Di, 1 < i< 2; [Lo, 52 72| =w, 2D2
%ai("]) +Z1’_ Fl g, [LO,DZ] = w2, 1Dy + 5 amz (7’])

[6:1:1 Dz] = (6:1:2 (fl) + w1 2)
111 dfi=1,
[35 2] —{ 0, i i=2.

Przoof. 1. From Theorem 3.4 we have Y1 = [Lo,h1] =
Yies H1iDi, X1 [¥1, ha] S _ H2y; Hence,
".%',231,1132,D2, 1 are elements of Ls. Also,

[L07YP1] = ZZ 121_ Hll (we zD + 5 Bx (wl z))
+ Zl 1 llamg(rl)

Since w;,; are constants and 7 is a quadratic function of
(z1,z2), we conclude that Z1 = ai1z1 + a2z2 +a3£—1— +
a4Dy 4+ as.1. Proceeding we calculate

Loy =[Lo, L] =—432_ 32 {ZBk 13%
() (& - £) +Bk,lm(fi)} — 3, La].

Since By, =0, for k=2 and f1 = 212.=1 F1 ;z; we have

_ ! 9 _ o

0 o? 1 a
(5= 72) + Bmm(ﬁ)} " g Pragg ()

If we now substitute i fz = 81:2 f1 + w2, then

Lo, is a linear comblnatlon of z1,z2, 6z ,D2,1; also,

[Lo,1, h1],[Lo,1, L1],[Lo,1, Y1], are linear combinations of

these elements as well. Hence, we deduce that £s con-
; 8 8

tains elements Lo, Boy Boy f2,z1, 2, 1.

2. If we now let hy = Hi,121 we have

1 0
= H: D —Hi1—(n).
1,1w12D2 + 3 1‘16.'161 (7

Yi=hi1D1 X1 = H12,1 Z
If n = (z1,22)Q(z1,72) + 20(z1,72)' + 6 + Y(z2), for
some @ > 0,0 € (R?)',§ € R, v € C®(R), then Z; is a
linear combination of elements i, 22, %, D;,1. More-
over, Lo,1 = aa1z1 + 22 +0138‘9T1 + a4Ds + as.1. In this
case, tracing our earlier steps we deduce that Ls contains
the elements Lo, a_g'{’ Dy, x1,z2,1 which are its basis ele-
ments.

Example 3.6 The following stochastic control problem
has a finite-dimensional sufficient statistic algebra.

dz1(t) = (FLaz1(t) + Fiema(t)) dt
+Bu,1u(t, y)dt + dwi (1),

dza(t) = fa(z2(t))dt + dws(t),

dy(t) = H1,1.’121(t)dt -+ db(t).



To verify the claim, notice that w12 =
—Fy,2 =constant, and

n = (Fi121)? + (F1,222)* + 2F1,1F1,2-’111-’L‘2
+F1+ 33 fa(z2) + fa(z2)? + (Hi121)?
= (o1, 32)Q(1,2)’ +7(z2),

where
Q= Fly+Hi, Fi1Fi»

i1 F F12,2 ’
Y(@2) = fa(®2)® + 52 fa(z2) + Fu,1.

Hence, when @ > 0 and v € C*(R), statement 2, of
Lemma 3.5 applies.

Theorem 3.7 (Multidimensional case). Supposen = m,
£,d are arbitrary, and

fz = Z;.L=1 Fi,j:cj, 1< i < k,

Frt1 = ferr(z1, 2, .- -, k),
fn :fl(:z;l,zz,...,xn),
B;; =0, Vi>k, 1<j</{,

wi; = constant, V1<i<k k+1<j<n

1. If
=70 82; fi+ 2;1 2+ Z?:l h}

= Quadratic function of (z1,Z2,...,Zn) >0,

(3.22)

then the sufficient statistic algebra has dimension at most
2n + 2 with basis
Ls = Span{Lo,z1,%2,...,%n,

3.23
8 8 ,Dn,l}. (3.23)

8
Borr Bogr 0 B Dkt D2, - -

2. If hi = Z?=1 H;;z;, 1 < i <d, wiy; = constant,
VI<i<k k+1<j<n, and

7 = A nonnegative quadratic function of

3.24
($1,$2,...,$n)+')’($k+1,$k+2,...,zn), ( )

for some v € C*®(R™~F), then the sufficient statistic alge-
bra has dimension at most 2n + 2 and is given by (3.28).

Proof. Follow the derivation of Lemma 3.5.

3.3 The Nonlinear Drift and Observa-
tions Case

Next we investigate the correlated nonlinear control sys-
tem

da(t) = f(z(t))dt + 3o0_, 95 (2(t))us(t, y)dt
+2 i Gidw; (1),

dy;(t) = h; (:c(t))dt+zz 1 04,idwi (t)
+Zz_1 ’db(t), 1<j<d.

(3.25)

Let

Lo=A- ”Zk MZ, M= E‘;l Ri[C™ ik + Ya,

Y =— Z?_I[GaC’ Lka?:,;’ C =aa' + N,
1: 2 Z" GGI ’J 3:1: ;0 ; - :L=1 ([Fx]’aiz, + F"”) >
My = Zzzl[Hx] (e ] ik =20 [Ga'C7 i m,

1 £ k £ d, where A, L; are defined earlier. The sufficient
statistic and estimation algebras are given by

Ls={Lo,L1,La,...,L¢, M1, M, . ..
Lg = {Lo, My, Ma, ...

’ Md}L.A. )
aMd}L.A. .

Let ¢ € C*°(R"™) and set

fi= X, (Fgas + 106 )6), 1<i<n
hi=30 (Hi’in [aG],Jasz , 1<i<d.

Theorem 3.8 [8]. Suppose (8.26) holds and

9i =B;, 1<j<¥¢  (ie., independent of z). (3.27)

1. If $ € C*°(R") is a solution of

DI ([GG’li,jﬁ,Z—z—w) 66 ks (4 0

+2F»Jm.7 Bz (¢)) +Z:L— ZJ 1 B, juj 5~ aa; )
=3 (:1: Q(u)z + 2m(u)z + 8 (u)),

for some Q(u) = Q'(u) > 0, m(u),(u), then Ls is iso-
morphic to the Lie algebra

3 (2'Q(u)z + 2m(u)z
)Md}

£s={Ao- {5, M2 -

+5(’u)),L1,L2,...,Le,Ml,Mz,... LA"
Moreover, if Q(u), m(u),d(u) are independent of the con-
trol u then Ls is finite-dimensional with basis

£ = spon { Ao~ 4 1, -
<) <]
+ 6),m,m,...

(2’ Qz + 2ma (3.28)

8
,m,m,xz,...,zn,l

2. If € C®°(R") is a solution of
10 ([GG’lu 522 (8) + [6C")s 22 ()5 (9)
+2F; ;25 52-(4)) = } (&'Qz + 2maz +9),

for some Q(u) = Q' > 0,m,d, then Lr is finite-
dimensional isomorphic to the Lie algebra

Le= {x‘io— %ZZ=1MI§ - 1 (2'Qz + 2mz + 4),

707N /A S

with basis given by (3.28).



3.4 The Linear Affine Control Case

Theorem 3.9 (Multidimensional Case). Consider the
control system (2.8), (2.4), with

[ =Fu,
Then

gi=Bjz 1<j<¥¢, h(z)=Hz, o(z)=1I,.

$ T ORI sy I W g T

9 |n n
{5, b= {wizidii=n 1y -
1
The non-zero commutative relations are

82 a_ | _ 82 . 8%
I:B:vizj » Tk a:vm] - 6"”-7 0z;0zm + ki Oz ;8T m
82 — S 8.
[aziazj yTeTm | = (ék,g 6711,‘1. + (Sk,,zam,])
a el
+ ((Sk,j +Tm + Jm,j:ck) Boq + (Jk,izm + 6m,i$k) Bz;0
a _o | _ 2 ) — 5y s
[-’Biéz—j; m] = —5i,k;9*1,7, -’L‘z‘az—j,wkmm] = 0k,j TiTm
+0m,TiTh, [7oz; ThTm] = Ok,i®m + Om,iTk,
where 1 < 4,5,k,m < n,d;,; =1 ift = 3§ and zero other-

wise.

Proof. Follows from the commutative relations.

4 Additional Generalizations

Consider the nonlinear control system (2.3), (2.4). Here
we are interested in minimizing (over u(-) € Uqa) the
exponential-of-integral cost function J?(u):

T
7 (w) = B* {exp (e / £o(t), ult, ))dt + esa<x<T))) } ,

where 8 > 0. Similar to Theorem 2.4, the information
state approach to this control problem yields:

Jw)= inf E {/ exp (f¢(z)) 7° (:z:,T)dz} . (4.29)

uEULg

Here, {n%(z, 5);0 < s < t}, is an information state; it is a
solution of a certain controlled Feynman-Kac stochastic
PDE. In particular, when

£
Uz, ) = Lo(z) + »_ & (a)d,

(4.30)
j=1
we have
7% (z,t) = n(z,0) + fot (Lo + 040) n°(z, 5)ds
+ 3000 Jy Lim® (3, 8)us (s, y)ds (431)
7 .
+ Zjdzl fo t@Zﬂrg (z,8)u2(s,y)ds
+ 35 Jo him® (z,5) 0 dy; (s).
The sufficient statistic algebra is
L8 5{Lg,Ll,L2,...,Ll,ﬁél,efz,...,eh, (4.32)

hiha,. . ha}y 4 s

where L = Lo + 64, . Clearly, [,?g, can be used to
classify nonlinear systems with finite-dimensional con-
trollers. An important observation announced in [6],
is that we can solve the so-called inverse control prob-
lem, by choosing the zeroth order differential operators,
£o, €1, €2,4, to force L%, to be finite-dimensional. When
£o =polynomial in (zx1,%2,...,z,) of degree at most
two, and ¢; =Constant, 1 < j < ¢, we obtain finite-
dimensional controllers for the classes of nonlinear sys-
tems discussed in earlier sections.
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