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Abstract— In this paper, we propose Multiple-Models Adap-
tive Estimation (MMAE) for Failure Detection and Identification
(FDI) of aircraft components, i.e, flaps, landing gears. The MMAE
FDI consists of parallel Kalman filters and each Kalman filter
is constructed to represent a specific failure mode including the
nominal mode. The Kalman filter residuals are post processed
to produce the log-likelihood function values using sliding win-
dow methods, and posterior probabilities. The hypothesis with
the maximum log-likelihood function values is declared the most
possible mode of the system at the current decision time, and the
probability-weighted average state estimate (x̂MMAE) is calcu-
lated. We apply this method to the DC motor system, and evaluate
the performance with sensors failures. Simulation results show
that the MMAE is simple to implement and effective in fault de-
tection and identification.

Index Terms—Kalman filter, Sliding window, Failure Detection
and Identification

I. INTRODUCTION

MODERN engineering systems are becoming more and
more sophisticated. Reliability, availability, and au-

tomatic supervision of technical processes and their control
systems are important consideration in overall system design
and operation. An integral element of a highly reliable, fault-
tolerant system is an efficient fault detection and identification
technique that can detect and isolate the sensors, actuators, or
system component failures so that remedies can be undertaken.
A failure is defined to be any deviation of a system from its
normal or intended behavior; diagnosis is the process of de-
tecting an abnormality in the system behavior and isolating the
cause or the source of this abnormality. Hard failure can be
rapidly detected by on-line built-in-testing (BIT), the more sub-
tle or “soft” drifting-type failures can only be detected by the
use of more sophisticated techniques, based on modern esti-
mation/decision theory [1]. Towards this, many methods have
been developed for fault detection and identification of dynam-
ics systems over the last two decades [2, 3, 4, 5, 6].

In a modern flight control system, for example, failures of its
actuator or sensor may cause serious problems and need to be
detected and identified as soon and as accurately as possible.
Systems subject to such failures cannot be modelled well by a
single set of equations of state that varies continuously. A more
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appropriate mathematical model for such a system is the so-
called stochastic hybrid system. It differs from the conventional
stochastic systems in that its state may jump as well as vary
continuously.

One of the most effective approaches for fault detection and
identification is based on the use of multiple models (θk; k =
1, 2, . . . ,M) which runs a bank of parallel Kalman filters, each
based on a model matching to a particular model of the sys-
tem, and a hypothesis testing algorithm as shown in Figure 1.
The Kalman filters are provided a measurement vector and the
input vector, and produce state estimates and residuals. The
hypothesis-testing algorithm uses the residual to compute con-
ditional likelihood function of the various hypotheses that are
modelled in the Kalman filters, conditioned on the history of the
measurements received up to that time, and make the failure/ no
failure decision and isolate the failure modes. The hypothesis-
testing algorithm can also assign conditional probabilities to
each of the hypotheses that are used to form the Kalman fil-
ter models. Theses conditional probabilities indicate the rela-
tive correctness of the various filter models, and can be used to
probability-weighted average state estimate (x̂MMAE).

The remaining parts of the paper are organized as follows.
Section 2 describes the Kalman filter based on the true sys-
tem, the hypothesis modes and the hypothesis-testing algo-
rithm. Section 3 presents the simulation results based on the
pre-assumed failure sequence. Section 4 discusses the multiple-
hypothesis failure detection and identification approaches.
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II. SYSTEM MODEL

In the multiple models method, a set of models is assumed
to represent the possible system behavior patterns or structures
(system modes); a bank of Kalman filters runs in parallel at
every time, each based on a particular model, to obtain model-
based estimates and check the status of the operation system;
the overall state estimate is a kind of combination of those
model-based estimates.

A. Multiple Model Adaptive Estimation Equations

1) Basic Kalman Filter Equations: We assume a steady
state Kalman filter model associated with a particular hypothe-
sized mode with the subscript k.

xk(ti) = Φkxk(ti−1) + Bku(ti−1) + wk(ti) (1)

zk(ti) = Hkxk(ti) + vk(ti) (2)

where
xk is the state vector,
Φk is the state transition matrix,
Bk is the control input matrix,
uk is the system input vector,
wk is an additive white Gaussian processing noise with zero

mean and covariance as:

E
[
wk(ti)wT

k (tj)
]

= Qkδij (3)

zk is the measurement vector,
Hk is the measurement matrix,
vk is an additive white Gaussian measurement noise input

with zero mean and variance

E
[
vk(ti)vT

k (tj)
]

= Rkδij (4)

The measurement noise sequence vk(ti) and processing
noise sequence wk(tj) are independent of each other.

The Kalman filter algorithm uses the above model to de-
fine time propagation and measurement update equations of the
Kalman filter state estimates and state estimate covariance ma-
trix. The Kalman filter state estimate propagation equation is:

x̂k(t−i ) = Φkx̂k(t+i−1) + Bku(ti−1) (5)

ẑk(t−i ) = Hkx̂(t−i ) (6)

where
x̂k(t−i ) is the state estimate before the measurement vector is

available,
ẑk(t−i ) is the estimate of the measurement vector before it be-

comes available, and the state estimate covariance matrix prop-
agation equation

Pk(t−i ) = ΦkPk(t+i−1)Φ
T
k + Qk (7)

and when the measurement vector at ti is available, the state
estimates are updated as:

x̂k(t+i ) = x̂k(t−i ) + Kk(ti)(zk(ti) − Hkx̂k(t−i )) (8)

where the Kalman filter gain is

Kk(ti) = Pk(t−i )HT
k

[
HkPk(t−i )HT

k + Rk

]−1
(9)

The Kalman filter residual vector is defined as

rk(ti) = zk(ti) − Hkx̂k(t−i ) (10)

which is the difference between the measurements and the
Kalman filter estimates based on its model. Finally, the Kalman
filter state estimate covariance matrix is updated using

Pk(t+i ) = Pk(t−i ) − Kk(ti)HkPk(t−i ) (11)

The steady state of the Kalman filter estimate of the state co-
variance matrix can be pre-computed by iterating (7), (9) and
(11) until steady state of the covariance and gain matrices is
reached. With the steady state implementation, the state covari-
ance matrix, the steady state Kalman filter gain, and the steady
Kalman filter residual covariance matrices therefore don’t need
to be computed in real time. The steady state Kalman filter can
be

x̂k(t−i ) = Φkx̂k(t+i−1) + Bku(ti−1) (12)

for the state estimates propagation and

x̂k(t+i ) = x̂k(t−i ) + Kk(ti)rk(ti) (13)

for updating the state estimates.
2) Hypothesis Testing Algorithm: The residual sequence

has been shown to be a white Gaussian sequence of mean zero
and covariance [HkPk(t−i )HT

k + Rk]. This can be exploited
for the practical purpose of either sensor failure detection or
reasonableness checking of measurement data [7].

Optimal “likelihood function” methods can be used to per-
form a test for the occurrence of a sensor failure. Essentially
the N most recent residual signals are investigated to determine
whether they differ significantly from the statistical description
of their values that assumes no failures. The number N is a de-
sign parameter. In common sense, it is kept to be greater than
one to prevent failure declarations because consistently large
residuals indicate abnormalities, whereas individual realization
of large magnitude is to be expected. On the other hand, it is not
appropriate to use all the residuals from the initial time to cur-
rent time, since this would smooth the sensitivity to true failures
as time progressed. Thus, we use a “sliding window” of the N
most recent samples, and the N is on the order of 5 to 20. Sta-
tistical hypothesis testing theory indicated that a good choice
of likelihood function for event of failure detection would be
in the form of sum of natural logs of conditional densities for
components of residuals: for the kth component

LNk
(ti) =

i∑
j=i−N+1

ln(frk(tj)|rk(tj−1)...rk(t1)(ρj |ρj−1 . . . ρ1))

(14)
Since the residual sequence can be assumed to be a set of inde-
pendent zero-mean Gaussian random variable, the above likeli-
hood function can be written as:

LNk
(ti) = −0.5

i∑
j=i−N+1

[rT
k (tj)A−1

k rk(tj) + log|Ak|] (15)

where
Ak = HkPk(t−i )HT

k + Rk (16)

In (15), we calculate the LN (ti) values for each hypothesis
model, and pick the maximum one which would represent the
most possible operation status of the system.
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3) Posterior probabilities and combined state estimates:
Since the Kalman filter residual is a white Gaussian sequence
of mean zero and covariance as (16), we can get the conditional
density function of the measurement z at ti for the kth hypoth-
esis model, conditioned on the measurement history up to time
ti−1, Z(ti−1) = {z(t1), . . . , z(ti−1)}

fz(ti)|θ,Z(ti−1)(zi|θk, Zi−1) = βexp{.} (17)

where

β =
1

(2π)m/2|Ak|1/2
(18)

{.} = {−1
2
rT
k (ti)A−1

k rk(ti)} (19)

We can define the conditional probability for a particular hy-
pothesis model as:

pk(ti) = Pr(θ = θk|Z(ti) = Zi) (20)

In [8], the conditional probability of kth hypothesis model is
updated as:

pk(ti) =
fz(ti)|θ,Z(ti−1)pk(ti−1)∑M

j=1 fz(ti)|θ,Z(ti−1)pj(ti−1)
(21)

Here, we use the prior conditional probabilities, pk(ti−1) to
compute the conditional probabilities on the current measure-
ment. For fault detection and identification problem, we can
also use the conditional probabilities of the hypothesis models
to detect the abnormality of the system. As we stated in the
introduction part, we are going to use the conditional proba-
bilities to weight and blend the various hypothesis, and get the
x̂MMAE as:

x̂MMAE =
∑

j

x̂j(ti)pj(ti) (22)

where x̂j(ti) is the jth Kalman filter state estimate.

B. System failure modes

In this paper, system failure modes are focused on the Φ,
B and H variations because they are the most common failure
scenarios in the complex system. When we design the Kalman
filter bank, we assumed that the Kalman filter model and the
true model are of the same dimension and that the dynamics
noise strength Q, measurement noise strength R are equivalent.

In the failure detection and identification of the aircraft flight
control system, the actuator failure can be modelled as:

xk(ti) = Φkxk(ti−1) + (Bk + Mj)u(ti−1) + wk(ti−1) (23)

That is to choose the matrix Mj with all zero elements except
that the jth column is taken to the negative of the jth element
of input matrix Bk.

For the sensor failure, we have two situations:
1) Partial sensor failure: Partial sensor failure can be mod-

elled by increasing the measurement noise covariance matrix
R.

2) Total sensor failure: For the total sensor failure, a similar
idea can be followed, the failures can be modelled by annihilat-
ing the appropriate row of the measurement matrix H as:

zk(ti) = (Hk + Lj)xk(ti) + vk(ti) (24)

Here we consider combination of the partial and total sen-
sor failures, and simultaneous failures of the different sensors.
These situations require that failure detection and identification
algorithm to be more responsive and robust.

C. Physical models

Different measurable signals can be used to evaluate the re-
sponse of the DC motor that can be applied to control the mo-
tion of the aircraft flap. Measurable signals can be the angular
position and velocity of the motor shaft, voltage and current at
the terminal of the motors. For simplicity, we measure the an-
gular position and velocity of the shaft and the sensors used are
gyroscope and incremental encoder [9].

1) Gyroscope: The gyroscope measurement can be mod-
elled as:

ωg = ω + b + vg (25)

where ω is the true angular velocity of the shaft, vg is additive
white Gaussian noise with zero mean and certain covariance,
and b is gyroscope bias drift term which can be modelled as
random walk:

db

dt
= nb (26)

where nb is assumed to be zero-mean Gaussian with known
variance. The gyroscope measurement is assumed to be avail-
able at the kalman filter update rate of 0.005 seconds.

2) Incremental Encoder: The incremental encoder can be
modelled as:

θe = θ + ve (27)

where θ is the true angular position of the shaft of the motor and
ve is assumed to be zero-mean Gaussian with known variance.
The encoder measurement is updated every 0.05 seconds.

3) DC Motor Model: The dynamics of a DC servo motor are
described by the electrical signals and the mechanical motion of
the armature as follows:

La
dia
dt

+ Raia = va − Keθ̇ (28)

Jθ̈ + bθ̇ = Ktia (29)

where the description of the symbols are enumerated in Table I.

4) Integrated Model: Combining (25), (26), (27), (28), and
(29), a continuous state-space model can be formulated as:

ẋ = Φx + Bu + Gnb (30)

where x =




θ̇
ω̇
i̇
ḃ


, B =




0 0
0 −N

J
1

La
0

0 0


, G =




0
0
0
1


,

u =
(

va

TL

)
, and Φ =




0 1
N 0 0

0 − b
J

N2Kt

J 0
0 −Ke

La
−Ra

La
0

0 0 0 0


.
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TABLE I
MOTOR MODEL PARAMETERS

Symbol Description
J Moment of inertia of motor and load
b Viscous damping of motor and load

La Inductance of the armature
Ra Resistance of the armature
va Voltage across the terminal
Ke Back EMF
Kt Torque sensitivity
N Gear Raio

The corresponding output equation is:

z(t) =
(

1 0 0 0
0 1 0 1

) 


θ
ω
i
b


 +

(
ve

vg

)

III. SIMULATION RESULTS

Figure 2 depicts the failure scenario assumed during the op-
eration of the DC motor. Each of the failures is explained in
detail below:

• H0 Nominal operation – All systems are functioning
properly. The nominal parameters used for the Kalman
filter are representative of the actual system.

• H1 Noisy Gyro – All the systems except the gyroscope are
functioning properly. Soft failure of the gyroscope is sim-
ulated as the increase in the gyroscope measurement noise.
The covariance of the noise of the gyroscope is increased
by 100 times larger than the nominal value.

• H2 Noisy Gyro – Similar scenario as H1 but the noise
of the gyroscope is increased by 500 times larger than the
nominal value.

• H3 Failed Gyro – All systems except the gyroscope are
functioning properly. The gyroscope completely fails dur-
ing service (Hard failure). It is not participating in measur-
ing the response of the motor; it is only outputting signal
composed of random noise.

• H4 Noisy encoder – All the systems except incremental
encoder is functioning properly. Soft failure of the incre-
mental encoder is simulated as the increase in the vari-
ance of the measurement noise of 100 times larger than
the nominal value.

• H5 Failed Encoder – All the systems except the incremen-
tal encoder are functioning properly. Hard failure of the
encoder is being experienced. The encoder is generating
random noise as its output signal.

Because of the difference in the sampling rates between the
gyro and the incremental encoder, two parallel sets of multi-
ple hypothesis Kalman filters are used: MH − KF I includes
gyro failures, while MH−KF II includes incremental encoder
failures. MH −KF I uses the models: H0 nominal operation,
H1 increased gyro noise 1, H2 increased gyro noise 2, H3 gyro
dropout, and MH−KF II with H0 nominal operation, H4 in-
creased encoder noise, and H5 encoder dropout. Each setup of

sec
0 1 2 3 4 5 6

increased

gyro noise 1

increased

gyro noise 2

gyrodrupout

      encoder dropout

increased encoder

noise

Fig. 2. Failure sequence used for FDI simulation

the Kalman filter based on the corresponding hypothesis, and Q,
R and H parameters are chosen to represent the corresponding
hypothesis.
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Fig. 3. Log-likelihood values for gyro hypothesis models

In Figure 3, it is clear that the log-likelihood value for H0
(nominal operation) changed at t = 1 seconds, and H1, H2 and
H3 become the likely operation status of the gyroscope. For
example, by comparing the evolution of log-likelihood values
for gyroscope, we can conclude that the log-likelihood value
for H3 hypothesis becomes dominant after t = 3 seconds, thus
the H3 (Failed Gyro) is the most likely from t = 3 seconds. It
is noticeable that there exists some lag for the detection of H3
comparing with the failure scenario in Figure 2. The reason
for this lag is due to the sliding window, it can be shortened
if the likelihood calculation can be done over shorter sliding
windows in the condition of the assumed fault-tolerant. Similar
results can be obtained for the evolution of operation status of
the incremental encoder in Figure 4.

Analysis of the posterior probabilities of the hypothesis for
the MH − KF I and MH − KF II clearly shows five failure
periods in Figures 5 and 6. Posterior probabilities correspond-
ing to the different hypothesis (H0, H1, H2, H3, H4, and
H5) indicate when the gyro or incremental encoder is going to
suffer the failures (represented by 0-1 and 1-0 switching). Fur-
thermore, failures are identified unambiguously and almost in-
stantaneously. The attractiveness of the posterior probabilities
is that we can weigh the state estimates from the entire hypoth-
esis models to produce the combined current state estimate as
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Fig. 4. Log-likelihood values for encoder hypothesis models

shown in Figure 7.

IV. CONCLUSION

The multiple model estimation technique, such as multiple
hypothesis kalman filters, can detect and identify the failure of
gyroscope and incremental encoder with the proper testing al-
gorithm, such as log-likelihood function with the proper sliding
window size. A common problem encountered with the multi-
hypothesis Kalman filter is the delay in detection due to build
up of the likelihood function for active hypothesis. By testing
the evolution of the posterior probability of each hypothesis, we
can detect and identify the failure almost instantaneously, and
get the probability-weighted average state estimate, x̂MMAE .
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