
Abstract — On-line monitoring of industrial processes is 
extremly important for plant safety and product quality. An 
early detection of the fault occurrence is vitally important 
since it contributes to avoidance of product deterioration, 
performance degradation, major damages to the machinery 
itself and damages to human health or even loss of lives. Some 
fault detection methods using analytical redundancy are 
described and principles are outlined of some most important 
techniques of model-based residual generation using 
parameter estimation, parity space and state estimation 
approaches. As the real systems are usually non-linear, a non-
linear state estimation observer is described. A water vessel 
(boiler) of a heat exchanger was chosen for the experiment. 
Although there was no water level sensor installed in it, the 
leakage of the vessel was successfully detected using a non-
linear observer. 
 
Index Terms —  boilers, fault diagnosis, nonlinear systems, 
safety, water heating 
 

I. INTRODUCTION 
 
The global competitiveness of the production nowadays 
cannot be achieved if equipment that is used for production 
isn't installed, applied and maintained properly. The global 
competitiveness depends to a large extent on effectiveness 
of the use of factory automation. The early 1980s heralded 
the creation of the "Factory of the future". The prevalent 
image then was a "lights off" factory heavily populated by 
robots, with a few human supervisors keeping track of 
operations by watching monitors in a central control room. 
In many cases, this image was not achieved. In few words, 
workers (and wider environment, living and non-living) are 
still exposed to harmful effects of the working area and 
accidents, caused either by process malfunction or 
incompetence of their colleague workers.  
 
Some studies [1] have shown that main causes related to 
automation or control are poor instrumentation and operator 
error. Most of the human errors are usually made during 
start-up operations of the process. The following conclusion 
can therefore be drawn: If the degree of automation were 
higher, consequences of a human error might be smaller. 
Furthermore, co-operation between automation and a 
human operator is important in avoiding human errors 
during operation. Occurrences of equipment faults giving 
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rise to accidents bring up the necessity that potential 
failures, both in measurement and control equipment as 
well as in process equipment, should be studied. By 
preparing for them a proper process design, an equipment 
failure of the system would not lead to an accident. One of 
the possible solutions is an early detection of malfunctions, 
called Fault Detection and Isolation (FDI).  
 

II. SOME PROCESS INDUSTRY SAFETY FEATURES  
 
Three types of event are traditionally associated with the 
chemical branch of the process industry. These are releases 
and spills, fires, and explosions. Controlling the potential 
risk means that process equipment must withstand the 
anticipated stresses caused by hazardous substances and 
that process parameters must not take on values such that 
the substances can undergo uncontrolled reactions. 
 
Critical process parameters and hazardous potential ignition 
sources must not occur in the plant as a result of process 
upsets or even a human error. These become an additional 
concern of the plant safety requiring a painstaking cause 
and effect analysis of all possible errors and malfunctions 
and institutions of measures to prevent or neutralise 
situations that could lead to an unsafe condition. Such 
measures could be technical or organisational. In other 
words, Process Engineering and Process Control 
Engineering must consider interconnection of different 
science disciplines that have to be taken into account to 
achieve the purpose of a "safe plant" (Figure 3), i.e., 
following the principles of system engineering. 
 
Unfortunately, a complete absence of all possible hazards 
(absolute safety) is not possible for two reasons: 
• it cannot be ruled out that several safety measures will 

fail simultaneously; 
• people make mistakes, misjudge things, asses them 

wrongly, fail to notice them. 
 
To go even further, failures usually don't appear without 
any reason. They must have been caused by groups of 
events from the past (change of parameters due to ageing, 
disallowed change of one of unmeasured variables, etc.). 
The causes from the past (recent or distant) would initiate 
symptoms of a failure before it happens. If they are known 
or pre-studied and if one is able to detect them, a process or 
its component can be maintained on time to prevent a 
failure. If a failure is allowed, its primary source has to be 
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found. This is one of the recent tasks of process automation. 
Modern equipment should provide enough measurement 
signals to be able to apply early fault detection also for 
safety reasons.  
 
However, fault diagnosis has become an issue of primary 
importance in modern process automation and as it provides 
the pre-requisites for fault tolerance, reliability or security, 
which constitute fundamental design features in any 
complex engineering system. It is important to distinguish 
between: 
• fault detection and isolation (FDI) methods based on 

mathematical or dynamic model of process systems, 
and 

• knowledge based methods, which are in many cases 
more failure oriented (searching the primary 
component indicating a failure). 

Fig. 1 shows a simple classification of diagnostic 
algorithms [1].  
 

Fault detection
methods

Quantitative
methods

Pattern
recognition

Qualitative model
based methods

Integration of quantitative
and qualitative methods

Signal
processing

Analytical model
based methods

Consistence model
based methods

Causal model based
methods

ObserversParity
relations

Parameter
estimation

 
 
Fig. 1. Simple classification of the fault detection algorithms 
 
In general, fault monitoring systems must be tolerant to 
signal deviations caused by process parameter uncertainty, 
disturbances, non-linearities, etc., which are normal 
functions of the operation of most engineering 
requirements. 

III. FAULT DETECTION, ISOLATION AND ACCOMMODATION 
IN FEEDBACK CONTROL SYSTEMS 
 
Consequences, even those of simple faults, may be dramatic 
and there are considerable incentives to enhance 
computerised feedback loops with methods for fault 
detection and accommodation. 
 
Feedback is established because actuator demands are 
calculated from the difference between a reference value 
and sensor measurements. Any deviation between these 
signals will cause an immediate reaction on the actuators 
when actuator demands are updated. The discrete time 
control algorithm makes use of both current and previous 
events in the plant. This makes it possible to employ, for 
example, prediction methods to give the control loop 
desired characteristics. Response time to changes in the 
setpoint, disturbance rejection properties, noise sensitivity, 

and stability properties are key attributes that are always 
quantified in the requirements to a particular closed-loop 
design.  
 
Feedback control systems are particularly sensitive to 
faults. However, faults in feedback loops are in general 
difficult to handle [3]. If a fault develops gradually, a closed 
loop will attempt to compensate for it and in this way hide 
the development of the malfunction. The fault may not be 
discovered until the control loop stops normal operation. If 
faults arise suddenly, the effect is amplified by the closed-
loop control. Production stops, process damage, or other 
undesired consequences, may be the result. A feedback 
sensor fault, for example, may cause a large deviation 
between the measurement and reference. This will in most 
cases cause large actuator demands and eventually lead to a 
rapid change of the process state. Unacceptable excursions 
in the process state followed by production stop, plant 
failure or direct damage are experiences from actual events 
in industry.  
 
In normal operation, feedback control should keep the 
process state equal to a desired setpoint while the influence 
from process disturbances and measurement noise are kept 
minimal. This can be achieved by employing methods that 
estimate process states and perform optimal dynamic 
filtering in combination with techniques that adopt 
parameters in the control method to current process 
conditions. 
 
In abnormal operation, when faults have occurred, the 
control loop should react immediately in a way that 
prevents a fault from developing into a malfunction of the 
system being controlled. This requires added functionality 
to well established methods in the control theory.  
 
A general method for design of fault handling associated 
with closed-loop control includes the following steps: 
1. Make a failure mode and effect analysis related to 

control system components [4]. 
2. Define desired reactions to faults for each case 

identified by the analysis from Eq. (1). 
3. Select appropriate method for generation of residuals. 

This implies consideration of system architecture, 
available signals, and elementary models of 
components. Disturbance and noise characteristics 
should be incorporated in the design if available.  

4. Select a method for fault detection and isolation. This 
implies a decision or whether an event is a fault and, if 
this is the case, the determination of which element if 
faulty.  

5. Consider control method performance and design 
appropriate detectors for supervision of control 
effectiveness. Design of appropriate reactions.  

6. Design a method for accommodation of faults 
according to points 2 and 5.  

7. Implement the completed design. Separate the control 
code from the fault handling code by implementation 
as a supervisor structure.  

 



Faults in a control loop can be categorised in generic types: 
• reference value (setpoint) fault, 
• sensor fault, 
• actuator element fault, 
• execution fault including timing fault, 
• application software, system or hardware fault in a 

computer based controller, 
• fault in a physical plant. 
 
The chosen diagnostic procedure depends mostly on fault 
detection demands and available process models. The three 
basic FDI methods based on analytical models will be 
presented in the next sections: 
• parameter estimation approach, 
• parity space approach, 
• observer approach. 
 

IV. PARAMETER ESTIMATION APPROACH 
 
As the parameter identification methods are well known 
and available in literature [1, 2, 3, 7], they are only 
mentioned here. Parameter estimation is a natural approach 
to the detection and isolation of parametric faults. A 
reference model is obtained first by identifying the plant in 
a fault-free situation. Then the parameters are repeatedly re-
identified on-line. Deviations from the reference model 
serve as a basis for detection and isolation. The 
identification algorithm can be applied in continuous or 
discrete time. If continuous time is applied (no need for z-
transform), the derivatives of the signals have to be either 
measured or obtained using observers. Best results are 
obtained using state variable filters [10]. Another method of 
obtaining signal derivatives is by using real differentiators. 
Signals have to be properly filtered before application, thus 
a high sample rate is required.  
 

V. PARITY SPACE APPROACH 
 
Parity space approach means a comparison of the 
mathematical model of the plant and measured variables. 
Any fault can be detected through differences between 
compared signals. Consider a dynamic system with input 
vector u, output vector y, and feedback control system. A 
plant in general consists of actuators, plant dynamics 
(components), and sensors. For a realistic representation it 
is important to model all effects that can lead to alarms and 
false alarms.  
 
The analytical redundancy approach requires that the 
residual generator performs some kind of validation of the 
nominal relationships of the system, using the actual input 
and measured output (Fig. 2). The redundancy relationships 
to be evaluated can even simply be interpreted as input-
output relations of the dynamics of the system. It is highly 
desirable to have input and output signals of the actuators of 
the plant available. This is especially important if the 

actuators are highly non-linear, because then the required 
system equations do not contain the actuators non-
linearities. If a fault occurs, the redundancy relations are no 
longer satisfied and a residual, ri≠0, occurs. The residual is 
then used to form appropriate decision functions. They are 
evaluated in the fault decision logic in order to monitor both 
the time of occurrence and location of the fault. 
 
For the residual generation a model of the process is 
required, and for better fault isolation an additional model 
of the faulty process should be used. 
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Fig. 2. Principle of the parity space approach to fault detection 
 
The first step in model based analytical redundancy 
methods is to include all the predefined faults into the 
mathematical model of the plant. 
 
Output from the parity equations are signals showing 
inconsistency between normal and faulty operation. In 
normal process operation the parity equations output is 
approximately zero. In case of faults the output will be 
nonzero. Fault isolation is achieved with structured parity 
equations. One element of the residual vector is unaffected 
by a specific fault while all the others will be affected. In 
that way the determination of a fault is possible. The parity 
equations are designed as follows [3]: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
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The residual vector r(s) is found by multiplying a weighting 
filter W(s) to the error e(s). The filter is designed to make 
the jth residual unaffected by the ith fault. Unfortunately, the 
residual is also affected by measurement noise n and 
modelling uncertainty ∆C, not only by the fault vector f (2) 
 

( ) ( ) ( ) ( ) ( )s s s s= + ∆ ⋅ + + ⋅y C C u n S f  (2) 
 
where S is a fault distribution matrix. Error vector e(s) is 
then: 
 

( ) ( ) ( ) ( )s s s s= − = ⋅ + + ∆ ⋅e y y S f n C u  (3) 
 
In general, the residual vector r(s) is affected by all faults 
f(s): 
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Residual ri should be made unaffected by fault fi. This is 
achieved if matrix [WxS] has the following structure [5]: 
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Here the first residual r1, depends on all but the first fault, 
the second residual r2, on all but the second fault and so on 
[2]; that is: 
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The decision function for the logical evaluation of the 
residuals is then as follows: 
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VI. OBSERVER APPROACH 
 
The system under consideration is usually non-linear, thus 
the model in the observer should also be non-linear in order 
to avoid modelling errors arising from linearization. This 
leads to the concept of FDI using non-linear state estimators 
[7]. Consider the non-linear system given by: 
 

0f( );  (0)= =x x,u x x  (8) 
c( )=y x,u  (9) 

 
where vector u denotes the input vector, y denotes the 
output vector, x denotes the state vector and f and c are 
nonlinear functions. Initial conditions are given by x(0). 
The non-linear state estimator equation is then, by 
definition, 
 

0ˆˆ ˆ ˆf( );  (0)= =x x, u, y x x  (10) 
 

and the state estimation error, ˆ= −ε x x, becomes 
 

ˆ ˆf( ) f( )= −ε x, u x, u, y  (11) 
 
If Eq. (10) is approximated, such that it becomes 
 

0ˆ ˆ ˆ ˆ ˆ ˆf( ) ( ) ( );  (0)= + ⋅ =x x, u H x, u y - y x x  (12) 
 
ˆ ˆc( )=y x,u , (13) 
 
then 
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is a time-variant observer gain matrix. If system noise n(t) 
and modelling errors ∆f(t) are present, the state estimation 
error equation becomes 
 

ˆ

f c( )∂ ∂ = − ⋅ ⋅ + ∆ + ∂ ∂  x,u

ε H x, u ε f n
x x  (15) 

 
The output estimation error e can be calculated from (15). 
Considering measurement noise, m(t), and sensor faults, 
∆k(t), one obtains 
 

ˆ ˆc( ) c( )= = − + ∆ +e y - y x, u x, u k m  (16) 
 
If stability of the observer is problematic in practical 
applications, a constant feedback gain matrix can be used 
instead of ˆ( )H x, u . The structural diagram of the resulting 
non-linear estimator is illustrated in Fig. 3. A gain matrix 
W(0<wi≤1) is added to the feedback in order to improve the 
performance of the observer for fault detection purposes (a 
compromise between modelling errors and difference in 
dynamics due to leakage as the system will be used in 
practical application).  
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Fig. 3. Residual generation for a non-linear system using a non-linear 
observer 



Non-linear observers are effective tools for residual 
generation. Additional robustness and even decoupling 
from external disturbances and unknown system parameters 
can be provided by non-linear unknown input observers, as 
is proposed in [11, 12, 13]. The available approaches are 
generalized, and extended to a wider class of non-linear 
systems in [14]. 
 

VII. EXAMPLE OF FAULT DETECTION METHOD APPLIED 
ON A BOILER 

 
Heat exchangers play an important role in chemical and 
process industries. In order to improve their reliability, 
safety and control performance, intelligent concepts for 
control, supervision and also reconfiguration are necessary. 
Fault detection methods will be presented and applied on a 
boiler, which is a part of a laboratory model of a heat 
exchanger illustrated in Fig. 4. This is a process that cannot 
be modelled with a high accuracy. A dynamic response of a 
heat exchanger depends strongly on its operating point. The 
device consists of a double-pipe heat exchanger of which 
the inner tube is connected to a closed system with a water 
vessel - boiler. In the primary circuit, the electric heater 
produces hot water in the vessel at a pressure of 1 bar 
(system is open to the atmosphere). 
 
The whole automation system is designed to be as close as 
possible to the industrial practice. Only standard 
commercially available industrial components were chosen 
for all automation components. The device is connected to 
Omron PLC (Programmable Logic Controller) and 
supervised by iFIX SCADA (Supervisory Control and Data 
Acquisition) system. An additional LCD with touch screen 
is used for local control and monitoring. A photo of the 
device is shown in Fig 5. 
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Fig. 4. Laboratory heat exchanger 

 
 

 
Fig. 5. Photo of the heat exchanger 

 

The derivation of the mathematical model of the vessel is 
simple. The vessel is assumed to be ideally insulated. 
Considering the input-output relationships, the non-linear 
differential equation (17) of the energy balance of the 
vessel can be written: 
 

  0 P ( ) ( ) ( ) ( ) M h in
h p h out h p h in p

dm t c t m t c t c
dt
ϑϑ ϑ= + ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅

 (17) 
 
where: 
P power of the electric heater (W) 
mh mass flow of the heating (inner) water (l/s) 
cp specific heat constant (general) (J/kg K) 
ϑh in temperature of the heating water entering the heat 
exchanger (K) 
ϑh out temperature of the heating water leaving the heat 
exchanger (K) 
M mass of the water in the vessel (kg) 
 
The main problem associated with the vessel is that there is 
neither level sensor nor pressure sensor installed in it. The 
question arises how to detect the leakage, when the level 
sensor isn’t applied. Observing the differential equation, 
which describes energy balance (17), one can see that the 
water level (mass of the water in the vessel, M) changes the 
dynamic behaviour of the vessel, while the static behaviour 
remains unchanged. This means that a change in 
temperature ϑh in is needed to detect the anomaly. The 
vessel is described by a non-linear differential equation, so 
a non-linear observer can be used as described in section 6. 
If the procedure from section 6 is applied to Eq. (17), the 
following equations are obtained: 
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The residual is then: 
 

in  in
ˆˆ h hr y - y ϑ ϑ= = −  (23) 

 
The heat exchanger is controlled by a programmable logic 
controller (PLC) using a closed-loop control, while a non-



linear observer is realized in the Matlab environment. As 
was proposed by Persin [15], an additional link to the 
Matlab was established. The process data is available to the 
Matlab virtually at the same time as to the SCADA system 
which makes the application suitable for industrial 
environments. A performance test of the observer (Fig. 3), 
using w=0,5, is made. The ability of water leakage detecting 
is tested, for a case of two missing litres of water (the 
capacity of the water tank is six litres). As shown in Fig. 6, 
the fault is successfully detected with a residual. 
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Fig.6. Fault detected with a residual 

 

VIII. CONCLUSIONS 
 
The analytical redundancy is an alternative approach to 
physical redundancy. Physical redundancy means that 
redundant signals are generated by means of a set of equal 
redundant sensors through which the failed ones can be 
detected. Analytical redundancy uses mathematical models 
and observers to generate redundant signals. Computations 
use those signals and present and/or previous measurements 
of other variables. The resulting differences, called 
residuals, are indicative of the presence of faults in the 
system. The three basic FDI methods based on analytical 
models are parameter estimation approach, parity space 
approach and observer approach. 
 
Changes in model parameters can be detected by parameter 
estimation methods. Observer or a set of observers can be 
used to detect either sensor, component or actuator faults. If 
symptoms of a fault are well known, the fault can be 
detected on time to prevent it to develop into a failure that 
could lead to an environmental damage or loss of a human 
life. Nevertheless, implementation of FDI schemes 
increases the occupational safety since humans are 
excluded from the process. Namely, an occurred fault is 
detected automatically and a proper reconfiguration is 
adopted to keep the process in a safe state.  

 
There are several ways of testing the FDI scheme 
performance. It can be tested either through simulations in 
which the main problem is that disturbances, unknown 
inputs and noise cannot be modelled properly. Another way 
is to work off-line and test the performance of the FDI 
scheme on previously measured signals. The main problem 
here is that behaviour of the closed-loop system cannot be 
tested. The most complex way is on-line testing. 
 
A boiler was chosen for our experiment as it is frequently 
used in process plants. The main problem associated with 
the leakage of the vessel was that there was no level sensor 
installed in it. Successful results were obtained using a non-
linear observer based on energy balance equations. A 
dynamic change in the mass flow is needed to enable 
detecting a change of the water level from the nominal 
state. 
 

REFERENCES  
 
[1] Patton, R., Frank, P., Clark, R. (Ed.) Issues of Fault Diagnosis in 

Dynamic Systems. Springer Verlag, London, 2000 
[2] Patton, R., Frank, P., Clark, R. (Ed.) Fault Diagnosis in Dynamic 

Systems. Prentice Hall, New York, 1989 
[3] Blanke, M., Nielsen, S. B., Jørgensen, R. B. Fault Accommodation in 

Feedback Control Systems. Department of Control Engineering, 
Research Report R93-4013, April 1993. 

[4] Blanke, M., Jørgensen, R. B., Svavarsson, M. A New Approach to 
Design of Dependable Control Systems. In: Automatika, 36 (3-4), pp. 
101-108, 1995. 

[5] Frank, P. M., Ding, Koppen-Seliger. Current developments in the 
theory of FDI. 4th IFAC Symposium on Fault Detection Supervision 
and Safety for Technical Processes, pp 16-27, Budapest, 2000  

[6] Valh, D., Tovornik, B. Model cevno-plaščnega toplotnega 
izmenjevalnika. In: Elektrotehniški vestnik (Electrotechnical Review), 
Vol. 66, No. 1, pp. 67-74, Ljubljana, Slovenija, 1999. 

[7] Frank, P. M., Fault Diagnosis in Dynamic Systems Using Analytical 
and Knowledge-Based Redundancy – A Survey and Some New 
Results. In: Automatica, Vol. 26, No. 3, pp. 459-47, 1990. 

[8] Isermann, R. Das regeldynamische Verhalten von Überhitzern. 
Fortschritt-Berichte (VDI-Z), Reihe 6, Nr. 4, Düsseldorf, 1965. 

[9] Goedecke, W. Fault Detection in a Tubular Heat Exchanger Based 
on Modelling and Parameter Estimation. In: IFAC Identification and 
Parameter Estimation 1985, York, UK, 1985. 

[10] Young, P., Jakeman, A. Refined Instrumental Variable Methods of 
Recursive Time-Series Analysis. International Journal of Control, No. 
31, pp. 741-746, 1969. 

[11] Seliger, R., Frank, P. M., Robust Component Fault and Isolation in 
Nonlinear Dynamic Systems Using Nonlinear Unknown Input 
Observers. IFAC/IMACS Symposion SAFEPROCESS 91, Baden-
Baden, Vol.1 pp 313, 1991. 

[12] Seliger, R., Frank, P. M., Fault Diagnosis by Disturbance Decoupled 
Nonlinear Observers, 30th Conference on Decision and Control 
Brighton UK, Vol. 3 pp.2248-2253, 1991  

[13] Frank, P. M., Seliger, R, Fault detection and Isolation in Automatic 
Processes. J. of Control and Dynamic Systems Vol. 49 pp.241-287, 
1991   

[14] Krishnaswami, V. and Rizzoni, G., Nonlinear parity equation 
residual generation for fault detection and isolation, Proc. IFAC 
Symp. on Fault Detection, Supervision and Safety for Technical 
Processes, pp. 317-322, 1994. 

[15] Persin, S., B. Tovornik and N. Muskinja. OPC-driven Data Exchange 
between Matlab and PLC-controlled System. The International 
Journal of Engineering Education, in press. 

 


	Conference Program
	Author Index
	Main Menu

