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Adaptive estimation of partially observed nonlinear
stochastic systems

Anastasia Papavasiliou

Abstract—In this paper, we discuss a method for the adap-
tive estimation of a Markov chain from its noisy partial ob-
servations, when the transition probability kernel depends
on some unknown parameter. First, we re-write the system
so that the parameter becomes part of it. Then, we apply
a variation of the Interactive Particle Filter on the new sys-
tem, in order to compute its optimal filter. The new system
has been constructed in such a way that the marginals of
its optimal filter are the optimal filter of the original system
(up to an error due to the ambiguity in the parameter) and
the posterior distribution of the parameter. We show that
the error converges to zero, while the bayesian estimator of
the parameter converges to the true value.

Keywords— nonlinear systems, identification.

I. INTRODUCTION

N stochastic filtering, the goal is to compute the distri-

bution of a stochastic process at any time instant, given
some partial information up to that time. This distribution
is called ‘optimal filter’. The basic model usually consists of
a Markov chain X (state variable) and a possibly nonlinear
observation Y with observational noise V' independent of
the signal X. In this case, the optimal filter is determined
completely by the observations, the transition probability
kernel, the distribution of the noise, and the initial distri-
bution. In practice, though, some of these elements will
not be exactly known.

We are interested in computing the optimal filter for a
system where the kernel depends on some unknown param-
eters. We study, instead, an equivalent system where the
parameter is part of the state variable: the first component
of the state variable is a Markov chain that evolves accord-
ing to the kernel, whose parameter is set equal to the second
component; the second component plays the role of the pa-
rameter and does not evolve. As a result, the marginals
of the optimal filter of this system are the optimal filter
of the original system as a function of the parameter, and
the posterior distribution of the parameter. This technique
of entering the parameter in the system is quite common
in Bayesian statistics. There is an extensive discussion of
this technique for partially observed Markov chains in [13].
In this paper, we show that this optimal filter will indeed
converge to the true one, i.e. the one corresponding to the
true value of the parameter. As a corollary, we get the
asymptotic consistency of Bayes’ estimator. This result is
proven for a finite parameter space, but numerical results
suggest that it should also be true for more general spaces.

By entering the parameters in the system, the identifica-
tion problem becomes equivalent to the problem of asymp-
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totic stability with respect to initial conditions. The study
of the asymptotic stability of the optimal filter has been
and still is an active area of research. In fact, many of
the existing results ([12],[15],[14]) need to be revised, since
the recent discovery of a gap in a proof of [12] (see [3]
and [4]). The question has been resolved for some cases
as, for example, discrete-time ergodic systems ([1]), or sys-
tems with finite state space ([3]). Our result can also be
seen as an asymptotic stability result for a particular kind
of non-ergodic systems.

It remains to find a way to compute the optimal filter.
For this, we use a variation of the Interactive Particle Fil-
ter algorithm. The basic idea behind this is to approximate
the optimal filter by an empirical distribution on some par-
ticles that move in such a way, so that the approximation
remains true for every time point (see [6] and references
within). Thus, applied in this setting, they compute the
optimal filter under question, up to some error due to the
ambiguity in the parameter, while at the same time they
estimate the parameter. Numerical results show that the
algorithm works well for low-dimensional compact spaces
and can even be used to estimate slowly varying parameters
or to detect abrupt changes in the parameters.

The structure of the paper is the following. In Section
2, we define the systems and state the main assumption,
which is a form of identifibility condition. In Section 3,
we prove the main result. In Section 4, we describe the
algorithm for the computation of the optimal filter. In
Section 5, we show some numerical results.

II. DEFINITIONS AND ASSUMPTIONS

Let E be a Polish space, i.e. a complete separable met-
ric space and let us denote by B(E) its Borel o-field. We
study the asymptotic behavior of the conditional distribu-
tion of a Markov chain X taking values in E, given some
noisy partial information, when the kernel depends on an
unknown parameter §. More specifically, we study the op-
timal filter of the following system, that we will refer to
as:

System 1: Let {X,} be a homogeneous Markov chain
taking values in (E, B(E)). Let u be its initial distribution
and K, its transition probability kernel depending on a
parameter § € ©. Furthermore, we assume that for each
0 € 0, Ky is Feller and it satisfies the ergodicity conditions

pK} 5 pp and  limsup pg| K7 f — puef| =0, Vf € Cy(E)
n—oo
(1)

for some probability measure pg. The observation process



11TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, JUNE 17-20, 2003, RHODES, GREECE. 2

is defined by
Y, = h(Xn) + Vn;

where V,, are i.i.d. RP-valued random variables indepen-
dent of X, whose density function g is nowhere-vanishing
and continuous, and h : E — RP is a bounded continuous
function.

In practice, the parameter space © is usually Euclidean.
More generally, we assume that it is a Polish space. We
rewrite the system, so that the parameter becomes part of
a Markov chain, whose transition probability kernel is now
completely known. We will refer to the new system as:

System 2: Suppose now, that {X’ = (Xpn,0,)} is an
FE x ©-valued homogeneous Markov chain, with transition
probability

K((z',0"),dz ® d§) = Ky(z', dz) ® 8¢+ (dB).

and initial distribution g ® u. The observation process is
defined as in System 1, i.e.

Vo = h(X) + Vp,
where h(z) = h(z) and Z = (z,6).

We denote by Py the law of the Markov chain and by
Qo the law of the observation process, i.e. Py = L,(X)
and Qg = L£,(Y). We use Py* and Qp for their restrictions
to the o-algebras o(Xg, X1,...,X,) and o(¥1,...,Y,) re-
spectively.

We denote by ¥ () and @, (u ® u) the optimal filters
for Systems 1 and 2, with initial distributions x and g ® u,
respectively. Clearly, if u = dq, then ®,(p ® u)(dz) =
U2 (u)(dz). Let f € Co(E x ©). Then,

Pp(p@u)(f) = E[f(X,0,)|Yn,....Y1] =
_ f@ fEco f(zn,0) HZ:1 gy — h(zy)) Py (dx)u(dﬁ)-

Jo S ey 90k — h(zk)) Py (dz)u(dh)

We set

n

mf= [ f(zn0) [ 9(yx — h(ar)) Py(d).

FEeoe

k=1
Then,
Qn = /@ Qpu(d) = u(rf 1),
and )
B () = W0, )

Our goal is to find under which conditions the optimal
filter of System 2 is stable with respect to the initial dis-
tribution and compute the optimal filter recursively. First,
we need to make some assumptions:

We define an equivalence relation on the parameter space
as follows:

a~BSpgoht =pgoh! (3)

Recall that pg in defined in (1). We assume that there is
no pair of equivalent points in the parameter space. Oth-
erwise, it is impossible to tell them apart by looking at
the observations. A trivial example is when h is constant.
Problems can also arise when h is symmetric.

This assumption is sufficient for the probability distribu-
tions of the observation process corresponding to different
parameters, to be mutually singular, i.e. if a ¢ 3, then
Qo L Qs and P, L Pg. The proof is a straight forward
application of Birkhoff’s ergodic theorem on the ergodic
chain (X, V).

To summarize, our main assumption will be the follow-
ing:

Assumption 1: From now on, we assume that there is no
identifiability problem, meaning that a # 3 implies a £ 8
and thus Qn L Qg.

We can, now, state the

III. MAIN RESULT

In this section, we prove the asymptotic stability of Sys-
tem 2, with respect to the initial conditions, when © is a
discrete space. To prove exponential rate of convergence,
we will need the following condition, which is necessary for
the Large Deviation Principle of the Markov chains to hold.

Condition 1: There exists a measurable function U map-
ping E into [0, 00) and having the following properties:

(a) inf,cp{U(z) —log [, eV WK (z,dy)} > —o0.

(b) For each M < oo, the level set

Z(M):={z € E:U(x) —log/EeU(y)K(w,dy) <M}

is a relatively compact subset of E.
(¢) U is bounded above on every compact subset of E.

Theorem II1.1: Let a be the true parameter of System
2 (meaning that @, is the law of Y) and u = %(5,1 —+ %5/3.
Then,

lim Eq, |®n (k@ u)(f) — ®n(p ®6a)(F)| =0.  (4)

n—oo

If, in addition, Condition 1 holds for K, and Kg, then

lim sup - 1og Bo. (1) (/) — Ba(u® ) ()] < = <0,
(5)

for some positive number I to be defined in the proof.

Proof: If B = a there is nothing to show, so we
consider the case where 8 # a. We rewrite the optimal
filters using (2). Then, Vf € Cy(E),

EQo @t @ u)(f) — ®nlp ®da)(f)] =

_ umbf)  n2f s
- /@mn e - B gnay) =
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_ mpfopl —npfngl ol oy

_/om)n' RUE e
— a _ oB n n

L 1B~ BN Qnar) <

Qs n( gom
<2fllo [ Gy dgs WA

By Assumption 1, Q, 1 @g, so we can find sets A™ €
B((RP)™) such that

Qn(cA™) =0, and Q5(A™) — 0,

where by cA we denote the complement of a set A. (Take,

for example, A™ = {y" : Z Flye) € [vaf =15 vaf+31h
where f is chosen so that I/a f # vgf.) Thus,
Lo i gy W) =
dQn n
[ e+ [ = apan)

car Q3 +dQ3 av Q3 +dQf
< Qa(cA™) +Qp(A™) =0
and this completes the proof of (4).

Now, let’s assume that Condition 1 holds for K, and Kg.
Then, the upper bound for the large deviation principle
holds (for a proof, see [9]), i.e. if P(E) is the space of
Borel probability measures on E, equipped with the weak
topology, then for any closed A C P(E),

n
lim sup — log Pz : Z(ka € A} <
nreo "=

< —I,(4) = - inf I,(),

for v = a, 8, where

L(p) =

inf

1 K
et [ [ os e 0K @ di i),

and T is the set of all transition probability kernels. The
Large Deviation Principle (LDP) also holds for {V,,} with
rate function

- dv'
I nf lo
() = {v' EP(RP)}/RP 8 0w dv (2)v

(Sanov’s theorem). By the Contraction Principle, the LDP
transfers to the measures Q7 and Qg with rate functions
Jy, given by

Jy(v) = inf{I(u) : (noh™Y) xg=v}, v =, 8.
So, for any closed set B C P(RP) and v = «, 8

(de)

logQ {y:

hm sup

Z‘Syk € B} <
"=
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< —Jy(B) = — inf J,().
Using Jensen’s inequality, we can show that I,(u) = 0 &
w = y (see [7]) and thus, J,(v) =0 & v = v,, for v =
a, . Since P(RP) equipped with the weak topology is a
Polish space, it is also Hausdorff. Thus, there exists an
1 > 0 such that

B(Vaan) ﬂB(VBaU) =0.

We have seen that, for any A™ € B((RP)™) and for any
n >0,

Eq. [Pn (1@u)(f)=@n(p@0a)(f)| < C(F)[Q4(cA™)+QF(A™)]-

Choose A™ = {y: 1 37
Then,

EQ. [ (1@u)(f)=@n(n@0a)(f)| < C(£)[Qa(cBy)+Q5(By

By taking the limit of the logarithm of the above expecta-
tion over n, as m — 00, the constants disappear and we are
left with

1 0y, € By}, where By = B(vq,7).

B (1 ®6a)(f)] <

hm sup

logEQ | (0 @u)(f) —

< —min{Jy(cBy), J3(By)},

which, by the choice of B,, will be strictly negative(B,
being the closure of By). Thus, (5) holds, with I =
SuPn>0{Ja(CBn)u J,G(Bn) : B(va,n) N B(Vﬁ,n) =0}. u

Remark II1.2: The above result can be generalized to
N .
any u = Z] 1w,5a1, where o is the true parameter,

wp > 0 and Z _,w; = 1. In fact, (4) holds for any pa-
rameter space, prov1ded that the prior distribution u has a
positive mass on the true value. The proof is similar.

IV. THE ALGORITHM

In this section, we describe a variation of the Interactive
Particle Filter for the computation of the optimal filter.
The Interactive Particle Filter (IPF) was originally sug-
gested in [10] and [11], independently. The basic idea is to
approximate the optimal filter by an empirical measure on
particles that move in a way that imitates the dynamics of
the optimal filter. For a complete and rigorous analysis,
see [6].

Many different variations of the IPF have been proposed,
adapted to the case where we include in the system the un-
known parameters and thus, there are non-dynamic compo-
nents. See, for example, [13] for a historical perspective, or
[16] and [8] for more recent results. Below, we describe the
simplest form of the algorithm, since it better corresponds
to the theoretical results that we discussed previously.

Algorithm: Interacting Particle Filter (IPF)
1. At time n = 0:

The particle system consists of N = M; x M i.i.d. par-
ticles in E x O,
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(&.68) (&",60)

(€,60™)
with common law g ®u. That is, we pick M» particles in ©
according to u and we map each of them with M; particles
in E, simulated from p.

2. At time n > 1:

(Mutation): The first components of the particles,

i 1, 1 <4< N, evolve according to the probability ker-

nel Ky:  of the signal, i.e. we simulate particle é}l from

(MM DL gtz

the distribution Kj: (¢! _,,-). The second component re-
mains the same. . R

(Selection): Particles (£1,6% ),...,(EN,0N |) are re-
sampled with weights

9(yn —h(EL), - -, 9(yn — M(EY)).

In some cases, it is necessary to add some noise to the
parameter in the mutation step. That is, the particles are
‘mutated’ to (£,6L),...,(EN,0N), where §i = 0i _| + o€,
and {€!}" | are i.i.d for every n. For example, if the pa-
rameter space is not compact and we have no prior infor-
mation on the parameters, then the number of particles
needed to satisfactorily cover the space is too large. Thus,
we add some noise to the parameters so that they can won-
der around the space and eventually visit the true value
(for dim(©) < 2). As a result, we lose something in the
approximation but gain in the complexity of the algorithm.

Another case where we need to add noise is when the
parameters are not really constant. If the parameters are
slowly varying, we approximate their path by allowing the
parameters to move along. Similarly, if there are jumps in
the parameters and the time between the jumps is large
enough, the particles will be able to detect the jump and
eventually estimate the new value of the parameter. We
cannot yet prove rigorous results in this direction, but nu-
merical simulations as well as the fact that the rate of con-
vergence is ‘almost exponentially fast’, in the sense of (5),
suggest that this could be possible.

V. NUMERICAL EXAMPLES

We run the algorithm on a system coming from the field
of financial mathematics. Our purpose is not to study this
system in terms of its importance in finance, but merely to
use it as an example of a nonlinear system with unknown
parameters. The reason for our choice is the availability of
real data (stock prices), that plays the role of the observa-
tions in the system. More specifically, o is the stochastic
volatility of a stock and the observations are the log returns
of the stock’s price. The state evolution is given by

A (1= e Ban,

On-1—00)+ 73

on, =09+ e
(6)
Y, =1+ (p— 302 _1p*)At + 0, _1pVAte],

Stock Price

160 T T

60 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

Volatility

50 100 150 200 250 300 350 400 450 500

Fig. 1. We plot the simulated stock price, for (At, u, 00, A, 7,p) =
(1/252,.1,.25,1,.5,—.5). Below, we plot the simulated stochastic
volatility that corresponds to that stock price (the thick line), to-
gether with the estimated volatility by the IPF (line with squares)
and the moving average of the volatility over a window of 60 days(thin
line)

and the observations by

X, = Ya(1— %ai(l — )AL + Yaou /D1 = p2)en, (7)
where {€,, €}, €, ; n > 0} are independent standard Gaus-
sian random variables. The parameter At is known, while
oo and p are estimated from the data (as the mean and
standard deviation of the observations). The parameters
A€ Ry, T € Ry and p € [—1,1] are included in the system.
We add some noise to A and 7, since their state space is
not compact.

In order to test the algorithm, we first simulate the path
of the price of an imaginary stock and its volatility, using
(6) and (7). Then, we apply the IPF, after we estimated
the parameters p and gg from the data.

In particular, we choose the following values for our pa-
rameters

(AL, 1,00, M, 7, p) = (1/252,.1,.25,1,.5,—.5),

S0 as to mimic the properties of real data. We run the In-
teractive Particle Filters with 2% particles, adding noise
(of standard deviation .01) to the parameters A\ and 7.
For prior distributions, we choose a uniform distribution
in [—1,1] for p and a x?(2) distribution for 7 and .

In Figure 1, we plot the simulated price and volatility,
along with the estimated volatility by the IPF, and the
moving average of the volatility over a window of 60 days.
In general, the estimated volatility seems to follow the ac-
tual one quite closely. In Figure 2, we plot the estimates
of the parameters A\, 7 and p over time.

Next, we run the IPF on real data, some Industrial Index
of Dow Jones over the span of almost nine years (starting
1/1/1992). In this case, we would expect the parameters
to vary slowly and even jump from time to time. In Fig-
ure 3, we plot the estimates of the parameters over time.
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Fig. 2.  We plot the mean of the particles corresponding to the
parameters A\, 7 and p over time, for the IPF applied to the system
(6)-(7). The straight lines are the actual values. The parameters p
and o¢ where estimated by the mean and the standard deviation of
the observations (u = .2810, 09 = .2804).

Estimated Parameters: (4 = .1496, o, = .1535)
T T T

I I I
[ 500 1000 1500 2000 2500

L I L
0 500 1000 1500 2000 2500

Fig. 3. Parameter Estimates (Industrial Index of Dow Jones). We
plot the mean of the particles corresponding to the parameters A, 7
and p over time, for the IPF applied to the system (6)-(7).

Parameter p, which represents the correlation between the
stock price and its volatility, seems remarkably stabe (this
was still the case when we added some noise in its muta-
tion step). On the other hand, 7 and \ seem stable over
some periods but we also notice some jumps. For exam-
ple, around 550 (January, 1994)), 1500(January, 1998) and
1700(October 1998), we observe a sudden change for both
A and 7. These observations seem to agree with historical
and economic facts.

VI. CONCLUSIONS

There is mathematical and numerical evidence that the
IPF applied to a system where we also include the param-
eters can be successfully used for to adaptively estimation
of the system. This method also seems applicable to the
case where the parameters slowly vary or have jumps. In
fact, the use of the IPF to detect jumps in the parameters
has already been proposed in [5] and [2]. In both cases,
though, the new value of the parameter is not estimated.

We also have to note that this method is not applicable

to systems of large dimensions. In that case, the algorithm
bacomes computationally intractable.
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