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Abstract 
A new technique is presented in this paper for the suboptimal 

control design of distributed parameter systems in general. This 
technique is used to synthesize the controller for a nonlinear heat 
diffusion problem. The method of proper orthogonal 
decomposition is used for model reduction of the distributed 
parameter systems. A suboptimal control is then designed using the 
recently emerging Dθ −  technique for lumped parameter systems. 
This control for the reduced order system is then mapped back to 
the distributed domain using the same basis functions, leading to 
distributed controls. Simulation results indicate that the method 
holds promise as a control design technique for nonlinear 
distributed parameter systems. 

1. Introduction 
Distributed Parameter Systems (DPS) are governed by a set of 

Partial Differential Equations (PDEs). There exist theoretical 
methods for the control of distributed parameter systems in the 
infinite dimensional operator theory framework [Curtain]. While 
there are many advantages, these approaches are mainly confined 
to the linear systems, besides having the usual difficulties in 
control implementation through an infinite dimensional operator.  

An engineering approach to deal with the infinite dimensional 
systems is to have a finite-dimensional approximation of the 
system using a set of orthogonal basis functions in a Galerkin 
projection [Ravindran]. However, if arbitrary basis functions are 
used, it leads to a high er order system of ordinary differential 
equations (ODEs), which is difficult to handle. In recent literature 
attention has beeen increasingly focused on the technique of 
Proper Orthogonal Decomposition (POD) [Burns, Ravindran]. 
This technique essentially helps design a set of problem dependent 
basis functions, which could lead to a  low-order ODE 
representation of the DPS with sufficient accuracy. This model can 
then be used for control design using the available and evolving 
techniques of lumped parameter systems. 

Many difficult real-life optimal control problems in the ODE 
domain can be formulated in the framework of dynamic 
programming [Bryson]. It attempts to solve for a feedback form of 
optimal control by producing a family of optimal paths, or what is 
known as the “ field of extremals”. However, in the process it leads 
to the Hamilton-Bellman-Jacobi (HJB) equation, which requires a 
prohibitive amount of computation and storage requirements. 
Hence even though the formulation is nice, it is not feasible to 
obtain such a solution for complex problems.  

Towards designing an alternate computational tool for finding 
a feedback form of the optimal control solution, we have attempted 
to propose a nonlinear suboptimal control technique, namely the 

Dθ −  method [Xin], which finds an approximate solution to the 

HJB equation. By introducing an intermediate variable θ , the 
optimal cost is expanded as a power series in terms of θ . The HJB 
equation is then reduced to a set of recursive algebraic Lyapunov 
equations, which are easier to solve. By tuning the parameters in 
the perturbation terms of the formulation, one can modulate the 
system performance. In this paper we combine the ideas of proper 
orthogonal decomposition and Dθ −  method to come up with an 
optimal controller of a nonlinear heat conduction problem.  

In this paper, first we propose to carry out the proper 
orthogonal decomposition of the distributed parameter system to 
design a set of problem oriented basis functions that leads to a low 
order finite dimensional representation. Since our aim is to design 
feedback control, we essentially use the same basis functions to 
decompose the associated control, under the justifiable assumption 
that the control function can be spanned by the basis functions of 
the states. We also derive a compatible performance index once 
again using the same basis functions. In the process we essentially 
formulate an analogous finite dimensional optimal control problem 
in the time domain only. After synthesizing the control in the time 
domain using Dθ −  technique, we generate the control function in 
the spatial domain by using the same basis functions. We have 
presented numerical simulation results for one-dimensional linear 
and nonlinear heat equation problems, with an infinite time optimal 
control formulation.  

2. Proper Orthogonal Decomposition: A Review 
In this section we briefly summarize the process of proper 

orthogonal decomposition. An interested reader can refer to 
[Burns, Ravindran] for further readings.  

Let { }( ) : 1 ,iU y i N y≤ ≤ ∈ Ω  be a set of N  snapshot 

solutions (observations) of some physical process over the domain 
Ω  at arbitrary instants of time. The goal of the POD technique is 
to design a basis function Φ  that has the largest mean square 
projection on the snapshots.  As a standard notation the 2L  inner 
product is defined as  , dy

Ω
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In Eq.(1) σ ∈ R  and [ ]1 2

T

NW w w w= L . So, we have a 

standard matrix eigenvalue and eigenvector problem to find W .  



Matrix C  has N  non-negative real eigenvalues and N  
orthogonal eigenvectors. Sorting the eigenvectors in descending 
order, we can write 1 2 0Nσ σ σ≥ ≥ ≥ ≥L . Let the corresponding 

eigenvectors be 
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The 1Φ =  condition is met when we normalize jW s by forcing  

( ), 1/j j
jW W Nλ=           (3) 

3. Finite Dimensional Approximations  
We consider a nonlinear distributed parameter system given by 

( )2 2, / , / , ...,
x

f x x y x y u
t

∂
= ∂ ∂ ∂ ∂

∂
         (4) 

with appropriate boundary conditions. The problem is to find the 
controller that minimizes the performance index 

( )
0 0

,
L

J L x u dydt
∞

= ∫ ∫           (5) 

where the state x  and control u  are functions of time t  and y is 
the spatial variable such that  0 y L≤ ≤ . The process of getting the 
snapshot solutions for our example problem will be discussed later 
in Section 5.3. With the snapshot solutions we design the POD 
basis functions following the idea from Section 2. After obtaining 
the basis functions, we propose to write 

1 1

ˆ ˆ( ) . ( ), ( ) . ( )
N N

j j j j
j j

x x t y u u t y
= =

= Φ = Φ∑ ∑
% %

        (6) 

One may notice that we have assumed the same basis functions 
for x  and u . In other words, we assume that the basis functions 
for the state are capable of representing the control as well. This is 
because our final aim is to design a state feedback controller .  
Substituting Eq.(6) in Eq.(4) and taking the inner product of this 
equation on a specific basis function 

iΦ  we can write 

( )ˆˆ ˆ ˆ, , 1,2, ,i i j jx F x u j N= =& %…          (7) 

By the definition of inner product all functionality dependence 
on y  is now absorbed in the integrals. Collecting all equations for 

1,2, ,i N= %L  we can write a N%  dimensional lumped model for the 
system as 

( )ˆ ˆ ˆ ˆ,X F X U=&            (8) 

Similarly, we can substitute for x  and u  from Eq.(6) in the 
expression for the performance index in Eq.(5) to obtain 

( )
0

ˆ ˆ ˆ,J L X U dt
∞

= ∫            (9) 

Eq.(8-9) formulate an analogous optimal control problem in the 
time domain. We point out that the boundary conditions of the 
PDE are absorbed in Eq.(8).  

4. Dθ −  Suboptimal Control Technique  

In this paper we restrict ourselves to the state feedback control 
problem for the class of nonlinear time-invariant systems described 
by 

ˆ ˆ ˆ( )X f X BU= +&          (10) 

where ˆ ˆ,n mX R U R∈ ∈ , ˆ( )f X  is continuously differentiable in 

X̂  and B  is a constant matrix; The condition (0) 0f =  is 
assumed in order to have the system at equilibrium when it is at the 
origin. The objective is to find a controller that minimizes the 
quadratic cost function, J given by 

0

1 ˆ ˆ ˆ ˆ[ ]
2

T TJ X QX U RU dt
∞

= +∫         (11) 

where ,n n m mQ R R R× ×∈ ∈ are assumed to be positive semi-definite 
and positive definite matrices respectively. To ensure that the 
control problem is well-posed, we assume that a solution to the 
optimal control problem in Eq.(10-11) exists. The optimal solution 
of the infinite-horizon nonlinear regulator problem can be obtained 
by solving the following HJB equation [Bryson] given by 
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where       
ˆ
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= +∫       (13) 

It is assumed that ˆ( )V X  is continuously differentiable and 
ˆ( ) 0V X >  and (0) 0V = . The necessary condition for optimality 

leads to 

( )1ˆ ˆ/TU R B V X−= − ∂ ∂         (14)  

However, it is well known that Eq.(12) is extremely difficult to 
solve in general, rendering optimal control techniques of limited 
use for nonlinear systems. In this paper, we propose a suboptimal 
control design technique to solve it approximately. Consider 
perturbations added to the cost function:  

0
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where θ  and 
iD  are chosen such that 

1 2

i
i

i

Dθ
∞

=
∑  is small 

compared to 
2Q . We can write Eq.(10) as 

0
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X f X BU A X X BUθ
θ
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where A0 is a constant coefficient matrix such that ( )0 ,A B is a 

stabilizable pair and 0
ˆ[ ( ), ]A A X B+  is point-wise controllable. 

Defining ( )ˆ/V Xλ ∂ ∂@  and using it in Eq.(12), we have 



1

0

1 1ˆ ˆ ˆ( ) ( ) 0
2 2

T T T T n
n

n

f X BR B X Q D Xλ λ λ θ
∞

−

=

− + + =∑      (17) 

Next, we assume a power series expansion of λ  as 

0
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T X Xλ θ
∞

=

= ∑          (18)  

where iT  matrices are assumed to be symmetric. Substitut ing 

Eq.(18) in Eq.(17) and equating the coefficients of powers of θ  to 
zero, we get: 

1
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Then the expression for control can be obtained in terms of a 
power series for λ  as  

1 1

0

ˆ ˆ ˆ( )T T i
i

i

U R B R B T X Xλ θ
∞

− −

=

= − = − ∑        (22)  

It is easy to find that Eq.(19) is an algebraic Riccati equation. 
The rest are Lyapunov equations which are linear in terms of  iT .. 

The algorithm without iD  term is called the θ  approximation. 

The algorithm in [Wernli] would result in the θ  approximation. 
One of the problems with θ  approximation is that large state 
values may give rise to large control. In order to deal with this 
problem, we construct the following expressions: 
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where ik  and 0, 1,il i n> = L  are adjustable design parameters. 

The idea in constructing iD  in this manner is because otherwise 

large control results from the term ˆ( )A X  on the right hand side of 
Eq.(20-21), if X̂  is large. So we choose iD   such that  

1
11 1

1

1
11 1

1

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )
( ) [ ]

T i
Ti i

j i j i
j

T i
Ti i

i j i j
j

T A X A X T
T B R B T D

T A X A X T
t T B R B T

θ θ

ε
θ θ

−
−− −

−
=

−
−− −

−
=

− − + −

= − − +

∑

∑

          (26) 

where 1 il t
i ik eε −= −  is a small number chosen to suppress the large 

control. It also leads to 0iD →  as t  increases, meaning that the 
steady state cost function goes back to the original cost function as  
we do not want to change the original cost function too much. 

Remark-1: θ  is just an intermediate variable. It turns out to be 
canceled in the final control expression Eq.(22) [Xin]. 

Remark-2:  Solution of Eq.(19-21) is carried out offline from top to 
bottom. Once ( 0, )iT i n= L  is known, 1iT +  can be solved by 

substituting iT  into the equation for 1iT + . Eq.(19) is a standard 
algebraic Riccati equation, where as Eq.(20-21) are linear 
equations in terms of 1, , nT TL  with constant coefficients 

1
0 0( )TA BR B T−−  and 1

0 0( )T TA T B R B−− . After some algebra, these 

equations can be rearranged as: 
0

ˆ ˆ( , , )i iA T Q X tθ=  and 
1

0
ˆ ˆ( , , )i iT A Q X tθ−=  where 0Â  is a constant matrix. So  essentially 

closed-form solutions for 2, , nT TL  are obtained with just one 
matrix inverse operation. Therefore if we take a finite number of 
terms in Eq.(22), we would get a closed-form expression for the 
optimal controller.  

5. A Nonlinear One-Dimensional Heat Equation 
In this section we consider a one-dimensional nonlinear heat 

diffusion problem. Essentially we formulate the problem as a 
regulator problem and solve it using the techniques discussed in 
Sections 2-4. 

5.1 Problem Description 

The dynamics of the heat conduction problem given by: 

          2 2 3/ /x t x y x u∂ ∂ = ∂ ∂ − +         (27) 

where ( , )x t y  represents the temperature profile at time [ )0,t ∈ ∞  

and spatial location [ ]0,y L∈ . ( , )u t y is the associated control. We 
consider the infinite time quadratic regulator problem, for which 
the goal is to drive x  and u  to zero in the spatial domain 
considered by minimizing the performance index  

( )2 2

0 0

1
2

ft L

J q x ru dydt
→∞

= +∫ ∫         (28) 

where ,q r +∈R  are the weighting factors.  

Boundary and Initial Conditions: 

We assume the boundary conditions to be 
( ) ( )/ , 0 / , 0x y t x y t L∂ ∂ = ∂ ∂ =  (i.e. insulation at both ends) and the 

initial condition can be any profile from the domain of interest 
which is described next. 

5.2 Domain of interest and state profile generation  

We assume an envelope profile 

( ) ( )( )2 /envf y a ACos y Lπ π= + − +         (29) 

and { }: ,I env envS x x f x f′′ ′′≤ ≤@ , with ( ) ( ), 0 , 0x t x t L′ ′= =  

as the domain of interest. The conditions on x  ensure that the 
profiles are smooth and they satisfy the boundary conditions. For 
our numerical experiments, we choose 0.25a A= = . For the 
envelope profile we get 

( ) ( )2 2 32 2 2 4/2 , 2 /env envf a A L f A Lπ′′= + =                 (30) 

After fixing 0 1iC≤ ≤ , we assume 
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and consider a Fourier cosine series expansion for ( )x y as 

( )0
1

/
fN

n
n

x a aCos n y Lπ
=

= + ∑         (32) 

where fN  is a large number. After some algebra, we observe that 
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So we select random coefficients , 0,1, ,n fa n N= …  to satisfy the 
inequalities of Eq.(33) and generate a state profile using Eq.(32).  

5.3 Snapshot solution generation 

To generate the snapshot solutions, we first fix iC , 0 1iC≤ ≤  

and generate a random initial state profile ( )0,x y . Then we 

generate a random control profile as well, similar to the state 
profile generation. This is done under the assumption that the 

controller will satisfy ( )0,u x y≤  and ( )0,u x y′′ ′′≤ . Holding 
the control as constant, we then simulate the original system in 
Eq.(27) and randomly collect some profiles at arbitrary instants of 
time to form the snapshot solutions. We repeat the steps a number 
of times and to collect some snapshot solutions each time, till a 
large number of snapshots is collected to properly design the basis 
functions. 

5.4 Finite dimension approximations 

First the snapshot solutions are generated and POD basis 
functions are designed. Substituting Eq.(6) in Eq.(27), taking the 
inner product with iΦ   we get: 

3

1 10
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LN N

i j i j j j i i
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= =
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Using the boundary conditions after some algebra, it leads to:  

( )ˆ ˆ ˆ ˆnlX A X f X BU= + +&         (35) 

where,  
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( )ˆnlf X  is a nonlinear function that comes from the nonlinear term 

in Eq.(27). For the performance index, we observe: 

ˆ ˆ ˆ ˆ, , ,

where  ,

T Tq x x X QX r u u U RU

Q q I R r I

= =

= =
           (37) 

Using Eq.(37), the performance index in Eq.(28) can be written as 

( )
0

1 ˆ ˆ ˆ ˆ
2

T TJ X QX U RU dt
∞

= +∫         (38) 

5.5 Dθ −  Suboptimal control solution 

Eq.(35) and Eq.(38) pose a standard optimal control problem that 
we can solve using the Dθ −  method. First we write the nonlinear 
term in Eq. (35) in the form 

0

ˆ( )ˆ ˆ ˆ ˆA X
X A X X BUθ

θ

  
= + +      

&        (39) 

The suboptimal feedback controller becomes 

1

0

ˆ ˆ ˆ( , )T i
i

i

U R B T X Xθ θ
∞

−

=

= − ∑                      (40) 

where iT  is obtained by solving Eq.(19-21) recursively. We only 
pick the first three terms in Eq.(22), which has been found to be 
good enough approximations in this problem.  

5.6 Numerical results 

For our numerical experiments we chose 1q r= = , 4L = . 
After some tuning process, we have chosen                                                               

1 2 0.96k k= =  and 1 2 40l l= = . The weighting matrices ,Q R  

relate to ,q r  respectively and they are chosen as 5Q R I= = .  For 
implementing the control we assumed a control update scheme 
with 0.1t∆ = . In the finite difference scheme for generating the 

snapshot solutions we assumed 0.002, 0.1t y∆ = ∆ = . However 
for simulating the system after control synthesis, we 
used 0.001, 0.05t y∆ = ∆ = .  

The choice of two different sets of values  for ,t y∆ ∆  was to 
emphasize the point that the control synthesis methodology 
presented is independent of the grid size. This was also to verify 
that that the results are not bad because of the spillover effects, by 
assuming a particular grid size for generating the snapshot 
solutions and hence the basis functions. However to compute the 
values of the basis functions at a location other than where it was 
constructed, we opted for an interpolation scheme based on the 
Fourier cosine series having the same number of terms as the 
number of points for which the function values exist.  

Both the state and control over the entire spatial domain should 
proceed towards zero as time progresses for this regulator problem. 
Even though we have presented simulation results only for 8 Sec, 
essentially it can be continued as long as one wishes. We have 
chosen some test case initial profiles for the states (from the 
domain of interest described in Subsection 5.2) and let the 
simulations proceed by applying the designed control.  

The first initial test profile chosen was of parabolic nature 

given by ( ) ( ) 2

0 0.21 2 /x y y L= − . Figures 1 and 2 correspond to 
the state and control histories for this case. It is clear from the 
figure that both state and control are driven to zero with time, 
which was the design objective. Moreover, it is also clear that both 
state and control vary smoothly, which is an additional goal of any 
control related to distributed parameter systems. Figures 3 and 4 
correspond to similar results for state and control histories for 
another initial state profile (a sinusoidal function) given by 

( ) ( )0 0.2 0.2cos 2 /x y y Lπ π= + − − . Figures 5 and 6 correspond to 



similar results for state and control histories for another initial state 
profile (a constant function) given by ( )0 0.2x y = .  

Since there are an infinite number of possibilities of such 
functions describing possible initial conditions. However, we have 
run the program for a large number of test cases, each time 
generating a different random initial profile as described in 
Subsection 5.2 and have observed similar good results each time. 
Figures 7 and 8 correspond to the state and control histories from 
such a random initial state. It is clear the controller was successful 
in driving the state to zero while its own value goes to zero 
simultaneously. 

6. Conclusions  
In this paper a systematic computational tool for the optimal 

control synthesis of distributed parameter systems is presented. 

Using the concept of POD a low-order lumped model 
representation of the infinite dimensional system was developed. 
This low dimensional ODE model was used to synthesize a 
suboptimal control following the philosophy of Dθ −  technique, 
which leads to a control solution in a state feedback sense. We 
have synthesized the optimal control for a one-dimensional 
nonlinear conduction problem. Simulations show promising results 
for all test cases, which validate the technique presented. Further 
more, since control calculations are not computationally intensive, 
this methodology can be implemented on-line. 
 

 
 

 
Figure 1: State history from a parabolic initial condition 

 
Figure 2: Associated control history for the state with parabolic 

initial condition 
 

 
Figure 3: State history from a sinusoidal initial condition 

 
Figure 4: Associated control history for the state with sinusoidal 

initial condition
 



 
Figure 5: State history from a constant initial condition 

 
Figure 6: Associated control history for the state with constant 

initial condition
 

 
Figure 7: State history from a random initial condition 

 
Figure 8: Associated control history for the state with random 

initial condition 
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