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Abstract:

In the last years many efforts have been done to develop simulation models. These models need a lot of

computational time. This paper presents a new modular simulation to avoid these problems. This

approach requires a good tire model to take the nonlinearities into account which have a significant
influence on the dynamic behavior of the car. The process of composing the model is modular and
consists of several sub-models (tires, chassis, suspension, steering, wind, road). Each of them can be
developed independently. The advantage of the simulation is the reduction of time and costs for
designing and engineering different controller concepts or vehicle safety systems. It will be proved with
different examples that this simulation gives good results for the realistic behavior of the vehicle. The
time of simulation is reduced by minimizing the coordinate transformations.
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1. Introduction

The manufacturers are always concerned with
improving the dynamics of vehicles in order to have a
more efficient behavior. Knowledge of the vehicle state [1]
is essential to determine the dynamic behavior of a vehicle
and to design automotive control systems for example
Bosch FDR [2] which increase safety
handling characteristics.

and improve

The simulation of a car dynamic behavior could be of
necessity for the conception of a new car model and
essential for structural engineering. This simulation of a
realistic car can also be used to understand the dynamic
behavior in normal and critical situations.

The advantages of simulation in opposite to driving
tests are the reproducibility of the maneuvers, the
availability of different environmental conditions and the
variability of the vehicle properties. This simulation will
be used to reduce the time and costs for designing and
engineering different controller concepts (ABS) or vehicle
safety systems seen in [3], [4]. Additionally, comparison
can be made under the same conditions independently of
seasonal environmental and without time consuming
preparations of experimental vehicles.

Moreover, this simulation can be used to develop new
control systems such as electrical steering, control of
lateral acceleration of the car, detection of tire deflation
and to develop algorithms for the estimation of several
dynamic parameters as for example the stiffness and the
damping coefficients of the suspension.

Modeling, Vehicle model, Simulation, Nonlinear model.

The goal of this paper is to explain the dynamics of a
vehicle as a connection of subsystems based on theoretical
and experimental studies.

In a first step the entire system "automobile" has been
separated into several autonomous sub-models (tires,
wheel suspension, car body, steering system), so that each
sub-model can be developed independently. The
submodel itself is based on physical relations. All relevant
nonlinearities are comprised.

It is necessary to define the interfaces between the
different sub-models, i.e. which signals are required as
inputs and outputs. This concept allows independent
development of each subsystem.

For a realistic nonlinear simulation model, it is very
important to have a complex nonlinear tire model,
because the influence of the dynamic tire on the chassis is
dominant. The detailed description of the tire model will
be followed by the suspension car model. The body of the
car was modeled with 6 degrees of freedom and the
dynamic effect of the steering was also taken into account.
Finally, different examples will be given to demonstrate
the realistic behavior of the simulation in different driving
situations.

2. Modular implementation

Figure 1 represents the different sub-models which are
implemented on the software Matlab/Simulink.

The input variables for this simulation are the steering
angle, acceleration or braking torque at the wheels and the
initial speed of the car.

The model was adapted to a test car, a BMW520i.
Some geometrical parameters have been found in technical
magazines. However, there are still a lot of unknown



parameters which must be estimated. But the simulation
can also be easily adapted to other test cars.

The resulting simulation program is easy to use. It
allows to develop each submodel independently and to
connect them afterwards.
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Figure 1: Modular implementation

The great power of the simulation is on the one hand the
reproducibility of simulation runs. Therefore the
simulation can be used during the process of development
to investigate the performance of controller algorithms.
On the other hand, environmental parameters as well as
vehicle parameters can be modified.

3. Chassis model

The lateral dynamics of the vehicle are described by
three force equations
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whereas Ty, 1s a matrix that transforms the coordinate
system of the vehicle into the inertial system.

The indices V and H stand for front and rear wheels,
respectively. The calculation of the wheel forces Fyx and
Fy is explained later on chapter 4.2. And the vertical tire
forces are calculated on chapter 4.3.

The wind forces Fyy, Fyy, and Fy; are calculated by
transforming the wind speed into the coordinate system
of the vehicle, then the velocity of the vehicle is added,
and finally the wind forces can be determined. The lift
force of the vehicle was neglected.
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Having a road pitch Xg,q and a road slope g4, the
gravity forces can be obtained by a multiplication by a
transformation matrix:
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A positive road pitch implies a rising road and a positive
slope an elevation on the right hand side.

The force Fy describes the rolling resistance which is
approximated in [7] by:
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The rotatory motion of the vehicle can by described
by three torque equations in the coordinate system of the
vehicle.

Torque equation for the yaw rate:

Fr=-froFz — friFz %_ froF2

OL¢ = (FXVR - FXVL) |:‘%b\/ + (FXHR - FXHL)E%bH

+ (FYVL + FYVR) ay - (FYHL + FYHR) ay
Torque equation round a longitudinal axis:

OxX= (FZVL + FZHL)%_(FZVR + FZHL)%"‘ mayh

Torque equation round a lateral axis:
Oyp = (FZVL + FZVR) Oy - (FZHL + FZHR)D]H +mayh

4. Tire model

4.1. Slip calculation

The calculation of the slip is important, because the
gradient of the adhesion curve is extremely significant and
an error of 0.1 per cent produces a big variation of the tire
forces.

Without a tire side slip angle a, the determination of
the slip can't be exact. In the literature there can be found
several definitions of the transversal and lateral slip.
Burckhardt [5] defines the longitudinal slip in the
direction of the movement of the tire, and the same for
the tire forces, but Reimpell [6] defines it in the direction
of the plane of the tire. In both cases an absolute slip can
be defined:

S, = Vs “VR -

Vg with vg =rg

VR : speed of the tire circumference

Vg speed of the contact area between tire and road

'R: dynamic radius of the tire

w : angular speed of the tire rotation

From the definition of Burckhardt, longitudinal slip is
calculated by:

Vg — Vg [tOSa
Vg for braking (4.1
Vg — Vg [GOSa

SL

s =
- Vg for acceleration (4.2)

And the lateral slip is defined by:



_VgBina
Vg for braking
sg =sna for acceleration

We can define the resulting slip as a function of the
lateral slip and the longitudinal slip:

2 2 _
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Vs
The braking slip is negative and the driving slip is

positive.

In figure 2, it' s shown that s; is in the direction of the
tire velocity and s, is perpendicular to it. We note that the
tire velocity forms an angle a with the plane of the tire.
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Figure 2: Forces and angles of the tire model with side
slip angle

4.2. Adbesion curve of the tire

One of the most important parts of a car concerning
dynamic behavior and safety is the tire, because all forces
will act in the small area between tire and road. If we want
an exact tire model the best method to describe it is to use
the finite element method (FEM.). However, such a
method requires too much computation time. To
overcome this problem, we introduce simplifications,
considering the tire to be isotropic and the parameters of
the friction coefficient of the curve to be independent of
the direction of the tire. Then we define by Burckhardt
the resulting friction coefficient :

HRES = %1 E@— el BRES)%— c3 3RES a}_% SresV Ky

with Ky =1-cg FZZ, a coefficient as a function of the

load, and the parameter's cj, ¢y, c3 cq, give us the

characteristics of the road surfaces (dry asphalt, snow, ice,
wet asphalt) as it can be seen in figure 3.
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Figure 3 : Friction characteristics for some typical
surfaces

Then the lateral and transversal components are :
,UL:.URESE"i ,Us:,UREsE'Si
Sres Sres

After that, it is defined that the tire is subject to a
longitudinal force and a lateral force as a function of the
load F,, and the friction coefficient :

FL=F Ly

Fs = Fz Wis

These forces are defined in figure 2 in the tire coordinate
system.

By this figure 2, a convention is defined : when a is
positive then the forces are on the left side, and a positive
longitudinal slip yields forces in the front direction.

a is mathematically negative in the trigonometric
direction, and is defined as the angle between the direction
of the tire and the direction of the tire velocity.

4.3. Model for the normal forces
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Figure 4 : Model of the car for shifting of the axle load

For the calculation of the tire forces F; and Fg it' s
important to determine the dynamic load of the wheels
corresponding to the normal forces F,,. The normal forces
change opposite to their static values due to different



driving situations. The load of the axle changes due to
braking or accelerating or driving at a hill.

The wheel load shifts from the inner to the outer wheel
during cornering.

Figure 4 shows the forces applying to the chassis of an
accelerated car. The car is simplified to one mass model.
The change of the wheel loads is only dependable of the
position of the center gravity and the actual longitudinal
acceleration. This model can be used because the body
frequency of the car's spring-damper-system is higher than
possible frequencies of the acceleration. The accelerating
force (m ay) causes a pitching moment with a lever arm of
the height h of the center of gravity. This results in a
dynamic load shifting from the front to the rear axis.
Calculating the balance of moments about the contact
area of the rear axis the dynamic wheel load for the front
axle using the abbreviations of the literature [6] results in
the following equations:

for front wheels

| h O
Fpy = % H - By [
v O

for rear wheels

Fo=m ALY g+ h [a E
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These considerations can be also made for a decel erated
car.

4.4. Equation of the torque for the tire model

The model consists of one wheel with the radius  and
the moment of inertia @ . The load of the wheel is the
normal force F,,. Based on the wheel load and the adhesion
coefficient m, an accelerating force Fj is applied according
to Coulomb's law F =F, [, to the contact area
between the tire and road. This force has an accelerating
effect on a decelerated wheel. Furthermore, the wheel is
decelerated by the braking torque M, through the brake.

Resulting out of a balance of moments the following
equation can be written :

ORr w=M x —rFL
The same equation can be written for the three other
wheels, and gives us a state space vector:

X Rad :[wvl_ WR Wy wHR]

the inputs of this model are the longitudinal tire forces
and the moment of braking or acceleration.

ur, = [FLVL Foor Fime Fiir My Mg My M HR]
For this calculation the parameter @ g, , and M, must be

measured.

5. Model of suspension

In the literature[1], [8], a large variety of tire models
are proposed ranging from a simple mechanical spring up
to complex finite element models. It is useful to evaluate

wheel axis vibrations as it is shown in [9]. In order to
study the influence of alterations of tire stiffness Cp; due
to variation of inflation pressure, it is useful to consider a
simple point model of vehicle suspension.

Figure 5 is an example of % rear left side of the car. All
the four suspensions of the vehicle show the same model
structure, with different parameters.
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Figure 5 : Suspension model
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It consists of the suspension spring with stiffness Crz;
and the shock absorber with damping coefficient dp;
which are both mounted between axle mass mp;; and
vehicle body mass mp ;. Moreover, the suspension
spring and the shock absorber are treated as linear
elements.

The static spring distances Zgz;, and Zqy;o are
chosen in a way to compensate the static forces when the
car is in horizontal position. We calculate the relative
distance and the forces in comparison with the balance
position of the car.

Relative distance : DZpy = Zpy — Zraro and

DZoyy = Zoy — Zowwo

Forces :
FzuL =Cru (gt = ZraL * Zrito)
Fent =Cen (Zraw — Zonw + Zenlo)

Four = den (Zraw = Zonl)

Equation of the forces :

Mg Zrae = Fzm — FCHL = FonL
Finally:

Mgy Zry =Cry (Nga = AZgy ) + Cpy (—AZgy +AZgyy )
+dey (—DZgy +DZcy )

But, to have a good model of the suspension we must
take into account that the spring of the vehicle is non-
linear. With the help of measurements, we can estimate
the force on the spring by a polynomial function with
order 4. We give here the example for the force applied on
the rear axes. The procedure for the front axis is similar :



with xd= zg - Z; then Finally for the four wheels it becomes so :

— 2 3 4 . . . .
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each step of the integration the parameters have to change
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then :

MgZr =Cg (Zc = Zg) +Cr(h—2zg) +34 (2c —25) +

o, L . 6. Results
ay(2c —2r)” +a3(Zc ~ 2r)” *a4(2c ~ 2g)
After that, this model is represented with a nonlinear Two application examples have been selected in order
state space equation as: to demonstrate the realistic behavior of the simulation.

For performance evaluation the signals measured on a test

X=Xz car and the outputs of the simulation are compared under
p p
%, = CF (u —x ) +CR (u —x ) ! (X —u ) 4.2 (X —u )2 the same driving condition. Different driving situations
25— 7 X h— X 27 U3 27 U3 . .
mg mg mg mg are regarded in order to have a large representation of the
a, 3 a, 4 vehicle behavior.
Mg Mg ,
v =c (X B ) In these two examples, lateral acceleration, yaw and
1= CRaT roll velocity show a good correspondence between
2 . . . .
Y, =Cg (u2 - Xl) +ay (X2 - u3)+a2 (X2 - u3) measurements and simulation results. This comparison
4 verifies that the above simulation model can be used for

3
+as(X, — U +a,(X, —U
3( 2 3) 4 ( 2 3) the development of control systems.

Example 1: The first example is characterized by a rapid step of the steering angle, and the condition
of a constant vehicle speed about 20 m/s and wet road.
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Example 2 : The second example shows fast oscillations of steering angle.
The speed is also about 20 m/s and the road is dry.
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7. Conclusions

This modeling of nonlinear vehicle dynamics is a
modular concept with different sub-models, beginning
with an exact nonlinear tire model, which is the most
important submodel to describe the dynamic behavior of
cars more exactly. The suspension model is also described
with nonlinearities of the spring and its link with the
chassis. The body car has 6 degrees of freedom. To take
the environmental parameters into account, also the
influence of the wind and the slope angle are included in
this simulation.

The computation time of this simulation is fast
because a simulation of 10 seconds last in real-time 30
seconds.

This modular simulation gives good results and
demonstrates the realistic car behavior during different
driving situations, in spite of difficulties to simulate the
roll velocity due to the fact that big forces result in very
little angles. Finally, it can be outlined, that the
simulation has sufficient exactness to be used instead of
driving tests which consume a lot of time for the
preparations of a experimental vehicle.
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