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Abstract 

In this paper we prove the convergence of Luenberger- 
type observers for systems with implicitly defined 
outputs. 

1 Introduction 

In this paper we consider a system whose output y(t) 
is defined as: 

w = Ax(t) 

B(Y(t)bN = PM 
(1) 

where x E R” , y E R” , p E R1 and B(y) is a continu- 
ous matrix function, B(y) E C(Rm, RIXn). The sys- 
tem is assumed to be Lyapunov stable but not asymp- 
totically stable. The information about the system 
one can measure is the functions y(t) and p(t). The 
problem we consider is to construct a dynamical ob- 
server for x(t). This system is quite similar to a linear 
time-varying system if one considers p(s) as output 
instead. The difference is that B(-) varies with y(.) 
here. As far as we know, even for linear time-varying 
systems, constructing an observer is far from trivial. 

Systems with implicit output functions appear in a 
number of applications, an important one is dynamic 

vision. In order to motivate the study of systems 
defined by (l), we explain here the typical problems 
in dynamic vision. 

Dynamic vision is the discipline that studies the in- 
verse problem of recovering information on the scene 
from a sequence of images. The main paradigm of 
dynamic vision is the estimate of the motion of the 
camera and of the 3-D structure of the scene. Let us 
simplify the problem by assuming that the motion of 
the objects being viewed is rigid. The “structure” 
of the scene is represented by a number of point- 
features whose coordinates in the ambient space are 
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x G [Xl x2 x31T; w = [wi 212 ~31~ indicates the rela- 
tive translational velocity of the object with respect 
to the viewer frame and w := [wi w2 wslTis the ro- 
tational velocity vector also expressed in the viewer 
frame. The coordinates of the projection of a point 
feature P = [xl 22 xslTonto the image plane (per- 
pendicular to the 2s axis) assumed at a conventional 
distance f = 1 from the origin, are 

(;;)+($), 
so that we can write a nonlinear dynamical model 
having the position of the point in the ambient plane 
as the state, and the projection as the measured out- 
put: 

which is in the form 

B(Y): 

x(to) = x0 E R3 
(3) 

where 

(4) 

p(t) = 0 

Estimating the structure of the scene and the motion 
of the camera is equivalent, respectively, to estimat- 
ing the state and identifying the parameters of the 
above model. Note that the observation equation is 
nonlinear and it is implicit in the output. 

The dynamic vision model described above seems 
different than (1). One can, however, easily convert 
the problem into the form of (1) by using the coordi- 
nate change: 

s t z(t) = x(t) - en(t-")w(s)ds 
0 



Then, the dynamic vision model falls into the class 
described by (1) where 

f(2) = !A? 

B(Y) = (y “1 ;;) 

P = -B(y) s,” exp(h(t - s))v(s) ds. 

(5) 

The paper is organized as follows. In section 2 we 
review some stability results on time varying linear 
systems. In section 3, we present the main results 
and in section 4 we give the proof. 

2 Preliminaries 

In this section we review some stability results on 
time varying linear systems, which will be needed 
later on. Most of the results can be found, for ex- 
ample, in [l, 21. 

Our notations are as follows: 
] + IP - LP-norm, 
l[All - the operator norm of a matrix A. 

Lemma 2.1 Let B be n x n-matrix such that the lin- 

ear system of differential equations 

x=Bx, O<t<oo, x(t)ERn (6) 

is Lyapvnov stable. 

Then there exists a positive-definite n x m-matrix 

P such that 

PB$B*P<O. (7) 

Furthermore, consider the spectrum o(B) of 

B and its “asymptotically stable” o-(B) := 

{X E o(B) : ReX < 0) and “neutral” go(B) := 

{X E o(B) : Re X = 0) parts. Introduce the cor- 

responding invariant subspaces L- - o-(B) and 
La N so(B) of the matrix B. Let rr- : R” + L- and 

rra : R” --+ LO be the projectors related to the direct 

sum Rn = L- $ LO. Then, for any K > 0, there 

exists a positive definite n x n-matrix P such that 

PB + B*P 5 -r;n:rr-. (8) 

Lemma 2.2 Let K(e) E L, (0, +co) be n x n-matrix 

function. Consider the system 

z = K(t).%. (9) 

Assume that 

s 
m Iz(t)12 dt 2 c2 1.z (&,)I2 (10) 

to 

for any solution z(.) of (9) and any to 2 0 with the 
constant c > 0 being independent of z(.) and to. 

Then and only then, 

[z(t) 1 2 bl.z(ta) le+‘(t-to) 

for some b > 0, T > 0. 

Lemma 2.3 Let I((*) E L, (0, +a) be n x n-matrix 
function. Suppose 

i = K(t)% (11) 

is exponentially stable. Then, there exists a positive 
real 6 > 0 such that any system 

i = k(t)% (12) 

with 

a4 E Lm(0,+=$ Irl(.) - K(.)[ < 6 (13) 
co 

is asymptotically stable and 

Iz(T)I 5 ce-P(t-‘)lz(T)l (14 

for any t 2 r 2 0 and any solution z(.) of the sys- 

tem (15’). Here the constants c > 0 and p > 0 are 

independent of I?(.), .z(.), t, r 

Lemma 2.4 Let the hypotheses of Lemma 2.3 

be valid. Consider the matrix-function I?(.) E 

L,(O, +m) satisfying (13) and a vector-function 

f(.) E L, ((0, +m> + Rn). 
Any solution z(.) of the equation 

i = K(t)* + f(t) (15) 

is bounded on (0, +oo) and satisfies the estimation 

WI I 4f(.)loo + ce-Pt14J)l Vt>O (16) 

where the constants a > ,O, c > 0, p > 0 are inde- 

;;zeynt of f(.),z(.) and K(.) (provided that (13) is 

Lemma 2.5 Let +(.) E L2 ([to, +oo) + R”) and 6 > 
0. Denote 

F(t) := 1” d(t + s) ds ‘ift 2 to. (17) 
0 

Then $(.) E ~52 ([to, +co) + Rn) and 

IS(*) I2 I %ul2. (18) 

Proof. By using the Cauchy-Schwartz inequality, we 

get 

I$@)1 I d (1’” Iq+)I” ds)li?. 

Hence, 

s 
co 

to IS( dt < 0 O” dt t+e - 
s s 

I4W” ds = 
to 

t 

’ =6 s O3 Ic#J(s)[~ ds 
s 

dt = 0”]4(.)[;. 
to s-e 

Thus, $(.) E L2 and (18) is true. 



3 Luenberger-type observer 

Now let us consider system (1). The problem is to 
identify the current state x(t). 

Consider a positive-definite n x n-matrix P that 
satisfy (8) with some K > 0. In this paper we inves- 
tigate the following Luenberger-type observer 

$ = AZ - P-lB(y(t))* [B(y(t))Z -p(t)]. (19) 

Here 2 is the estimate of the current state x. Here 
and throughout, the asterisk stands for transposition. 

In the following Theorems 3.1 and 3.2, we shall 
show that the above estimate tends asymptotically 
to the real state and also that this property is stable 
in a sense. The main assumption we need here is some 
kind of observability of system (1). More specifically 
what we need here is the observability of the invari- 
ant subspace LO of the matrix A associated with the 
purely imaginary part of its spectrum. This condition 
is formulated as follows. 

Assumption 3.1 Consider the spectrum a(A) of the 

matrix A and its “asymptotically stable” a-(A) := 

{X E u(A) : ReX < 0) and “neutral” so(A) := 

{X E u(A) : ReX = 0) parts. Introduce the corre- 

sponding invariant subspaces L- - u-(A) and LO N 

aa of the matrix A. Consider a basis &, . . . , & c 

Lo of the subspace LO and introduce n x q-matrix 

z := ([I,... ,&) whose columns are the above vec- 

tors. 

There exist two positive reals T > 0 and E > 0 such 

that, for any t > 0, 

I 

T 

E*eA’rB(y(t + r))*B(y(t + r))eA7E dr 2 ~1,. 
0 

(20) 

The properties of the observer under consideration 
are reflected by the following theorems. 

Theorem 3.1 Let y(.) E L,(O,+co) and let As- 

sumption 3.1 be fulfilled. 

Then the error z(t) := x(t) - Z(t) exponentially 

tends to the zero 

I+) I I ce-@ I4x I Qt > 0. 

Here the constants c > 0 and p > 0 are independent 

oft, x(e) and Z(s). 

The proof of both this theorem and the next one will 
be given in section 4. 

Note now that usually we have at our disposal only 
approximate values_of A, y(t) and p(t). Namely, we 
know n x n-matrix A, a vector-valued function c( .) E 

R” and a function p’(a) E R whose meaning is the 
following 

x M A, g(t) N y(t), p”(t) M p. (21) 

Likewise, we can usually com_pute P only approxi- 
mately to produce a matrix P R P. So the actual 
observer looks as follows 

$ = 22 - ?B(F(t))* [B(g(t))3 -p”(t)] . (22) 

The next theorem describes the properties of this ac- 
tual observer. 

Theorem 3.2 Let the hypotheses of Theorem 3.1 be 

valid. Suppose that all the errors are sufjkiently 

small, i.e., 

IIA - XII 5 4 ll~C.1 - ii(.)llco < 4 

IIP - ~(~)llco I 4 IIP - Fll 5 J 

where 6 > 0 is suficiently small. 

Then the error z(t) := x(t) - Z?(t) satisfies the es- 

timation 

I%(t)/ < cemPt Iz(O)l+ 

+q (IIA - XII+ llYC> - Wl~) Ix(O)l+ 

$4 (lb - p”Ull~ + IIP - Fll) IXW 
(23) 

Here the constants L > 0,~ > 0, q >,O are indepen- 

dent oft, x(.),2(.), A,g(.), d(e), and P but depend on 

A, Y(.>, P, B(-1, and J. 

4 Proofs of the main results 

In this section we give proofs of Theorem3.1 and 
Theorem3.2. 

Proof of Theorem3.1. By (1) and (19), we have 

i = AZ - P-lB(y(t))* B(y(t))z(t) (24) 

= (A - P-lB(y(t))*B(y(t))) 4). (25) 

Then, 

$ (z*Pz) = z* (PA+A*P+2z*B(y(t))*B(y(t))z 

55 -+r-z12 - 2]B(y(t))z12. 

So, for any two instants t 2 to 1 0, 

%(t)*Pz(t) 2 z(t,)*Pz(t,) - K 
I 

t ITLZ(S)~~ ds- 
to 

2 t: lB(~(sb(s) I2 ds, I 

4t)‘wt) L +o)*pz(to) I: llPllI~(to)12, 



fc t; I744I” ds I 11~1114~0)12> 
J 

2 ,: P(YW(S)12 dS> I II~II14~o>12. 
J 

Since the matrix P is positive definite a*Pa > mla12, 

we have 

44t)12 I 4t)*P4t> L: IIPII14~0N2~ 

(26) 

J 
O” l%(s))~(s)12 ds 5 !$ho)12, (27) 

to 

lz-(s)12 ds 5 !f$to)12 (28) 

where we denote z-(t) := r-z(t), ze(t) := ~z(t) and 
the projectors 7r-, QTO were introduced in Lemma 2.1. 

By virtue of (24), 

.io = noi = vroAz - m,P-‘B(y(t))*B(y(t))$29) 

‘1 
= Azo - q,P-%(y(t))* B(y(t))z(t) . (30) 

. / 
CC.) 

Further the symbol 1.12 will be used to denote the La- 

norm over the interval [to, oo) while I . loo will denote 
the L,-norm over [0, oo). In accordance with (27), 

Iv(*)12 I @I~ bo)l. so 

IC(.)l2 I Il~ollllP-111~BlYc>lch(~)12 (31) 

5 IlQdlllP-‘II~dY(~)loo 
. 

b 

Due to (29), we have 

zo(t + s) = eASzO(t) + eA(tts-e)C(e) d6 . (33) 

, 

vpJ(t) 

Let t, s > 0, s < T where T is the constant from As- 
sumption 3.1. Since the matrix A is Lyapunov stable, 
IleATIl 5 (Y < co for all r > 0. So, in (33), 

J 

t+T 
bs(t)l 5 CY ICu4l dQ (34) 

_t 
x(t) 

where, by Lemma 2.5 and (31), 

Ix(.)12 I ~mml2 I cdfi Iz (to)1 . (35) 

In the light of (27) and (28), we see that 

I9Y(~!)~o(y2 

4.1 

= IB(Y(M*) - WYW- (*>I, 

5 P(Y(MJ2 + P(YCb- (42 

< - 
d- 

y I2 (to)1 + IY(&JG?l~-(912 

I m (5 + “(“y) 12 (to)1 . (36) 

Hence 

f 

SC dt 1’ Iv+ + 412 ds 

= 
Jm J 

t+T 
dt Ma2 dQ 

to t 

= 
Jrn 
to W)I~ de J” dt 

max(t,,,O-T) 

I T 
J 

t, 19w12 de 

< Tf2 I+o)12. (37) 

On the other hand, invoking (33) and (34), we get 

JT I%# + s))eA”~o(t)12 ds 

= 
J 
T I%& + s)) (Zo(t + s) - p&))12 ds 

0 

T < 2 - 
J 

IB(y(t + s))zo(t + s)12 ds t 
0 

+2 
J 

T I%# + s))cps HI2 ds 
0 

5 2 
J 

oT Mt + 412 ds + ~lY~~~I~ll~l12x~~~~@~~ 

In view of this, it follows from (35) and (37) that 

Jr dtlT I%# + s))eAs~o(t)12 ds 

leq 2T (f2 + ly(-)I~II~a2b2) Iz(to)12. (39) 

Now we recall that ze (t) E LO and, in Assumption 3.1, 
z = ([I,. . . ,&) where &, . . .,& is a basis of LO. 
Denote by &, . . . ,& the adjoint basis: c;j*c = 0, if 
i # j, and C& = 1. Introduce the n x q-matrix 
T := (Cl , . . . , G). Then ZT*2= 3for any Z;E Lo. In 
particular, 

&J(t) = ET*zrJ(t) w 2 0. (40) 

so 

Jr dt iT IB(Y(~ + s))eA”a(t)12 ds 



00 
= 

J J 
dt T IB(y(t + s))eASBT*zo(t)12 ds 

to 0 

= 
J 

m(zo(t)*Ty$*zo(t))dt. (41) 
to 

where yc = s,’ Z* eA*SB(y(t + s))*B(y(t + s))eA”Zds. 

Then (20) and (42) yield 

Jm J 
dt T IB(y(t + s))eA”zo(t)12 ds 2 

to 0 

& 
J 

O3 l~*Zo(t)12 dt 2 + Jm Izo(t)12 dt. 
to to 

By invoking (41), we get 

J 
O" IZo(t)12 dt 
to 

< 2TWll + 1) - & (f2 + IYmo~~~2~2) 14to)12. 
Coupling this estimate with (28) and taking into ac- 
count the decomposition z(t) = 20(t) + Z- (t), we see 
that 

J 
O” Iz(t)12 dt 5 2 

J 
O3 lx(t)]’ dt + 2 

.:,llPll I 2TWll~ 11 

J 
O” Izo(t)12 dt 
to 

- K E (f2 + IY(~)12Gb2~“)) l@o)12 

Here the constant c is evidently independent of z(.) 
and t 2 to > 0. This means that the system (24) sat- 
isfies the hypotheses of Lemma 2.2. In other words, 
the assumptions of Lemma 2.2 are fulfilled with re- 
spect to the matrix-function. 

K(t) := A - P-lB(y(t))* B(y(t)). (42) 

This completes the proof. 
Proof of Theorem 3.2. On the basis of (19) and 

(22)) we have 

z = i-2 

= Ax - & + +B($t))* [B(f(t))Z - B(y(t))z] 

= (A” - P-lB(g(t))*B(g(t))) z + 

et) 
+ (A - 2)~ + F-lB(G(t))* (B@(t)) - B(Y(~))) 2. 

fit) 

Here ]g(.) - K(.)] o. M 0 provided that, in (3.2), the 
real S > 0 is sufficiently small. By applying Lem- 
mata 2.2-2.4, we get 

Iz(t)l 5 ce-@ W)I+4f(~)lm. 
The evident estimation of ] f (.)ioo completes the 
proof. 
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