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Abstract— The paper deals with the design of a control law
for a robotic manipulator externally mounted on an under-
water vehicle for performing underwater operations like pick
and place, motion of submersed objects, submarine recov-
ers and rescues and so on. The behaviour of the mechanical
structure has been restricted to lie on a vertical plane. The
control design approach here followed is based on the com-
position of a continuous time state feedback and a discrete
time one, according to a technique that makes use of exact
multirate sampling of nonlinear systems. Simulation results
show the behaviour of the proposed controllers.

Keywords— Underwater vehicle, underwater robotics, mul-
tirate sampling, nonlinear control, piecewise continuous con-
trol.

I. INTRODUCTION

NDERWATER Robotic Vehicles (URV), usually less

investigated than the analogous space ones, have
recently received an increasing interest from many re-
searchers, both for the modeling and the control point of
view. One of the most relevant problems arising when deal-
ing with such structures is related to the difficulty of com-
puting precise models for URVs. The difficulty is due to
the high density, complex, unstructured underwater envi-
ronment. The modeling and the control of a robotic ma-
nipulator fixed to the ground are well understood prob-
lems and can be easily addressed starting from either the
Euler-Lagrange or Newton-Euler method ([1]). However,
the development of models for underwater robotic vehicles
presents some difficulties, mainly due to the presence of un-
certainties in the description of the hydrodynamic forces.

Various underwater vehicles have been developed and
experimentally tested. In the category of tethered vehicles
one can find TROJAN and RUM III. In the untethered
group, EPAULARD, ARCS, ROVER and JASON ROV.
Informations about them can be easily obtained from many
web sites.

If the configuration of an underwater vehicle is given by
the six-dimensional Special Euclidian Group and the veloc-
ity is constrained so that the only forward velocity compo-
nent is different from zero, the vehicle has four degrees of
freedom (one translational and three rotational). This type
of underwater vehicle was studied in [2], where it was show
that the nonholonomic underwater vehicle is controllable
but not stabilizable with a smooth static feedback control
law. A feedback controller for solving a tracking problem
was proposed under the assumption of a nonzero forward
velocity. The solution is applied to the kinematic motion
control of the vehicle only, without including the dynami-
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cal aspects. In [3] an autopilot for underwater vehicles is
proposed. However, the lack of precision on the model and
the uncertainties presented by the unstructured hydrody-
namic environment make also this approach quite difficult.
In [4] a sliding mode control for a single input is proposed
for robust trajectory control.

Ounce one deals with an underwater manipulator, the
main tasks are to move the manipulator to the prescribed
location and to guarantee its operative performances while
working. When a robotic manipulator is connected to an
underwater vehicle, a multibody hydrodynamic problem
arises. Such a problem has been addressed by many re-
searchers and some results are present in literature ([5], [6],
[7], [8], [9]). In [5] an underwater vehicle equipped with a
manipulator is described. A coordinated control scheme is
developed to control the vehicle and manipulator simulta-
neously and to compensate the end-effector error resulting
from motion of the vehicle. The control system is based
on a discrete-time approximation of the dynamics. The
model of the robot used in the paper is planar. In [6]
the author expands the classic Newton-Euler mechanics to
formulate the dynamic model of an underwater manipula-
tor. In [7] an algorithm for dynamical simulation, based
on the articulated body dynamics for an unmanned un-
derwater vehicle with a robotic manipulator, is proposed.
These dynamic models, developed following the Newton-
Euler formulation, result in a set of equations presented
in recursive form, which can be used for simulations but
not for control purpose. In [9] a dynamical model for an
underwater vehicle with an n-axis robot arm is developed
on the basis of Kane’s method. This technique provides
a direct method for incorporating external environmental
forces into the mathematical description. The model devel-
oped in the paper includes four major hydrodynamic forces:
added mass, profile drag, fluid acceleration and buoyancy.
The model derived is a closed form solution which can be
used in modern model-based control schemes.

The present paper proposes a different approach to the
control problem of the underwater manipulator. The math-
ematical model used is computed following the idea of the
simplified formulation for the hydrodynamic forces and us-
ing the Kane’s formulation ([10]) for the interaction with
the external forces, as described in next section. The con-
trol scheme proposed is based on a design technique, suc-
cessfully used in different applicative contexts, which makes
use of a digital control computed from the multirate sam-
pling of the nonlinear dynamics preliminarily modified by
a continuous state feedback and a change of coordinates.
Such technique is shortly recalled in section 3, after that, in
section 2, the description of the mechanical system under



study, the computation of the mathematical model and the
description of the particular operative conditions are ad-
dressed. The results of a simulation are reported in section
4. Some conclusions and acknowledgments end the paper.

II. THE UNDERWATER MANIPULATOR
A. Description of the mechanical structure

The mechanical structure here addressed is composed by
an underwater vehicle provided with a three degrees of free-
dom robotic manipulator. The vehicle is supposed to be ac-
tuated by there orthogonal forces and three torques, while
the manipulator is composed by three links connected by
rotational joints: the first one with a vertical axis w.r.t the
vehicle, the second and the third ones with axis orthogonal
to the previous one, parallel to the horizontal plane of the
ship and transversal to the axis of the associated links. Fig-
ure 1 shows the manipulator scheme and the definition of
the variables describing it. In order to compute the math-
ematical model of our full structure, in this section the
definition of the inertial reference frame together with the
reference frame for the submarine vehicle that indicates its
position and its attitude in the space are introduced. Sub-
sequently, the relations between the two chosen reference
systems is given.

Figure 1: scheme of the three links manipulator

B. The mathematical model

For the computation of the mathematical model an in-
ertial reference frame O — zyz is considered, together with
a C — zoyozo frame, fixed to the center of mass of the sub-
mariner, with z axis coincident with the main longitudinal
axis of the vehicle, the yo axis coincident with the transver-
sal one, so that the zoyo plane coincides with the horizontal
one w.r.t. the vehicle. Finally, the zy axis coincides with
the vertical one of the ship. Figure 2 depicts such choices
for the reference frames.

The relative orientation between O —zyz and C — zoyg 2o
frames is described by the roll pitch and jaw angles ¢, 8 and
1 respectively. With such a choice, ® = (¢, 61)" denotes
the relative angular position, i.e. the rotation vector, while

R(®) = R () Ry(0) R () =

CYCyp  SpSOCY — CpSyy  CpSPCy + SpSy
505y SpS9Sy + CpCy  CpSoSy — SpCy (1)
—sp 5,Co CoCo

defines the rotation matrix that transforms vector repre-
sentation from C' — zgypzo frame into the inertial one. In
(1) ¢, and s, denote cos(z) and sin(x) respectively, with «
one of o, # and .
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Figure 2
With this notation, it is well known that the relationship
between the angular velocity w in the body fixed frame and
the rate of change of @ in the inertial frame is given by

1 0 —Sp ) ]
w=\10 c¢yp Spcp | D=T(D)D (2)
0 —s4 ceco

where T'(®) is singular for § = % 4+ K. However, since
these values correspond to the submariner in vertical posi-
tion, the singularities do not affect the description during
the normal operative conditions.

The mechanical system is completed with the manipu-
lator previously described. It is external and fixed to the
hull of the vehicle, at a distance R = (R, Ry, R.) from its
center of mass.

For the computation of the mathematical model, the vec-
tor of generalized variables ¢ has to be defined. In this case,
q has dimension nine and it is given by

g=(z. ye 2 ¢ 0 ¢ 61 6 63)"  (3)

where the first six components describe the position (cen-
ter of mass) and the orientation of the ship, while the last
three ones are the angles of the arms of the manipulator.
Then, the generalized velocities are given by ¢ but it must
be recalled that if w is preferred to be present in the math-
ematical description instead of ®, (2) must be used.

In order to simplify the computation of the model, the
approach here used follows the technique based on Kane’e
equation ([10]), since it eliminates the interaction forces,
between links, which do not produce work and considers
the entire system like one single entity. This approach re-
quires the calculation of the generalized active forces and
the generalized forces of inertia for each link of the system.

In a few words, given a system S with N degrees of
freedom, its behaviour satisfies the Kane’s equation ([10])

F,+F'=0 i=1,...,N
where the Fjs are the generalized inertia forces, while the
E}s are the generalized active ones. Then, it is required to



find all the active forces involved with the structure under
study.

The active forces acting on the system are given by the
sum of the gravity and the hydrodynamics forces.

The hydrodynamics forces induced by the motion of a
rigid body in the underwater environment are highly not
linear. A general discussion of the hydrodynamics forces
and their interaction with a submerged body can be found
for example in [6].

For sake of simplicity, some approximations must be in-
troduced. For example, in [9] four separated forces have
been proposed. They are the added mass, the buoyancy,
the fluid acceleration and the profile drag.

Added mass: when a body accelerates in a fluid, the parti-
cles of the fluid next to the body tend to assume the same
acceleration of the body. Such a fluid layer produces a force
of the same amplitude, but with opposite sign, of the force
of reaction produced by the body.

Buoyancy: it is well known that the buoyancy acting on
a generic body is proportional to the mass of the fluid oc-
cupied by the body itself and it is applied to its center of
mass.

Fluid acceleration: the force due to the acceleration of the
fluid is similar to the Archimedes’ force since it is propor-
tional to the moved fluid and its acceleration.

Viscous friction: the force due to the acceleration of the
fluid is similar to the Archimedes’ force since it is propor-
tional to the moved fluid and its acceleration.

Profile drag: the force due to the viscous friction on a body
moving in a fluid depends on the square of the relative
speed between body and fluid. The shape of the body
and the density of the fluid characterize the value of the
viscosity coeflicient.

In order to complete the model, input forces and torques
are considered. For a fully actuated structure, three forces
acting on the submarine and six torques, three for the ve-
hicle and one for each revolution joint of the manipulator,
are introduced.

The result of the computation brings to the dynamical
model of the form

B(q)§ + C(q,9) + G(q) + F(q) = D(g)7 (4)

C. The planar underactuated model

The long expression of (4) is not reported for sake of
simplicity and, also, because in the present paper the in-
terest is posed on a simplified version of (4), that is a planar
version, with its behaviour laying on the vertical plane of
the submarine constrained to be parallel to the z axis of
the inertial frame. Then, in (4) y., 01, ¢ and ¥ must be
set equal to zero together with their derivatives. At the
same time, any force or torque producing motion outside
the considered plane are set equal to zero. In the so re-
duced dynamics, a further simplification is performed in
this paper, i.e. no translational motion is considered and
then both z. and y. dynamics are ignored and the forces
along these directions are set equal to zero. The presence of
z. and z. and then a more complete and realistic solution

to the problem are contained in a quite longer paper whose
preparation is in progress. However, it is important to un-
derline that the only significative difference is the length
of the mathematical expressions involved and not in the
methodologies as well as in the effectiveness of the results.
After all these simplifications, the mathematical model
obtained has the form
B(@)q+C(q:9) +

G(q)+F(g =D7 (5)

where g = (6 6, 65 )T, F=(n ™ T3 )T, with 7, the
torque acting on the submarine, 75 and 73 the torques gen-
erated by the actuators of the manipulator moving the sec-
ond and the third link respectively, and

/11 0
D={0 -1 1
0 0 -1

Moreover, the control problem here addressed involves
the possibility of achieving the end effector positioning
making use of manipulator controls only, i.e. with no ac-
tuation by the submarine.

The problem arises from the fact that usually it is very
difficult for an underwater vehicle to change its orientation
while moving slowly. This means that it is not reasonable
to imagine that the vehicle can contribute actively to the
angular positioning of the manipulator. Then, a practical
solution needs to avoid the use of the pitch control torque
of the submarine. This fact has two effects: a simplification
of the model, since it brings to neglect the first component
7 of the input 7 in (5) and to consider the matrix

P=1-1 1
0 -1

instead of D, and a complication in the control design, since
one has to deal with an underactuated dynamics subject to
a nonintegrable kinematic constraint given by the angular
momentum conservation and expressed by

(1 1 1)B(@)¢=1"B{@i=0 (6)

Since no traditional control design technique, like the ones
based on linear approximation, exact feedback lineariza-
tion and so on can be applied due to the presence of the
nonholonomic constraint (6), in next section a technique
already used in different fields, from mobile robotics ([11])
to aeronautic applications ([12]) and to space applications
([13]), will be shortly recalled and then used to get an ef-
fective solution to the control problem here posed. The
mathematical model used is then (5) with the further po-
sitions just described, which bring to

B(9)q+C(3.q)+G(q) + F(q) = P# (7)

(%)

with



III. THE CONTROL STRATEGY
A. The multirate digital approach

The control design approach here adopted makes use of a
discrete time controller based upon the sampled equivalent
dynamics of the given system according to the technique
described firstly in [14] and exposed in [15].

Such approach requires that the dynamics under study
admit a finite sampled equivalent or an exact sampled equiv-
alent ([15]). These concepts are equivalent to the exact
computability of the nonlinear sampled equivalent model
in the sense that it is possible to give the analytic expres-
sion of the discrete time dynamics whose behaviour, at the
sampling instants, is coincident with the continuous time
one once fed with piecewise constant inputs.

More precisely, given a nonlinear dynamics of the form

T = f(z)+ Z uigi(x) (8)

withz e M C R, ucUCR™, f,91,...,9m real analytic
vector fields on M, and assumed piecewise constant inputs
over the time intervals [kA, (k + 1)A[, the solution z[k + 1]
at time ¢ = (k 4+ 1)A, starting from z[k] at time ¢t = kA,
at least for small values of A, is an analytic function Fa :
M x U — M defining the equivalent sampled model of (8)

([101)

AL m
olk + 1] = Fa(alk], ulk]) = e "0 % (1)
z=z[k]
(9)
If the analytic expression of Fa is computable, then it
is called the exact sampled equivalent of (8). Moreover,
if Fa is a polynomial in A of finite order k, then it is
called the finite sampled equivalent. Such properties can
be achieved also by a preliminary state feedback and coor-
dinates change.
For the solution of many control problems, it can be
useful, or sometimes necessary, to use a multirate sampled
model ([16]). This means that each control input u; in (8)

is assumed constant over a time interval §, with § = %,
that is u;(t) = ul for t € [kA + (h — 1)6,kA + hd[, h =
1,...,r. The computation of the solution xz[k + 1] at time

t = (k+ 1)A, starting from z[k] at time ¢ = kA under the
previous hypothesis gives the expression

Tk4+1 = Fd(l?k,u]lc,---,UZ) =

oL m oL m
=¢ f+2i:1u%gio---oe f+Zi:1u:gi(Id>

T=T}

(10)

The properties of finite or exact computability of the
sampled equivalent dynamics clearly allow the design of an
exact solution of a given control problem and, at the same
time, make the procedure more simple from a mathematical
point of view.

Then, the design of the control law for the system under
study, performed in the next subsections, is organized in
the following way: firstly, a state feedback and a coordi-
nates change are computed in order to put the dynamics

in a finitely discretizable form. This part constitutes the
continuous part of the control. Then, a multirate sampling
and a digital control design are performed, so getting the
discrete time part of the control. The overall control law
is then a piecewise continuous one.

B. Computation of the continuous feedback

The computation of the control law, according to the
technique previously recalled, begins with the determina-
tion of a static state feedback and a diffeomorphism whose
goal it to transform the dynamics (7) into a finitely dis-
cretizable one. Under the diffeomorphism

T ( i ) q. q,
u | = L )= PTG | =[PT§| @
and the state feedback
#=cYz) (a - b(z,u)) (12)
it is easy to verify that (7) is transformed into
b= K (13
U = a
where
K(z) = (m(z2,23) y2(x2,23)) =
81($2,l‘3) 82($2,l‘3)
= 1 0
0 1

is composed by the first two columns of H(g)~!. In 12
c(z) = P'B~(z)P
and

b(z,u) = —PTB}(z) (C’(m, K(z)u) + G(z) + F(m))

Form (13) has an interesting property, proved in ([14]):
if the first part, i.e.

&= K(x)u
admits a state feedback
w=B(x)v
and a coordinates change
z = Z(x)

which make it finitely discretizable, then the state feedback

o = B@)8 @+ ey (14)
and the diffeomorphism
(2)=(50) 1)



transform (7) into a system admitting a finite sampled
equivalent. In this case, if one supposes the existence of
a function A(x) such that

and
Loy, @)Ly (o) AM) # 0 (17)

for any @ € R? or, at least, in a suitable manifold in R32,
then it is easy to verify that choosing

one can write
21::t2:u1:@1

b = L5, () M@)u1 + Loy o) Loy (o) M@)uz = v

23 = Ly @ AM@)ur + Ly A(@)up = zpv1 - (18)
once that the state feedback
1 0
u=pBxv=__ LI = 1 v
Ly (@) Ly @) AN ®) Loy (@) Liyy () M)
(19)

has been used. Clearly, (18) admits a finite sampled equiv-
alent, given by

z21lk+1] = zi[k] + Avq[k]
zlk+1] = 2zk] + Avglk] . (20)
Z3 [kﬁ + 1] zZ3 [k] + AZQ [k]vl[k] + AT’Ul [k]?)g [kﬁ]

Then, the transformations for (13) are given by (14) and
(15). The last question is: does such a function A(z) exist?
The answer is positive. Denoting by o(x2) the first element
of ad., (z)v2(x) computed for x3 = 0, the function A(z) is
given by

Iy — fomg s2(x2,m)dn

AMz) = 21

(2) o (21)

It is easy to verify, by direct computation, the fulfillment
of (16) and (17).

Under the feedback obtained by the cascade of (12) and
(14) and with the coordinates change given by the compo-
sition of (11) and (15), (7) assumes the form

o= 1
Zy = o
733 = 21 (22)
v = Wi
7;'2 = W9

C. Computation of the discrete time control

The discrete time part of the controller is designed by
computing a multirate sampling of (22), choosing the mul-
tirate order so that the control can be computed by inver-
sion. In the present case the choice

wlz{

it te kA kA + 20)
if te [kA+ 26, (k+1)A)

wi1,1
Wi,2

w21 if te [kA, kA + 5)
Wwo = w2,2 if te [k‘A + (5, kA + 35) (23)
wap i t€[kA+ 36, (k+1)A)

brings to the following multirate finite sampled dynamics,
equivalent to (22) and feedback equivalent to (7):

Zl[ki + 1] = Zl[k] + 4011 [kﬁ] + 252 (3’LU1 1+ wr 2)
Zz[kﬁ+1]= 2’2[ ]—I—45’U[ ] (7w21+8w22—|—w23)
z3lk + 1] = 2z3]k] + 40z9[k]v []
—|—262 (4vq[klva k] + 3zalk]wy 1 + 2z2[klwy2) +
+8 (88va[K]wy,y + 40vs [k]w o+
—1-37@' [klwa,1 + 2601 [k]ws o + v1[k]wa 3) +
37 (281w, 1w,y + 136wy pws 1+
+207wy,1we 2 + 129wy swo 2 + 8wy jwe 3+
+7’LU1,2’U)2,3>
vilk +1] = vifk] + 26 (w11 + wi2)
volk + 1] =  wolk] + dwe,1 + 20we 2 + dwa s

(24)
From (24) it is possible to compute the controls w; ; which
steer the system form any configuration at time kA to any
other one at time (k + 1)A.

D. The full control scheme

The full control scheme is obtained by the cascade of
the continuous and discrete state feedback previously com-
puted. The final expression is a piecewise continuous func-
tion over the time interval [kA, (k + 1)A[, obtained from
(12), where a is given by (14) with w piecewise constant
according to (23).

IV. SIMULATION RESULTS

Simulations have been performed in order to validate the
control scheme proposed and to show its effectiveness. The
results of a manoeuvre from the initial condition

i=(0 6, 63)"
to the final one

i=(0 0, 05)" =(0

a5
|
wla

are reported in the following figures, where the time his-
tories of the three angles 0(t), 6,(t) and 65(t) are depicted
in figure 3,4 and 5 respectively. Figure 6 shows the piece-
wise constant control w(t) and figure 7 reports the effective
control input 7(t).
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Figure 3: time history of 6(¢)
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Figure 4: time history of 65(¢)

Grafico della posizione angolare del 3° giunto

Posizione

0 20 40 0 a0 100 120
t (zec)

Figure 5: time history of 65(¢)
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The performances of the controller are well evidenced by
such results.

V. CONCLUSION

In the paper a control strategy for an underwater robotic
manipulator mounted on the hull of a submarine is pro-
posed, under the hypothesis of a vertical planar motion
and using only the robot actuators. In this configuration,
the system is characterized by the presence of a nonholo-
nomic constraint which makes the solution of the control
problem quite difficult. The technique adopted is based
upon a discrete time state feedback performed after a pre-
liminary continuous time one: the first for achieving the

control at prefixed time instants while the latter for tech-
nical reasons related to the exact solvability of the discrete
time problem.

The solution is strongly dependent on the model, since it
contains an inversion of the discrete time dynamics. This
fact could reduce the robustness of the proposed approach if
no additional actions were performed. However, it has been
shown, for example in [17], how robustness can be achieved
within this control technique, just adding a further digital
state feedback.
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