
New package for effective polynomial computation
in MATHEMATICA

Petr Kujan
Department of Control Engineering
Faculty of Electrical Engineering

Czech Technical University in Prague
Prague, Czech Republic

e-mail: kujanp@fel.cvut.cz

Martin Hrom č́ık, Michael Šebek
Centre for Applied Cybernetics

Faculty of Electrical Engineering
Czech Technical University in Prague

Prague, Czech Republic
fax: +420-2-2435 7681

e-mail: m.hromcik@c-a-k.cz

Abstract— This report describes our work on implementation
of effective numerical routines for polynomials and polynomial
matrices in the M ATHEMATICA software. Such operations are
recalled during the controller design process if the so called
polynomial or algebraic design methods are employed. This
research is also motivated by the fact that M ATHEMATICA
developers pay attention to control engineers needs and produce
the Control Systems Professional package for use withM ATH -
EMATICA and, as we believe, a set of routines for algebraic
approach could conveniently complement the existing bunch of
programs primarily intended for state-space representations.

I. I NTRODUCTION

Speaking in broad terms, we can distinguish three main
approaches to analysis and design of linear control systems.

The classical frequency-domain methods have evolved from
the analysis of frequency responses of linear dynamics sys-
tems. Their main formal mathematical tool is the theory
of functions of complex variable, in particular the Laplace
transform in case of continuous-time and the Z-transform for
the discrete-time systems. Systems are described in terms of
their transfer functions reflecting just the external input-output
relations, which brings about some difficulties related to the
internal stability of the closed loop and to the realization of
the compensator. The used formalism also causes that the
domain of classical methods is reduced to SISO time-invariant
linear systems. But despite these limitations, the classical
methods still remain very popular, namely in the community
of practising engineers, for their simplicity and effectivity in
many control problems encountered in industry.

The classical methods are suitable for computational pro-
cessing and a lot of software tools supporting the design
process are available.

The drawbacks of the classical approach and the increasing
complexity of systems to be controlled resulted in new meth-
ods of synthesis, usually called the state-space or modern ap-
proach. The methods rely upon the exact definition of the state
that is systematically used both for the deeper analysis of the
plant (the state provides the insight into the internal structure
of the system) and for the synthesis of the compensator (the
knowledge of the state is employed for compensation). The
main formal tools are differential equations, vector spaces and
matrix theory. The modern methods are applicable to much

wider class of situations than the classical ones, e.g. to MIMO
and time-varying systems. However, they have not become
so popular, namely among the practicing engineers, for the
necessity of finding the state-space model and for the need of
state reconstruction in case it cannot be directly measured.

From the numerical point of view, the state-space design
methods for linear systems rely on numerical linear algebra
which is a powerful tool. Since the 50s a lot of effort has
been devoted to the development of accurate and numerically
stable algorithms for linear algebra problems encountered in
a large number of scientific computations.

The origin of the polynomial or algebraic approach is dated
to the early 70s. The polynomial matrices forming polyno-
mial matrix fractions are introduced to handle MIMO cases.
Systems are described by input-output relations, however the
transfer functions are not regarded as functions of complex
variable but as algebraic objects. The design procedure is
then reduced to algebraic operations with polynomial matri-
ces, typically to solving algebraic polynomial equations. This
approach not only enables to resolve many existing control
problems in a more elegant and unifying way but also provides
further insight into the structure of the control systems and
shows new relationships between various control tasks.

The polynomial methods involve rather unusual mathe-
matics which brings about some difficulties with numerical
processing. While the numerically reliable algorithms for op-
erations with constant matrices are standard and programmed
in many computing packages at present, it is not true in the
case of matrices with polynomial entries. Many textbooks
on algebraic design methods contain some ideas how the
computations could be performed, but they usually rely on
elementary operations and are not numerically stable. In
journals on control and on scientific computation only a small
amount of isolated papers dealing with this problematic could
be found until recently.

In recent years we are the witnesses of a breakthrough in the
field. New class of reliable numerical algorithms have finally
been published and the methods have been systematically
studied from the point of numerical properties. This inves-
tigation has also given rise to the first practically applicable
software for numerical operations with polynomial matrices,

the Polynomial Toolbox forMATLAB .
Having verified proper performance of new numerical rou-

tines by programming the Polynomial Toolbox forMATLAB ,
we realized thatMATLAB is not the only software used
for control systems design.MATHEMATICA also provides
a reliable computational environment and a comprehensive
package for control engineers, the Control Systems Profes-
sional, and also supports symbolic computations, we decided
to implement some useful polynomial routines in this software.
Our first results are presented in this paper.

The paper is organized in the following manner. First, the
MATHEMATICA system is introduced in brief in section II.
Description of our polynomial package then follows in section
III. Particular subsections are devoted to polynomial objects
definitions, basic and advanced functions for algebraic opera-
tions with polynomials and polynomial matrices, as well as to
interesting implementational issues and illustrative examples.
Results of extensive numerical testing of selected routines are
summarized in section IV. Performance of our routines in a
practical example of model matching problem is presented
in section V. Finally, plans for further development of the
package are given along with some concluding remarks.

II. SYSTEM MATHEMATICA

MATHEMATICA is a program with fully integrated sup-
port for technical computations. Among other features, it is
equipped with a powerful symbolic language and is capable
to handle a wide class of mathematical objects including poly-
nomials. Nevertheless, practical problems of control systems
analysis and design, based on the so called algebraic approach
and involving polynomial computations, cannot be practically
treated by standard symbolic tools ofMATHEMATICA - the
computational times become unacceptably high.

For this reason a decision has been made to implement
also numerical routines inMATHEMATICA to cope with poly-
nomials and matrices of such objects. Unlike the symbolic
procedures, numerical algorithms are fitted to the special
structure of polynomial matrices and use effective tools of
numerical linear algebra.

III. M ATHEMATICA PACKAGE FOR POLYNOMIAL OBJECTS

Naturally it is possible to create additional modules
in the MATHEMATICA system extending the basic sys-
tem functions. A constructed polynomial package can be
implemented into the system easily, including help and
examples. Standard functions for package operations e.g.
Needs["Poly‘Master‘"] or shortly <<Poly‘ are used
for upload.

A. New polynomial objects

Functions joining together a polynomial matrix or a polyno-
mial with their variable or their degree were created to improve
the polynomial object operation. These basic function form an
object definition in theMATHEMATICA system.

Polynomial matrixes could be entered in three fundamental
forms using the following constructors:
• Polynomial Matrix Form:

The command PM[pm, var] creates a new object
of the classPM (Polynomial Matrix). Input arguments
are a rectangular matrix (MATHEMATICA list) pm with
polynomial entries and its considered variablevar.

Example 1.Square polynomial matrix

(
k s

2− 5s 3

)
in

PM[] representation.
PM[{{k,s},{2-5s,3}},s]

• Polynomial Matrix Coefficients:
The command PMC[pmc, var, deg] creates a new
object of the classPMC(Polynomial Matrix Coefficients).
Input arguments are a list of rectangular matrix with
numbers or symbolspmc, its variablevar and degree
of polynomial matrixdeg.
Example 2.Square polynomial matrix from example 1 in
PMC[] representation.

PMC[{{{k,0},{2,3}},{{0,1},{5,0}}},s,1]

• Polynomial List of Coefficients:
The commandPLC[plc, var] creates a new object of
the classPLC (Polynomial List of Coefficients). Input
arguments are a rectangular matrix with list of scalar
polynomial coefficients and its considered variablevar.
Example 3.Square polynomial matrix from first example
in PLC[] representation.

PLC[{{{k,0},{0,1}},{{2,-5},{3,0}}},s]

Scalar polynomials can be set in two forms similarly:
• Scalar Polynomial

The commandP[pol, var] creates a new object of
the classP (Polynomial). Input arguments are a scalar
polynomial and its variablevar.
Example 4.Scalar polynomialk + 3s + s2 in P[]
representation.

P[k+3s+sˆ2,s]

• Polynomial Coefficients
The commandPC[pol, var] creates a new object of the
classPC (Polynomial Coefficients). Input arguments are
a list of scalar polynomial coefficients and its considered
variablevar.
Example 5.Scalar polynomial from example 5 inPC[]
representation

PC[{k,3,1},s,2]

As needed, particular representations are used in calcula-
tions of particular functions.

All entries are automatically converted to these standard-
ized forms of the polynomial objects. A user can enter
non-complete objects even, in a form of matrices. A miss-
ing variable is found or a value from the global variable
$GlobalVar is filled.

In[1]:= PM[{{1+z,3},{10zˆ2,-z}}]

Out[1]= PM[{{1+z,3},{10zˆ2,-z}},z]

When a degree is not set, the number of elements in a list
is completed.

In[2]:= PC[{k,-2,3}]
Out[2]= PC[{k,-2,3},s,2]

Besides numeric values, the matrices can contain symbols
too. The object definition determines that all representations
are convertible easily to one another.

In[3]:= PMC[PM[{{k+2s,3+4s}},s]]
Out[3]= PMC[{{{k,3}},{{2,4}}},s,1]

B. Implementation inMATHEMATICA

The objects are defined as condition pattern of functional
arguments. Some tests then follow if input arguments corre-
spond to the polynomial object (polynomial matrix, polyno-
mial, coefficients of the polynomial matrix, coefficients of the
polynomial) in the range of a given variable. In case of correct
values of the object the condition is evaluated asFalse
and then a correct input values is returned on the functional
output. When the arguments do not meet the given object
(the matrix is not polynomial), then the condition is evaluated
as True and the value$Failed is returned (i.e. the input
does not meet the definition of the object). The definition of
the object is given by several other functions which convert
the input into a required form and this one is tested as the
condition pattern according to the previous object finally. This
fact allows a simplified entry of the given object. For instance,
it is not needed to entry a variable of the polynomial matrix
explicitly or a vector can be entered in place of the matrix.
The last definitions of the objects catch all incorrect entries
of the object and return the value$Failed . The principle
of a gradual testing of arguments of the same function in the
MATHEMATICA system is applied here.

Because of the testing of the input polynomial matrix is
time consuming, a global logical variable (also condition
pattern) is introduced, which have set theFalse value in
the functions operating on polynomial objects. Though, the
time consuming tests verifying, if it is a polynomial object,
will not be performed in the function body.

The definition of the object contains defined functions for
the conversions of the particular polynomial objects further-
more.

Preview ofMATHEMATICA code for definitionPMobject.

(* master definition with test if
elements are scalar polynomials *)

PM[A_?MatrixQ, var_Symbol]/; TestPM /;(
If[PMTest[A,var],

False,Message[General::notpm, A];
True

]
) := $Failed;

(* another possible definitions *)
PM[A_?MatrixQ]/; TestPM :=

PM[A,GetVariable[A]];
PM[v:_?VectorQ]/; TestPM :=

PM[{v},GetVariable[{v}]];

(* further functions for conversion
among polynomial objects *)

PM[A:pmc[pmcA, var, deg]] :=
Module[{n = Length[pmcA], pmA},

TestPM = False;
pmA = PM[Plus @@

MapIndexed[
#1*varˆ(deg - n + First[#2])&,
pmcA

], var];
TestPM = True;
Return[pmA];

];
PM[A:plc[plcA, var]] := Module[..];
PM[A:pm[pmA,var]] := A;

(** other definition are $Failed **)
PM[_] := $Failed;
PM[_,_,__] := $Failed;

C. Implemented functions

The routines implemented inMATHEMATICA within our
new polynomial package are namely the following:

1) Polynomial matrix determinant : For the polyno-
mial matrix with numerical coefficients the implemented al-
gorithm is adopted from [2]. It is the most efficient pub-
lished method for polynomial matrix determinant computation.
Non-numerical polynomial matrices are resolved by standard
MATHEMATICA function for symbolic determinant.

Implementation:MATHEMATICA pseudocode
Step 1 Redefine standard functionDet[] for polynomial

matrix object.
Unprotect[Det];
Det[A:(pm[pmA,var]|plc[plcA,var])

,opts___?OptionQ]/;
(SquareQ[A] && NumericQ[A])

:= detpm[PM[A],opts];

Step 2 Compute the upper bound for the degree of the
determinant:

degofdet =
Min[Plus@@coldegA,Plus@@rowdegA];

Step 3 Using Fourier function:
samples = Transpose[

Map[Fourier[#]&,CoefficientList[
pmA+0.varˆdgofdt,var],{2}

],{2, 3, 1}];

Step 4 Compute standard determinant:
dets = Det /@ samples;

Step 5 Using inverse Fourier:

sol = InverseFourier[
dets,FourierParam->{1,-1}];

PC[sol,var,dgofdt]//Return;

Fig. 1. Computational scheme of the algorithm [2].

Example 6.The commandA = PMRandom[deg, I, J]
generates a randomI-by-J polynomial matrix A of degree
deg with normally distributed coefficients. IfJ is missing then
a squareI-by-I matrix is created.

In[4]:= A = PMRandom[2,2]; Det[A]
Out[4]= P[-68.+49.s-39.sˆ2+32.sˆ4,s]

2) Multiplication of polynomial matrices: Multiplication
of polynomial matrices can be rephrased in terms of constants
as a product of Sylvester matrices and column coefficient
matrices related to the inputs. For details see [6].

Implementation:MATHEMATICA pseudocode

Step 1 Function for computation of Sylvestr matrix.

SylvestrMattrix[A:pmc[pmcA,var,deg],
col_?Positive] :=

Module[{m, n, k, mat},
{m,n} = Dimensions[A];
mat = Table[0,{m*(col+deg)},

{col*n}];
Do[If[(i>=j && i<=j+deg),

mat[[
Range[(i-1)*m+1,i*m],
Range[(j-1)*n+1,j*n]

]] = pmcA[[i-j+1]]
],{i, deg+col}, {j, col}];

mat//Return
];

Step 2 Redefine standard functionDot[] for polynomial
matrix object.

Unprotect[Dot];
Dot[A:(pm[pmA,varA]|pmc[pmcA,..]),

B:pm[pmB,varB]] /;
(varA===varB &&

Dimensions[A][[2]]==Dim[B][[1]]
):= PM[dotpmc[PMC[A],PMC[B]]];

Step 3 Function dotpmc[] compute multiplication of
Sylvest matrices and make from it the final poly-
nomial matrix.

{{rA,cA},{rB,cB}} =
{Dimensions[A],Dimensions[B]};

dots = Dot[
SylvestrMatrix[A,degB+1],
SylvestrMatrix[B,1]

];
PMC[Partition[dots, rA], varA,

degA+degB]

Example 7.

In[5]:=
b = PMRandom[{3,2}];
{a,c} = Table[PMRandom[{2,3}],{2}];
a.c.b

Out[5]= PM[{{1+3sˆ2,..}},s]

3) Linear matrix Diophantine equation A.X = B:
Adopted from [3]. Similarly to the case above, the linear equa-
tion of the given type can be reformulated in terms of Sylvester
matrices. The essential problem lies in the determination of
the result’s degree which is performed via a weighted binary
search process in the program.

Implementation:MATHEMATICA pseudocode
Step 1 Estimation of lower and upper bounds of X’s

degree:mindeg , maxdeg
Step 2 Binary search for minimum degree.

degree =
mindeg+Floor[(maxdeg-mindeg)/2];

While[maxdeg-1 =!= mindeg,
coeA=SylvestrMatrix[A,degree];
coeB=Join[pmcB,

ZeroMatrix[
(1+degA+degree)*rA
-1+degB)*rB,cB];

sol=LinearSolve[As[[1]],Bs[[1]]];
If[solution exist,(* then *)

mindeg = degree,(* else *)
AppendTo[listsol, sol];
maxdeg = degree;

];
degree =

mindeg+Floor[(maxdeg-mindeg)/2];
]

4) Linear matrix Diophantine eq. A.X + B.Y + .. = C:
This equation can be written as[AB · · ·].[XY · · ·]T . Such a

way, the problem is conversed to the linear equation of the type
A.X = B which is discussed above. Basically, the numerical
computation is based on the program for the previous case.

Example 8.Polynomial matrixb and polynomial marix in
argument functionDESolve[eq, {vars}] are with parametrs
n, m.

In[6]:=
b = PM[{{n s,1-sˆ2,3},{5s,1,n-s}},s];
d = PMRandom[2,3,3];
DESolve[

PM[{{1,m},{-2+s,3}},s].x+b.y-d==0,
{x, y}

]
Out[6]= {x->PM[{{-2+s/n..}},s],

y->PM[{{5-s..}},s]}

5) Bilateral symmetric scalar polynomial equation of
type a′∗x+x∗a′ = b: Solves the equation with the Sylvester
matrix method. For details see [4].

Implementation:MATHEMATICA pseudocode

Step 1 Preparation input coefficients of scalar polynomial
for Sylvestr matrix computation.

lb = PadLeft[pcB,degB+1,0];
If[degA<=degB/2,
(* then *)

lb=Partition[lb,1,2];
k=PadRight[

PadLeft[pcA,degA+1,0],
{degB+1}];

i=degB/2+1;
j=degB-degA+1,

(* else *)
lb = PadRight[

Partition[lb,1,2],
{degA},{{0}}];

k = PadRight[
PadLeft[pcA,degA+1,0],
{2*degA-1}];

i = degA; j = degA;];

Step 2 Create modify Sylvestr matrix for scalar polyno-
mial.

mls = Table[0, {i}, {j}];
Do[If[jj<=2*ii-1, If[EvenQ[jj],

mls[[ii,jj]]=-2k[[2*ii-jj]],
mls[[ii,jj]]=2k[[2*ii-jj]]

]],{ii, i},{jj, j}];

Step 3 Compute set of linear equations.

sol = LinearSolve[mls, lb];
PC[Flatten[sol],var,j-1]//Return

Example 9.

In[7]:= a=PC[{1, 2, 3}];b=P[1 + 2sˆ2];
AXXABSolve[a,b]

Out[7]= P[1/2+1/4s,s]

D. Advantages of polynomial objects

Introduction of particular polynomial objects as described
above brings several benefits for effective implementation of
routines working on polynomials and polynomial matrices.

First, standardMATHEMATICA functions can be easily
redefined for our newPM, PMCand other objects. The func-
tions in concern include matrix-matrix addition, multiplying
by a constant, matrix-matrix multiplication or a determinant
calculation. The redefinition is carried out by means of a com-
mand Unprotect[std function] . Then it is allowed
to modify a standard function directly, optionally it can be
referred to its own function which does a faster calculation
with the polynomial object.

In addition, testing whether an input argument is of the
desired type can be reduced to one simple check - usually the
first step in a function performs a trivial comparison between
its input’s pattern and related patterns for particular polynomial
objects. Moreover, once this test is passed it is easy to refer
to e.g. a matrix or a variable in the body of the function. See
the following example of the determinant solver code:

IV. RESULTS

As expected, the implemented methods specifically tailored
for polynomial objects are considerably faster than the general
symbolic routines incorporated inMATHEMATICA .

1) Determinat of polynomial matrix.
Square test matrices of sizen and degreeN have random
real coefficients.

Fig. 2. Time - consumption of the functionDet[pol] and standard
MATHEMATICA function Det[mat] for matrix.

TABLE I

TIME - CONSUMPTION.

Input sq. mat. Poly Standard
n N Det[A,B] Det[a,b]//Expand

6 2 0.02 0.120
6 3 0.03 0.251
7 5 0.05 5.418
9 5 0.100 395
20 5 0.431 *

A star (*) in tables means that the execution time exceed
1000 seconds.

2) Multiplication of polynomial matrices.

TABLE II

TIME - CONSUMPTION.

Input sq. mat.A,B Poly Standard
n NA NB Dot[A,B] Dot[a,b]//Expand

10 10 3 0.07 0.17
10 10 5 0.12 0.43
50 20 20 6.05 *

V. PRACTICAL EXAMPLE

Let us consider the model matching problem according to
the figure 3. In the depicted setup the plantB/A is given.
The design task is to compute the polynomialsM,N andT
such that the overall closed -loop transfer function is equal to
a prescribedFm.

Fig. 3. Schema for matching problem.

Let the plant be given as

S =
B
A

=
1

s(s + 1)(s + 4)
.

The plant transient is not sufficiently fast and for this reason
we will try to alter its dynamics according to the model

Fm =
D
C

=
103

(s + 10)3
=

103(s + 100)3

(s + 10)3(s + 100)3

using the depicted feedback configuration.
The overall closed-loop function reads

G =
BM

BN + AT
.

By equating numerators and denominators we arrive at the
following equations:
BM = D → M = 103(s + 100)2

BN+AT = C → N+(s+1)(s+4)s·T = (s+10)3(s+100)2

Last equation is solved by the commandDESolve[]

In[8]:= DESolve[
N+s(s+1)(s+4)T==(s+3)ˆ3(s+100)ˆ2,
{N,T}]

Out[8]=
{T -> P[15171+225s+sˆ2,

N -> 10.10ˆ6+3139316s+284245sˆ2}

VI. FURTHER DEVELOPMENT

So far, convenient objects for polynomial or polynomial
matrix representation have been defined and some reliable
routines for basic algebraic operations over polynomial ma-
trices have been implemented along with determinant compu-
tation and one-sided Diophantine equation solver. Basically,
all problems listed are linear and can be used satisfactorily to
design controllers based on linear operations, including pole-
placement and deadbeat compensators. On the other hand,
most practically useful control strategies, including H2, H
infinity and l1 control require some additional quadratic oper-
ations. In the phrases of polynomial approach, these are rep-
resented by spectral factorization and plus-minus factorization
for instance. These routines are necessarily based on numerical
iterative schemes and can by no means be accomplished by any
sort of symbolic manipulations. Quite naturally, the various
polynomial factorization problems are of interest in the future.
The first step towards the implementation of a reliable spectral
factorization algorithm, see [7], has been done already by
programming the symmetric Diophantine equation solver.

VII. C ONCLUSION

Implementation of reliable algorithms for polynomials and
polynomial matrices inMATHEMATICA with respect to alge-
braic theory of control systems design has been the subject
of this report. After a review of polynomial design methods
the basic structure of developed package was enlightened
and implemented functions were introduced. Apart from their
description, attention was also paid top interesting implemen-
tational issues. Finally, performance of programmed functions
was demonstrated by means of numerical experiments and a
practical control example. The package as described in this
paper is not considered complete. Possible directions of further
development have been also presented and advocated.

ACKNOWLEDGMENT

The work of M. Hrom̌ćık and M.Šebek has been supported
by the Ministry of Education of the Czech Republic under
contract No. LN00B096.

REFERENCES

[1] T.B. Bahner,MATHEMATICA for Scientists and Engineers, Addison-
Wesley Publishing Company, Inc., 1995.

[2] D.B. Wagner,Power programming withMATHEMATICA : the Kernel,
McGraw - Hill, 1996.

[3] M. Hromč́ık, M. Šebek,New Algorithm for Polynomial Matrix Determi-
nant Based on FFT, Proceedings of the European Control Conference
ECC’99, Karlsruhe, Germany, 1999.

[4] D. Henrion,Reliable Algorithms for Polynomial Matrices, PhD. Thesis,
Institute of Information Theory and Automation, Czech Academy of
Sciences, Prague, 1998.

[5] H. Kwakernaak, M.Šebek,PolyX Home Page,
http://www.polyx.com/

[6] The Polynomial Toolbox for MATLAB Manual, PolyX
http://www.polyx.com/ .

[7] J. Jězek, V. Kǔcera,Efficient Algorithm for Matrix Spectral Factorization,
Automatica, vol. 29, pp. 663-669, 1985.

[8] I. Bakshee,MATHEMATICA - Control system professional, Wolfram
research, Inc., 1996.

[9] V. Kučera, Analysis and design of discrete linear control systems,
Czechoslovak academy of sciences, Academia, Prague, 1991

	Conference Program
	Author Index
	Main Menu

