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Abstract 

In this paper we present two methods for computing fil- 
tered estimates for moments of integrals and stochas- 
tic integrals of continuous-time nonlinear systems. The 
first method utilizes recursive stochastic partial differen- 
tial equations. The second method utilizes conditional 
moment generating functions. For the case of Gaussian 
systems the recursive computations involve integrations 
with respect to Gaussian densities, while the moment gen- 
erating functions involve differentiations of parameter de- 
pendent ordinary stochastic differential equations. The 
second method is applied in the expectation maximiza- 
tion algorithm. 

1. Introduction 

This paper discusses the following problem. We are given 
noisy observations {ys; 0 5 s < t} of the system state 
process {zs; 0 2 s 5 t}, and we wish to derive filtered es- 
timates for moments of integrals and stochastic integrals. 

Specifically, 

dxt = f(t, x:t)dt + u(t, x:t)dwt, x(0) & w, (1) 

dyt = h(t, xt)dt + atdwt + N;“dbt, y(0) = 0 E IR”, (2) 

where xt e R”,yt E Rd and {w,;O 5 s 5 t}, {b,;O 5 s 5 
t} are independent standard Wiener processes; x(0) is a 
random variable independent of the Wiener processes. 
We are interested in conditional expectations (filtered es- 
timates) of moments of integrals and stochastic integrals 

(s 

n 

L,“;,l = t.fl(%xs)ds 
0 > 

, L$ = (~‘f2(s,xs)dw,)‘, 

(3) 

L ffi.3 
0,t = IE 1 1. 

Aside from their mathematical value, these estimates 
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are important, for example, in least-squares estima- 
tion/filtering, Volterra series expansions of nonlinear real- 
ization theory [I], Wiener Chaos expansions (of nonlinear 
filtering) [2], Maximum Likelihood Estimation. 

The first method, Theorem 3.2, utilizes a recursive system 
of stochastic partial differential equations (SPDE’s). The 
second method, Theorem 3.9, utilizes conditional moment 
generating functions of L1,j O,t, j = 1,2,3. That is, for a test 
function + : lRn -+ lR, we use measure-valued conditional 
moment generating functions 

,Zf”(@) = E[+(xt) exp (BL$$) IF&], 0 = i w, i = Q, 

for j = 1,2,3. We show that when 3:” (a) have density 

functions, p(x:,t),j = 1,2,3, then 

lip0 -&&y9) = E[qxt)L:$.T&] w.p.1, R L 0, (4) 

lilio -&Ff>j(l) = E[L$/~,,] w.p.1, fi 1 0. (5) 

The unnormalized versions of Fe” (x, t), j = 1,2,3 satisfy 
linear SPDE’s. For the case of Gaussian system models 

(i.e., dxt = Fxtdt + Gwt, dyt = Hxtdt + adwt + N$bt), 
we employ (5) to derive filtered estimates for 

J 
t 

d.Qxsds, 
0 s 

t 
x:Rdw,, 

0 s 
t 

x; Sdb, . (6) 
0 

Each filtered estimate is propagated by 4 statistics; 
the conditional mean and error covariances of xt given 
{ys; 0 5 s 5 t} (Kalman filter), and modified versions of 
the Kalman filter. These estimates can be used in the 
Expectation Maximization algorithm derived in [3]. 

2. The DMZ Equation 
Notations 2.1 

1. “I” denotes transposition of a matrix, I,$ denotes k x k 
identity matrices, (.); denotes the ith component of 
a vector, and (‘)i,i denotes the ijth component of a 
matrix: 



2. L(Vl; Vz) denotes the space of linear transformations 
of a vector space Vi into a vector space V2; 

3. Dz=[&,&-. ,&I’, D;= d?-.. [ 1 az;azj ) 
4. 9 : lRn -+ R denotes an arbitrary test function 

which is C~(lR”) and has compact support; 

5. E,E denote expectations with respect to measures 
P, P, respectively. 0 

Assumptions 2.2 

f : [O,T]xlR” +w,ff: [O,T]xlR” -+ (R”;R”),h: 
[0,T]xRn4Rd,T>0; 
N : [O,T] + (Rd;Rd),ct : [O,T] + L(lEP;Rd),N,o! 
are continuous in t, and $31 > 0, such that Nt 

@lid; 

If(k XII + If@> XII + Il4, z)II I w + 14). 0 

Consider the P-martingale mt = Jot h’(s, ~~)C;rdy,, 
Ct A ato; + Nt, and introduce the exponential martingale 

c-l(mt) = exp(-mt + i(m,m)t), 

where (m,m)t = st IC~1’2h(s,xs)~2ds is the quadratic 
variation of {mt; t e [0, T]}. By Assumptions 2.2, we have 

E[E-l(mt)] = l,Vt c [O,T], (see [4]). Consequently, we 
define a measure P through the Radon-Nikodym deriva- 
tive 

Ai& A E fZ&,, = Cl(mT). [ 1 (8) 

Since P(R) = & A~~(w)dP(w) = 1, Vt E [0, T], the Gir- 
sanovs Theorem, (see [4]), states that P is a probability 
measure on (0, A) and that 

Lemma 2.4. [5, 61 Suppose qt(.) has an F&-measurable 
density function 4 : R” x [0, T] x 0 + R. Then 

E[qxt)lF&] = !g = JyR~y,k&y. 0 (11) 

Note that {Au,,; t E [0, T]} is given by 

J 
t 

no,, = 1 + Ao,sh’(s,xs)C,-l&/s. w 
0 

Theorem 2.5. [5, 61 Suppose qt(.) has a density function 
q(z, t). The unnormalized density of the conditional dis- 

tribution P(xt e AlF&),A E f?(lRn) is q(.) and satisfies 
the SPDE 

&dz, t) = A(t)*&, W + B(t)*& Wyt, 42, 0) = PO(Z), 

(13) 

where 

A(t)*+(x) = ; C&l (& ((u(t> xb’(t> x));,~ @W) 

- CL, & (f& 4w4), 

Bk(t)**(s) = c;=“=, (c;‘)i,k h(t,z)@‘(z) 

- c;c�=, &((�(t>⌧b:C;�)~,k �(⌧))� q 

Definition 2.6. A fundamental solution of (13) is an 
?&-measurable function q(z, t;x,s), with (2,~) E lR” x 

IR”, 0 5 s < t 5 T such that the following hold: 

1. 

2. 

For fixed (~,a;) E (0, t) x lRn, q(., t;o, s) E C,“(R”) 
and q(., .; IC, s) satisfies (13); 

For ‘p : lRn -+ R, which is continuous with compact 
support 

lim tls 

Theorem 2.7. Suppose for each s E [O,T] there exists 
‘a random process {q(z, t; 2, s); 0 5 s < t 5 T}, (z, Z) E 
RX? x R” which is a solution of 

are Wiener processes. Therefore, under the probability 
space (a, 3, P; Fo,t) the processes {xt; t e [0, T]}, {yt; t E 
[0, T]} are solutions of 

dq(z, t; 2, s) = A(t)*q(z, t; x, s)dt 

+ B(t)*q(z, t; 2, s)dy,, $imq(z, t; 2, s) = b(z - x). (15) 

dxt = f@, xt)dt - a(& xt)&;%(t, xt)& 
+ & xt)fit , x(0) E lR”, 

dyt = atfit + N,1’2dbt, y(0) = 0 E lRn, 
(9) 

(10) m~t)lqtl = # = 
&%L “(z)q(z, t; x, O)po(x)dxdz 

j& dz, 6 x, o)po(x)dxdz 

Notation 2.3 Proof. Apply the Ito differential rule to g(.z+ t) = 

1. {e,,; t e [0, T]} denotes the complete filtration gen- 
JR,, q(z, t; %,O)po(x)dx, to show that y(z, t) satisfies (13) 

erated by u-algebra a{~,; 0 5 7 5 t}; 
and then follow Lemma 2.4. 0 

2. The measure-valued process 3. Moment Generating Functions 

qt (a) = E[+t)Ao,t 130” J 

is well defined. 0 

Definition 3.1. Let fr : [0, T] x lRn + lR, fs : [0, T] x 

ll? -+ (lRm)‘,fs : [O,T] x llV + (lRd)’ be such that 

Rf: Ih (t,4121k < co, /c > 1,j = 1,2,3. 



1. The integrals L,“;: , L$, L[,f are well-defined. 

2. The measure-valued processes 

Mi? (a) = E[@(zt)Ao,tL,“~; IEt], 9 ? r~ 2 0, (16) 

are well-defined for j = 1,2,3. 0 

For j = 1,2,3, we wish to derive expressions for 

@G;~ v&l = 
E[Ao,tL;$ IF; J 

E[*o ,;p 1’ , K 1 1. (17) 
’ o,t 

3.1 Recursive Equations 

Theorem 3.2. Suppose Mr”(.) have Y&-measurable 

density functions M&j : lRnx[0,T]x~2-),j=1,2,3. 
Then 

M”” (z, t)da: = E[k,,&o,,L;,‘i IF&], K. 11, (18) 

j = 1,2,3, satisfy the following 
SPDE’s: 

dM’=” (2, t) = A(t)*M”‘l(x, t)dt + 

+ 1~fl(t,~)M~-l’l(2,t)dt, IE 1 1, 

dM”‘2(x,t) = A(t)*M”‘2(~, t)dt + 

recursive system of 

B(t)*M”“(a:,t)dyt 

(19) 

B(t)*MKY2(x, t)dyt 

+ +(K - 1))f;(t,z)~2MIC-2’2(~,t)dt 

- K f: & (Mn-192(q t) (u(t,z)f;(z, t))i) dt 
i=l z 

+ nfi(t, x)MK-1v2(x, t)cu;C,-ldyt, K. 2 1, (20) 

dM”>3(x, t) = A(t)*MKg3(cr, t)dt + B(t)*MK’3(cr, t)dyt 

+ +(k - l)jC1’2N-1’2f;(t,z)12Mn-2y3(z, t)dt 

+ t&(t, x)Mn-1v3(x, t)N1’2C-1dyt, K. 1 1, (21) 

Here we use the convention Mp,i(x, t) = 0 for p < 0. 
Also, 

Mn+, 0) = 0, K 2 1, M”+, t) = q(x:, t), j = 1,2,3. 

(22) 

Proof. Consider @(z~)Ao,tL,“;~, where {zt; t E [0, T]} and 
{Ao,~; t E [O,T]} are solutions of (9), (12), respectively. By 
the It6 product rule 

t 
L fi,l 0,t = 6 

s 
L&l,l fl (s, z,)ds, K 2 1. (23) 

0 

Employing the It6 product rule once again, we have 

@.(at)Ao,&g = J; qG)d(*o,ml) 

+ JO dQ,(G)Ad,,L;;: + J,“@(z), AL”‘l)t, 
(24) 

Ao,tL$ = JO ho&Lo”;; + J; L,“$Ao,, + J; d(A, L”J)t 

= fiJ; fl(3, rc,)Ao,,L;,;l’lds 

+ JO Ao,,L;;;,‘h’(s, z,)C,-1’2dgs. 

Substituting into (24) we obtain 

~(~s)*o,tL,“;,’ = $ J;Ao,sL;,$rr (a(s,z,) 

~‘bcJD;@(4) ds + J; Ao,,L~:,‘Da~(~cs)a(s,~,) 

.D.ii2dG, + S,“o,sL~;:~(z,)h’(s,z,)C,-1’2d~~ 

+ s; Ao,,L,“;,‘D;@(zcs)a(s, ~.v)c$C,““dy, 

+~.f; A~,sL~,;~“fi(s, z,)ds. 

(25) 

Conditioning each side of () on G,t using (18), and then 
integrating by parts, we deduce (19). When K = 0,~’ = 
1, we have MoS1(xc, t)dx = E[lactedzAo,t]F&], and thus 

M”ll (2, t) satisfies the DMZ equation. The remaining 
equations are obtained using the same procedure. 0 

Remark 3.3. Notice that the filtered estimates for 
LFli, K 1 1, j = 1,2,3 can be computed from 

qLg,j I-Toy J = JRn APi (z, tw > 3 JR- dz> Wz ’ K>l. 0 (26) 

Lemma 3.4. Suppose MF’j(.) have J&-measurable den- 
sity functions. Then 

M”“(z,t) = K t 
ss 0 

Rn fi(s, z)M~-~~‘(z, s)q(z, t; 2, s)dxds, 

MnT2(z, t) = +(K - 1) t 
IS 

I~~(s,~)~~M~-‘,~(Ic,s) 

.q(z,t;z.s)dxds-tc[/,n-&$ (Mk-‘*‘(z,s) 

. (6 x)f;(s, ~1)~) dz, t; z, s)dzds t +K ss f2(s, s)M”-~‘~(z, s)a:C,-‘q(z, t; 2, s)dxdy,, 
0 Rn 

MnY3(z,t) = +(k - 1) ’ 
IS 0 

Rn Ic,1’2N,-1’2f3(s, z)I” 

t 
.M”-2’3(~, s)q(z, t; 2, s)dxds + K IS f3(% xl 

.Mk-lY3(x, s)N1/2C,-1q(z, t; Ic, s)C;‘d:dyS, 

whereK>1andMP*i(z,t)=Oforp<0,j=1,2,3. 

Proof. Follow the derivation of Theorem 2.7. 0 

3.2 Moment Generating Functions 
Next we introduce moment generating functions for com- 
puting the conditional moments of integrals and stochas- 
tic integrals (17). 

Definition 3.5. Let 0 = iw, i = &i. 

1. The measure-valued conditional moment generating 
functions of the stochastic processes {L$ ; t E [0, T]}, 
given by 

pf’j(Q) = k[@(zt) exp (eL$) IF&], j = 1,2,3, 

(27) 

are well-defined. 



2. The measure-valued unnormalized conditional mo- 
ment generating functions of the stochastic processes 
{L$(; t E [0, T]} given by 

&“(a) = E[+(~ct)Ao,t exp eL$ 
( > 

IF&], j = 1,2,3, 

(2% 

are well-defined. 0 

Lemma 3.6. Suppose ,@“(.) have J&-measurable den- 

sity function peTi : R” x [O,T] xR-+lR. 

1. Then 

E[+(xt) exp (BL$) ]F&] = s 

= sp WPB~j (z, wz 
JR* q(z, qriz ’ j = lT 2, 3. (29) 

2. The conditional characteristic functions of of the 
stochastic processes {Li;$; t E [0, T]}, are given by 

E[exp (iwL$) IF{,,,] = 9 

= JR?% P”(z,W 
JR* 

= 
4% tw ’ j 1 7 2 > 3. (30) 

Proof. Similar to Lemma 2.4. 0 

Theorem 3.7. Suppose @“(.) h 

density functions ,@‘j(.),j = E, 2,3. 

ave q ,-measurable 

’ 
The densities of the measure-valued unnormalized condi- 
tional moment generating functions, namely, 

@,i(x, t)dx = (31) 

Proof. First, absorb exp (BL$) in the exponential term 
A,,, by setting 

iii,, = A,,, exp eL;:$ 
( > 

Second, apply the It8 product rule as in Theorem 3.2. 
This derivation is along the lines of information state 
equations in [6]. 0 

Proposition 3.8. Suppose E[exp (1: Ifj(t,xt)12dt)] < 

cqj = 1,2,3. 
Then 

E [@(xt)A~,t exp (eL$) IF&] = E [@(xt)Ao,tlF&] 

(36) 

where the infinite series converges in L1 (Cl, .F&, P). 
Moreover, 

j = 1,2,3. (37) 
n=l 

Proof. Similar to [2]. 0 
- 

Theorem 3.9. Suppose E[]Li;$ I”] < co for some positive 
integer fi, j = 1,2,3. 
Then for j = 1,2,3 

1. ,@“‘j(l) have 6 continuous derivatives with respect 
to w w.p.1; 

lib0 gggy = Epqzt)L,n,fIF&] w.p.1. (38) 

where j = 1,2,3 satisfy the following system of SPDE’s: 

d,Be,l (x, t) = A(t)*pel’ (z, t)dt + B(t)*p’,‘(s, t)dyt 
w.p.1. (3% 

+ em 2)pe%, t)dt, (32) 

d/3es2(x, t) = A(t)*/3e,2(z, t)dt + B(t)*/3e*2(z,t)dyt 

+ $;(t, 2)12pe~2(x, t)clt 

+ ef2(t, qey2(x, qCy:c;ldyt, 

Proof. The derivation is based on Kolmogorovs conti- 
nuity theorem and its application to parameter depen- 
dent diffusion processes (see [7J). First, note that if 
the measure-valued processes & J (.) have density func- 
tion then (32)-(34) hold. If peli(~, t) are in the function 
space of continuous functions, then their derivatives with 
respect to B will also be continuous; this is done as in 
[7]. Hence, by normalizing (37), as 0 + 0, the left-hand- 
side of (38) and (39) converge in distribution provided the 
density functions MnTi (z, t) exist. The a.s. convergence 
is established as follows. For each measure-valued process 
/3,“” (.), j = 1,2,3 there is a stochastic ordinary differen- 
tial equation analogous to (25). A direct application of 
the Blagovescenskii and Freidlin [7] result establishes the 
a.s. continuity and convergence. 0 

dpes3(x, t) = A(t)*pep3(z, t)dt + B(t)*/3ev3(z,t)dyt 

+ ;IC1~2N-1~2fj(t, x)12pe,3(x, t)clt 

+ ef3(t, z)pe’3(2,t)N1’2c--ldyt. (34) 

The initial conditions are 

peqz, 0) = PO(X), xelRn, j = 1,2,3. (35) 

Y 



3.3 Expectation-Maximization According to Theorem 3.9 we need 

Consider the system 

dxt = Fxtdt + Gdwt, x(0) E lRn, 
-$jp = f [aa,, (ii&)-lexp (tlTr(P,B&))] . 

dyt = Hx& + Nidbt, Y(O) = 0, 
(44) 

fl(t, x) = $x’Qx, fi(t, x) = x’R, fs(t, x) = x’S. 
Let 

e d-e 
rt = yjjxt, 

Here Q = Q’. We assume x(0) is a Gaussian random 
variable. 

Then from the differentiability of parameter dependent 

Suppose F, H are random matrices which we 
solutions of stochastic differential equations we know that 

wish to identify or estimate. The expectation- 
maximization algorithm, (see [3]) enables computation Tf = o s’ (F + 6’P:Q) r,Bds + 1’ P,BH’N-1 dy, 

of maximum-likelihood estimates of F, H, in terms 
0 ( 

- Hrfds) 

of filtered estimates of the processes $ fr(s,x,)ds, 
t t 

+ 
J 

CE:Q$ds + 

Jo h(s, x,)dw,, 10 h(s, x,)db,. Here we apply The- Ot 
J 

CZH’N-’ dy, - H$ds 
0 ( > 

orem 3.9 to obtain the filtered estimates of these 
integrals. J 

.9 , 

.,+:::l”r, 

(45) 

t 

A solution of (13) is e C f F’ds - J 
t 

cf (H’N-IH 

dx, t) = 
1 

(274%p,op exp ( 

-flpt+‘(~-~:)~“)X~:,t, - e~)p~:r-J~p~(HrN-l~-ao)rYds 

0 

J 
t 

where Z?‘(.), P”(.),x”(.) are given by + P,“QP,Bds, (46) 
0 

d$ = FP;dt + PjH’N-1 (dyt - H$dt) , P’(O) = l-, are continuous in (t, 8) w.p.1. Similarly as before we have 
k,” = FP,O + P/F’ - PjH’N-lHP; lime-0 rt = r: (a.s.), lims+e Cf = CF, where 

+ GG’, P’(O) = PO, 

^O 
A0,t = exp 

- f 1’ (H$)‘N-‘HB;ds) . 

t"- J P,oQ$ds + J t C:H’N-1 (dys - H$ds) 

‘:j J 
0 t 

Fr,ods + t P,OH’N-1 (dys - Hr,ods) , (47) 

1. Computation of zA;$ = E[i si xLQxsdsl&&]: 

C; = 1’ (F - P’;N-‘H) Czds J 
A solution of (32), (35) is, (see for example [5, S]) + It C: (F - P’H’N-lH)‘ds + lt PjQPfds. 

JO .J” 

where 

d$ = (F + 6’P;Q) i$dt 

(48) 

Consequently, 

lim p,""(1) 

e-0 ;ig, 

= jimo - NJ t(Hr,B)‘N-ldys 
0 

- it(Hr:)‘N-‘Hgds 

+P:H’N-1 
( 
dyt-H$dt 

> 
, Z(O) =[, (41) 

P,” = FP,B + P,“F’ - p,” (H’N-lo - 8s) P,” 

+ f I’ Tr (P:Q + KZfQ) ds) 

+ GG’, P’(0) = PO, (42) 
xx& ($t)-l exp (f l Tr(PfQ)ds) } . 

xi”,,, = exp (I’ (H5$)‘N-‘dy, Finally, @$ = @f /i x~Qx,dslF&] is given by 

- ; I’ (H$)‘N-‘H$ds) (43) --I,1 1 
t 

L 0,t = 5 J Tr (Ps”Q) ds 
0 

In fact, we can show that lime-e Pf = P,“, uniformly on 
compact subsets of [0, T], and lime-0 3 = 8 a.s. 

+ 0t (Hrs”)‘N-’ (dys - H$ds) . J (49) 



2. Computation of 2$ = E[$ x$Mw,[.F&]: 

A solution of (33), (35) is, (see [5]) 
3. Computation of I@ = E[Ji zbSdb,I.F&]: 

Following the same approach we deduce that @$ = 

pyx,t> = ,’ 
1 exp (-;,pf,-, (&) ,q 

(27r)21Pfj2 

x St,, x exp 
e t 

(I 5 0 
Tr(P,BRR’)ds , 

> 
(50) 

u33~~~tl is given by 

ii:; = o (Hr,o)‘N-l (dy, - HZds) 

where 
+ lt (N-fS%:)‘N-’ (dys - N-%“?,Ods) , (60) 

d$ = (F + BP,eRR’ + QGR’) Z$dt where 

+ PfH’N-1 (dyt - Hzfdt) ) Z(O) = 6, (51) Tto = Jd’ (C:H’N-l+ P:(SN-qN-l) (dy, - HZZds) 

+,” = (F + 0GR’) P,” + P,” (F + QGR’)’ 

- P,” (H’N-lH - @RR’) P,” + GG’, P’(0) = PO, (52) 
+ 1’P:H’N-l (dy, - (SN-f)‘$ds) 

ii:,, = exp (I’ (I%$) N-ldy, (53) +ltFr,ods+JdlP,oH’N-‘(dy,-Hr,ods), (61) 

- f Jdt (Hq’N-~H~ds). (54) 
Cf = 

s 
0t (F - P’H’N-‘H) C;ds 

By Theorem 3.9 we need 
I 

C: (F - P’H’N-lH)‘ds 

-$,p = $, pt,, (~&-le~p(~~tTr(PfRR’))]. Ii’ o P,” (SN-+)N-lH + (N-lH)‘(SN-+)‘) P,Ods. ( 

(55) (62) 

Computing limo-0 rf = limo-0 $iZ?$ = r,O, limo+0 Cf = 

limo-0 -&Pf = P,“, similarly as before, we have References 

t 
7-F = J O( 

P,ORR’ + GR’) P:ds 
PI 

CfH’N-1 (dy, - HZ:ds) PI 

t P,OH’N-1 (dys - Hr,ods) , (56) [3] 

C; = 
I 

ot (F - P’H’N-lH) C;ds 

t 
+ [ c; (F - P’H’N-lH)‘ds + it P,ORR’P,Ods 

Jo Jo 
t t 

+ GR’P,Ods f P,ORG’ds. 

Hence 

lirn g,8w 1 t -=- 
e+o de g, s 2 0 

TT (PARR’) ds 

Finally, @f = E[Ji x&Rdw,13&] is given by 

[41 

(57) 
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(58) PI 
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