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Abstract. The present paper is devoted to a study of constrained
controllability and controllability for linear dynamica systemsiif the
controls are taken to be nonnegative. In andogy to the usud
definition of controllability it is possible to introduce the concept of
positive controllability. We shal concentrate on appro-ximate
positive controllability for linear infinite-dimensio-nal dynamica
systems when the values of controls are ta-ken from a positive
closed convex cone and the operator of the system is norma and
has pure discrete point spectrum. The specid attention is paid for
positive infinite-dimensiona linear dynamica systems. Genera
approxi-mate congtrained controllability results are then applied for
digtributed parameter dynamica systems described by linear partia
differential equations of parabolic type with different kinds of
boundary conditions. Severa remarks and comments on the
rel ationships between different concepts of controllability are given.
Finally, simple numerical illustrative example is also presented.

1. Introduction
Controllability is one of the fundamental concept in mathematical
control theory [1], [3], [6]. Roughly speaking, controllability
generdly means, that it is possible to steer dynamica system from
an arbitrary initid dtate to an arbitrary find state using the set of
admissible contrals. In the literature there are many different
definitions of controllability which depend on class of dynamica
system [1], [3], [9], [12], [14], [16]. Problems of controllability for
linear control systems defined in infinite-dimensonal Banach
gpaces, have attracted a good dedl of interest over the past 20 years.
For infinite dimensond dynamica systems it is necessary to
diginguish between the notions of approximate and exact
controllability [1], [3], [6], [7] [12], [13], [14], [15] and [16]. It
follows directly from the fact, that in infinite-dimensiona spaces
there exist linear subspaces which are not closed. Mogt of the
literature in this direction so far has been concerned however, with
unconstrained controllability, and little is known for the case when
the control is restricted to take on vaues in a given subset of the
control space. Until now, scare attention has been paid to the
important case where the control of a system are nonnegative. In
this case controllability is possible only if the system is oscillating in
some sense. Therefore, the most difficult case for constrained
controllability is for dynamica systems with red eigenvalues [11].
The present paper is devoted to a study of constrained approximate
controllgbility [8], [11] for linear norma infinite-dimensona
dynamical systems if the controls are taken to be nonnegative. In
anadogy to the usua definition of controllability it is possble to
introduce the concept of gpproximate positive controllability [9]. For
such dynamical systems direct verification of constrained ap-
proximate controllability is rather difficult and complicated [8].
Therefore, we generally assume that the values of controls are taken
from a positive closed convex cone [11] and the operator of the
system is norma and has pure dis-crete point spectrum [12], [14].
The specid attention is paid for positive infinite-dimensiona linear
dynamical sysemsi.e, for dynamica systems preserving postivity
[9]. General constrained approximate controllability re-sults then are

applied for general didtributed parameter dynamica systems
described by linear partia differential equations of parabolic type
with different kinds of boun-dary conditions. Findly, as a numerical
illustrative exam-ple constrained approximate controllability of one
dimen-siona heat equation with homogeneous Dirichlet bounda-ry
conditions and scalar nonnegative control is considered.

2. Notations and system description
In this section we introduce some basic notations and definitions
which will be used in the parts of the paper. Throughout this paper
we use X to denote infinite dimensiona separable real Hilbert space.
By L([0t],R™), 1£pE¥ we denote the space of al p-integrable
functions on [0,] with valuesin R™, and L ([0,¥ ),R™) the space of
dl locdly p-integrable functions on [0,¥) with vaues in R™
Following [9] and [10] we define an order £ in the space X such
that (X,E) is a latice and the ordering is compatible with the
structure of X, i.e. X is an ordered vector space. Thisimply that the
set X*={xI X : x3 0} isaconvex positive cone with vertex at zero.
Moreover, it followsthat x, £ X, if and only if X, - xJJ X*. An
dement xI X" is caled positive, and we write x>0 if X is positive
and different from zero. Moreover, an element x*1 X* is called
grictly positive, and we write x*>>0 if &* xfk > 0 for dl x>0. An
ordered vector space X is called a vector lattice if any two elements
X1, X2 in X have a supremum and an infimum denoted by
sup{ X1, %z}, respectively, inf{x;xz;}. For an eement x of vector
| attice we write YaxY=sup{x,-x} and call it the absolute vaue of x.
We cdl two eements x3,x, of vector lattice X orthogond, if
inf{ 8888 =0. Linear form wi X is caled postive (w3 0) if
aw xfi3 0 for dl x3 0 and dtrictly positive (w>>0) if &w,xf>0 for all
x>0. Relevant examples of vector lattices with a grictly positive
linear form are given by the following spaces of practical interest: R"
and LAWR), where W is a messurable subset of R". Linear
bounded operator F from a vector lattice X into a vector lattice V is
caled postive i.e PO, if B30 for x30. Therefore, positive
operator F maps positive cone X' into positive cone V™. Let
S(t):X® X, 30, be a strongly continuous semigroup of bounded
linear operators. We cdl the semigroup positivei.e. S0, if X isa
vector lattice and S(t) is a positive operator for every t3 0. If set M i
X, we define the polar cone by M°={wl X, &vxfk £ 0 for all
xI M}. The closure, the convex hull and the interior are denoted
respectively, bycl M,co M andint M.
Let us congder linear infinite-dimensiona time-invariant control
system of the following form

X'(t) = Ax(t) + Bu(t) (2.1)

Here x(t)T X isinfinite-dimensional separable Hilbert space which
is a vector lattice with a gtrictly positive linear form. B is a linear
bounded operator from R™ into X. Therefore operator
B=[by,b,,...by,...bm] and



Bu(t) = 5, b;u,(t)

where dements b 1T X for j=12..m, and
u(t)=[us(t),ux(t),...,Ui(),....um(t)]". We would like to emphasize that
the assumption that linear operator B is bounded, rules out the
application of our theory to boundary control problems, because in
this situation B is typicaly unbounded. A: X E D(A) ® X is
normal generally unbounded linear operator with compact resolvent
R(sA) for dl s, in the resolvent set 1 (A). Then operator A has the
following properties [1], [14], [16]:

1) Operator A has only pure discrete point spectrum Sy(A)
conssting entirdly with isolated eigenvalues s , i=1,23,...
Moreover, each eigenvdue s has finite multiplicity n< ¥
i=1,2,3,... equal to the dimensondity of the corresponding
eigenmanifold.

2) The eigenvectors Xic 1 D(A) ,i=1,2,3,... k=1,23,...,n;, form a
completeorthonormal set in the separablElilbert space X.

3) Operator A generates an andytic semigroup of linear bounded
operators S(t) : X® X , for t3 0.

Let U1 R™beapositive conein the space R™, i.e. U* = {ul R™:
U 0 for j=1,2,....,m}. We define the set of admissible nonnegative
controls Un as follows U = {ul LPa([0,¥),R™ ; u®)l U* ae on
[0,¥)}. It is well known (see eg. [1], [3] or [16]), that for each
ul Ug and x(0) X there exists unique so called mild solution
x(t,x(0),u)T D(A), t3 0 of the equation (2.1) given by

t
x(t,x(0),u) =S(t)x(0) + G5 (t - s)Bu(s)ds

0
We say that dynamica system (2.1) is podtive if the semigroup S
and operator B are poditive [9]. In this case the solution x(t,x(0),u)
for initial condition x(0)] X" and admissible control ul U. remains
in X" for dl t 3 0. We define the attainable or reachable set in time
T (from the origin) by

K,(U*)={G(T- s)Bu(s)ds : ul U,

The st Ky (U *) = UK, (U *)is caled the atainable or
T>0
reachable set in finite time.

Using the concept of attainable set we may define different kinds of
controllability for dynamica system (2.1). Generaly, for infinite
dimensional dynamica system it is necessary to introduce two
fundamental notions of controllability, namely exact (strong)
controllability and approximate (week) controllability. However,
since our dynamica system has infinite dimensiona state space X
and finite dimensional control space R™, then by [13] and [15] it is
never exactly controllable in any sense. Therefore, in the sequd we
shdl concentrate only on gpproximate controllability with positive
controls fordynamical system (2.1).

Definition 2.1 . [1], [3], [6]. Dynamica system (2.1) is said to be
approximately controllable with nonnegative controlsif ¢l Ky (U™) =
X

In the unconstrained casg, i.e. when the controls values are taken
from the whole space R™, we say simply about approximate
controllability of dynamical system (2.1). The above notion of
approximate controllability is defined in the sense that we want to

reach a dense subspace of the entire state space. However, in many
instances for positive systems with nonnegetive controls, it is
known that all states are contained in a closed positive cone X* of
the state space. In this case gpproximate controllability in the sense
of the above definition is impossible but it is interesting to know
conditions under which the reachable states are dense in X*. This
observation leads to the concept of so-called positive approximate
controllability.

Definition 2.2. [9] Dynamica system (2.1) is said to be
approximately positive controllable ifl Ky(U) = X",

Remark 2.1. From the above two definitions directly follows, that
approximate controllability with nonnegative controls aways
implies approximate positive controllability. However, the converse
statement is not generally true.

Findly, we shal recal some fundamenta theorems concerning
unconstrained and congtrained approximate controllability of
dynamica sysem (2.1).Usng eigenvectors Xix , i=1,23,...
k=1,2,3,...n; we introduce for the operator B the following
notation [6], [14].

<bl,)gl>x <b2,)gl>x ...... <bj ,)gl>x ...... <qn,>gl>x
<bl,xi2>X <b2,xi2>X ...... <bj,xi2>X ...... <bm,xi2>X
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B/, for i =123,.. ae n~ m-dimensond constant matrices
which play an important rolein controllability investigations [3], [6],
[11], [14], [16]. For the case when eigenvalues s are Smple, i.e.
n =1, fori=1,223,..,B;i are m-dimensional row vectors

b :<b1,)g>x,<b2,xi>x,...,<bj,xi>x,...,<bm,)g>x for i=123..

For simplicity of notation let us denote by = &y xufk fori=1,2,3,...
k=1,2,...,n, and j=1,2,...,m. Therefore, we may express matrices B
and vectorsh' as follows
b b,

b, b
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i1l

i21

I o 12123
by b, - by .. b

in; 1 in2 inj oot in;m

b= [bg, by, ..., by, ... ,be]  for i=1,2,3,...
Since the operator A is selfadjoint, then using the above notations it
is possible to express the solution tg(0),u) as follows

i3¥ ksn, i3¥ ksn,
x(t,x(0),u) =a avg ()x, +a a v, (1)x, 22w
i=1 k=1 i=1 k=1

here



2 (1) = exp(s0{x(0). 7, )
for i =1,2,3,... and k =1,2,...,n,

A aggm o
Vi (1) = Gexps (t-t )ga bigu;(t)=dt
0 j=1 7]
for i =1,2,3,... and k =1,2,...,n,

We gart with the well known (see eg. [3], [6], [14] or [16] for
details) necessary and sufficient conditions for approximate
controllability with unconstrained controls.

Theorem 2.1 [14] Dynamica system (2.1) is approximately
controllable if and only if ranBi=n; for every i=1,2,3,...
Corollary 2.1 [14] Let m=1. Then dynamica system (2.1) is
approximately controllable if and only if every vector b TR,
i=1,2,3,... contains at least one nonzero element.

Now, we recal known in the literature (see [11] for details)
necessary and sufficient condition of approximate controllability
with nonnegative controls fodynamical system (2.1).

Theorem 2.2 [11] Dynamica system (2.1) is approximately
controllable with nonnegative controls if and only if rank Bi=n; for
every i=1,2,3,... and the columns of these matrices B; , i=1,2,3,...
which correspond to the real eigenvalues, form positive bases in the
space R".

Remark 2.2 The above result implies, in particular, that the number
of positive controls required for approximate controllability with
nonnegative controlsis at least that of the highest multiplicity of the
eigenvaues plus one. Therefore, dynamical system (2.1) with one
scalar nonnegative control is never approximeately controllable [11].
Moreover, it should be stressed, that in general case for multiple
eigenvalues, it is not so easily to verify the hypothesis that the set of
given vectors forms a positive basis in the Euclidean space.
Remark 2.3 Using the concept of polar cone C°, the results stated
above can be extended for constrained controls which take their
values from a given closed compact cone C with nonempty interior

intcl U [11].

3. Constrained controllability
In this section we shal present results concerning constrained
approximate controllability for dynamical systems (2.1). We start
with the following result on approximate positive controllability.
Theorem 3.1 If there exists p and g such that eigenvalue spT R and
coefficients by have the same sign for every j=1,2,...m, then the

dynamical system (2.1) is not approximately positive controllable.

Proof. In order to prove thistheorem it is sufficient to point the final
state ;I X" which cannot be reached approximately from a given
initial state xo 1 X*. We shdl prove it in two steps. Firg, let us
assume that X, X*. Let us take xo = 0. Therefore, by the equality
(2.2) we have VO(t) =0 fort3 0 and every i=1,2,3,... k=1,2,...,n.
Let us choose the final states] X*

i3¥ ksn, i3¥ ksn, . R .
o=a Al ) x, =advix x
i=1 k=1 X i=1 k=1
asfollows

X = SUp{-%q, 0} X, whenbyg > 0 for j=1,2,...m

X = Sup(%q,0H X' , whenbyg < 0 for j=1,2,....m

Therefore, Vi = 8, Xpalk =88UP{ Xoq,0} XpaTk < O, When by > O for
j=1,2,...m and V'pg = &, Xpalk =88UP{ Xp,0} Xpgfk > O , When by <
Oforj=1,2,...m

Following (2.2) for agiven p and g we have

t‘ %n O
v, () =exp(spt)<x(0),qu>x +Qxp(s, (t- t ))g_a.bquuj (t )gt

(31)
Therefore, since the admissible controls are nonnegative i.e,, uj(t)3 0
for j=1,2,3,...,m and¥ O, then by (3.1) it follows that
Vp(t) >0 , for € 0, whenhyg >0 for j=1,2,...m
Vp(t) <0 , for € 0, whenhyg <0 for j=1,2,...m
Taking into account the form of the solution x(t,0,u) given by

equality (2.2) we have
B Ao
= V. -V, | = >
X 8 ik (t) ik g

i=1 k=1

”x(t,O,u)- X

f
Voo (t) - vy |>const >0 for >0

Therefore, by (3.2) the find state x | X" cannot be reached
approximately from zero in any time using nonnegative controls.

Now, let us consider the case when eigenfunction x,l X*. Hence,
smilarly asin the first part of the proof, following (2.2) for a given
p and g we have

t o o
() =exp(spt)<x(0),qu> +Qxp(s, (- t ))gabmju ()t
X o =1 7]

(3.3)
Since Xy, is an orthonormal eigenvector, then taking x(0) = Xl X*
we have the following equality
a(0) Xpalk = ApgsXpelk = 1
Therefore, since the admissible controls are nonnegative i.e,, uj(t)® 0
for j=1,2,3,....m and O, then by (3.3) it follows that
Vpo(t) > 1 fors, > 0 andbyg > 0 for j=1,2,3,....m
Vpo(t) < 1fors, < 0 andbyg < 0 for j=1,2,3,....m
Since, we investigate gpproximate positive controllability of the
dynamical system (2.1), let us choose the final state xid X* and such
that
Vi < 1fors, > 0 andbyg > 0 for j=1,2,3,...,m
V> 1fors, < 0 andbyg < O for j=1,2,3,...,m
Taking into account the form of the solution x(t,0,u) given by
equality (2.2) we have

0.5

¥ " 29
"x(t,O,u) - Xf"X :gg ka:1|vik (t)- Vik| E‘ > (3.4

f
|qu(t) - qu| >const >0 for t>0

Therefore, by (3.4) the find state x | X" cannot be reached
approximately from zero in any time using nonnegative controls.

Now, let us consider the caseswhen s, > 0, b < 0 and 5,<0, by >
0. We choose the initial state xol X* and final state xd X* such that
V2= 0andviy, > 1, fors, > 0 andbyg < O for j=1,2,3,...,m

In that case we have vy(t)<0 for 130, and the fina dtate vi>1
cannot be reached by nonnegative controls.

Finaly, when s, < 0 and by > 0 for j=1,2,3,....m, we choose Vo, = 0
and Vi, = 0, Vi >1 for i k=1,23,... it p, k! g and uniformly stable
dynamical system (2.1) and

Vo = 0and Vi = 0, Vi <1 for i,k=1,2,3,... it p , k! g and not
uniformly stabledynamical system (2.1).

In both cases the find state xT X* cannot be reached by
nonnegative controls. Hence, dynamica system (2.1) is not
approximately positive controllable and our theorem follows.



From Theorem 3.1 and Remark 2.1 directly follows the next result
concermimg approximate controllability of dynamical system (2.1)
with nonnegative controls

Corollary 3.1. If the assumptions of Theorem 3.1 are satisfied, then
the dynamica system (2.1) is not approximately controllable with
nonnegative controls.

4. Positive stationary pairs
In section 3 we have obtained some negative results concerning
approximate positive controllability for dynamical system (2.1).
However, it is often not so important to reach the entire postive
cone of the state space. It suffices to steer approximately dynamical
sysem to particular postive states and held congtant by a
nonnegative control for al times. This observation directly leads to
the concept of so called positive stationary pairs [9]. In this section
we generally assume that the dynamica system (2.1) is positive in
the sense stated in section 2.
Definition 4.1 [9] We cal a pair {x,u}1 (X"\{0})" U* positive
stationary pair if Axs + Bus = 0. In this case X(t,Xs,Us) = X1 X'isa
nonzero congtant solution of the equation (2.1) for t 3 0, u(t) = us
and xs= x(0).
Theorem 4.1 [9] Let dynamical system (2.1) be positive and S(t) be
uniformly exponentidly stable postive semigroup. Then to each
ud U"kerB there exists exactly onexs = -A™Bus such that { xsug} is
apositive stationary pair. Moreover, if {xsUs} isa podtive Sationary
pair, and we choose x(O)T X" and u(t) = us, t2 0, then the solution
of the equation (2.1) tendstxs ast® ¥.
Corollary 4.1 Let Re(s) < 0. Then to each uJl U"\kerB there
exists exactly one

i3¥ k=n; j(':Jm
— -1
x,=ds, a xik,abjusj X (4.1)
i=1 k=1 j=1

X

such that {Xs,Us} is apositive stationary pair.

Proof. Since the spectrum of the linear operator S(A) is pure
discrete point spectrum, we conclude that the inequality Re(s)<0 is
anecessary and sufficient condition for so called uniform stability of
linear dynamical system [1], [9]. Therefore, using general spectra
formula for the operator A™ and Theorem 4.1 stated above we
obtain immediately equality (4.1).

Remark 4.1 Many vauable remarks and comments on the
relationships between different kinds of sability (uniform
exponentia  stability, strong stability, weak stability) of the linear
abgtract differential equation (2.1) and the existence of positive
dationary pairs for postive dynamica systems can be found in the
paper [9].

5. Parabolic typedynamical systems

In this section we shdl illustrate the general theorems and
corollaries stated in the previous sections 3 and 4 for the case of
linear distributed parameter systems of parabolic type. We begin by
describing the mathematical model of the distributed parameter
system. Let W be a bounded, open and connected subset of RN with
a smooth boundary W and dWW=WE W, Let D be the Laplacian
operator on Wand N be the gradient operator on W. Let us consider
linear distributed parameter dynamica system described by the
following partial parabolic differential equation

igm

wi(z,t) =Aw(z,t) + é, b;(z)u;(t) 0 AW (5.1)

i=1

where bl L(W), for j=1,2,3,...m, and admissible controls are
nonnegative i.e, u,T L%([0¥),RY), for j=1,23,...m. The
boundary conditions are of the following form

a@wzt) +b@"(zt) =00 4 W (5.2

It is assumed that a(z) and b(z) ae twice continuously
differentiable on cdlW. The vector field v(2) is the outer unit normal
to fW a zI W and "y, = VN denotes differentiation in the
direction of the outward normato W. Specifying a(z) and b(z) we
obtain Dirichlet, Neumann or Robin (mixed) boundary conditions.
Theinitial condition for equation (5.1) isgivenby w(z,0) = wo(2)
zZI W

The second order uniformly eliptic differentia operator has the
following form

k,B=N ng
A= a a,(z)D,D; +Aa,(2)D, +a,(z)I (53
k,j=1 k=1

where ZI RV, a4(2) = a«(2) , for j k=1,23,..N , D, = 1/Mlz , for
k=1,2,3,...N. The domain D(A) of the operator A is characterized
explicitly by
D(A) = {wl LAW) : Awi L2W) and a(2w(zt) + b@)™/(zt) =
0,t3 0, 4 TW
The coefficients a4(z), a(z) and ay(z) are assumed to be twice
continuoudly differentiable on W and a(2)3 0 for zZI W. Moreover,
since operator A is uniformly dliptic then there exists a positive
constant msuch that for all vectorsl R" we have
k,b:N R
A a,(2)XX; 3 r‘r“x|2 , for zI W
k,j=1
Various specid cases of (5.1) could be considered i.e., the reaction
diffusiondynamical system
ng
w, (z,t) =dDw(z,t) +aw(z,t) + @b, (2)u;(t) (54
=1
where aand d are real constants.
It iswell known (see eg. [10] for details), that operator A generates
an andytic postive semigroup of bounded compact operators
S(t):X® X for t3 0[10]. Moreover, since the set Wis bounded, then
the operator A has pure discrete point spectrum S(A)=Sy(A)=
{s1,%,%,.--,.S,...}, conggting entirely with isolated eigenvalues with
finite multiplicity’s m<¥, i=1,23,.. and the corresponding
eigenfunctions { X, i=1,2,3,... , k=1,2,3,...,n} forms an orhonormal
basis in the space L%(W). An additional property of the operator A
that will be important later is stated in the following lemmawhich is
proved in [10].
Lemma 5.1. [10] There exists areal eigenvalue s, of the operator A
and a corresponding elgenvector x,(2) isasrictly positive element in
the space X i.e, satisfies xi(z) >> O for al Zl dW in the case of
Neumann or Robin (mixed) boundary conditions and for al zl Win
case of Dirichlet boundary conditions. In the latter case, we have

1x, N
(z) <0 forz|l W
v
Moreover, if 5, 1=2,3/4,... is any other eigenvalue of the operator A,
then the real part ofs , Re(s), satisfies
Re(s) <s for dl i=2,3,4,...




Lemmab.1 saysthat there exists area eigenvdue of the operator A
which is larger than the red part of all other eigenvaues of the
operator A. We cdl it the principa eigenvaue of the operator A.
Moreover, Lemma 5.1 says that the associated eigenvector is
positive and is called the principalgenvector of the operator A.
We may express dynamical system (5.1) with boundary conditions
(5.2) as an abstract ordinary differentia equation in the separable
Hilbert space space X=L%(W). Since operator A given by (5.3)
satisfies al the assumptions stated in the previous sections it is
sufficient to substitute x(t) = w(t) T LAW)=X.

Let us denote

by; :<bj’xl>L2(w :\/\(/Bj (@x,(z)dz for j=123,...,m (5.5)

Now, using the general results stated in section 3 we may formulate
theorem and corollaries on positive approximate controllability for
digtributed parameter dynamical system (5.1) with normal operator
A.

Theorem 5.1. Let operator A given by (5.3) be normal. Moreover,
let us assume that by, have the same sign for every j=1,2,...,m. Then
the linear digtributed parameter dynamical system (5.1) is not
approximately positive controllable.

Proof. Let us observe that distributed parameter dynam-ical system
(5.1) satisfies al the assumptions required in Theorem 3.1.
Therefore, by Theorem 3.1 our dynamica system (5.1) is not
approximately positive controllable.

Using results given in section 4 we have the corollary.
Corollary 5.1. If 5<0, then to each uJ U"\kerB there exists
exactly onexs such that {x,Us} is a positive stationary pair.

6. Example
Let us consider the one dimensiona heat equation on a rod of
length 1 with noninsulated ends described by the following linear
parabolic partial differential equation
Wi(z,t) =w(z,t) + b(Z)u(t) 0£z£ t30 (6.1)
with initial condition w(z,0) =wy(2)
and Dirichlet type boundary conditions w(0,t) = w(1,t) =0
We wish to control digtributed parameter system (6.1) by a
nonnegative scalar input ul L2.([0.¥),R"). We can interpret this
control as an eectrical heating input that for al time is proportiona
to a given heat distribution b(z)l L%([0,1],R). We state this control
problem as an abstract control problem on the separable Hilbert
space X = L¥[0,1],R). Let us denote w(zt) = x(t) I X. Let
A=d’/dz? be the linear unbounded selfadjoint differential operator on
X with domain D(A) = {w(@)l X : W) X , w(0)=w(1)=0}. It is
known [3] that the operator A has simple eigenvalues s= -i’p? and
the corresponding eigenfunctions xi(2) = 2°°sin(ipz), for i=1,2,3,...
forms anorthonormal basisin the space X =1([0,1],R).
Since dl the eigenvalues are red, then by Theorem 5.1 dynamica
systems (6.1) is not approximately postive controllable for any
bl X. The same result has been proved in [9] but using quite
different methods.
Moreover, let us observe that operator A generates an andytic
positivesemigroup S(t), for 8 0 on X given by

|5¥
S(t)x = a exp(-i’p 2t)<x, xi>L2 X,

Now, let usassumethat bl X* = L2([0,1],R"). Therefore, distributed
parameter system (6.1) is a posditive dynamica system. Following
[9] it should be stressed, that positive dynamica system (6.1) isalso
not approximately positive controllable. However, since Re(sy) = -p?

<0, then by Corollary 5.2 for each U1 R'thereexists exactly one
Xs=-Abus 1 X" given by
1

i6¥

x,=a (-i2p ?) " OV2 sin(ipzz)b(z)dz~/2 sin(ipzz)u,

i=1 0
such that {Xs,Us} is a positive Stationary pair. From [9] an element
xd X*canbeaso expressed as follows

%1\)(\ Z\X\ O
x,(2) = ngD)(z ydzdx - QD (z )dzdx aus
00 00

Summarizing, distributed parameter dynamical system (6.1) is not
approximately positive controllable and of course it is dso not
approximately controllable with nonnegative controls, however, for
dynamical system (6.1) there exist stationary pairs.

7. Conclusions

The paper contains several results on constrained contro-llability for
linear infinite-dimensional sdfadjoint dyna-mical systems. Using
spectra properties of normal gene-rally unbounded linear operators
with pure discrete point spectrum, conditions for different kinds of
congtrained controllability have been formulated and proved.
Genera results have been gpplied for constrained controllability
consderagtions for linear distributed parameter dynamical systems
described by linear partia differential equations of parabolic type
with various kinds of boundary conditions. Finaly, smple
illugrative example of onedimensiona heat equation with
homogeneous Dirichlet boundary conditions has been presented.
Some kinds of the presented results can be extended to cover the
case of infinite-dimensiona normal dynamical systems with discrete
and continuous spectrum. It is aso possible to extend the result for
second-order infinite-dimensionalynamical systems.
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