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Steering of a Robotic Snake 

Abstract I 

In this paper we develop a methodology for steering 
on the plane the wheeled “snake” robot designed by Mi- 
gadis and Kyriakopoulos [MK97]. This mechanical sys- 
tem is subject to nonholonomic constraints. The kine- 
matic model of the mobile robot is derived taking into 
consideration these constraints. The nonholonomic mo- 
tion planning is solved by converting the multiple in- 
put system to a multiple-chain, single generator chained 
form via state feedback and a coordinate transformation. 
Simulation results are provided for a test case. 

1 Introduction 

The mechanical design of the “snake” robot (fig. 1) 

was motivated by the increasing need for robotic de- 
vices that are able to crawl into places too dangerous 
or too small for human beings. For example, such kind 
of devices can be used for inspection tasks inside a nu- 
clear reactor, for fire-fighting reconnaissance, maneu- 
vering through the rubble to look for survivors after 

an earthquake, investigation or minor repair of leaks 
or other problems in municipal sewer systems or utility 
tunnels etc. In ryY93] the design and motion planning 
of a mechanical snake is presented. In [CJ95] the kine- 
matics of hyperredudant robot locomotion over uneven 

solid terrain are considered. 
Our “snake” robot is depicted in Figure 1. The basic 

structure of its body consists of three repeated modules 
with four active joints on each module. Further details 
about the mechanical structure can be found in [MK97]. 
The mobile robot is designed to perform multiple tasks. 

A kind of clutch is used in order to convert an active 
joint on a module to a passive one and conversely. The 
passive joint can be used, for example, in motion on a 
plane. The active can be activated in order to overcome 
an obtacle or in the case of locomotion on an uneven 

terrain. Each module has an active joint having the 
ability to rotate the wheels so that the snake can change 
the motion plane. 

planning for several car-like mobile robots has been ex- 

tensively investigated. In [RS93], the example of a car 
pulling n trailers with 2 inputs is considered. In these 
developments, the control system is converted into a 
chained form for which the solution to the steering prob- 
lem is straightforward. In [Sor93] the kinematic model 
is locally converted into, a nilpotent, chained form. In 
[DTS95] the machinery of exterior differential forms is 
developed in order to convert the 2 input n trailer sys- 
tem into the Goursat normal form which is dual to the 
chained form. These results were extended to systems 
with three inputs by [BTS93b] and to systems with mul- 
tiple inputs [DTS94]. 

The examples used though in those developments 
consider axle-to-axle hitching between the trailers. Our 
robot can be considered as a 2 trailer system with 2 king- 
pin hitches, where the axles are connected by a kingpin 
between the bodies. This kind of system cannot be con- 
verted into chained form [Bus951 due to the fact that 

sush a system is not flat [Fli93]. We overcome this prob- 
lem by adding 2 more controls in the 2 trailers. 

In section 2 we state the control system associated 
with our model. While the derivation of the model- 
ing equations of the motion on a plane is presented in 
Section 3. In Section 4, we convert our model to the 
extended Goursat normal form. A method of steering 
the system is presented in section 5, while simulation 
results are presented in section 6. Finally in Section 7, 
we discuss issues of further research. In the appendix 
we provide the reader with the neccesary background 
on exterior differential forms. 

2 Mathematical problem statement 

We are interested in steering a mechanical system 
with the nonholonomic constraints 

Wj(X) *j. = 0 i= 1,2,...k (1) 

where x E !JP is the state of the system and 
q(x) E P are row vectors. We assume that vec- 



Figure 1: a) the “snake” robot 

can find an (n - L)-dimensional distribution A(z) = 
span {sl (x), . . . ,&-k(Z)) with gj(z) E %!“, i = 
1 ,-a*> n-k such that A = RI i.e. wi(z)gj(z) = 0 Vwi E 

R, gj E A. Then the system with the above velocity 
constraints is represented as a system with inputs ui 

i = gl(+l(t) + . . . +gn-k(+b-k(t) (2) 

The motion planning problem can be stated as: find a 
control law u = (ur (t), . . . , ?&-k(t)) to Steer the system 
from the initial state z(O) = 20 to z(T) = zj on the 
time interval [O,q. We want to convert the system 
into multi-chain single-generator form since there are 
methods for steering such systems. 

3 Modeling Equations 

We want to derive the kinematic model of our 
system. The states of the system is x = 

[PC pV 00 81 8z ~$0 $1 ~$21~ where : 6’i is the orientation 
of the i-th module of the robot with respect to the hori- 

zontal axis of the inertial frame, & is the steering angle 
of the i-th module, (pz, py) are the Cartesian coordinates 
of the rear axle of the second module. 

The distance between the axle and joint of each mod- 
ule is L and the distance between the joint of one mod- 
ule and the axle of the next module is 1. This gives the 
holonomic constraints: 

p,, =p,+Lcose1+zcoseo (3) 

PYO - - p, + L sin e1 + 1 sin e. (4 

Pxs =px+Lcosel+Lcoseo (5) 
p,, =py + Lsiner + LsinBo (6) 
p,,=p,-z~0~8~-~~038~ (7) 

Pm = P, - Isin& - Lsinez (8) 

In order to simplify our kinematic model, each pair of 
wheels is modeled as a single wheel centered at the mid- 
point of the axle. In fact the two wheels have differ- 
ent angles and their normals intersect at a single point 
[AMSS]. The nonslipping requirement of the wheels 
gives the four linear velocity constraints : 

b) model of the “snake” robot 

is sine0 - fiy cos e. - L cos(el - eo)& - lb0 = 0 
IL 441+ e,) - fiy COS(~~ + e,) = 0 

fix sin(42 + 0,) - lj, ~044~ + e,) 

+zil 44, + e2 - e,) + ~~~ cos 42 = 0 

The constraints can be written in the (I) if 

w(x) = [sin(40 + e,) - COS(~~ + e,) - L cos +. 

-L COS(~J, + e. - el) 0 0 0 01 
w2 (x) = [sin e. - cos e. - z - LC~~(B~ - eo) 

0 0 0 O] 
w3(x) = [sin(h + 01) - CO+, + e,) 0 0 0 

0 0 O] 

w4(x) = b(42 + e2) - COS(~~ + e,) 0 

~~044, + e2 - el) L cos +2 0 0 01 

Since the corresponding codistribution Q(z) is 4- 
dimensional and the state space is g-dimensional, we 
can find a 4-dimensional distribution A(X) = a*(x) = 

span h(x) sz(x) a(x) 94(x)} where : 

I 

coseo +A. Lsin& +Zsine;4ajn+o 

sine0 -A. Lcosel - lcose;~~~ 
&Qg 
L-l 
A 
B 

I 

0 
0 
0 

$72(x) = [OOOOOIOO]T 

93(x) = [O 0 0 0 0 0 1 OIT 

94(x) = [O 0 0 0 00 0 llT 

where A = + sin(eo - & - w41 - & 

cos(& + 81 - 00) set 41 tan&, B = i sin(eo - 42 - 

e2) set 42 - .&cos(42 + e2 - e,) set 42 tan& - 

A? set 42 COS(~, + e2 - e,). 
One can easily write now the model in the form (2) . . . . . ^ _ _. . _. __ 



We plan to convert the above system into the multi- 
chained form. To do so we need tools from exterior 

algebra and Pfaffian systems. Those tools are presented 
in Appendix A. 

Our system has 4 inputs and 8 states. In the next 
section we apply the proofs of the theorems 2 and 3 in 
order to convert the control system of the mobile robot 
into the extended Goursat normal form. 

4 Converting the “snake” robot system 
into Extended Goursat Normal Form 

Our mechanical system is depicted in 1. In order 
to derive the Pfaffian system associated with the above 
system we write the nonholonomic constraints, taking 
into consideration the holonomic ones, as the one forms: 

$ 
= sin eodp, - cos eodp, - ldeo - L COS(~~ - el)del 
= 

a2 
sin(h + 4)&b - cos(h + Ol)dp, 

= sin(92 + e2)dp, - cOs(q52 + 82)dp,+ 
L cos +h2de2 + 1 c0s(e2 + 42 - el)del 

a3 = sin(40 + @0)dp, - cos(40 + 00)dp,- 

L cos $odeo - L c0.9(eo + $. - el)del 

The derived flag of the Pfaffian system is: 

I = I(O) = {a’, al, a2, 2) I@) = {a’} Ic2) = (0) 

Calculations of the exterior products give: 

da1 ~a = hl(eo,e1,e2,~o,~1,~2)d~lr\ds 
da2 A Q = h2(eo, el, e2, 40, h, 42)d42 A ds 
da3 A CY = hi(eo, h,ez, 40,41,42)d$o A ds 

where a = a”Aa1Aa2Aa3, ds = deoAde1Ade2AdpsA 
dp,. Thus the Pfaffian system {I(‘), d&} is integrable. 

We also have da0 A d& = 0 and therefore {1(l), dt9o) 
is integrable, too. According to theorem 3 our system 
can be converted to extended Goursat normal form. We 
now follow the proof of theorem 3 in order to find a basis 

I which satisfies the Goursat congruences (27). 
The basis of the last nontrivial system 1(l) is a”. 

The definition of the derived flag Ic2) and the fact that 
{1(l), deo} is integrable imply that 

da0 $ 0 mod 1(l) da0 - 0 mod {I(l),deo} (9) 

Combining those equations we obtain the congruence 
da0 zi de0 A p” mod 1(l) for some p” $ 0 mod 1(l). 
Prom this and the definition of the derived flag da0 E 
0 mod I(O) we obtain p” E I(‘). Applying this proce- 
dure to our system we obtain /3’ = si’ = a3 csc 40 such 
that da0 i dOo A ii’ mod a’. We choose Z3 = a1 such 

that {a’, zi’, a2, Z3} is a basis of I which is not only 
adapted to the derived flag, but also satisfies the Gour- 
sat congruences: 

We see that the form a0 has rank 1 since da0 Aao #O and 
da0 A da0 A a0 = 0. Therefore, according to theorem 1 
there are fi, f2 such that da”AaoAdfl = 0, 

0, co A dfl A dfz = 0, 

a”Adfi # 

dfi A df2 # 0. Integration of 
these equations gives: fi = eo, 

f2 = $ = p, sine0 - py cos e. + L sin(eo - el) (ii) 

So the form a0 can be written as : a0 = df2 - 9 . dfi = 
dz; - zidz’, with 

z” = de0 
~~=~+p,~0se~+p~~ine~+L~0s(e~-e~) (12) 

Prom the Goursat congruences (10) we can use a0 and 
til in order to put 7i1 in the form dz: - z~dz”. From the 
equation ii1 = boa’ + b17i1 we obtain bo = -cot $0 and 
b1 = 1. So we have ?il = dz’ - z!dz” and 2 

z: = (L - 1) cot 40 + pY cos e. - p, sin e. - L sin(fJo - e,) 

(13) 
We can modify a2, a3 using forms from I in order to put 
them in the form dzz - zfdz” and dtz - ,zfdzO, respec- 
tively. We choose 

4 = P,, 2; = e2 (14) 

We set 7i2 = koa’ + kl& + k2a2 + k3Z3 = dz,2 - zfdz” 
and easily obtain Its, ki, Ic2, k3. Thus 

2 21 = csc 40 set f$l sin(& + el) [L c0s 4. c03(eo - e,)- 
4 COS(~, + e. - e,)] 

(15) 
In the same way we set ii3 = cea” + cizl + c2a2 + c37i3 = 
dz; - .zfd.z’ and choose 22” = 82. Algebraic calculations 
provide co, cl, ~2, cs and we obtain 

21” = * cot 40 set $1 set 42. 

{ lcOs(42 - e1 + 0,) sin(h - e. + el)+ 

b { 
L cOs(eo - e,) sin(qb - 42 + el - e2)) + 
z ~044~ + e. - e1 + 0,) sin(40 - 41 - el)- 
Lcos(40 + e. - el) sin(41 - 42 + e1 - 0,)). 
. csc qS0 set fj1 set ~$2 

(16) 
So we converted our control system in the four input, 
three-chained system: 

i” = 111 il” = 213 
il’ = 212 2; = Z,“Vl 

i; = z;q i1” = v4 (17) 

i; = Z,‘Vl i; = +1 

5 Steering the“snake” robot 

There are a number of algorithms that can be used to 



sinusoidal method for multiple-input systems was pro- 
posed. Another steering method uses polynomial inputs 

and is presented fot the multiple-input case in [DTS94]. 
In [TC93] the method of piecewise constant inputs is 
used. The method of steering nonholonomic systems 
using piecewise constant inputs was first introduced in 
[MNC92] as multirate digital control. All of these algo- 
rithms steer the system from the initial to the desired 
state. The resulting trajectories may look “nicer” for 

some of those methods compared to others. Through 
simulations we found that the trajectories generated us- 
ing the method of multirate controls are reasonable. 

The theoretical framework that we adopted is based 
on [CP95] since it is powerful for systems admitting an 

exact discretization, because in those cases, an exact 
point-to-point trajectory can be generated. 

We consider our system: $ = c:=, gi(z)ui driven 
bylvi(t)=vf(k)tE[ks,(k+l)S], k>O, i=1,...4. 
If the operator Xi = vf L,, + v{ L,, +iE L,, + v:L,, 
is defined and the choice vi3 = v!$, vg = IJ~ is made, 

one can proove [CP95, TC93] that 

z(k + 1) = e’=’ o eZxxa o eZx3 (Id)]+) W 

where ex G Ck,O m 1 X” is the exponential Lie operator, 

d = 613. Id is-the identity function and “0” is the 
composition operator. We choose the controls: 

i, (k+ 1)6] 
TkS, tk + &Ml 

vi(t) = vf t E [k6 

{ 

$1 tE 
vz(t) = vg tE 

& tE 
‘(k’+‘+ ii ; $51 
;(k + $4 (k + l)d] 
k6, (k + +)6] 

;(k + ;)J, (k + 1)6] 

kJ, (k + $1 

. -- :(k + $5 (x: + 1)6] 

(19) 

Using (18) with 8 = J/3, the discretization of the system 
in chained form coordinates is exact, given by: 

z”(k + 1) = z”(k) + 38vf 
z;(k+l) = +(k)++fi+v~+vfJ 
zl”(k + 1) = z;(k) + @f, + 2vf2) 
zl”(k + 1) = #) + @f, + 2&) 
z$(k + 1) = z;(k) + 3@z;(k)+ 

S(5vf, + 3v,D, + v&Jf 

z;(k + 1) = z;(k) + 3&+;(k) + $(5vf, + 4vf#-’ 

$(k + 1) = 
z;(k + 1) 

z;(k) + 3@fz,3(k) + $(5vf3 + 4v&)vf 
= z;(k) +3&&;(k) + $2(vf)2z;(k) 

+$$svfi + 7Vfi + &)(vf)2 

(20) 
The motion planning problem is recasted now to finding 
the controls vD D D I , ~11, ~211, &, vfi, v& $3, vg to lead the 
alratam vftl - r,o ,I 4 4 9 v2 -3 -31 km qn k2.1 

state z(k) = zo to the desired state z(k + 1) = zj. This 
can be easily done by simple algebra. 

6 Simulation results 

The simulation of the “snake” robot is performed 
using the system in the chained form. Then the ac- 
tual state t and input u trajectories are obtained 
from t and the vis via the inverse of transformations 
(11,12,13,14,16). 

We considered a “snake” with L = 1, 1 = 
0.5”. The case study we chose is a transition from 
an initial state z(0) = 20 = [0 0 0 0 0 0.2 0 OIT 

to the desired xf = [6 4 7r/2 1.5 n/2 0.07 0 OIT. 
Notice that we chose @e(O) = 0.2 # 0 to 
avoid singularity of certain coordinate transforma- 
tions. The corresponing chained form coordinates are 

z(0) = zo = [0 2.46658 1.5 0 0 0 0.25 OIT and zf = 

[n/2 1.06045 5.4974 6.07 7.13 4 - 0.5085 7r/21T 
Substituting these to the (20) and solving we obtain: 

vfl = 1.74597 vf2 = 0 339106 vf3 = 2.00568 
vfl = -2.55373 

v3”1 
~2”~ = 3:39584 vf3 = -1.3821 

= -0.59837 

States x, y, 00 of the system can be shown in fig. 2. 

7 Issues of further research 

We plan to address a number of issues following the 
problem that we tackled. Stabilization around a point, 
trajectory tracking and motion planning in a maze-like 
environment are our immediate step while steering the 
robot on SO(3) is our ultimate task. 

A APPENDIX : Pfaffian systems and 
Goursat normal forms 

We present some issues on exterior algebra and Pfaf- 
fian systems and the theorems providing the conditions 

to convert a Pfaffian system into the extended Goursat 
normal form ([BCG+Sl]). 

A nonholonomic system can be defined by a codistri- 
bution I = (6. . .ak} on the cotangent space to the 
configuration manifold, specifying the directions that 
the system is not allowed to move. This codistribution 
generates a Pfaffian system, and can be analyzed using 
exterior differential systems. This formulation is dual 
of this of sec. 4 in the sence that codistribution I anni- 
hilates distribution A, i.e. I = A-‘- or, ai = 0 Vi,j. 

A basis for I is written in coordinates by taking each 
a” = 0 as the i-th nonholonomic constraint. 

We will need the notion of congruence modulo of a 
Pfaffian system. We say that 

qr<modI if $I<+&#Aai (21) 
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Figure 2: a) x-y trajectory of the middle link b) orientation 00 of the front link w.r.t time 

The derived flag is defined to be the nested chain of 
codistributions given by I(‘) = 1 and 

I&+1) = w E dk) : dw G 0 mod Itk)} (22) 

The construction is assumed to terminate at some N, 
when I(N) = I(N+l). 

One way to find integral curves for Pfaffian systems 
is to transform the system into a normal form. If such a 
normal form can be found, then there is a l-l correspo- 
dence between the integral curves of the normal form 
and the original system. A pertinent theorem is: 

Theorem 1 Pfafl’s Theorem. Suppose a is a one-form 
on ?RRn which satisfies (da) +’ A a = 0, (da)’ A a # 0. 

Then there exist local coordinates z such that 

a = dzl + zzds + . . . + zz,.dz2r+l (23) 

In the case r = 1, the proof [BCG+Sl] shows that there 

exist two functions fi, f2 which satisfy the p.d.e 

da A a A dfi = 0 a A dfi # 0 (24 
a A dfl A df2 = 0 dfl A df2 # 0 (25) 

If suitable fi , f2, are found, a can be scaled so that 

a = a’fi + g . dfi (26) 

In this paper we consider the case of multi-steering 

[BTS93b, TS94, DTS94], with a Pfaffian system of codi- 

mension four. We have the following definition: 

Definition 1 Extended Goursat Normal Form. A 
Pfafian system I on Wtm+l of codimension m + 1 as 
in extended Goursat normal form if it is generated by n 
constraints of the form: 

We note that all solution trajectories of I are deter- 
mined by the m + 1 functions zO(t), z;(t), . . . zy (t) and 
their derivatives with respect to time t. Sufficient and 
necessary conditions for converting a two-input non- 
holonomic system into Goursat normal form are given in 

[MurSS]. For the multi-input case there are conditions 
due to [Mur93] for converting a system into extended 
Goursat normal form. The proof of the next theorem 
can be also found in [TS94]. 

Theorem 2 Extended Goursat 
Normal Form. [Mur92?] Let I be a Pfafian system of 
codimension m + 1. If there exists a set of generators 

{ 
a{ : j = 1,. . .m; i = 1,. . .sj 

> 
for I and an integrable 

one-form r such that 

da{ s -ait A\modIS+ i=l,...s.-1 J 
daij $0 mod I (27) 

for all j, then there exists a set of coordinates z such 
that I is in Goursat normal form , 

I = dzi - 4ildzo : j = 1,. . .m;i = 1,. . .sj} (28) 

The conditions (27) are called Goursat congruenses. 
An algorithm for converting systems to extended 

Goursat normal form is given in [BTS93a]. There is 
also another set of conditions for converting a system 
into Goursat normal form, which are easier to check, 
since they do not require finding a basis which satisfies 
the Goursat congruences but only one which is adapted 

to the derived flag. A basis of one-forms aj for I is 
said to be adapted to the derived flag if a basis for each 
derived system I(‘) can be taken to be some subset of 
the aj’s. One special case of this theorem is proved in 
[Slu92]. The proof can also be found in [TS94]. 



converted to Goursat Normal Form if and only if there 
exists a one-form A such that { Ick), n} is integrable for 
k = 0,. . .N - 1. 

Consider all the one-forms in I which are integrable 
modulo the entire codistribution: {a : da = 0 mod I}. 
If this set is the entire codistribution I, then I is inte- 
grable. The extended Goursat normal form is the dual 
of the multi-input, single-generator chained form pre- 
sented in [BTS93b]. Sufficient conditions for converting 
the system to the above form are given in [BTS93b]. 
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