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Abstract

We consider a sequential algorithm that detects changes
from an acting stochastic model to any one of a number
of alternatives.  We adopt discrete approximations of the
stochastic models and we propose the deployment of
stochastic binary neural networks which are pretrained
to produce the appropriate statistical measures
associated with these models.  The pretraining is
implemented by a backpropagating supervised learning
algorithm of stochastic approximation nature which
converges almost surely under general conditions.  The
overall system performance is discussed and some
numerical results are presented.

I.  INTRODUCTION

In this paper, we consider the neural implementation
of a sequential algorithm for the detection of change in
the acting stochastic environmental model, when the
model alternatives must be learned themselves in
interaction with the environment.  The original
algorithm for parametrically designed stochastic models
can be found in Bansal et al [1] and its parametric
extension can be found in Burrell [3] and Burrell et al
[4], [5].  The applications of the algorithm are
numerous, ranging from quality control, to the detection
of edges in images, to the recognition of failures in
network lines, to the dynamic capacity allocation in
multimedia ATM networks.  For the latter application,
see Burrell [3] and Burrell et al [4].

II.  THE ALGORITHM AND DISCRETE
ROBUST MAPPINGS

The extended parametric problem in Burrell [3] and
Burrell et al [4], [5] is as follows.

Let x1
n  denote the sequence x 1, ..., x n of n

observations after time zero.  Let the process which
initially generates the data sequence be the process µ  0.
Let it be possible that a shift to any one of m-1
independent processes µ i ; i=1, ..., m-1 may occur at

any point in time, where if a µ 0  →  µ i shift occurs, then
the process µ i remains active thereafter.  The objective
is to detect the occurrence of a µ 0  →  µ i shift as
accurately and as timely as possible, including the
detection of the process µ i which µ 0 changed to.  Let us
denote by fi ; i = 0, ..., m-1 density or probability
functions induced by the processes µ i ; i =1, ..., m-1 and
let fi ( )|x x n

n
1

1−  denote the density/probability function

at x n, conditioned on the sequence xn
1

1− .  Then, the
parametric algorithm in [3] is as follows:

(a) Select a threshold δ 0  > 0.
(b) Have m-1 parallel algorithms operating.  The ith

algorithm;  i =1, ..., m-1  is monitoring a µ 0 →  µ i

shift. T (x  )n
0i

1
n  denotes the operating value of the ith

algorithm at time n, given the observation sequence
x1

n .  The operating value T (x  )n
0i

1
n  is updated as

follows.
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(c) The algorithmic system stops the first time n when
either one of the m-1 parallel algorithms crosses the
common threshold δ 0.  If the ith algorithm is the
one that first crosses the threshold, then it is
declared that a µ 0 →  µ i shift has occurred.

Let N 0 i denote the extended stopping variable induced
by the ith algorithm in the system; that is,

{ }N n T x0 n
0i

1
n

i inf∆ : ( ) ≥δ0 .  Let us define the following
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Consider then, the following conditions:
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Conditions (A) state the existence of the generalized
Kullback-Leibler information numbers { }Ii j  while

conditions (B) ensure the convergence of the large-

deviation probabilities { }pn
i j v( )  fast enough.  The

following theorem and corollary can now be expressed,
whose proof can be found in Burrell et al [5].
Theorem 1

Let the processes {µ j ; j = 0, 1, .., m-1} be
stationary, ergodic, mutually independent, and
satisfying conditions (A) and (B).  Then,
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Corollary
Given that the process µ j  ; j =1, .., m-1 is acting

throughout, the algorithmic system will asymptotically
detect the µ 0 →  µ j shift correctly, in the expected
stopping time sense.  That is:
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Given that the process µ j  ; j =1, .., m-1  is acting
throughout, the asymptotic expected stopping time of

the algorithmic system is: { }Ε N I0 0
1

0j j j| ~ log .µ δ−

Remarks:  (a) The algorithm is asymptotically optimal
in the sense that, as δ 0  →  ∞  and for any extended
stopping variables { }′ = −N  ; 1,  ...,  m 10 j j , such that

{ }Ε ′ ≥ −N 0 0
1

02j | µ δ , then { } { }Ε ΕN N0 0j j j j| |µ µ≤ ′ .

(b) From Theorem 1 and its corollary, the importance of
the generalized Kullback-Leibler information numbers
{I i j} is clear.  The larger these numbers are and the
closer to each other, the better is the performance of the

extended algorithm, in the sense that the smaller are
then the ratios
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(c)  The asymptotic correct detections induced by the
extended algorithm, as stated by the corollary, are due
to the single common threshold δ 0 used.  The latter is
basically associated with the starting process µ 0.  �

The implicit assumption in the algorithm in (1) is
that the conditional densities/probabilities
{ ( )}|fi x x n

n
1

1−  are analytically known.  In reality, these
densities/probabilities may have to be estimated and/or
may not possess analytic forms.  In addition, it is
generally desirable that the environment be mapped into
a set of distinct representations for computability.  We
thus propose the deployment of m neural networks that
are pretrained to reproduce discrete versions of the
conditional probabilities/densities { ( )}|fi x x n

n
1 .  The

latter networks will then provide the appropriate inputs
to the algorithm in (1).

Discrete Finite Memory Robust Mappings

Let x 1, ..., x n denote a sequence of observations,
representing the environment.  Then, given the ith
environmental model, given x 1, ..., x n, the objective of
the discrete mapping is to predict which one of M
distinct regions, the observation x n+1 is going to be in.
Denoting these regions A j; j=1, ..., M, a high-
performance predictive encoding operation requires in
fact the computation of the conditional probabilities,
{p (x ,  ...,  x ) P (x A / x ,  ...,  x )}1 n n+1 1 n 1 Mi j j j

∆ ε ≤ ≤ ;

which are used to map an observed sequence {x 1, ..., x
n} onto each of the regions {A j}, with corresponding
probabilities {p i j (x 1, ..., x n)}.  Two problems arise
immediately:

(i) Exploding computational load, due to the increasing
memory represented by the sequences (x 1, ..., x n).

(ii) Statistical information on the sequences (x 1, ..., x n)
needed for the computation of the probabilities
{p i j (x 1, ..., x n)}.

The first problem is resolved, if the increasing
memory is approximated by finite, say size-l memory.
That is, the increasing computational load is, instead,
bounded if the process that generates the observations is
approximated by an l-order Markov process.  Then, the
information loss is minimized when the process is
Gaussian (see Blahut [2]).

Thus, to reduce the exploding computational load
due to increasing data memory, we may initially model



the process that generates the environmental data or
observations by an l-order Gaussian Markov process,
whose autocorrelation mxm matrix Q i, has components
identical to the corresponding components of the
original process.  We name this initial (Gaussian and
Markov) process, nominal process.

Starting with our nominal process, but incorporating
then statistical uncertainties in our model, we are led to
a powerful (qualitatively) robust formalization, which
results in a stochastic mapping (see Papantoni-Kazakos
et al [8]), as follows:

Given observations (x 1, ..., x n), use the l most recent
observations for the prediction of the next datum x n+1,
and defining y x ,  ...,  x ]m

T
n-m+1 n= [ , decide that x n+1εAj

with probability q i j (ym), defined as follows,

q M y r (y )]p y ),m m mi j m i i i jy r( ) ( ) [ (= + −1 1 (5)

where p i j (ym) is the conditional probability of x n+1εAj,
given y x ,  ...,  x ]m

T
n-m+1 n= [ , under the ith model, as

induced by the Gaussian and Markov nominal process,
and where, for some positive finite constant λi,
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The value of the constant λi in (6) represents the
level of confidence to the “purity” of the data vector ym,
in terms of it being generated by the nominal Gaussian
process: the higher the value of λi, the higher the level
of confidence, where as λi decreases, increased weight
on purely random mappings (represented by the

probability 1
M  per region) is induced.

In addition, robust estimation of the autocorrelation
matrix Q i will be required.  The components of the
autocorrelation matrix Q i should emerge from the
statistics of the nominal Gaussian process.  It is thus
necessary to provide a scheme for the robust estimation
of the matrix Q, in which observations generated from
the outlier process are rejected in the estimation of the
components of the matrix, (see Kazakos et al [6]).
Special attention should be paid to allow for the
existence of the inverse autocorrelation matrix Qi

−1

from the estimates of its components.

The robust prediction expression in (5) was based on
a Gaussian assumption for the nominal process that
generates the data in the environment, where the latter
assumption was the result of an information-theoretical
approach to the reduction of the computational load

caused by increased past memory.  The important robust
effects induced by the mapping in (5) remain unaltered,
however, when instead, the probability p i j (ym) in (5)
arises from an arbitrary nonGaussian process, and when
its conditioning on ym is substituted by conditioning on
quantized values of the scalar quantity y Q ym

T 1
mi

− .
When quantized values are involved, the
implementation of the mapping in (5) involves the
following stages:

(a) Preprocessing.  This stage corresponds to long-term
memory and involves the robust preestimation, (see
Kazakos et al [6]), and storage of the matrix Q-1

i .

(b) Processing.  This stage corresponds to short-term
memory.  It uses the matrix Q-1

i  from the
preprocessing step and the observation vector ym to:
(i) first compute the quadratic expression y Q ym

T 1
mi

− ,

(ii) then, represent y Q ym
T 1

mi
−  in a quantized form

comprised of N distinct values, (iii) finally, use the
quantized values in (ii) to compute the
corresponding value of the function ri (ym) in (6).

(c) Predictive Mapping.  This stage involves the
estimation of the probabilities {p i j (ym)} and the
computation of the probabilities {q i j (ym)} in (5)
using inputs from the processing stage, and the
subsequent implementation of the prediction
mappings.

The three different stages above are performed
sequentially by separate but connected neural structures,
named preprocessing layer, processing layer, and
predictive mapping layer, respectively.  Our focus in
this paper is on the latter layer: its structure and its
operations.  Towards that direction, we first note that,
due to the quantization operations at the processing
layer, the expression in (5) takes the following form:

q M r r p

; for y y R  = 1,...,Nm
T

m

i j i i i j

iQ

ρ ρ ρ ρ

ρ ρ

= + −

→−

1 1

1

[ ] ;

;
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where q i j ρ, p i j ρ, and r i ρ denote, respectively, the
probabilities q i j (ym) and p i j (ym) and the number r i

(ym), when the quantized value of y Q ym
T 1

mi
−  equals R ρ.

III.  THE PREDICTIVE MAPPING LAYER

Consider the integer M in (7), and let s be a unique
positive integer, such that 2s-1<M≤2s.  Then, in modulo-
2 arithmetic, each state j; j=1, ..., M can be represented
by an s-length 0-1 binary sequence x x1 sL .  The state R

ρ is provided as an input to the prediction layer by the



processing layer, and the former produces a binary
sequence x x1 sL  as a prediction mapping.  Given the
state R ρ, the operations of the prediction layer must be
such that, a given prediction sequence x x1 sL  is
produced stochastically with probability.

q x x R M r r ]p x x / R )1 s  1 si i i i( / ) [ (L Lρ ρ ρ ρ= + −1 1 (8)

where expression (8) is the same as expression (7);
when the binary representation of the positive integer j
in the latter is x x1 sL , and where p x x / R )1 si ( L ρ  is

the prediction mapping generated by the nominal
process that represents the actual data environment.
Due to the stochastic nature of the rule in (8), such is
also the nature of the predictive mapping layer, whose
neural representation corresponds then to a stochastic
neural network, first developed by Kogiantis et al [7],
when the response of each neuron is limited to binary.
We proceed with the description of the latter
representation.

Let us temporarily assume that the probabilities
p x x / R )1 si ( L ρ  have been “learned” and are known.

Without lack in generality, let us also assume that
M=2s.  The original constraint of binary firing per
neuron in the prediction layer leads us to the digital
representation of the future states, {x    x1 s, ... , } .  The
design can be accommodated easily in a binary tree
structure.  In detail, given the observed state R ρ and the
resulting R i ρ value, the mapping x x1 sL  can be
obtained via a stochastic binary tree search, on the 2s-
leaves tree, as follows:  (a)  With probability r i ρ a fair
tree-search is activated, where the tree-node x 1; x 1=0, 1
is visited with probability 0.5, and each of the two tree-
nodes branching off a visited tree-node
x  x ;  1 k s -11 kL ≤ ≤  is also visited with probability 0.5.
(b)  With probability 1-r i ρ a generally biased tree-
search is activated, where the tree-node x 1 is visited
with probability p i (x 1/R ρ), while from a visited tree-
node x  x ;  1 k s -11 kL ≤ ≤  the tree-node
x x  x   1 k k +1L  is visited with probability:

p (x / x x ,R p (x x x / x x ,Rk 1 1 k 1 k k 1 1 ki i+ +L L Lρ ρ) )∆

where,

p (x x / R p (x / R

p (x / x x ,R p (x x x ,R
1 s 1

k 1 1 k s 1 s-1

i i

i i

L L

L L L
ρ ρ

ρ ρ

) )

) / )

=

+
(9)

Thus, the predictive mapping layer may be viewed
as been comprised of a fair-search binary tree and a
number of biased-search binary trees, each of the latter
corresponding to a specific observation state R ρ.  Given

R ρ, the common fair-search binary tree is activated with
probability r i ρ, while, with probability 1-r i ρ, the biased-
search binary tree that corresponds to the state R ρ is
activated, instead; we name the latter tree, the R ρ tree.

Given the observation state R ρ, consider the R ρ -tree
in conjunction with the sequential stochastic
representation in (9) of the corresponding prediction
mappings, as generated by the process representing the
actual data environment.  Let u ; 1 k sx x 1 kL ≤ ≤
represent the binary random output of the neuron that
corresponds to the node x x1 kL  of the R ρ -tree.  Then,
ux x 1 kL = 1  if and only if u i kx x 1L i

= ∀ ≤1; .  Thus,

the output ux x 1 kL  may be viewed as generated by a

product, W W Wx x /x x /x x1 2 1 k 1 k-1
L L , of mutually

independent binary random variables {Wx /x x i k1 -1i iL }1≤ ≤ ,

whose distributions at the operational stage of the R ρ -
tree must be as follows, (in view of (9)):

P(u 1) P(W W W 1)
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where,

P(W 1) =

= p (x / x x , R ); 2 k s
xk /x1 xk 1

k 1 k 1

L

L
−

−

=
≤ ≤i ρ

(11)

The above logical arguments and expressions lead to the
following neural structure of the R ρ-tree:  (a)  The
neuron corresponding to the tree-node x 1; x 1=0, 1 has a
binary random variable Wx1

 built in, where W0=1-W1.

At the operational stage, the neuron must be activated
with probability p i (x 1/ R ρ); thus,
P(W p (x / Rx 11

1= =) )i ρ  then, where

P(W P(W01 1 1 1= = − =) ) .  (b)  For k ≥2 , the neuron
corresponding to the tree-node x x1 kL  has a binary
random variable Wx /x xk 1 k 1L −

 built in and fires, if and

only if the latter variable takes the value 1 and
simultaneously the neuron corresponding to the tree-
node x x1 k-1L  fires as well.  Thus, the binary neural
output ux x 1 kL  is formed as a product

u Wx x x /x x 1 k k 1 kL L− −1 1
, where,



P(u 1) = P(u W

P(u 1)P(W
x1 xk x1 xk 1 xk /x1 xk 1

x1 xk-1 xk /x1 xk 1

L L L

L L

= = =
= = =

− −

−

1

1

)

)
(12)

and where, at the operational stage of the R ρ -tree, the
probability P(Wx /x xk 1 k 1L −

= 1)  must be as in (11).  We

note that,

W 1 W ; k 2; x x1/x x 0/x x 1 k-11 k-1 1 k 1L L L= − ∀ ≥ ∀
−

(13)

and thus,

P W 1) =

= 1- P(W = 1); k 2; x x
1/x1 xk-1

0/x1 xk 1 1 k-1

( L

L L

=
∀ ≥ ∀−

Learning at the Predictive Mapping Layer.

Given the R ρ -tree, we observe that, due to (10), any
adaptations of the probability P(u 1)x x1 sL =
backpropagate to adaptations of each of the
probabilities P(W = 1),  ,  P(W x = 1)x x /x s-11 s 1

K L .  It

thus suffices to focus on the learning of the
probabilities, {P(u = 1)}x x1 sL , for the various binary

sequences x x1 sL , which correspond to the responses of
the output or “visible” neurons in the R ρ -tree network.
For easiness in presentation, let us now consider a fixed
sequence x x1 sL , (in conjunction with the fixed
observed state R ρ that represents the R ρ -tree).  Let then
p denote the value of the probability p(x x / R )1 sL ρ , as
induced by the environment, and let q denote the value
of the probability P(u = 1)x x1 sL .  Let the natural

number n denote discrete observation time from the
beginning of the learning stage, and let $pn  and $qn

denote estimates at time n of the probability values p
and q, respectively.  Finally, let the random variable Vn

be defined as equal to 1; if the environmental event
{x x / R }1 sL ρ  occurs at time n, and as equal to 0;
otherwise, and let

Ζ ∆ρ ρ ρ ρ
ρ

ρ
V W ), W

0;  w.p. 1- r

1;  w.p. 1- r
(1− =




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i

i
.  In Kogiantis

et al [7], a Kullback-Leibler matching criterion between
p and q was used, in conjunction with Newton’s
iterative numerical method, to develop the supervised
learning algorithm stated below.

ALGORITHM

Initial Values: Select an initial value $q1 > 0 ,
while $p v1 1= .

Computational
Steps:

(a)  Given computed value $pn  and
zn+1 , as in (17), compute $pn+1  as
follows:

$ $
$

p p
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n 1n 1 n
n 1

1
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+

−

= +
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+
iρ (14)

For some small positive value δ, the
value $pn+1  is corrected to δ; if
$pn+1 < δ , and is corrected to 1-δ; if
$pn+1 > −1 δ .

(b) Given computed values (q ,pn n$ $ ) ,
given zn+1 , compute $qn+1  as follows:

$ $
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where,
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1
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+
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+
iρ , from

(14).

For some small positive value ζ, the
value $qn+1  is corrected to ζ; if
$qn+1 < ζ , and is corrected to 1-ζ; if
$qn+1 > −1 ζ .

In Kogiantis et al [7], the following theorem was
proved.

Theorem 2

Let the process which generates the observed data in the
environment be ergodic.  Let then, s denote the
probability of the event { }x x / R1 sL ρ , as induced by
the latter process.  Then, the supervised learning
algorithm converges to the probability s, almost surely,
with rate inversely proportional to the sample/iteration
size n.  �

In Kogiantis et al [7], it was found that the learning
algorithm converges rapidly to predictive probability



mappings that are close to those induced by the
environment, even under mismatch network conditions.
Specifically, when past dependence decays fast with
distance, then, even when the network order is less than
the order of the Markovian environmental model,
convergence to almost the true process is attained in less
than fifty iterations, in most cases.

IV.  CONCLUSIONS

We considered a sequential algorithm for the
detection of change from a given environmental model
to a number of alternatives, when the latter models need
to be learned via supervised environmental
observations.  We assumed discretized observations and
stochastic neural networks for the supervised learning of
the models.  We also adopted a backpropagating
supervised learning algorithm for the pretraining of
these networks, that guarantees almost sure and rapid
convergence under general model conditions.  The
overall system is efficient and accurate, as well as
robust, and has numerous applications.
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