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Abstract 

Equivalence of several feedback and/or feedforward 
compensation schemes in linear systems is investi- 
gated. The classes of compensators that are realizable 
using static or dynamic state feedback are character- 
ized. Stability of the compensated system is studied. 
Applications to model matching are included. 

1 Introduction 

This is a tutorial which presents a study of equiv- 
alence, from the transfer function point of view, of 
several commonly used feedback and/or feedforward 
compensation schemes. It is shown that a cascade 
compensator is equivalent to a two-degree-of-freedom 
compensator as well as to a static state feedback ap- 
plied to a dynamic extension of the system. 

The subclasses of these compensators that are equiv- 
alent to a standard static or dynamic state feedback 
are identified. The proofs are constructive and pro- 
vide simple design procedures. 

Of course that two transfer-function equivalent com- 
pensators can have different internal properties. That 
is why a result on the stability of the overall closed- 
loop system is included. 

These results are important per se in linear system 
theory. They are also useful in applications. A typical 
application area is the model matching problem. The 
results presented allow splitting the problem in two 
linear subproblems: first a cascade compensator is 
determined to achieve the match and then realized in 
terms of the configuration desired. 

2 Classes of Compensators 

We shall study several common feedback and/pr 
feedforward configurations with an eye on the equiv- 
alence of various compensation schemes. 

Consider a linear system governed by the equation 

ii(t) = Ax(t) + Bu(t) (1) 
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where u E R”’ is the input and x E R” is the state. 
The system gives rise to the tranfer function 

T(s) = (d- A)+3 (2) 

which is a rational, strictly proper n x m matrix. 
A common compensation scheme used to modify 

(1) is the static state feedback defined by 

u(s) = FE(S) + Gv(s) (3) 

where v E Rm is an external input and F, G are con- 
stant matrices. 

A more general compensator is one which involves 
a dynamic state feedback according to the equation 

u(s) = F(s)x(s) + Gv(s) (4 

where F is a proper rational matrix and G is constant. 
Generalizing further, one can define a compensator 

of the form 

u(s) = F(s)x(s) + G(s)v(s) (5) 

which makes explicit the presence of a dynamic state 
feedback as well as a dynamic feedforward, the so- 
called two-degree-of-freedom compensator. Here F 

and G are proper rational matrices of appropriate 
sizes. 

The equation 

u(s) = K(s)v(s) (6) 

where Ii is a proper rational matrix, defines a pure 
feedforward dynamic compensator, or cascade com- 
pensator, which is frequently used in the classical con- 
trol theory. 

Finally, a set of p integrators 

i’(t) = u’(t) 

can be adjoined to system (1) to give an extended 
system. A static state feedback applied to the extended 

system according to the equations 

u(s) = FIIX(S) + FIZX’(S) + GIV(S) 

u’b> = Fxx(s) + F22x’(s) + Gzv(s) (7) 

will result in a dynamic feedback and feedforward rel- 
ative to the original systems (1). 



3 Transfer Function 
Equivalence 

Consider the classes of compensators defined by (3) 
- (7). Each class is obtained by allowing F and G to 
vary within the specified limits. 

Two compensator classes are said to be transfer 

function equivalent if, for any compensator of one 
class, one can find a compensator in the other class 
such that their application to the given system (1) 
will result in overall systems having the same trans- 
fer functions. 

This kind of equivalence reflects just the ability of 
two compensators to produce the same input-output 
behaviour. In particular this equivalence says nothing 
about dynamical order, stability, and other properties 
of systems which depend on a particular realization. 

Our first goal is to investigate which classes are 
transfer function equivalent. 

Theorem 1 [4], [6] The compensator classes (5), 
(6), and (7) are transfer function equivalent. 

Proof: We shall establish the following chain of im- 
plications. 

We show that each compensator (5) can be repre- 
sented in the form (6). To see this, we apply (5) to 
equation (1) in the transfer function form, 

z(s) = T(S)U(S) 

and calculate the transfer function from v to U. Com- 
paring with (6), one obtains 

K(s) = [I - F(s)T(s)]-1 G(s). 

Since T is strictly proper, I- FT is bi-proper. Hence 
K is proper. 

We now show that any compensator (6) can be 
realized in the form (7). Given a proper rational K, 
let 

K(s) = C(sI -A)-% + D 
- - - - 

for some state-space ralization (A, B, C, 0). Then 

Fll=O Flz=f? Gl=D 
- 

Fzl = 0 Fzz = A Ga = B 

define a state feedback of the form (7). 
Finally let us show that each compensator (7) can 

be represented in the form (5). To this end we ap- 
ply (7) to the extended system to obtain the overall 
system equations 

k(s) = (A + BFu)z(s) + BFnz’(s) + GIV(S) 

i’(s) = Fzlz(s) + Fzzz’(s) + Gzv(s) 

u(s) = FHZ(S) + F122’(s) + Glv(s) 

and calculate the transfer functions from z and v to 
U. On identifying with (5), one obtains 

F(s) = FII + F12(sI - Fn)-% 

G(s) = G1 + F12(sI - F~z)-~Gz. 

Since sI - F22 has a strictly proper inverse, both 
F and G are proper rational matrices. cl 

In view of this equivalence, the simplest configura- 
tion (6), namely a cascade compensator, will be used 
to represent any of the above feedbacklfeedforward 
compensators. 

The class of static/dynamic state feedback com- 
pensators (3) and (4) is less general than (6) and will 
be studied in the sections to follow. 

4 Dynamic State Feedback 

Dynamic state feedback (4) is a special case of (5), 
hence of (6). It is interesting to identify the subclass 
of cascade compensators K which are transfer func- 
tion equivalent to dynamic state feedback. 

These compensators satisfy 

K(s) = [I - F(s)T(s)]-lG. (8) 

We impose a technical assumption that G is non- 
singular; this will greatly simplify the analysis [3]. 

Theorem 2 [l], [6]. G iven a proper rational m x m 
matrix K, there exist a proper rational F and a con- 
stant non-singular G such that (8) holds if and only 
if I< is bi-proper. 

Proof: Since T is strictly proper, I-FT is bi-proper. 
Since G is non-singular, K is bi-proper as well. 

Conversely, suppose that K is bi-proper. Let G be 
defined by 

G = K(co). 

Then V(s) = K-l(s) - G-l is a strictly proper ra- 
tional matrix. The equation 

V(s) = X(s)T(s) (9) 

has a proper rational solution X if and only if the 
infinite zero structure of T coincides with that of 

[ 1 F * The infinite zero structure of T is given by 

(s-l, . . . . s- ‘). Since V is strictly proper, the solvabil- 
ity condition is verified and a proper rational X exists 
that satisfy (9). Let F be defined by 

F(s) = -GX(s). 



Then 
K-‘(s) = G-l - G-lF(s)T(s) 

and (8) holds. 

5 Static State Feedback 

This is a further specialization in which both F 

and G are constant. Which cascade compensators 
K(s) are transfer function equivalent to static state 
feedback (3)? Those which satisfy 

K(s) = [I- FT(s)]-lG. (10) 

We again assume that G is non-singular and write T 

in the form 
T(s) = N(s)D-l(s) (11) 

where N and D are right coprime polynomial matri- 
ces. 

Theorem 3 [2], [6]. Given a proper rational m x m 
matrix K, there exist constant matrices F and G with 
G non-singular, such that (10) holds if and only if 

(a) K is bi-proper 

(b) K-lD is polynomial. 

Proof: Condition (a) follows from Theorem 2. Then 

K-‘(s)D(s) = G-‘D(s) - G-lF N(s) 

is a polynomial matrix, which is (b). 
Conversely, let I< satisfy (a) and define G by 

G = K(m). 

Then V(s) = K-l(s) - G-l is a strictly proper ra- 
tional matrix. Furthermore, let K satisfy (b). Then 

V(s) = M(s)D-l(s) 

for a polynomial matrix M. Polynomial row vectors 
w(s) such that w(s)D-l(s) is strictly proper form an 
R-linear space V. Using (ll), we have 

T(s) = N(s)D-l(s) 

and note that the rows of N span V. Therefore the 
equation 

V(s) = XT(s) 

has a constant solution X and 

F=-GX 

makes (10) hold. cl 

If system (1) is controllable, then the rows of N 
form a basis for V and the matrices F, G that realize 
K are unique. 

6 Stability 

Transfer function equivalent compensators can have 
different internal properties, those which depend on 
a particular realization. 

Stability is the most important design specification 
of this sort. That is why it is natural to ask when a 
compensator, which is transfer function equivalent to 
a cascade compensator (6), stabilizes the system. 

The requirement of stability will mean that the 
states of the system and of the compensator go to 
zero from all initial values. A necessary requisite is 
of course that system (1) is stabilizable. 

Theorem 4 . Suppose that a cascade compensator 
(6) is transfer function equivalent to a compensator 
of the form (3), (4), (5) or (7). Suppose that system 
(1) with transfer function (11) is stabilizable. Then 
the compensator, no matter whether (3), (4), (5) or 
(7), will stabilize the system if and only if the ratio- 
nal matrix D-‘lr’ is stable (i.e., analytic in Re s 1 0). 

Proof: For the system, use (11) to write 

T(s) = N(s)D-l(s) 

where N and D are right coprime polynomial matri- 
ces. For the compensator, write 

F(s) = -P-‘(s) Q(s) 

G(s) = P-‘(s) R(s) 

where P, Q and R is a triple of left coprime polyno- 
mial matrices. Of course F and G can be constant 
in special cases. The compensator will stabilize the 
sytem if and only if the rational matrix (PD+QN)-’ 

exists and is stable [8]. 
Thus, 

D-‘(s)K(s) = (PD + QN)-‘(s)R(s) 

is stable whenever PD + QN verifies the condition. 
On the other hand, write 

D-‘(s)K(s) = X-‘(s)Y(s) 

for some left coprime polynomial matrices X and Y. 
Define polynomial matrices P, Q and R by 

P(s)D(s) + Q(s)Ws) = X(s) 

R(s) = Y(s) 

and the requirement that Q(s)(sr - A)-l is strictly 
proper. The resulting matrices F and G are proper 
rational and define a stabilizing compensator. q 



It is important to note that we can ascertain whether 
an equivalent compensator will be stabilizing before 
it is actuallly calculated. On the other hand, there is 
no freedom to try and design a stabilizing compen- 
sator; one can only check whether or not the resulting 
system will be stable. 

If the given compensator I< can be realized using 
static state feedback (3), the condition of Theorem 
4 can be given a simple interpretation [5]. In fact, 
K-lD is a polynomial matrix in this case and its 
determinant is the characteristic polynomial of the 
closed-loop system. 

7 Model Matching 

A typical application of the above results is the 
problem of model matching [6], [7], [9]. Given a plant 

k(t) = AZ(t) + Bu(t) 

Y(t) = wt> 

with a strictly proper, rational m x m transfer func- 
tion matrix Tp and a model transfer function matrix 
TM, which is assumed to be also strictly proper, ratio- 
nal, and of size m x m. We seek to find a compensator, 
specified in one of the forms (3) - (7), such that the 
closed-loop system is stable and has transfer matrix 

TM. 

The model matching equation 

Tp(s)[I - F(s)T(s)]-‘G(s) = TM(S) 

immediately suggests the following two-step solution: 
determine a matching compensator K from the equa- 
tion 

TP(+(s) = TM(S) (12) 

and then realize K in one of the forms (3), (4), (5) or 
(7) desired, 

K(s) = [I - F(s)T(s)]-‘G(s) 

where F and G are either proper rational or constant 
matrices. 

The matching equation (12) has a proper rational 
solution I< if and only if the matrices [Tp TM] and 
Tp have identical infinite zero structure [6]. In the 
scalar case, this means that the relative degree of Tp 

does not exceed that of TM. 

Using the equivalence result provided by Theorem 
1, the above condition is necessary and sufficient to 
achieve the match via any of the two-degree-of-freedom 
compensation schemes (5) or (7). 

Suppose we want to implement dynamic state feed- 
back (4). Theorem 2 requires that K be bi-proper. 
Thus the equation 

TM(s)K-l(s) = Tp(s) 

should have a proper rational sotion K-l(s). This is 
the case if and only if the matrices [Tp TM] and TM 
have identical infinite zero structure [6]. Combining 
the two conditions, a match via (4) is possible if and 
only if Tp and TM have identical infinite zero struc- 
ture. This reduces to identical relative degrees in the 
scalar case. 

Finally, let us realize the match using static state 
feedback (3). Th eorem 3 imposes a further condi- 
tion that K-‘D be polynomial. Writing Tp and TM 

in terms of their right coprime polynomial factoriza- 
tions, 

Tp(s) = Np(s)D-l(s) 

TM(S) = NM(S),??‘(S) 

and using (12), we observe that 

K-‘(s)D(s) = E(s) Nil(s) Np(s) 

is a polynomial matrix if and only if NM divides Np 
on the left. This means that the equation 

Nix = NP(s) 

must be solvable for a polynomial matrix X. A nec- 
essary and sufficient condition is that the matrices 
[Tp TM] and TM h ave identical finite zeros structure 

PI. 
Having achieved the match desired, we can check 

for stability of the closed-loop system. Theorem 4 
requires that D-l K be stable, which means that the 
equation 

Np(s>Y(s) = NM(~) 

is to have a stable rational solution Y. Thus a stable 
match can be achieved if and only if the matrices 
[Tp TM] and Tp h ave identical finite unstable zeros 
structure [6]. In the scalar case, this amounts to the 
requirement that all non-minimum-phase zeros of Tp 

must be included in TM. 
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