
Dynamic Control of a Kanban System in Dioid Algebra 
B. Cottenceau, L. Hardouin, J.L. Boimond 

Laboratoire d’Ing8nierie des SysMmes Automatis& 
62, avenue Notre-Dame du lac 49000 ANGERS 

[bertrand.cottenceau, laurent.hardouin, jean-louis.boimond]@istia.univ-angers.fr 

Abstract 

After recalling kanban system model in dioid alge- 
bra , we propose dynamic controls of such systems in 
order to both reduce work in process and keep the 
same performance as the classical kanban system. 

1 Introduction 

The main objective of the Just In Time (JIT) man- 
ufacturing approach is both to limit the stock and 
to meet the customer’s demand, i.e., to compute as 
close as possible the latest control dates of the process 
input as the output part is obtained (at the latest) 
before the customer’s desired dates. The optimal con- 
trol has been given when the manufacturing process 
can be represented as a Timed Event Graph (TEG) (a 
subclass of Petri nets of which each place admits one 
and only one transition upstream and downstream), 
and under the following assumptions : 1) the cus- 
tomers demand is initially known (all the reference 
input is used to compute the optimal control) 2) the 
process is perfectly modelized and is not perturbated 
by some exogenous events (fault parts, machine fail- 
ures). Previously, Toyota had organized its man- 
ufacturing system in production stage with a kan- 
ban method, which many searchers have studied [3], 
[8],[9]. The idea behind this method is the following. 
A production line is divided into several stages and 
at every stage there is a fixed number of tags (tickets) 
called kanban. An arriving job receives a kanban at 
the entrance of the stage and keeps it until it exits 
the stage. If an arriving job does not find an avail- 
able kanban at the entrance, it is forced to wait in 
the previous stage until a kanban is freed. 
The success of this just in time manufacturing ap- 
proach is certainly due to the following characteris- 
tics: 1) the part number in each stage is bounded by 
the kanban number, denoted K. 2) for each stage 
an output buffer (just downstream the machines) is 
able to admit a number of finished parts (FP). This 
allows to minimize the influence of exogenous events 
(machine failure, fault parts). Moreover, if the out- 
put buffer is full (FP=K) a customer’s demand of K 

parts can be instantaneously satisfied. The aim of 
many works about this method is to establish the 
number of kanbans in order to guarantee the cus- 
tomer’s demand in spite of stochastic perturbations 

[9]. Another searcher objective is to obtain the opti- 
mal kanban number which respects the usual trade- 
off between the greatest production rate and the least 
work-in-process (WIP) [8]. 
In this paper kanban system is studied in a determin- 
istic case by using the dioid Mi”,“[[r, S]] (see [4]). 

Afterward we establish a control strategy in order to 
both compute the latest input dates of the produc- 
tion line and to keep the same output behavior as 
a manufacturing system organized in kanban stages. 
This first approach is a particular case of the control 
using a reference model and developed in [5]. The 
second control strategy is developed in order to both 
limit the WIP and to keep the same stock evolution 
of finished parts as a classical kanban stage. 

2 TEG Representation in 

Dioid Algebra 

2.1 Dioid Algebra 

Definition 1 (Dioid) Dioid D is a set with two in- 

ner operations (@, a), both associative and both hav- 

ing neutral elements denoted E and e respectively, such 

that CB is commutative and idempotent (a $ a = a), 

8 is distributive with respect to $ and E is absorbing 

for 8, 

Definition 2 (Natural Order) Dioid can be endowed 

with a natural order a $ b = a e a t b. a $ b is the 

least upper bound of a and b. 

Definition 3 (Complete Dioid) A dioid is complete 

iff it is closed for infinite sums and if 8 distributes 

over infinite sums too. In particular, the sum of all 
the elements of the dioid is denoted T. 

Example 1 (Emin, ,,,) The set Z U {+a} en- 

dowed with the min operator as $ and the classical 

addition as 8 is a dioid called izlmin. Its neutral ele- 

ments are E = +m and e = 0. Moreover, by consid- 

ering the set ZU (-03, +w} the dioid becomes &in 

(with T = -m). The dual Dioid Em,, is the set 

iZ U (-00, +w}, with max as @, + as @, E = -M, 

e=O andT=+m. 

Definition 4 (Lower bound) In a complete dioid, 

the greatest lower bound always exists for an arbitrary 



set S. In particular, if S = (a, b), this bound is de- 

noted a A b = $ X. One obtains the following 
~<a, x5b 

equivalences a k b e a @ b = a e a A b = b. 

Definition 5 (Residuation) A mapping f : C + V 

where C, 2) are ordered sets, is residuated if for all y E 

D, the least upper bound of the subset {x E C]f(x) 3 

y} exists and belongs to this subset. It is then denoted 

ffl(y). The mapping ffl : 2) + C is called the residual 

off. By definition, f [f#(y)] 5 y, ‘v’y E YD. 

Example 2 The mapping f : :I,“, x , where 2, 

is a complete dioid, is residuated. Its residual will be 

denoted f#(y) = a \ y. 

Property 2.1.1 Let a, b, x E V, the following rela- 
tion is always verified 

a \ (26) ? (a \ x)6 (1) 

Proof: see [l] section 4.4.4. 

Theorem 1 The equation x = ax @b admits a least 

solution x = a*b where the Kleene star operator is 

defined as : a*= @a’. 
k>O 

Definition 6 (Dioid modulo z) Let a, b, x E V a 

commutative dioid. a and b are said to be equivalent 

modulo z (denoted a E b(mod 2)) iff az* = bz*. Let 

[a] = {xl x E a(mod .z)} denote the equivalence class 
of a according to equivalence relation mod z. Let us 

denote Vlmodt the quotient dioid ID), i.e., the set of 

equivalence class modulo z of V elements. 

2.2 TEG Modeling in Dioid Algebra 

Baccelli et al. [l], Cohen et al. [2] have shown that 
a TEG can be represented by linear equations over 
dioid algebra. To obtain a linear model, we can asso- 
ciate with the transition labelled xi either a counter 
function which is a map Z + mila, t + xi(t) de- 
fined by: xi(t) = k a the firing number of Q 
at or after the time t is L, or dually a dater func- 
tion which is a map 7Z --) z,,,, k + xi(k) defined 
by: zi(lc) = t u the firing numbered k of xi oc- 
curs at time t. Then, a relation between counter or 
dater functions associated to TEG transitions may 
be established. For example, according to fig. 1: 
xg(t) = 2 @I xl(t - 1). Other representations may also 
be obtained by introducing shift operators y and 6 
where y is a backward shift operator in event domain 
(formally, yx(L) = x(lc - 1)) and 6 is a backward shift 
operator in time domain (formally, &x(t) = x(t - 1)). 
Then, an input-output representation may be given 
in dioid Zmin[[S]] (resp. .Z~ar[[~]]) of formal power 

Figure 1: Example of elementary TEG 

series in 5 (resp. 7) with exponents in Z and coeffi- 
cients in mi,, (resp. zmam). TEG behavior is natu- 
rally described by non decreasing trajectories which 
leads us to establish simplification rules for shift op- 
erators manipulation : 

yk $ + = y”W>‘) # $ 6” = p+>s) 
(2) 

Finally, a two dimensional domain representation 
manipulating power series in both y and 6 is ob- 
tained. Let B[[y, S]] be the dioid of formal power 
series in y and 6 with boolean coefficients and ex- 
ponents in Z (an element may be written as s = 
iJ&~(/,j)yi6j, s(i, j) E {E, e}). By adding the sim- 

ilification rules (2), a new dioid called Mi”,“[[r, S]] 

is defined and corresponds to the quotient dioid 

mY> ~11,,,,(,~,-~) 9 i.e., each element of M,“,“[[-y, S]] 

represents an equivalence class modulo (y $6-l), see 
[2] for an exhaustive presentation. Then, we can as- 
sociate with each transition of a TEG an element x of 
M,“,“[[r, S]] which codes the set of information avail- 
able about the sequence of events related to this tran- 
sition. For example, considering $9. 1, one obtains 

x2 = y2sx1 

More generally, a TEG yields standard equations in 
Mfz[[y, S]] of the form 

X=AX$BU 

Y=CX@DU 

where X, U and Y are vectors of elements in 
Mf:[[[r, S]] representing respectively internal, inputs 
and outputs transitions of TEG. Considering state 
representation previously exposed and resolving first 
state equation according to Theorem 1, we obtain 
X = A’BU and therefore, Y = (CA*B@D)U. Then 
H = CA*B@ D characterizes the transfer relation be- 
tween TEG input and output (Let us note that each 
entry of H is a series s). In order to interpret the 
transfer matrix H, we recall that a counter function 
is associated with a series s and is the unique non 
decreasing function C, such that s = @ ycs(t)St (see 

PI>. 
tEZ 

2.3 Rational Computation in Dioid 
Algebra 

The power series which arise in the transfer matrix 
H are rational. Let us recall some properties about 



rationals. 

Definition 7 (Rational closure) The rational clo- 

sure, denoted C”, of a subset 8 of a complete dioid 
2) is the smallest subdioid F such that C c 3 and 

3 is rationally stable (i.e., stable for the operators 

(a 8,’ 1). 

Definition 8 (Rational series) An element of 

M~:[[Y, S]] is a rational series if it belongs to the 

rational closure of R := {e, E, y, 6). 

Theorem 2 A series is rational iff it is periodic. 

(partial result of theorem 5.39. of [l]) 

Definition 9 (Periodic series) A series of 

Ma”,” K”/, 611 is periodic iff it can be written as 

s = p $ qr* where p = 4 -yni#i and q = & yNiSTj 
i=o j=O 

are polynomials and r = yVS7 is monomial. The 
ratio V/T is called the production rate of s. 

Definition 10 (Causality) A series of 
M,“,“[[r, S]] is causal either ifs = E or if val{s) 2 0 

and s k y”a’(S), with v&(s) the valuation in y of 

any representative of s, i.e., the lower bound of 

{iEzpjE~,s(i,j)#E} 

Theorem 3 (Operations over periodic series) 
$, 8, A and Residuation of periodic series are 

periodic series. 

See [41,[5lJ61 h w ere the algebra of periodic series is 
investigated. 

3 Kanban System Modelized 

in W?xY, 611 
3.1 Kanban Model 

A kanban production line is constituted of multiple el- 
ementary stages like the one represented by the TEG 
of fig. 2. where Ka,n;,ti are respectively the kanbans 

(;;:;p&&;z;; 
xi x’i x’i xi+1 

@ 

Figure 2: TEG of kanban stage i 

number, machines number and the processing times 
in the stage number i. 

Figure 3: TEG of one kanban stage 

To simplify let us first consider the case of one kan- 
ban stage of production line, its TEG is represented 

by f;s- 3. 
Input u designs the stock arrival of unprocessed 

parts and the input ye describes the customer’s re- 
quest which can be given from the downstream stage 
in case of multiple stages as it is suggested in dot- 
ted lines fig. 2. In Mi”,“[[r, S]], the TEG of a single 
stage leads to the following state model (see [4] for 
an exhaustive development). 

jx =j&i ~e~.yJ-J:’ 
Y 

U 

By using theorem 1 the transfer relation between 
inputs u, ye and output y corresponds to 

y = 
( 
e $ yKQ,“‘“(“dp 

)‘I Yc 63 6% 
min(K,n)St)*u 

(3) 

Remark: According to production rate definition 
(Def. 9), transfer relation (3) shows that only n kan- 
bans are necessary to have a production rate equal 
to n/t. Later on , we assume that K 2 n, i.e, the 
stage production rate is not decreased by the kanban 
policy. 

3.2 Internal Behavior of the Stage 

Let us note that transition 21 represents the input of 
the unprocessed part in the stage and 23 the input of 
the finished part in the output buffer of the stage. 
The transfer relations between the inputs and internal 
transitions of a kanban stage, under the assumption 
proposed in previous remark, are given by 

x1 = yK (e @ Fb”(ynst)*) ye 

CB (e 63 yKd”(ynbt)*) u 

(4) 

x2 = YYm)*yc $ (+qfu 

x3 = YKqy”St)*y, $ Syy”St)*u (5) 

Let us note that the counter function &l(t) char- 
acterizes the parts number introduced in the stage at 



or after time t, and that Cy(t) represents the parts 
number put out of the stage. By considering stock 
functions (see [7]), we can introduce the next defini- 
tions. 

Definition 11 (WIP) It is the instantaneous num- 

ber of parts waiting for or in processing in the stage: 

&l,r3(t) = cd(q-- &3(i) vt 

Definition 12 (FP) It is the instantaneous parts 

number in the output buffer, i.e., 

SsB,y(t) = &3(t) - &J(t) w 

Definition 13 (Internal stock) It is the instanta- 

neous number of parts in the stage (WIP+FP), de- 

fined as : 

Ed,&) = Czl(t)- c,(t) w 

3.3 Kanban Stage Properties 

Internal Stability: A kanban stage is internally stable, 
i.e., for all inputs, the internal stock ~T~l,~(t) remains 
bounded. More precisely, its upper bound is K. In 

the Petri nets setting, the internal stability is guar- 
anteed if the graph is strongly connected. 
Initial internal stock: Under the assumption of u = 
E = y+m 6-m > i.e., an infinity of parts in the upstream 
stock since an infinite time, the kanban method allows 
obtaining initially K parts in the output buffer. 
In fig. 4, we present the transfer relation between ye 
and y when K = n and K = n + K’ respectively. 
The K’ supplementary kanbans do not increase the 

even, number 

Figure 4: Transfer relation between yc and y of kan- 
ban stage with K = n and K = K’ + n. 

production rate of the stage (according to remark in 
3.1) and induce a margin of K’ parts (see shaded 
area in fig. 4). The beneficial influence of this mar- 
gin of parts is to allow satisfying more constraining 
reference inputs or to loose “accidentaly” some to- 
kens (due to exogenous events). The counterpart of 
this margin is an increase in the internal stock (WIP 
and FP), since K parts are always present in the 
stage. This K’ number selection is closely linked to 
the usual trade-off between achievable reference input 
and stock value. 

3.4 Production Line with Multiple 
Kanban Stages 

In [4] the single kanban stage model is extended to 
a general production line with p kanban stages. The 
general transfer relation can be described by 

Y =au@PYc (6) 

where ye is the reference input applied at the last 
stage, y is the output of the last stage, u is the in- 
put transition of the first stage and CV, p are periodic 
series. Indeed, using notation of fig. 2, each kanban 
stage may be described by 

xj = ffju $ pjxj+1 

and the global transfer is given by 

Y = ‘yp+lU 63 Pp+1Ye 

where, oi and pi verify the next recursive relations: 
a1 = e, p1 = -yK1, for 1 < i 5 p - 1: 

Qp+l = (ppStp(YnP6tP)*)*StP(y71p6tp)*(yp, 

Pp+l = (Pp@qynPStP)*)* 

4 Control Strategy of the 
Kanban Stage 

Under the assumption of an initial stock 
u = E = y+“S-“(full stock), we have seen in 
the previous section that the kanban stage is able to 
provide I< = (n + K’) parts initially, i.e., to induce 
an initial number of parts in the output buffer. This 
margin can be used : 
- to answer to a customer’s demand unachievable 
without this margin; 
- to compensate eventual loss of tokens (e.g., fault 
parts). 

4.1 Control to Keep Output Behavior 

4.1.1 Control Law 

In this first approach, we propose the control which 
allows to both achieving the same output trajectory 
y as a classical kanban stage and reducing as far as 
possible the parts in the stage (i.e., internal stock). 
This can be formally written as follows: 
find the greatest (latest) ‘1~ such that : 

y = [e $ -yKSt(y”6t)*]y, 

which corresponds to the greatest ‘11 verifying: 

k@7K~t(y”6t)*]y,e bt(y”6t)*u = [e@yK6t(yn6t)*]y, 



i.e, owing to Def. 2 

[e cl3 yKSt(ynt?)*]yc > 6t(ynSt)*u (7) 

Therefore, according to residuation theory (Def. 5), 

the optimal control is given by 

uopt = Pt(y”O*l \ [(e @ Y~~~(-Y~Q*)Y~I (8) 
If ye is completely known, the effective computation 
of the control uOpt can be achieved by considering 
result given in [l](section 5.6), which is the so-called 
Backward equations. To avoid this assumption, it is 
possible to consider the following control which still 
verifies (7) : 

us = [bt(y”St)* \ (e $ ~~@(y”6~)*)]y, 

According to property 2.1.1 it is clear that U, 3 uOpt. 

This transfer relation between U, and ye may be an- 
alytically expressed as 

u, = Smkot[e $ yK-kon+n#(y"&t)*]y, (9) 

where rEc is the least integer such as ken 2 K. 

Proof: The analytical expression (9) can be obtained 
by considering the two results: 

- Vk’ as k’n 2 K we have : 

Le @ yKJt(ynQ*] * [y--k’np’t @ yK-k’n6t-k’t(ynbt)*] 

= [5- (b-l)* $ y IC-(k,-l)n6-(ko-2)t(yn6t)*] 

with kc E N such as ken 2 K 2 (ko - 1)n. 
This first result is obtained by consider- 
ing respectively the distribution property 
between $ and A, the simplification rules: 
y”# A yn’#’ = y”a”(n,n’)gmin(t,t’), the rules 

(2) and [(r”#)* 5 y-i”S-it(y”St)*]. 

- Moreover, ‘dk” as 0 2 k” 5 ko we have : 

[~-(ko-l)t ~yK-("o-l)nS-(ko-z,t(,,bt)*] 

3 h- 
k%S-k”t @ yK-k”ra~-(k”-l)t(y”~t)*] 

Indeed, by considering j = ko - 1 - k” this inequality 
can be written 

P- 
m+t $. . . $ ~~--kon+jnp-kot+jt 

$ yK-k”n~t-k”t(ynq*] 

5 h- 
k”n&-k”t $ y-Gk”npk”t ww*1 

and we have 

Lb- 
m+t $ . . . (ZJj yK-lon+jnpkat+jt] 

= [b-kotft $ . . . @ yK-k”n-npk”t] 

5 w 
k”n6-k”t 1 

since K 2 n. These two results induce that : 

6-“[(r”@)* \ (e cl3 -yK(yn@)*)] 

= g-t )y y-“ip(e $ YK(p(y”~t)*) 
i=o 

which ends the proof. 
Remarks: The term SSkot indicates that the firing 
dates of ye must be known over a future horizon of 
kot time units to compute ‘~1,. 

4.1.2 Properties 

In this section, we compare the behavior of a classical 
kanban stage with the stage controlled by Q. In this 
way, we compare xl,,, 23Us, yUE (i.e., when u = E) 
with xl,,, ~3~~ and yUs (i.e., when u = 2~~). 

Property 4.1.1 With control u,, the internal tran- 

sitions of the stage are fired later than in a classical 

kanban stage with u = E, or formally 

xl,, 2 XL, and ~3~~ k ~3~~ (10) 

This property means that the firing of xl will be de- 

layed by control u,. 

Proof(10): It is obvious by considering (4) and (5), 
since u, 2 E. 
Remarks: By replacing U, in (4), it can be shown 
that xl,, = U, k xl,,. 

Property 4.1.2 Control law u, allows reducing the 

internal stock S3C1,Y(t)(WIP+FP). 

Proof: First, the control construction yields yUS = 

Y UE = [e $ ~~S~(y~#)*]y,, then 

Yus = YUE a w, GJus(t) = Cyuc(t) 

Moreover, the former property yields: 

xl us k xl UE - ~w4t> I cd,.(t) 

where 5 is the usual order. Then, Vt,Szl,~,y,c(t) 2 
S rldtusW 

4.1.3 Extension to Production Line with 
Multiple Kanban Stages 

The former control can be easily extended to produc- 
tion lines with many kanban stages. According to re- 
sults concerning section 3.4, the input-output transfer 
relation is expressed as (6). Then, the greater con- 
trol u which allows keeping an identical behavior, i.e., 

Y = Dye is 
‘Ilopt = Q \ (PYC) 

To avoid the assumption of initial knowledge of all 
reference input ye, it is possible to consider the fol- 
lowing control (see 4.1.1) 

us = (a \ P>Yc 



where (Y and /3 are two periodic series. 
In this general case, the algorithm given in [5] gives 
the control law and, in particular, the future horizon 
over which the reference trajectory needs to be 
known. 

4.2 Control to Keep Stock of 
Processed Parts 

This second approach objective is to find the latest 

firing dates of u in order to keep the same stock evo- 
lution in the output buffer (stock FP) as in classical 
kanban stage with u = E, i.e., to have at each instant 
the same margin of processed parts in the stage. This 
objective induces that the system will behave like a 
classical kanban stage in regard to accidental loss of 
parts and/or machine failure. 

4.2.1 Control Law 

Formally, this problem can be expressed as finding 
the greatest u such that x3 behaves like when u = E, 
i.e., 

x3 = x3U, 

The greatest control verifying previous equality is 

uop = -+yfq*y, (11) 

Proof(l1): The objective statement is equivalent to 
finding the greatest u such that 

yKSyynSt)*y, a3 qynq*u = yW(yvt)*y, 

i.e., owing to Def. 2, 

The optimal solution is given by Residuation theory, 
in this case uop may be written as 

uop = S-y(yw)* \ [yv(y”6t)*y,] 

which leads to relation (11) thanks to a* \ (a*x) = 

(a*x) Vx (see [l], section 4.5.2.). 
Remark: The control law (11) is causal (see Def. IO) 
and the compensator yK (yn @)* admits a TEG inter- 
pretation with positive temporization.. 

4.2.2 Properties 

Property 4.2.1 The output stage behavior with uOp 

matches the output with u = E, i.e., 

Yuop = YUE 

Proof: BY replacing uop in transfer relation (3), and 
by considering that a* a* = a*, we have immediately 

Yu op = (e Cl3 ~~6~(-~“6~)*)y, cl3 s”(~“S~)*[~~(ynS~)*]y, 

= (e $ -yK@(ynbt)*)yc = yuE 

Property 4.2.2 With control uOp, the input dates of 
unprocessed parts in the kanban stage are greater than 

with control u = E, i.e., 

xl uop > XL 

Proof: It is obvious by considering (4), since u, > E. 

Property 4.2.3 The stock FP is identical with con- 

trol uOp and with u = E, or formally: 

S r3tL.,d4 = SZQuoprh$)> vt. 

Proof: By construction, uop leads to xQuop = ~3~~. 
Moreover, Property 4.2.1 yields yUop = yUE. Obvi- 
ously, the FP evolution is identical. 

Property 4.2.4 The WIP of the kanban stage with 
control uOp is lower than with control u = E. 

Proof: xl,, 5 xLp (property 4.2.2) and 
x3,, = ~3,~~ (property 4.2.1) obviously, Czl,,(t) - 

G3.d) 2 Gl,,,(t> - G3&), vt . 

Property 4.2.5 Control uOp is the greatest control 
such that yK6t(~“6t)*y, = St(yn@)*u. This property 

means that the optimal control allows matching the 
objective. 

Proof: It is obvious by replacing u by uop in x3 and 
by considering that a*a* = a*. 
Remark: This result can be seen as an exact inversion 
problem, i.e., 

Gt(ynSt)*[Gt(ynSt)* \ (yV(yV)*yc)] = yV(ynbt)*y, 

Property 4.2.6 The transition behavior is such 
that, 

U op = XLp = awp = gyynSt)*y, 

Proof: By replacing uop in xl and x2 we have 

xl UOP = -yK(e 63 rK6”(ynbt)*)y, 

CB(e C3 ~~6~(y”S~)*)y~(y”S~)*y, 

= (e a3 Y~~~(Y~~)*)(F $ -yK(ynSt)*)yc 

since a*a* = a* and K 2 n, this yields 

xl uop = YK(Tw*)Yc 

x2 "OP = YK(7”Q*Yc 69 (ynq*)yK(ynq*yc 

= YK(7”Q*Yc 



Remark: Property 4.2.6 involves that the stock be- 
tween u and x2 is zero, i.e., 

S %,aL. = Cu&) - Cz2”“P(t> = 0, vt. 

This is a consequence of the exact inversion seen in 
property 4.2.5 and means that uop provides a part 
exactly when it is necessary and never before. 

Property 4.2.7 Feedback control ubp = yK(-yn#)*y 
yields the same control as uop. 

Proof: By considering the transfer relation : 

x3 = 6t(yn6t)*u @ yKSt(yw)*y 

and by introducing uLp one obtains 

x3 = yK6t(yn6t)*y = YKSt(yn6t)*(x3 $ ye) 

re$lsing that b*(ab*)* = (a $ b)* and K 2 n this 

x3 = yKqy”St)*y, = x3U, 

furthermore, since K 2 n 

U&l = yK(yV)*y = yK(yvt)*(yc $ x3) 

= yK(ynbt)*(e $ yKSt(y”St)*)y, 

= yK(yV)*y, = uop 

Remark: Associated with 4.2.6, the former proper- 
ties mean that the optimal control uop is equivalent 
to replace the feedback on input transition, -yKy, by 
feedback yK (yn St)* y. 

4.2.3 Multiple Kanban Stages Extension 

By analogy we can expand the previous principle 
which consists in finding the greatest feedback cix:i+i 
on the stage input xi such as xy behaves like in clas- 
sical kanban stage, i.e., 

By considering that xr = Sti(yni#i)*xi and by as- 
suming in a first step that x:-i = E, the greatest 
feedback can be expressed as 

ci,,xi+1 
= #i(yni6ti)* \ (yKi6ti(yniSti)*xi+l) 

= yK' (-pi 6tq*Q+1 

which is the greatest solution of our problem accord- 
ing to property 4.2.5. 

5 Conclusion 

In this paper we have proposed two control strate- 
gies of manufacturing system organized with the kan- 
ban method. The first control allows both reducing 
(FP+WIP) and keeping the same output behavior as 
a system with an infinite stock of unprocessed parts. 
It is shown that the reference input (customer’s de- 
mand) must be known over a temporal horizon to sat- 
isfy our objective. The second control law allows both 
reducing WIP and keeping for each kanban stage the 
same number of processed parts (FP) as in a classical 
kanban system. The WIP reduction is lower than the 
ones obtained with the former control, nevertheless 
the keeping of the processed parts stock FP allows to 
satisfy the same behavior as a classical kanban stage 
in regard to exogenous events. It is shown that the 
law is causal and can be seen as a feedback of the 
output on the input transition. 
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