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Abstract—A method for identifying the continuous-time 

transfer function of an unknown linear time-invariant system by 
processing the sampled system output data is developed. The 
novelty of the method is that it can identify the system transfer 
function at frequencies that violate Shannon’s Sampling theorem. 
The method is based on exciting the system with two orthogonal 
sinusoids and constructing a linear complex equation that relates 
the sampled output points with the unknown values of the 
transfer function. The equation is independent of aliasing and 
has always a solution. An important application of the method is 
for identifying the continuous-time dynamics of a Hard Disk 
Drive system where the sampling frequency of the output is fixed 
by the number of servo bursts and the spinning speed of the disk. 
 

Index Terms—identification, disk drives, signal sampling, 
transfer functions  
 

I. INTRODUCTION 
The natural world operates in an analog domain, but 

information signals may frequently be processed, measured or 
otherwise manipulated more efficiently in the digital domain. 
The conversion from the analog domain to the digital domain 
is accomplished with analog-to-digital converter (ADCs) or it 
may happen naturally due the sensing process. An ADC 
receives as input an analog or continuous-time signal and 
produces as output a digital signal. The digital signal is a 
sequence of numbers that equal to the value of the analog 
signal at the sampling times. For example if y(t) is the analog 
signal, y(nT), n=0,1,2,…, will be the digital signal and 

 where T is the sampling period of the ADC. 
It is clear that some information present in the analog signal is 
lost during the conversion process. The amount of the 
information lost depends on how fast the sampling process 
takes place, i.e., how close to each other the points nT are on 
the time axis. This implies that the smaller the sampling 
period T or equivalently the higher the sampling frequency 

 is, the smaller the amount of information lost 
during the conversion [1]-[2]. 

nTttynTy == |)()(

Ts /2πω =

In some applications, such as in the case of hard disk drives 

the analog-to-digital conversion occurs naturally. For example 
in the case of the disk drive the position of the head relative to 
the center of the track is generated in the digital form with a 
sampling frequency that depends on the number of prewritten 
sectors on the disk with position information data and the 
spinning speed of the disk. In the case of the disk drive and 
other applications it is of interest to identify the continuous 
time transfer function of the system to be used for modeling 
and control design purposes [1],[6]. 
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According to Shannon’s sampling theorem the recovery of 
the lost information during the digital conversion is not 
possible if the sampling frequency is less than half the 
maximum frequency present in the signal because of aliasing 
[1]-[2]. In practice, aliasing is minimized or avoided by 
increasing the sampling frequency well above the marginal 
one dictated by Shannon’s Sampling Theorem. In the case of 
the disk drive and other applications the sampling rate is 
fixed. This implies that for system identification and signal 
reconstruction to be possible, the highest frequency in the 
analog signal should be much less than the sampling 
frequency. Ideally according to Shannon’s sampling theorem 
the limiting frequency is half the sampling frequency. The 
implication is that dynamics and resonant modes in the system 
corresponding to frequencies close and above half of the 
sampling frequency cannot be identified with current methods 
due to aliasing. The current method of identifying the transfer 
function of a system from sampled data is to excite the system 
with a sinusoidal sweep, record the sampled output data and 
used a Fast Fourier Transform method to calculate the values 
of the transfer function at different frequency points [7]-[9]. 
This method however breaks down at frequencies close and 
above half of the sampling frequency. Consequently the value 
of the transfer function at high frequencies cannot be 
calculated with current methods unless the sampling 
frequency is increased further. In the case of a disk drive this 
is not possible unless additional position data sectors are 
added and/or the spinning speed is increased further. 

In this paper, the deficiencies of the prior works are 
overcome by the proposed method. It would be beneficial to 
identify the transfer function of a continuous time system 
using the digitized output of the system. The identification of 
the system is essential for control design purposes and/or 
modeling and appears in almost every practical control system 



  

problem. In the case of the disk drive, where the sampling 
frequency of the output is fixed by the design, identification of 
the high frequency dynamics and resonant frequencies helps 
design or tune the servo controller parameters in order to 
improve the performance of the servo controller. This in turn 
will lead to a more precise tracking of the center of the tracks, 
which in turn implies smaller in size disk drives for the same 
capacity of data [3]-[6]. 

The proposed technique is composed of several exemplary 
operational components. The system transfer function is 
calculated at a wide range of specified frequencies by exciting 
the system sequentially with two orthogonal sinusoidal signals 
with a frequency that varies over the range of interest and 
using the corresponding sampled output data to construct an 
algebraic complex equation that relates the unknown values of 
the transfer function at the frequency of interest with known 
data. This equation is independent of aliasing and has always 
a solution. The estimate of the transfer function at the 
frequency point of interest is simply the average of all the 
output samples weighted by the values of the input excitation 
signal. This process is repeated for each frequency and the 
data are used to construct a Bode Diagram for the system from 
which the transfer function of the system can be obtained 
using standard curve fitting techniques. The use of two 
orthogonal sinusoids may be reduced to a single sinusoid if 
the excitation frequency is not close to be equal to half or 
integer multiple of the sampling frequency and the noise level 
is low. In this case the inversion of a large matrix is required 
to be calculated. When the transfer function has unstable 
poles, the excitation signal is passed thought a specially 
designed pre-filter before applied to the system. When the 
unstable system is in closed loop, in addition to the pre-filter, 
the output of the controller is passed thought a specially 
designed filter whose output is used to modify the measured 
digitized output of the system. 

An important technical advantage of the proposed method 
is that it enables Bode diagram construction at all frequencies 
of interest without having to increase the sampling frequency. 
This in turn allows the identification of the transfer function of 
the continuous time system over a wide frequency range 
where current methods break down. 

Another important technical advantage of the proposed 
method is the ability to use it in any control feedback system 
where the sampling frequency is limited in order to 
occasionally check the validity of the model (generated from 
the Bode diagram) of the system on which the control design 
is based on in order to adjust the controller parameters and 
improve performance. An important application of the 
proposed technique is to identify the high resonant 
frequencies of a disk drive system where the position error 
signal is measured at a fixed sampling rate determined by the 
number of position sectors on the disk and the spinning speed. 
The knowledge of the resonant frequencies allows the tuning 
of the servo controller in order to improve the tracking 
performance of the hard disk servo controller in addition to 
other benefits [1],[6]. 

II. IDENTIFICATION OF CONTINUOUS-TIME TRANSFER 
FUNCTIONS IN OPEN LOOP 

Consider the system described by Fig. 1. 

G(s)
u(t )

T
y(nT)y(t)

 
Fig. 1. System Block Diagram 

 
where G(s) is an unknown transfer function, u(t) is the 

input, and y(nT) is the output sampled every T seconds. The 
output y(t) is not available for measurement but y(nT) and u(t) 
are measurable. According to Shannon’s Sampling Theorem 
the output y(t) cannot be reconstructed from y(nT)  even in the 
ideal case unless the sampling frequency ω =  is 
greater than twice the maximum frequency in y(t). 

Ts /2π

In practice, due to computational errors y(t) can be 
reconstructed provided its maximum frequency is well below 

. For frequencies close to and above  aliasing 
takes place in which case ideal filtering or any kind of signal 
reconstruction cannot be used to reconstruct y(t) from y(nT). 
This problem prevents the generation of a Bode diagram for 
G(s) using conventional methods, for frequencies close and 
above ω . 
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The proposed method bypasses the limitations of the 
Shannon’s Sampling Theorem, by designing the input 
excitation signal u(t) so that the calculation of  at any 
finite frequency ω  from the sampled output data y(nT) is 
computationally feasible despite aliasing. 
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A. Identification of Continuous-Time Transfer Function of 
Stable Systems 
The identification of G(s) in Fig. 1 involves the excitation 

of the system over a certain frequency range, construction of a 
Bode diagram that represents the frequency response of the 
system and calculation of G(s) from the Bode diagram by 
using standard curve fitting techniques. The conventional 
method for generating a Bode diagram is to excite the system 
with a rich frequency signal and record the output sequences. 
Then compute the Discrete Time Fourier Transform (DTFT) 
or Fast Fourier Transform (FFT) for both input and output 
sequences. The value of the transfer function at a particular 
frequency is computed from the knowledge of the spectrums 
of the output and input signal at that frequency. In Fig. 1, 
however, only y(nT) is available for measurement and at 
frequencies  the sequence y(nT) does not imply a 
unique y(t) due to aliasing. In fact an infinite number of y(t) 
signals are equal to y(nT) at t=nT.  In the frequency domain 
this means that at high frequencies that violate Shannon’s 
Sampling Theorem, folding takes place where the digitized 
output spectrum consists of overlapping spectrums of the 
continuous-time output that are shifted by multiples of the 
sampling frequency. The continuous-time output spectrum 
cannot be calculated from the digitized output spectrum due to 
aliasing. Consequently the current FFT methods used for 
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identification break down in this frequency region. 
The proposed method for estimating G  at any given 

frequency is as follows: 
)( ijω

The system is excited by  and  
over non-overlapping intervals of time. Let 
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where is the complex conjugate of H. The above equation 
is independent of aliasing and has always a solution. The 
number of data collected in Y depends on the accuracy 
required. Since only Y depends on the real data, the presence 
of noise gets averaged and the estimation of G is 
unbiased. The process of excitation is repeated for different 
values of ω  and a Bode plot is constructed using the pairs 

, . The transfer function G(s) is then calculated 
from the Bode diagram using standard techniques. 
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The process of excitation using two orthogonal sinusoids 
can be simplified for frequencies of interest whose value is 
away from half or multiple integer of the sampling frequency. 
In this case the system in Fig. 1 is excited by the input 

, where ω  is kept constant over the time 
internal [0, KT], where K≥2 is the number of data to be 
obtained from y(nT) that reflects the effect of excitation of the 
system by sin . Then ω  is changed to the next value of 
interest over the interval [KT, 2KT]. The process continues for 
all  that are not close to  with m=±1/2,±1,±2,…. For 
each frequency ω  we form 
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Then  is calculated using the equation )(ˆ
ijG ω
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From  we obtain )(ˆ
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ijG ω  and  that give 

one point on the Bode diagram at the frequency ω . By 
repeating the above calculations for each ω  more points are 
obtained and the Bode diagram is constructed. 
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The above method will fail in the presence of high level of 
aliasing. For example when ω = , m=±1/2,±1,±2,…, the 

inverse of  does not exist. In practice the inverse of 
 may not be computable when ω  is close to  or if 

it is computable it may lead to inaccurate estimates of G  
due to noise effects and other inaccuracies. For this reason, 
when  where ω  is the maximum frequency of 
excitation without aliasing the first method involving the use 
of two orthogonal sinusoids is more appropriate. The method 
can also be used using excitation signals whose phase 
difference is less than 90 degrees. Orthogonality however 
simplifies calculations considerably as no inverse of a large 
matrix needs to be computed. 

si mω

HH +

maxω

sin( i= ω

HH +

u

i

cos(

smω

( j )iω

ω ≥i

)(t

max

)

Pre-Filt
F(s)

eru(t)
T

y(nT)

sY [=

cY [=

H

)ijω

y

y

j ie ω

K/

ωsin=

ωcos

The above method is based on the assumption that the 
system transfer function has stable poles which means a 
bounded input leads to a bounded output. The present method 
however can be used to handle also cases where the transfer 
function has unstable poles as described next. 

B. Identification of Continuous-Time Transfer Function of 
Unstable Systems 
If the system is unstable then the excitation signals of the 

form  and  over non-
overlapping intervals of time, where  is a unit step 
function will lead to an unbounded output. In this case the 
excitation signal is passed through a specially designed pre-
filter before applied to the system as shown in Fig. 2. 
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)(1 tu−

G(s)
 

Fig. 2.  Open-loop identification for an unstable system 
 
The pre-filter F(s) is designed such that F(s)G(s) has a 

bounded impulse response. In other words F(s) is designed to 
have the unstable poles of the system as zeros, which are 
assumed to be known. In practice the unstable poles of G(s) 
may not be cancelled exactly by the zeros of F(s) leading to 
F(s)G(s) with unstable poles. The presence of F(s) however 
reduces the effect of the instability in which case the output 
does not grow unbounded as fast giving sufficient time to 
collect output data. The output data collected are used to form 
a vector 
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However, for frequencies of interest whose value is away 
from half or multiple integer of the sampling frequency, the 



  

excitation signal can be simplified by using a single sinusoid 
. In this case, the output data collected are 

use to form the vector 
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Let  denote the estimate of G . 

 is calculated using the following equation. 
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Then the magnitude and phase of  is obtained as: )(ˆ
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III. IDENTIFICATION OF CONTINUOUS-TIME TRANSFER 
FUNCTION OF UNSTABLE SYSTEMS IN CLOSED-LOOP 

Fig. 3 shows the system with transfer function G(s) 
controlled by a discrete time controller with transfer function 
C(z). r(t) is a reference input. The controller is designed a 
priori based on some approximate knowledge of G(s) in order 
to achieve close loop stability. Let  be an approximation 
of G(s) on which the design of C(z) is based on and it is 
therefore known. 

)(sGR

G(s)C(z)

Pre-Filter
F(s)

r(t)

u(t)

T

y(nT)
ZOH

-
c(t)

-
T

y0(nT)GR(s)
 

Fig. 3. Block diagram of identification in a close loop 
 
Identifying G(s) in the configuration shown in Fig. 3 is as 

follows: The system is excited by the input u(t) that is passed 
through a pre-filter F(s) designed so that F(s)G(s) has stable 
poles. It is assumed that the locations of the unstable poles of 
G(s) are known a priori. The output y(nT) is constructed as 
shown in Fig. 3 by subtracting from the measured output 
signal the effect of c(t) generated by the controller.  )(0 nTy
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over non-overlapping intervals of time. Let 
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Then the magnitude and phase of G  is obtained as: )(ˆ
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By repeating these tests for each frequency of interest a Bode 
diagram can be constructed that could be then to identify G(s) 
by following standard curve fitting or other techniques. 

 

IV. APPLICATION TO A HARD DISK DRIVE (HDD) SYSTEM 
Fig. 4 shows a closed loop configuration of a hard disk 

drive servo system. In Fig. 4 G(s) represents the dynamics of 
the disk drive system, C(z) the controller transfer function in 
the z-domain, d(t) represents the output disturbances due to 
noise, higher order harmonics etc. The output y(nT) represents 
the position error signal (PES), which is the deviation of the 
position of the head from the center of the track the head is 
trying to track. Since the position error data are stored only at 
designed sectors on the disk, referred to as servo bursts, the 
values of the sampling period T depends on the number of the 
servo bursts and the spinning speed of the disk and cannot be 
reduced below a certain value [1],[6]. This implies that the 
sampling frequency cannot increase beyond a certain value. 
This in turn implies that the resonant modes of the disk drive 
system that are above half of the sampling frequency cannot 
be identified using the conventional methods. Current 
approaches to bypass this problem include an increase in the 
sampling rate by adding more servo bursts and/or increasing 
the spinning speed. Both of these approaches have their 
limitations and are costly [3]-[5]. It will be very desirable to 
have a method of identifying the resonant modes of the 
system, periodically and use that knowledge to update the 
controller parameters for better tracking. Since a small 
percentage change in the resonant frequencies may affect the 
performance of the controller the occasional monitoring of the 
location of the resonant frequencies and tuning of the 
controller parameters is essential for better tracking control 
performance. 

G(s)C(z)
r(t)

d(t)

T
y(nT)

ZOH-

 
Fig. 4. Closed-loop servo system for a hard disk drive 

 
The proposed method is applied to the hard disk drive 

system as shown in Fig. 5 and explained below. For clarity of 
presentation we consider a particular model of a disk drive 
system with transfer function G(s) given by 



  

)()()( sGsGsG R= , where )(sG  represents the high resonant 
frequencies and G  the low frequency dynamics. In disk 

drives 

)(sR

)(sG  has stable poles but G  may have unstable 
poles. In this case the controller C(z) is designed based on the 
low frequency approximation of G(s) namely G . The 
block diagram of this method is described in Fig. 5. For the 
purpose of illustration we assume that G . 

The pre-filter F(s) is chosen as  such that 
F(s)G(s) has stable poles. The disturbance d(t) is of the form 
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where (rad/s) is the angular speed of the disk.  is 
noise and , φ , i=1,2,3 are unknown constants. 
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Fig. 5. HDD closed-loop identification using pre-filter and estimated values of 
disturbance 

 
The proposed method applies to this problem as follows: 

the disturbance d(t) is estimated using standard techniques, at 
the sampling instances and subtracted from the estimated 
output . Let d  be the estimate of d(t) at t=nT. The 
excitation signals u(t) is chosen as u  and 

 over non-overlapping intervals of time as 
described in previous sections. Let 
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Then the magnitude and phase of  are obtained as 
described in section III. 
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where , , k=1,2,3, are estimated so that  is very 
close to d(t) (within the noise level). Select the input 
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ijFG ω  denotes the estimate of  and is 
estimated using the equation 
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V. SIMULATION RESULTS 
The properties of the proposed method are demonstrated 

using simulations as presented below: 

A. Identification of the Dynamics of HDD System in Open-
Loop 
For simulation purpose, assume that the dynamics of the 

HDD system are )()/0337.1()( 2 sGss =G . For the purpose of 

demonstration, let us consider )(sG  to be of the form 
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The output of the dynamics is the position error signal that is 
measured at a frequency of 12.72 kHZ or 79,922.1 rad/sec. 
The stable pre-filter  is constructed such 
that F(s)G(s) has stable poles. In this case the feedback loop is 
disconnected as shown in Fig. 6. 

22 )10/()( += sssF

The proposed method is used to estimate G  at any 
frequency of interest ω . The input to the system is chosen as 

, where ω  is varied from 0 to ω  where 

 and ω  rad/sec. In this case 
aliasing is not present and G ,  is 
calculated using conventional methods. For ω > , two 
inputs are applied sequentially u  and 

 over selected intervals of time that do not 
overlap and are large enough to generate sufficient number of 
output samples. For each ω  the method is used to generate 
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)(ˆ
ih jG ω  from which the magnitude )( ih jG ω  and phase 

 are calculated. Table 1 shows a comparison of the 
actual values and estimated ones for frequencies well above 
the sampling frequency. In this example, a Gaussian noise 
with zero mean and standard deviation of 0.2 is included in 
the measurements of y(nT). Table 1 demonstrates that the 
proposed method is efficient. 
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Fig. 6. Block Diagram of Open loop Identification 

 
TABLE 1 

BODE DATA OF THE HDD MODEL AND ITS OPEN-LOOP IDENTIFIED MODEL AT 
DIFFERENT FREQUENCY POINTS 

HDD Model Open-loop Estimation Freq. 
Points 
(rad/s) Mag. (db) Phase (deg) Mag. (db) Phase (deg) 

100 -79.7164 -180.0637 -79.7235 -180.0921 
1000 -119.7076 -180.6366 -119.7009 -180.6605 
20000 -167.4917 -192.1355 -167.4697 -192.0469 
30000 -164.3153 -203.3778 -164.3314 -203.2680 
33853 -154.3241 -278.0598 -154.3475 -277.6308 
48000 -158.5398 -71.9127 -158.5904 -69.1207 
58146 -160.8905 -313.8451 -160.9610 -311.3364 
68666 -171.5536 -104.1586 -171.5547 -102.3250 
70000 -180.1188 -161.3407 -179.9732 -161.0215 
105 -213.2273 -92.4926 -210.5540 -116.5133 

 

B. Identification of the Dynamics of HDD System in 
Closed-loop 
The proposed method is used for the HDD system with G(s) 

as given in part A. Table 2 shows a comparison of the actual 
values and estimated ones for the closed-loop estimation at 
specific frequency points. As shown in Table 1 and 2, open-
loop identification achieves better results. 

  
TABLE 2 

BODE DATA OF THE HDD MODEL AND ITS CLOSED-LOOP IDENTIFIED MODEL AT 
DIFFERENT FREQUENCY POINTS 
HDD Model Closed-loop Estimation Freq. 

Points 
(rad/s) Mag. (db) Phase (deg) Mag. (db) Phase (deg) 
100 -79.7164 -180.0637 -79.7117 -179.9984 
1000 -119.7076 -180.6366 -119.7101 -179.9484 
20000 -167.4917 -192.1355 -167.6362 -196.8404 
30000 -164.3153 -203.3778 -164.9278 -204.1158 
33853 -154.3241 -278.0598 -154.9899 -268.9914 
48000 -158.5398 -71.9127 -159.3689 -64.6243 
58146 -160.8905 -313.8451 -162.1194 -305.1481 
68666 -171.5536 -104.1586 -171.2437 -98.5231 
70000 -180.1188 -161.3407 -179.6061 -151.4613 
105 -213.2273 -92.4926 -200.3397 -164.0347 

VI. EXPERIMENT RESULTS 
The proposed open-loop identification method is used to 

identify the transfer function of an actual Western Digital 
WD300ABRTL 30 GB disk drive. The raw Bode data is 

collected based on 50Hz interval from 50Hz – 15000Hz as 
shown as red line in Fig. 7. The identified Bode diagram is 
shown in Fig. 7. The transfer function G(s)=N(s)/D(s) is 
obtained by using complex least square curve fitting 
techniques and given by: 
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Fig. 7. The identified Bode diagram in open loop. The red line is raw Bode 
diagram data from the experiment. The blue line is the continuous-time 
transfer function obtained by using curve fitting. 
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