
Abstract: This work deals with a physical model of the
Rotating Pendulum which serves for research and
education at the Faculty of Electrical Engineering,
Czech Technical University in Prague. The paper
describes design and implementation of a nonlinear
control law and related tasks relevant for control
theory courses. Issues of theory and practice are
demonstrated on the physical system.
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I. INTRODUCTION

The paper describes the use of the physical model
of a Rotating Pendulum in control related courses
including Modeling and Simulation,
Linear and Nonlinear Control Theory. Special
attention is devoted to stabilization of the open loop
unstable system with the energy based control
algorithm. The pendulum in the Fig.1, was
developed at the Department of Control
Engineering at the Faculty of Electrical
Engineering, Czech Technical University in Prague.
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The mathematical model of the physical pendulum
presented in Chapter II is derived using Lagrange
Equations. Simulation of the model dynamic is
provided in Chapter III.

Chapter IV focuses on the regulation problem,
stabilization of the system while eliminating small
external disturbances. Chapter V describes the
strategy for swinging up the pendulum to the
upright position using energy of the pendulum.
Chapter VI summarizes the work.

Fig. 1. The Rotating Pendulum
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Control tasks for the Rotating Pendulum are well
known problems. The mathematical model of the
Rotating Pendulum was introduced e.g. in [2] and
[3]. In [3] the parameter estimation of the
mathematical model and simulations are described.
[4] describes balancing the pendulum at the
unstable position and swinging it up using the
energy viewpoint. Swinging up the pendulum by
periodic input and energy principles describes [4].

The pendulum is hinged to the arm, which is fixed
on a cog-wheel driven by the DC motor. The arm
angle  ϕa and the pendulum angle ϕp are measured
by optic incremental sensors. These signals are
connected to a PC Lab Card, which interfaces the
laboratory model to the computer. Detail
description of the Rotary Pendulum (see Fig. 1.)
and the PC-Pendulum interface can be found in [1].
To summarize, the system in Fig.2 has a single
input u and two outputs, angles ϕp and ϕa.

Fig. 2. Principal drawing of the Rotating Pendulum

II. MODELING

Deriving a mathematical model of the Rotating
Pendulum is the first task for a student. The use of
Lagrange Equations is recommended . The first
objective is to define restrictions and limitations to
be considered when deriving the model and then
design the mathematical model in the form of a
state-space description (1).
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A. Theory for modeling

The simplifying assumptions for modeling lie in
considering the viscose friction only and neglecting
backlash of the gear of the DC motor. The
dynamics of the motor is neglected in the modeling
phase and the motor is considered as a source of
torque.
There are many approaches to be used when
deriving the mathematical model. However,
Lagrange equations offer a systematic and error
free way to do it. The general form of the Lagrange
Function L of the system is given as

,k pL E E= − (2)
where Ek is kinetic energy and Ep potential energy
of the system. If the Lagrange function of the
system is known, the mathematical model of the
system is found in the form of
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where ϕa and ϕp are the arm and pendulum angles,
ωa is the arm speed of rotation and ωp is the
pendulum speed of rotation. Mm is the torque of the
motor and R is the Rayleigh function. The Rayleigh
function expresses the dissipation energy of the
system such as viscose friction. R can get the form
of

2 21 1 ,
2 2a a p pR b bω ω= + (4)

where ba is the constant of the viscose friction of
the arm and ba is the same for the pendulum.

B. Modeling of the Rotating Pendulum

The task for students is to derive the equations of
motion for the Rotating Pendulum. Often, the most
efficient way for mechanical systems is to apply the
Lagrange equations. The first step involves
computing the Lagrange function (2). The
differential equations of the Rotating Pendulum are
found by setting several  partial derivatives of the
Lagrange function in the equations (3). Using the
sketch in the Fig. 2 we have for the kinetic energy
of the system
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where J1 is moment of inertia of the arm and the
DC motor, J2 is moment of inertia of the pendulum,



m is weight of the pendulum, r is radius of the arm
and l is length of the pendulum.
For the potential energy of the Rotating Pendulum
we obtain

0
1 cos ,
2p pE mgh mgl ϕ= − (6)

where h0 is the relative height the mass point of the
pendulum  and  g  is  gravity  acceleration.
Substituting (5)  and (6) in (2) we obtain Lagrange
function L. Putting equal
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substituting several partial derivatives of the
Lagrange function, Rayleigh function and equations
(7) in equations (3), we obtain the Nonlinear Model
of the Rotating Pendulum as follows
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where u is the system input (Motor control). The
model (8) may be transformed into the form of (1)

.

2 2

2

.

2 2

2 2

.

.

1
4 cos

( 2 sin 4

2 cos 4

sin cos ),

1
4 cos

( 2 sin cos 4

2 cos 2 cos

2 sin ),

,

,

a
a p p

p p p p a a

p p p p a a

p p p

p
a p p

p p p a p p

a p a a p a

a p p

aa

ap

J J J

J J J b
Jb J K u

JK

J J J

J J b
Jb JK u
J K

ω
ϕ

ϕ ω ω
ϕ ω

ϕ ϕ

ω
ϕ

ϕ ϕ ω ω
ϕ ω ϕ

ϕ

ϕ ω

ϕ ω

=
−

⋅ − −

+ +

+

=
−

⋅ − −

+ +

−

=

=

(9)

where

( , , , ) , ( , ) ( ).T T
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The state space model (9) of the Rotating Pendulum
can be simplified to get a form useful for design of
a control algorithm. In the case when

24 a pJ J J>>
and the pendulum angle ϕp is kept close toπ  by
regulation, then the equations (9) can be modifed to
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The model (10) will be used for design of
pendulum controllers. Similar model of the
Rotating Pendulum can be found in [3].

III. SIMULATION

Simulation block diagram and selecting an
appropriate method of a numerical solver is another
task for students to solve. The model (9) and (10)
serves as basis for the task. The simulation and
validation of the model structure and parameters are
followed by the system analysis phase.

A. Theory

Students design the simulation diagram following
the mathematical model derived previously and set
identified parameters of the model. For simulations,
students choose a suitable software including a
solver. MATLAB and Simulink is used. Students
choose the numerical method and solver options
from the following list:

1) Methods
•  Bogacki-Shampine (ode23): non-stiff

differential equations, low order method
•  Dormand-Prince (ode45): non-stiff differential

equations, medium order method
•  Adams (ode113): non-stiff differential

equations, variable order method
•  stiff/NDF (ode15s): stiff differential equations,

variable order method
•  stiff/Mod. Rosenbrock (ode23s): stiff

differential equations, low order method
2) Type

•  Fixed-step
•  Variable-step



3) Solver options and parameters
•  Maximal step size
•  Relative tolerance
•  Absolute tolerance

There are two ways how to choose suitable
numerical methods for a solver. The first way is to

compare quality of each method with respect to
stability of the solution. The second way is to
compare performance of the selected method with
real measured data. Bad choice of the solver type
and parameters can cause unstable behaviour.

Fig. 3. Simulation diagram of the mathematical model (9)

After the model is validated, we analyze the model
characteristics and linearize the nonlinear model for
Linear Control Design to get the model in the form
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B. Simulations

The parameters of the block diagram in Fig. 3 are
initialized by values specified in the Appendix 1.
All simulations use ode45 solver. Fig.4 shows
model validation where simulation run is compared
to the real recording. Fig. 4 shows reaction of the
system to the pulse input u = 0.1 applied during the
interval [0,2.5] seconds. Experiment starts from
zero initial conditions.

The parameters of the block diagram in Fig. 5 are
initialized by values specified in the Appendix 2.
All simulations use ode45 solver. Fig.5 shows
model validation where simulation run is compared
to the real recording. Fig. 5 shows reaction of the

system to the pulse input u = 0.1 applied during the
interval [0,2.5] seconds. Experiment starts from
zero initial conditions.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

M
ot

or
 [r

ad
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.5

0

0.5

1

1.5

Pe
nd

ul
um

 [r
ad

]

Time [s]

model
data 

Fig. 4. Model (9) validation



Fig. 5. Simulation diagram of the mathematical model (10)
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Fig. 6. Model (10) validation

C.  Model Analysis

Design of control algorithms is based on the
mathematical model (10). After linearization of the
nonlinear model (10) around the state

0 (0,0,0, ) .Tx π=

the LTI system (11) is obtained. The LTI system
matrices are as follows
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Computing the observability matrix P, we have
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therefore it is feasible to build the observer.

Computing the controllability matrix R, we have
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therefore it is feasible to use the state feedback.

IV. BALANCING THE PENDULUM

Balancing the Rotating Pendulum at the upright
unstable position is a well known control task. In
this Chapter students design the controllers using
Linear and Nonlinear Control Theory (Linear State
Feedback, Nonlinear State Feedback) for
stabilization the pendulum at the upright position
while eliminating small external disturbances.
Finally students compare the designed control
algorithms and explain differences against the
theory.

A. Observer Design

If we want to control the Pendulum, we need to
know state variables ωa, ωp, ϕa, and ϕp from
equations (10) or their estimations. In this work we
use the linear observer to reconstruct unmeasured
states. For design of the observer the linearized
model of the system should be known. The output
vector of the system (10) is

( , )T
a py ϕ ϕ=

Because only the angles of the arm and the
pendulum are measured, the arm and the pendulum
speed of rotation are to be estimated. We will
design the observer based on the pole placement
method. In this case we need to know the matrix L
of the observer gains. We specify the desired poles
λo1, λo2, λo3, and λo4 of the observer. To calculate
the matrix of gains we have to solve the following
equation
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The desired poles of the control system with linear
state feedback LSF are chosen to be the stable poles
of the LTI system (11), i.e. λ2 and λ3. The
remaining two poles are chosen to be stable and
near to the limit of stability. After simulations and
real experiments the poles of the State Feedback
were set as follows

λ2 = - 9, λ3 = - 25, λ1  = λ4  = - 3.

Validation of the linear state feedback is shown in
Fig.7, where the real experiment is compared with
the simulaton.
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Fig. 7. Linear State Feedback validation

B. Nonlinear State Feedback

The nonlinear control law is based on
transformation of the nonlinear state model (10) to
a linear equation [2]

.. .
.p p pA B Cϕ ϕ ϕ+ + = (12)

Substituting the second equation (10) into (12), we
obtain
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The equation (13) gives the required control law
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Because the pendulum is balancing at the upright
position, it is necessary to set ϕp(∞)= π. Therefore
it is possible to compute the parameter C from (12)

C = πB.
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Fig. 8. The real Nonlinear State Feedback

The parameters A and B of the linear pendulum
equation (12) may be obtained from characteristic
equation for designed poles. The poles must be
stable and chosen with respect to the poles of the
LTI system (11). Real-time experiments and
simulations help to choose the poles as follows

λ1 = -10 + 60i, λ2 = - 10 � 60i.

Then A = 20 and B = 1000 are obtained from (12)
which finally determines the control law.

V. SWINGING UP THE PENDULUM

In this section students design a control law for
swinging up the pendulum. The control law is
based on minimum time strategy, which minimizes
total energy of the pendulum. The task for students
is to design parameters of this control law and to
balance the pendulum after swinging.

The control law [3] for input of the system is
| | cos ,u ref p pu K E E ω ϕ= − (15)

where Eref is total energy in stable position of the
pendulum

,ref pE K=

and E is the total energy of motion of the pendulum
21 1 (1 cos ).

2 2p p p pE J Kω ϕ= + − (16)

The control law (15) may be written as

2
1 2| (1 cos ) | cos .u p p p pu K K Kϕ ω ω ϕ= + − (17)

where    1 2
1 1and .
2 2p pK K K J= =

Setting of parameters of the control law for
swinging up the pendulum, having the form of the
equation (17), is based on constants Kp and Jp
which can be found in the Appendix 1. The
remaining parameter Ku of  the control law (17) is
to be determined in simulations and real
experiments. Finally, the parameters K1 and K2
from (17) get the following values

2 3 2
1 20.05 s , 1.15 10 kg m .K K− −= =

After finishing experiments it is required to
determine the parameter Ku and to modify setting of
parameter K2  which results in

5 2
20.05, 1.05 10 kg m .uK K −= =

In real control experiments with the Rotating
Pendulum introduced in Chapter IV and Chapter V
Real-Time Toolbox for MATLAB was used.
Selection of the sampling period TS  for real-timer
control experiments is limited by characteristics of
the RT Toolbox and frequency range of the LTI
system (11) stabilized by linear state feedback.
Nyquist frequency read from Bode plot of the
controled system is imporatnt for estimating the
lower limit of the sampling rate. For  ωN = 13.3 rad
s-1 , the upper limit of the sampling period,
respecting Shannon Theorem is

TSH = 0.2362 s
The upper limit of the sampling rate is determined
by physical constraints due to the PC hardware, the
operating system Matlab and RT Toolbox
characteristics. For the lower limit of the samling
period we get

TSL = 1 ms.

This lower limit of the sampling period was used in
real-time experiments.
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Fig. 9. Real swinging up and balancing the
pendulum by Linear State Feedback



Fig. 10. Real swinging up and balancing the
pendulum by Nonlinear State Feedback

In the Fig. 9 and Fig.10 the real swing ups and
control of the pendulum using Linear and Nonlinear
State Feedback are presented.

VI. CONCLUSION

The important stimulation for this work was to
provide students with the material to learn
modeling, simulations and control of the Nonlinear
Systems efficiently and in the attractive way.

Chapter II introduces the efficient method for
modeling the nonlinear mechanical systems.
Modeling of the Rotating Pendulum shows
straightforward application of Lagrange Equations
for this system. Chapter III introduces a task of
modeling and simulation of the Nonlinear System
including discussion on selection of suitable ODE
solver. The experiments which follow show the
Model Validation. Chapters IV and V describe
control tasks of the Rotating Pendulum.
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APPENDIX 1

Parameter                  Value

Ja                                  6.5 10-3                   kg m2

Jp                                  2.3 10-3                   kg m2

J                                   1.5 10-3                   kg m2

ba                                  4.5 10-2                   kg m2s-1

bp                                  8.8 10-5                   kg m2s-1

Ka                                 3.75                        kg m s-2

Kp                                 0.1                          s-2

APPENDIX 2

Parameter                  Value

α1                                - 9
α2                                800
α3                                0
α4                                0
α5                                0
β1                                - 1.5
β2                                - 600
β3                                1450
β4                                - 12
β5                                0
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