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Abstract—We analyze the coordinated motion of a group of

nonholonomic vehicles that are controlled in a distributed fash-

ion to exhibit flocking behavior. This behavior emerges from

aggregating the control actions of all group members; it is not

imposed by some centralized control scheme. Each vehicle is

locally controlled by a combination of a potential field force

and an alignment force. The former control component ensures

collision avoidance and attraction towards the group, while the

latter steers each vehicle to the average heading of its ‘neigh-

bors’. Eventually all vehicles attain a common heading and

move in tight formation while avoiding collisions.

I. Introduction

Recent technological advances offered more efficient
computation and less expensive communication. The
ability to compute locally and share information has facil-
itated the development of new multi-agent systems. Such
type of systems promise increased performance, efficiency
and robustness, at a fraction of the cost compared to
their centralized counterparts, utilizing distributed coor-
dination sensing and actuation. The question that now
arises is how to achieve the desired level of coordination
in multi-agent systems.

Nature is abundant in marvelous examples of coordi-
nated behavior. Across the scale, from biochemical cellu-
lar networks up to ant colonies, schools of fish, flocks of
birds and herds of land animals, one can find systems that
exhibit astonishingly efficient and robust coordination
schemes [1, 23, 6]. At the same time several researchers in
the area of statistical physics and complexity theory have
addressed flocking and schooling behavior in the con-
text of non-equilibrium phenomena in many-degree-of-
freedom dynamical systems and self organization in sys-
tems of self-propelled particles [22, 21, 13, 11, 17]. Simi-
lar problems have become a major thrust in systems and
control theory, in the context of cooperative control, dis-
tributed control of multiple vehicles and formation con-
trol; see for example [10, 3, 15, 5, 12, 7, 18, 9, 14, 4].
The main goal of the above papers is to develop a decen-
tralized control strategy so that a global objective, such
as a tight formation with fixed pair-wise inter vehicle dis-
tances, is achieved.

In 1986 Craig Reynolds [16] made a computer model
of coordinated animal motion such as bird flocks and fish
schools. He called the generic simulated flocking crea-
tures “boids”. The basic flocking model consists of three

simple steering behaviors which describe how an individ-
ual boid maneuvers based on the positions and velocities
its nearby flockmates: separation, alignment, and cohe-
sion. In 1995, a similar model was proposed by Vicsek et
al. [22]. Under an alignment rule, a spontaneous develop-
ment of coherent collective motion is observed, resulting
in the headings of all agents to converge to a common
value. A proof of convergence for Vicsek’s model (in the
noise-free case) was given in [9].

In this paper provide a system theoretic justification for
an instance of the flocking phenomenon observed in [16].
In our flock model, we consider dynamic nonholonomic
systems steered in a decentralized fashion. We show that
all agents headings converge to the same value, velocities
will eventually become the same and pairwise distances
will converge. Our analysis makes use of Lyapunov sta-
bility and algebraic graph theory. While the proof tech-
niques are totally different from those in [9], the end result
is similar, suggesting that addition of cohesion and sepa-
ration forces in addition to alignment as well as addition
of dynamics, does not affect the stability of the flocking
motion.

The paper is organized as follows: In Section II we
describe the dynamics of each vehicle in the group and
introduce its control law. Section III shows how this con-
trol law gives rise to flocking behavior with simultane-
ous collision avoidance. Numerical simulations verifying
the stability results are presented in Section IV and the
paper concludes with a summary of its contributions in
Section V.

II. Flocking Control

This Section presents the model and the control strat-
egy for the group. The control laws assume a certain in-
terconnection topology on the group of vehicles, through
which state information is exchanged (either by means of
sensing or communication) for the purposes of coordina-
tion. The analysis in this paper assumes that the inter-
connection topology is time invariant. An instance of the
problem in the time varying case with holonomic agents
is treated in [20], while the equivalent time invariant case
is investigated in [19].

Consider a group of N vehicles, moving on the plane
according to the following dynamics:



ẋi = vi cos θi (1a)
ẏi = vi sin θi (1b)

θ̇i = ωi (1c)
v̇i = ai, (1d)

for i = 1, . . . , N , where ri = (xi, yi)T is the position
vector of vehicle i, θi its orientation (Figure 1), vi its
translational speed and ai, ωi its control inputs. The
relative positions between the vehicles are denoted rij �
ri − rj .
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Fig. 1. Control forces acting on vehicle i.

Let us now assume a fixed control interconnection
topology on the group of vehicles. Interconnections ex-
press control dependences; for instance, if vehicle i is in-
terconnected to j and k, this means that the control in-
puts of i depend on the states of vehicles j and k. We will
call the set of vehicles that are interconnected with i, the
neighbors of i. The neighboring relations are represented
by means of an undirected graph:

Definition II.1 (Neighboring graph) The neighbor-
ing graph, G = {V , E ,W}, is a labeled undirected graph
consisting of

• a set of vertices, V = {n1, . . . , nN}, indexed by the ve-
hicles in the group,
• a set of edges, E = {(ni, nj) | ni ∼ nj for ni, nj ∈
V}, containing unordered pairs of vertices representing
neighboring relations, and
• a set of labels, W, indexed by the edges, and a map
associating each edge with a label w ∈ W, equal to the
product of the speeds of the agents corresponding to the
adjacent vertices, wij = |vi||vj |.

For every pair of neighboring vehicles, (i, j) ∈ E we
consider an artificial potential function Vij that depends
on the distance between i and j. We do not require a
particular form for Vij ; any function will do, provided

that it depends only on ‖rij‖. From the definition of rij

it follows that Vij is symmetric with respect to ri and rj .
As example of such function, used also in our simulation
examples, is the following:

Vij(‖rij‖) =
1

‖rij‖2 + log ‖rij‖2
.

The graph of this function is given in Figure 2. Let us
now define the potential energy for vehicle i as

Vi �
∑
j∼i

Vij(‖rij‖).
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Fig. 2. The artificial potential between two vehicles.

Then the control inputs for vehicle i can be defined in
terms of the gradient of the potential function and the
relative headings and distances between vehicle i and its
neighbors,

ai = − (∇riVi)x cos θi − (∇riVi)y sin θi (2a)

ωi = − k
∑
j∼i

|vi||vj |(θi − θj)

+
(∇riVi)x sin θi − (∇riVi)y cos θi

|vi| (2b)

with k being a constant positive parameter (control gain).
The control input (2a)-(2b), can be thought of as a

force fi acting on each mobile agent. This force is the
resultant of a potential force and an alignment force:

fi = −∇riVi + −kẑ × ṙi

∑
j∼i

|vi||vj |(θi − θj)

The second term, also known in literature as a gyroscopic
force [2], is not affecting its kinetic energy, since it acts
along a direction normal to the velocity vector of agent i.



III. Closed Loop Stability

In this Section we will show that under the control
law (2a)-(2b) the group of nonholonomic vehicles forms
a tight flock which moves uniformly, while avoiding colli-
sions between the vehicles. The proof technique is based
on a combination of mechanics, graph theory and Lya-
punov stability.

Let us assume an arbitrary orientation σ on G, and
denote the oriented neighboring graph Gσ. The choice
of orientation is not important and is simply reflects the
orientation chosen for the relative position vectors rij be-
tween the mobile agents. Let B be the incidence matrix
of Gσ, defined as a matrix with entries {−1, 0, 1} with
rows indexed by the set of vertices and columns indexed
by the set of edges. The (i, j) entry of B is −1 if for
vertex i edge j is outgoing, 1 if j is incoming and 0 if i is
not adjacent to edge j.

Define the total mechanical energy of the group as fol-
lows:

Vt =
1
2

∑
j∼i

Vij +
1
2
v2

i . (3)

Due to Vij being symmetric with respect to rij , and the
fact that rij = −rji, the partial derivatives of Vij satisfy:

∂Vij

∂rij
=

∂Vij

∂ri
= −∂Vij

∂rj
, (4)

It can easily be verified that the action of gyroscopic
(alignment) forces do not affect the level of (3). What
they do, in fact, is to transfer mechanical energy from
each pair of neighbors to the kinetic energy of the “cen-
troid” of the group, a position defined as:

rc � 1
N

N∑
i=1

ri

Let the kinetic energy of the centroid be expressed by the
function

Vc � 1
2

(
N∑

i=1

ṙi

)T (
N∑

i=1

ṙi

)

In what follows we will show that this function increases
monotonically under the control scheme (2a)-(2b). For
stability purposes we will consider the difference between
the total mechanical energy Vt, which is a conserved
quantity, and the centroid kinetic energy Vc. Since Vt is
conserved, we can just as well consider its value at initial
time, defining this difference as:

W � Vt

∣∣∣
t=0

− Vc (5)

To show monotonic decrease of W , we need the system
to live inside a certain compact set Ω. Let θ denote the
stack vector of all θi, r denote the stack vector of all

ri and allow an abuse of notation by denoting the stack
vector of the sinuses of all θi by sin θ. Define Ω as follows:

Ω � {(rij , vi, θi) | Vt ≤ c,

and sin(BT θ)T (BT B)BT θ ≥ 0, i, j = 1, . . .N},

Set Ω is nonempty for a sufficiently large choice of c, and
closed by continuity of Vt. Boundedness of Ω follows from
the fact that Vt ≤ c implies boundedness of all Vij , and
since Vij increases monotonically with rij , all rij have to
be bounded as well. Bounds for vi can be found similarly
and θi is always in the interval [−π, π]. Thus, Ω is com-
pact. The argument that follows ensures that in addition,
Ω can be made positively invariant.

The condition sin(BT θ)T (BT B)BT θ ≥ 0 can be sat-
isfied in finite time, by an appropriately large choice of
control gain k. This can be seen from (2b), if we collect
the angular velocity inputs in one expression:

θ̇ = −kLwθ − F

where FT = [ ··· ∇ri
Vi(ẑ×ṙi) ··· ] and Lw is a weighted

Laplacian of the neighboring graph G, defined as:

Lw � BDwBT , with Dw = diag(|vi||vj |)

The definition of the Laplacian is independent of the ori-
entation chosen for the graph. For the Laplacian, it is
known [8] that it has as many zero eigenvalues as the
number of connected components in the graph and that in
the case of a connected graph, the eigenvector associated
with the zero eigenvalues is the N -dimensional vector of
ones, 1N .

It is clear that for rij �= 0, there will always be an up-
per bound on ‖F‖. On the other hand, for a connected
graph G, Lw has a single zero eigenvalue with correspond-
ing eigenvector 1N and a series of N − 1 real positive
eigenvalues. Thus, a sufficiently large k ensures that θ
approaches an arbitrarily small neighborhood of µ1N , for
some constant number µ ∈ [−π, π]. Therefore BT θ can
be made sufficiently small in finite time. With BT θ living
in a small region around the origin, sin(BT θ) ≈ BT θ and
given the positive semi-definiteness of BT B, we can have
sin(BT θ)T BT B(BT θ) ≥ 0. This means that even if the
system starts with initial conditions outside Ω, we can
steer it inside Ω in finite time.

The proposition that follows establishes the stability
properties of the group motion, under the control laws
(2a)-(2b). Once inside the set Ω, the group flocks, in the
sense that it forms a tight formation where all members
move in the same direction, distances between the agents
become fixed and velocities all converge to the same val-
ues.



Proposition III.1 Consider a system of N mobile
agents with dynamics (1) steered by control laws (2a)-
(2b). Then, for a sufficiently large gain k and for initial
conditions in Ω, all headings will converge to a common
direction and inter-vehicle distances approach values that
correspond to a minimum of the group artificial potential∑N

i=1 Vi.

Proof: Taking the time derivative of function W :

Ẇ = −ṙT
c r̈c = −

N∑
i=1

ṙT
i ·

N∑
i=1

r̈i

=
N∑

i=1

ṙT
i ·

N∑
i=1


∑

j∼i

∇riVij + k
∑
j∼i

θi − θj

‖rij‖2 (ẑ × ṙi)




The above can be written more compactly using matrix
algebraic notation. where ⊗ denotes the Kronecker ma-
trix product, and ◦ denotes the Hadamard product this
is written as

Ẇ =[(1T
N ⊗ I3)ṙ]T · [(1T

N ⊗ I3)
(
(B ⊗ I3)

∂Vij

∂‖rij‖ r̂ij

+ k(Lwθ ⊗ 13) ◦ (ẑ × ṙ)
)
]

=[(1T
N ⊗ I3)ṙ]T · [(1T

N ⊗ I3)((B ⊗ I3)
∂Vij

∂‖rij‖ r̂ij)

+ (1T
N ⊗ I3)

(
k(Lwθ ⊗ 13) ◦ (ẑ × ṙ)

)
]

=[(1T
N ⊗ I3)ṙ]T · [((1T

NB) ⊗ I3)
∂Vij

∂‖rij‖ r̂ij

+ (1T
N ⊗ I3)

(
k(Lwθ ⊗ 13) ◦ (ẑ × ṙ)

)
]

=[(1T
N ⊗ I3)ṙ]T · [(1T

N ⊗ I3)
(
k(Lwθ ⊗ 13) ◦ (ẑ × ṙ)

)
]

=[(1T
N ⊗ I3)ṙ]T · [(1T

N ⊗ I3)
(
diag(k(Lwθ) ⊗ 13)(ẑ × ṙ)

)
].

This derivative is rewritten using θ̄i to denote the ith

element of Lwθ, as

Ẇ =([ ṙ1 ··· ṙN ]1N )T · k([ θ̄1ẑ×ṙ1 ··· θ̄N ẑ×ṙN ]1N )

=k

N∑
i=1

ṙT
i ·

N∑
j=1

θ̄j ẑ × ṙj = k

N∑
j=1

N∑
i=1

θ̄j ẑ · (ṙi × ṙj)

= − k

N∑
j=1

N∑
i=1

θ̄j ẑ · (ṙj × ṙi)

= − k
N∑

i,j=1

(θ̄j − θ̄i)ẑ · (ṙj × ṙi)

= − k

N∑
i,j=1

(θ̄j − θ̄i)|vj ||vi| sin(θj − θi).

For pairs (i, j) not belonging in the edge set of the neigh-
boring graph, we have :

|vj ||vi|(θ̄j − θ̄i) sin(θj − θi)
= |vj ||vi|(θj − θi) sin(θj − θi) ≥ 0, for (i, j) /∈ E

For pairs (i, j) belonging to the edge set of G, we can
write:∑

(i,j)∈E
|vj ||vi| sin(θj − θi)(θ̄j − θ̄i) =

sin(BT θ)T DwBT BDwBT θ.

This bilinear form is positive semi-definite in Ω. Then,

Ẇ = −k
∑

(i,j)/∈E
‖ṙj‖ ‖ṙi‖ (θj − θi) sin(θj − θi)

− k sin(BT θ)T DwBT BDwBT θ ≤ 0

Applying LaSalle’s invariant principle on (1) in Ω we
conclude that all trajectories converge to the largest in-
variant set in S = {(rij , vi, θi) | Ẇ = 0, i, j = 1, . . . , N}.
Provided at least one pair of neighboring agents is mov-
ing, Ẇ = 0 requires θi − θj = 0, for all i, j ∈ V . Even
if all agents are not moving, they cannot continue to do
so, unless they are located in configurations of minimal
potential energy

∑N
i=1 Vi.

In an invariant set in S, (2b) suggests that in addition
to θ = µ1N , there must also be ∇riVi(ẑ × ṙi) = 0 for all
i ∈ V . The latter only happens when for all i ∈ V , we
either have ∇riVi = 0 or ∇riVi being parallel to ṙi. In
other words, the invariant set consists of configurations
where all agents have a common heading and are either
moving along the same straight line, or that have reached
a configuration of local minimum of

∑N
i=1 Vi.

Collision avoidance is guaranteed since in all config-
urations where rij = 0 for some i, j ∈ {1, . . . , N}, the
function Vt tends to infinity implying that these configu-
rations lay in the exterior of any Ω with c bounded.

IV. Simulations

In this Section we verify numerically the stability re-
sults of Section III. The group is consisted of five au-
tonomous agents with dynamics described by (1). The
initial conditions (positions and velocities) were gener-
ated randomly within a ball of radius R0 = 5[m]. Fig-
ures 3-8 show snapshots of the group motion during a
simulation time period of 15 seconds. In these Figures the
position of the agents are represented by (red) dots, con-
nected to each other by (blue) line segments which repre-
sent the neighboring relations. The dashed line trails left
behind by the dots correspond to agent paths. Figures 3-8
show how the headings of all agents asymptotically ap-
proach a common direction. The asymptotic convergent
behavior of the relative heading differences is depicted
in Figure 9. Figure 10 gives an enlarged picture of the
shape of the group after the period of 15 simulation sec-
onds. The agents tend to attain positions on the vertices
of an inscribed polygon with 5 faces, which corresponds
to a local minimum of the group potential function.
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V. Conclusions

In this paper we proposed a set of control laws that give
rise to stable flocking motion for a group of nonholonomic
vehicles capable of sharing state information, through a
fixed control interconnection topology. In this way, we
theoretically explained the flocking behavior observed in
the animation models of [16]. The proof is based on the
mechanics of a system of particles and the connectivity
properties of the graph of inter-vehicle interconnections.
Further research efforts are directed towards characteriz-
ing the robustness properties of this control design and
the relation between these robustness properties and the
graph algebraic properties of the interconnection topol-
ogy of the group.
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