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Abstract

In this paper a robust-adaptive control scheme is
applied to a 9-link (8-degrees-of-freedom) biped robot
under the assumption that the biped is subject to rapidly
time-varying parameters. The eight degrees of freedom
correspond to two hip, two knee, two ankle, and two
metatarsal joints, while the motion is constrained to be
on the sagittal plane. The robust-adaptive controller
consists of two components; a parameter updating law
based on the o-modification principle, and a nonlinear
control law which is designed so that to ensure that all
signals involved remain bounded. Extensive simulation
experiments were carried out which show the practicality
and effectiveness of the proposed robust-adaptive
controller for biped walking.

1 Introduction

One of the primary motivations for designing biped
robots is to perform tasks in environments that are too
dangerous for human beings. To be a satisfactory
substitute for the human being, the robot must be able to
enter a region originally designed for human access, and
perfom tasks that are not already automated and
normally require the capabilities of a person. One
measure of the success of a biped design is how well it
can emulate the agility of a human being. Therefore, a
useful biped robot needs feet. It is not possible for a
passive platform to stand in a single, stable position if it
is supported on only two points. However, a dynamic
system can balance on two points like stilts if the
supporting points are allowed to move and are controlled
by a sufficiently sophisticated control system. The stiff
legged stilt biped must remain in a continuous state of
motion to maintain balance.

In this paper a 9-link planar biped model is studied
which includes not only the main links : legs, thighs, and
trunk, but also a two segments foot. This biped has two
hip, two knee, two ankle, and two metatarsal joints, with
one d.o.f. each of them. The motion is constrained on the
sagittal plane, and as a consequence, the total number of
degrees of freedom is going to be limited enough, always
depending on the phase of the walking being executed.
This two dimensional motion can in fact be achieved in
reality, as it was shown by the Kenkyaku-2 biped [1]
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which has a steel pipe attached to the lowest end of the
leg in order to maintain the lateral balance.

The goal for the choice of such a model is the
achievement of a more satisfactory substitute for the
anthropomorphic gait, giving great attention to the
model which describes the foot. Most of the previous
biped studies consider the foot as one solid element.
Here, each foot is composed of two rigid parts connected
at the transverse tarsal joint. The calcancus and talus as
a single unit form the proximal segment, and the
remaining bones and joints of the foot the distal segment.

2 The Walking Pattern

The most popular analytical model of walking is the
one based on the hypothesis that walking is performed so
as to have the least expenditure of energy [2]. In our 9-
link biped robot model, it is assumed that at the middie
of the supporting leg period, that is when the swing leg
moves before the suporting leg, a new phase of the gait
exists. This is the kick phase, where an ankle motion of
the supporting leg is achieved, so that a maximum of the
vertical force just before the collision appears.
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Fig.1 A ballistic walking model

Furthemore, it is assumed that the torque, applied to
the knee joint is zero, the desired trajectories of the
angles 6 and y are specified as a function of o, and in
addition the reference signals are chosen such that to use
the effects of the gravity in a way that increases the
angular momentum during the single leg supporting
phase (see Fig.1).

Therefore, trying to utilize the gravity effect skillfully,
the following walking pattern is adopted in this study.

1. The body is always kept upright.

2. The knee of the supporting leg extends straight and as
a result the first assumption is satisfied, since the



relation between the thigh angle 0 and the shank
angle o is 6=a.

3. The ankle and foot joint of the supporting leg is free
except for the kick-phase.

4. The foot of the swing leg is kept parallel to the
ground.

5. The leg-support-exchange is done in an instant (there
is no double-legs-supporting phase).

6. At the touchdown, the knee joint of the swing leg is
kept in bending state.

7. The touchdown of the swing leg is assumed to occur
in two stages. Firstly, the toes of the swing leg take a
collision with the ground and then the collision of the
heel follows.

8. The same reference signals are supplied at each step
repeatedly.

The reference signals shown in Fig.5 (thin line)
describe the desire change of the angular position of the
robot joints during the first two steps. It is obvious, that
the reference signals during the first step are a little
different, since the robot starts walking from the upright
posture. The signals of the second step are recurrently
used in every step.

3 Kinematic and Dynamic Model
of a 9-Link Biped Robot

The kinematic and dynamic equations of the 9-link
biped robot model can be found as was done for the 5-
link biped robot in [3].

3.1 Kinematic Model

The 9-link biped under consideration is shown in
Fig.2. It includes the trunk (link 5) and four links in
each leg which represent the thigh (links 4 and 6), the
shin (links 3 and 7), the heel (links 2 and 8) and the
metatarsal (links 1 and 9). The links labeled |; (i=1,...,9)
are joined together at ideal pin joints. Hence, it has two
hip joints (joints 4 and 5), two knee joints (joints 3 and
6), two ankle joints (joints 2 and 7) and two metatarsal
joints (joints 1 and 8), which are assumed to be ideal
(without friction) rotational joints (with one d.o.f each of
them) driven by independent electric DC motors. At each
joint, except the one which contacts the ground, there is
an ideal torque 7i. Since the motion of the biped robot is
constrained to be on the sagittal plane, for a definite
description, we use as generalized variables the set of the
angles of each link i with the vertical, which is denoted
as 0i. The direction of the i is as shown in Fig.2.

There are four parameters for each link : the mass of
the link m,, its moment of inertia about the c.0.g. I;, the

length of the link I;, and the distance between the c.o.g.
and the lower joint d;. Fig.3 shows these parameters for
the i-th link. For the heel the notation is somewhat
diferent (Fig.4). The numerical values used for all these
parameters have been taken from [4].

Fig.3 Parameters of the i-th link  Fig.4 Parameters of the heel

The kinematic model which describes the relation
between the velocity of the foot of the swing leg and the
change of the generalized variables is given by the
equations
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3.2 Dynamic Model

Non-kick action in single-leg-supporting phase :
Here, the dynamic equations are studied when the biped
robot has one supporting leg and there is no raising of
the heel (61, 02 constant). Applying the Lagrange
dynamic equation, the equations of motion take the
following closed form, for the non-kick phase :

D(0)d -+ C(6,0)0+ G(0) =T, @)
where Ty is the generalized torque which corresponds to
the variable 8;, D(0) is the positive symmetric 9x9 inertia
matrix, C(0,0) is the 9x9 matrix (with zero diagonal

terms) which includes terms from the centrifugal and
Coriolis torques, and G(0) is the 9-dimensional vector

:
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which represents the gravitational torques. The form of
these matrices is given in [5] and due to space limitation
are not included here.

Kick action in single-leg-supporting phase : As
mentioned before, since our biped robot has a 2-link foot
we can adopt the biped locomotion with kick-action
(only in the single leg support phase) which was firstly
employed in Kenkyaku-2 [1]. However, as seen from the
shape of the human foot, the ankle torque of the
supporting leg can decrease the walking speed but
cannot increase it. Since the reduction of the speed
causes an energy loss, and according to the first
assumption that the biped robot has to keep the
properties of a balistic model (to keep its energy at a
constant level), in the continuous walking of this study
the ankle joint of the supporting leg is set to be free
except for the kick phase, when raising of the heel exists.
In this case, an additional variation of the angle 9
occurs, while the angle 61 keeps on a constant value.

Based again on the Lagrange dynamic model, the
equations of motion, during the kick phase, take a form
similar to (2) (the matrices D, C, G are similar to the
corresponding matrices with some additional terms
caused by the raising of the heel, (see [5]).

In the two previous phases, introducing the
transformations

q, =6, +0, qs=05+6¢
q, =-90°+e+0, -6, 9=66—01
q; =6, -0, Gy = -90° +&+05+6;
q; =0,-6; qg = O3 +09

9 .
k =Zj=lTej(59j/6qi) i=1,..8

where q; is the joint angular position, and i is the real
driving torque exerted by each independent actuator to
each joint of the biped robot (the torque at the toes of the
supporting leg is zero because of the existence of one
unpowered d.o.f), we get the following closed form of
dynamic equations

D(9)§+C(q, D4 +G(g) ==

This dynamic model will be used in the control part of
the papet.

Leg-support-exchange The walking pattern
adopted here implies that the leg-support-exchange is
done in an instant. In this way, the double-leg-
supporting phase is omitted. Then, just after the
touchdown of the swing leg, the exchange of the
supporting leg occurs, Hence, we assume that the biped
robot is instantly, just before the collision, on the air. As
a result, at the time of the swing leg collision with the
ground, the constraint xr=yr=constant, which exists
during the single leg supporting phase, is lost. In this
case, two more variables (the coordinates xr, yr of the
supporting leg toes) are required for an exact description
of the position of the biped robot. The elements of the
inertial matrix D, for this case can again be found in [5].

Collision of the swing leg with the ground : For a
mobile robot, the collision with the environment is an
ordinary affair and one of the effects of robot collision is
the abrupt change of the joint angular velocities. As

mentioned in the walking pattern, the collision with the
ground occurs in two stages. Firstly, the toes (B) of the
swing leg take a collision with the ground and then the
collision of the heel (A) follows. Thus the velocity
change is given by [6] :

. -1
A6=p," *3,"(*5,D,” BJ,,T) A%y 3)
where D, is the inertia matrix of the robot model when it
is instantly on the air and J_ is the associated Jacobian
matrix. After the first collision, the velocity of the toes
(B) of the swing leg vanishes, hence

6, = 0, +D,” *1,7(*3, D, %3,) k) (&)
after  before before

Then, the collision of the heel (A) of the swing leg

occurs. Hence, the general relation takes the form

86=D," *3,7(*5,D, 43,7) ax, ®)

Similar to the first case, after the second collision, the
velocity of the heel (A) goes to zero. Hence

0, = 8, +D, AT (A, D, M) k) ©)

after before before
where 0, isequalto 8; which is computed from the
before after
first collision.

4 Robust-Adaptive Control of Biped Robots

The locomotion activity and gait,in particular, belongs
to the class of highly automated motions. When a man is
walking in a steady regime or in an environment
imposing small disturbances, the central nervous system
is not involved. When large disturbances occur, the
system actions are directed only to the preservation of the
system overall stability, i.e., towards preventing the
system from falling down. This requirement is of
primary importance in biped locomotion [7].

In this paper, we apply a robust-adaptive control
scheme which aims at minimizing the sensitivity of the
system performance under the presence of large and
rapid time-variations in the robot parameters. This
control scheme ensures that all signals of the robot
system are bounded, and that the mean tracking error is
of the order of the parameter variations which are not
required to be small [8].

The dynamic equations of a biped robot whose
parameters may explicitly depend on time, have the
following form

. oD(g1) . o
D@+ D1 Cgd9a+Fay =1 ()
where F(q,t) =@é%t—)—, and P(q,t) is the potential

energy of the system. Here, because of parameter time-
variations, the important skew-symmetry property of the

matrix (D - 2C) is written in the form :

ap.\!
q[[-éq—) q-2C(q,4, t)}q =0VqeR® ®



where Dj is the ij-th element of D(q,t).
Define now the new vector § as :
s=q+Aq ©
where § = q—q, is the n-vector of tracking errors and A
is a symmetric positive definite matrix, or more
generally a matrix such that A is Hurwitz. Furthemore,
we may interpret s as a ‘velocity error’ term
s=q—q, where q, =q,—-Aq (10)
The control objective is : For a given reference signal
¢4(t), generate the applied torque t for the biped robot

(7) with unknown and time-varying parameters so that
all signals in the robot system are bounded and the joint
position ( tracks q4 as close as possible.

To achieve such an objective the biped model (7) is
first parameterized as :

. ) . s aD(q,t) .
D(q,1)8+ C(q,4,9)s = T D(q, )4, ~ C(q,4, )4, — F(q,1) - %q

. . - 17} ,t) .
=1 Dyd, — Cid, — Fx - ¥(4,4,4,,G,.t) a(t) - %—)q
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where (-Dyq, — Cxq, —Fx) is the term of the rr(lodzel
with unknown parameters, Y(q,4,4,,q,,t) is a nxr
matrix of known functions for some 1>0, and a(t) eR"
contains parameters which may be time-varying. In (11)
the regressor Y(q,4.q,.4,,t) is bounded for bounded
q.4.9q,, and q,.

The following assumptions are made about the biped
robot model (7) :

a(t)|<p for some constants

@ Ja®|<p,
Py >0, p>0.

(i) naDgt;, t)

<yf(q) for some constant y>0 and

known bounded f(q) for bounded q.
(i)  qq(t), q4(), §4(t) are bounded.

The new characteristics of this biped robot model are: (i)
the presence of the unknown and time-varying vector
a(t) (which is going to be estimated), and (ii) at the same
time the existence of the unknown term aD(q’t)q If
the parmeters of the terms D(q,t) and P(q,t) were known,

then a(t) and %“ﬁq could be calculated so that the

control law
C aD(q,t

W0 = Y@ d,i.0 80+ 220G -Kys  (12)
could be implemented (like the computed torque
methodology), which guarantees global stability and
asymptotic tracking. However, for unknown D(q,t) and
P(q,t) we have to develop an adaptive control scheme

(control law - update law) which is robust with respect to
the time-variation of a(t) and Qgtl—’th

A first feedback controller suggested by (12) could
include a ‘feedforward’ term D 4, +Cyq, +Y4, a
simple PD term Kps, and a term which causes
robustness with respect to the time-variations of
oD(q,t) .

“a q

A first type of the parameter update law could include
a term 4=-T"'YTs, and at the same time a term
-I"'o(t)a(t) suggested by the o-modification technique
which takes care of the robustness to the time-variations
of a(t).

Taking into account the above considerations, the
following controller and update law structures are

proposed :
Controller:
1) = D (q, )4, (1) + Cx(4,4,14, () + Y(q, 4.4, 4,, DA(t) + T (1) - K ps(t)
13)
where 1,(t) is the term which will ensure the
robustness with respect to &g:’tl(]
Update law :
a=-T"Y"(q,4,9,,4,,)s(t) - T 's(H)a(t) (14)
where o(t) is the switching signal :
0 if Jae <M
(15)

o(t) = co["alfd—t)”—l] if M < Ja(t)] < 2M (o, > 0)

S, if [at)| = 2M
which uses the a priori information that supja(t)]| is

upper bounded by M.
Let us now consider the positive definite function

V(s,3) =(1/2)(s"Ds +a"Ta)
where D=D(q(t),t) and at)=a(t)—a().
Differentiating, and using (8) yields :
V(s,3,t) = 1 sT 6D(q,t) — (41 + 4, (1) + 5Tt — s [Dg (1) + Cyed,(t) + Ya(t)]
+ ﬁ‘(t)ra(t) T (Hrac)

= —%sT %(q(m 4, () +sTtg(t) -sTK ps- T (o (ba(t) - FT (Hra(t)

< %]ls‘(t)"“%’bl(qa) + G O)* Tea(®) - $TRps- 7T M0 — T

(16)
Then choosing :

a0 = (koGO + 4, V@) s
the inequality (16), becomes :

V< —{m(t)]|s(t)| - ﬁ) + 1671: - —s"K ps- 37 (1)o(Da(t) — AT()TA(Y)
9 0
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where m(t) = K,[[§(t) +q,()|f(q) and T, (1) = -m’(B)s(t) .



Finally, using (15) and the assumption (i) (Sec. 2) of the
biped, one gets :

V< -—(m(t)]ls(t)"— 4—110) + 161( > —8"Kps

-(o0-ogga-afiol- {2+ ) (2 2 o

(18)
In the inequality (18) we observe that since
Y, pand p, are positive constants, then the first, third

and fifth terms are negative definite functions and as a
result have a negative contribution to V, while the other
terms are positive definite. Moreover, since o(t) defined
in (15) satisfies the inequality :

(o — o, )a" (Di()] < 125, M (19)

it follows that V <0 in a region V=V, for i(t), s(t)
outside a certain bounded set so that the first, third and
fifth terms predominate (contributing negatively) in this
inequality. The bound V, is dependent on the other
positive definite terms. Therefore, this robust-adaptive
control scheme causes the boundedness of V(s,2,t) and

as a consequence the signals s(t) and a(t) are bounded,
which, in view of (9), (10) and (13) implies that
q(t), q(t) and ©(t) are also bounded.

Now the tracking error §(t) will be computed. Working,

in a similar way on s(t) = ﬁ(t) + Aq(t), one can derive
the following inequality for the tracking error q(t) [5] :

t2 2
[laoPat <, (lZT + pj(tZ ~th+B,  (0)
tl 0

for some constants o, >0, B, >0 and 12>t1>0.

To implement the controller (13), one needs the
knowledge of f(q) to generate the bounding signal m(t).
A more sophisticated choice of f(q) admits a wider class

aDgtl’ 9 , but it may make the implementation of m(t)
more complicated. Note also that the above design does
not need the knowledge of the bounds y and p.

Furthermore, for a chosen f(q), different choices of k|

in generating m(t) may have different effects on the
tracking performance, while increasing k, may reduce
the effect of y in the mean error.

Finally, let us note that for the signal boundedness and
the mean tracking error (20), the parameter variations
characterized by y and p are not required to be small.
For the 9-link biped robot, we have assumed the presence
of time variations in the trunk parameters of the robot
(mass m;, rotational inertia I, distance ds from the
hip joint to the mass center of the trunk). This is a very
reasonable assumption. Therefore, here, the vector

a(t) e®*, which contains all the unknown and rapidly
time-varying trunk parameters, takes the form

a(t) =[Is, msds, m5d52, m ]
which results in a specific function Y(q,4,4,,q,.t) .
Clearly, the only thing one has to know about the time-
varying parameters are the upper bounds of the
variations, so that he has an estimation of M in (15).
Here, the variation (which is not really known) is
considered such that the parameters m,, d;, and I, take

values in the region (26.95kg, 71.05kg), (0.252m,
71.05m), and (1.2925kgm, 3.4075kgm), respectively,
Le., the mass parameters m; and I; vary 45% around

the constant value that they would have if no time-
variation existed, and the parameter d; varies 10%

around the corresponding value. Thus
|a,(®)] = |I| < 34075 = o,

|a,(t) = jmyd,| < 71.05-0.308 = 21.88 = o,
Ja(0) = |msdy| < 6.74 = ¢,
la,(t)] = |ms| < 7105 = ¢,

M = supla()] = supy/o.> + @} + @5’ + ¢, = T4T2~ T5
Furthermore, there exist constants y>0, p>0 such that

la]<p DY)« g

As mentioned before, these constants affect only the
mean tracking error and have no influence on the design
of control and update law. Hence

4, (0] =[is| = 1057dt = p,

[4,(0)] =|msds +myds| <8.78dt = p,
45| = insds” +m; 2d,d| < 3324t = p,
| (0] =[s| = 22.05dt = p,

p=p+p, +pyt +p,’ ~24dt
where dt is the sampling rate.
Here, f(q) is a known function which contains
trigonometrical terms of the angular position q;, and as

a result it is bounded for bounded q. In particular, an
upper bound is f(q)=1.

For the exact application of the control, one has to
compute the positive definite matrices A,K;, I". The

matrices A,K are chosen to take values similar to

those we should have chosen in the computed torque
control case, in order to achieve the ideal convergence. It
is remarked that this approach does not necessarily
estimate the unknown and time-varying parameters
exactly, but simply generates values that allow the
desired task (bounded tracking error) to be achieved.
‘Sufficient richness’ conditions on the desired trajectory
indicate how demanding the desired trajectory should be
for tracking convergence to necessarily require
parameter convergence. For example, in case of a



constant desired trajectory, it would be more difficult to
achieve parameter convergence. Hence, using our a
priori knowledge of the desired trajectories of the robot
joints, we choose different values for the terms of I" for
the cases that these signals don’t include enough
information. Also, the tracking error does not merely
tend asymptotically to zero, but for all practical purposes,
converges within finite time constants determined for a
given trajectory by the values of the gain matrices
A,Ky andT", themselves limited by the presence of

high-frequency unmodeled dynamics and measurement
noise.

5 Simulation Experiments

The 9-link biped robot, initially at upright posture
(assuming the time-variation of the parameters
ms, dg, I;), is commanded a desired trajectory similar

to that synthesized by the reference signals adopted in
the walking pattern. The corresponding angular
positions and position errors, during the first two steps
(in a 3.5-sec interval), are plotted in Figures 5 and 6,
respectively. These diagrams show clearly the very good
tracking of the desired reference signals despite the
presence of the uncertainty. Something that is also
obvious from the fact that the average tracking error for
the first and second step is 0.037 rads and 0.09 rads,
respectively.

6 Conclusions

In this paper the effectiveness of a robust-adaptive
control scheme applied to a 9-link biped robot was
studied. The biped robot was assumed to have rapidly
time-varying unknown parameters. The eight degrees of
freedom correspond to two hip, two knee, two ankle, and
two metatarsal joints, while the motion is constrained to
be on the sagittal plane. The robust-adaptive control
scheme involves a parameter updating law designed
using the o-modification technique, and a nonlinear
control law, and ensures that all signals of the biped
system are bounded, while the mean tracking error is of
the order of the parameter variations which are not
required to be small. A set of simulation experiments
were performed under the assumption that there are time
variations in the trunk parameters of the biped. These
experiments have demonstrated the strong capabilities of
the proposed gait control technique which is a good
candidate for practical application.
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Fig.5 Angle displacement;crz“ﬁd reference signals of the
9-link, human-sized biped robot
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Fig.6 Angle tracking erro;.s";f the 9-link, human-sized
biped robot



