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Abstract— This paper deals with the almost-
sure stabilization of discrete-time jump parame-
ter systems. Two novel hybrid algorithms for the
almost-sure stabilization test and assignement of
the largest Lyapunov exponent are proposed. The
first algorithm performs a test of almost-sure sta-
bilization. Using the proposed test, one can con-
clude whether or not the assignement of the largest
Lyapunov exponent is possible. Should the test be
conclusive, a disk pole placement design procedure
is engaged with the help of a devised genetic algo-
rithm. Numerical examples are given to illustrates
the proposed techniques.
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I. INTRODUCTION

The problem of concern in this paper is to as-
sign the largest Lyapunov exponent, in a desired
interval for the class of discrete-time jump parame-
ter systems. We consider particularly the discrete-
time jump linear system

w(k+1) = A(r(k))z(k) + B(r(k))u(k), (1)

where z is the system state vector of dimension n,
u is the control input vector of dimension p, and
r(k) is the form index which is a stochastic scalar
sequence that takes values in the finite index set
N = {1,2,..,N}. In this case r(k) is assumed
to be a finite state Markov chain with transition
probabilities

prob{r(k+1) = jlr(k) = i} = p;; (2)

It is assumed that the finite state Markov chain
is irreducible. The system takes the realization

>, = (A;, B;) when r(k) = i, with ¢ € N. This
realization is called the ith form.

Presently, it is not known how to assign the
largest Lyapunov exponent, let alone the Lyapunov
spectrum of jump parameter systems. In this pa-
per, a new hybrid algorithm for the test of the de-
gree of almost-sure stabilizability of jump param-
eter systems is proposed. It is via this test that
one can conclude whether or not the assignement
of the largest Lyapunov exponent is possible. The
second algorithm, proposed in this paper, takes ad-
vantage of the disk pole placement technique in or-
der to assign the largest Lyapunov exponent, of a
jump parameter system, within a desired interval.
Indeed, due to the complex nature of this design
objective, a desired design interval, within which
the largest Lyapunov exponent is to be assigned is
chosen.

The paper is organized as follows. In section
2, necessary material needed for the paper is pre-
sented. Section 3 develops the corresponding hy-
brid test stabilization algorithm. In section 4, the
problem of the assignement of the largest Lyapunov
exponent is formulated and the associated hybrid
algorithm is discussed. Section 5 applies the pa-
per’s results to an illustrative numerical example.
Section 6 concludes and mentions some possible
research directions.

II. PRELIMINARIES

A. Leading Lyapunov exponent bounds

In [5], upper bounds on the leading Lyapunov
exponent, A\, were introduced.

Theorem 1 [5]: The largest Lyapunov exponent,
A1, of a homogeneous N-form DTR, dynamical sys-
tem, with a stationary irreducible FSMC satisfies



the following inequality
+ 2 pilogldet(4;)] < A\ <
()

1eEN
T py] 1OgHTAiT71|| =\l
ie Nl

where T is any similarity transformation. More-
over A4l < gAlall, q,l € N\{0}

The lower and upper bounds provided by this
theorem estimate the spread of the Lyapunov spec-
trum, thus providing valuable information regard-
ing the slowest as well as the fastest dynamics.
Although these bounds are expected to be quite
consevatrice from almost-sure stability view point,
they are simple enough in devising stabilization al-
gorithms for jump parameter systems. This justi-
fies, amongst other things, the use of this formu-
lation for the placement of the largest Lyapunov
exponent. In addition, it is important to recall the
complex nature of the computation of these lat-
ter exponents. Indeed, it is by now well known
[4], that the computation of the Lyapunov expo-
nents, even in this relatively simple case, is highly
complex. This state of affairs imposes the applica-
tion of hybrid algorithms such as those proposed in
this paper, i.e., genetic algorithms along with LMI
techniques.

B. Motivation

Given N desired eigenstructures, or desired Lya-
punov spectrum, specified through desired matri-
ces Ag,, t = 1,---, N. The design algorithms pro-
posed in [2] and [3] are besed on the idea of making
the closed-loop matrices be as close as possible, in
some sense, to these matrices. In this way, should
the resulting gains succeed in exactly matching the
desired matrices, the closed-loop jump parameter
system would inherit the desired jump parame-
ter system’s dynamical characteristics such as its
Lyapunov spectrum. While this approach is rem-
iniscent of eigenstructure assignement, or model
following design specification, it remains very dif-
ficult to apply since it is very hard to come up
with the Ag,, and thus the desired closed-loop dy-
namics. To circumvent this difficulty, a scheme in-
spired from the classical pole placement technique
was proposed in [3]. That is, instead of providing
all the Ay, , the design specifications are limited to
the desired almost-sure rate of convergence speci-
fied via the largest Lyapunov exponent. In order
to fulfil this design requirement, N disks are cho-
sen within which the closed-loop forms are to be-
long and thus accomplish the design requirements.

Since the choice of the needed disks is not known,
a genetic algorithm is called for.

III. HYBRID ALMOST-SURE STABILIZATION
TEST

Before considering the assignement of the largest
Lyapunov exponent, it is important to be able to
attest the degree of the almost-sure stabilization of
the jump parameter system. It is via this test that
one can conclude whether or not the assignement
of the largest Lyapunov exponent is possible.

The N desired structures arespecified through
the disks Dy, (¢;,7:), @ = 1,...,N of radii r; and
centers g;. It is then a question of finding the K,
i =1,..., N which satisfy the two following condi-
tions at the same time:

Condition 1: the eigenvalues of the closed-loop
matrices (4; — B;K;), i = 1,..., N belong to Dy,
i=1,...,N.

Condition 2: the closed-loop jump parametre
system is almost-surely stable.

Considering the first condition, the eigenvalues
of the matrices in closed-loops (A; — B;K;) belong
to Dy, (g;,r;) if and only if there exists a symmetric
matrix S such that

—r; St (Ac, — ¢iI)
i < 07
(Ag, —qiD)" —r;S - (4)
i=1,.. N.

With Ay, = A; — BiK;.

The closed-loop jump parametre system is
almost-surely stable provided that the K,
i =1,..., N, generated by feasibility problem (4),
and the non singular matrix 7" := S 3 satisfy

N
> pilog||T(A; — BiK;)T | <.
i=1

(5)

The conditions 1 and 2 are satisfied with non-swit-
ching gains if K; = K,i=1,..., N.

A solution to the feasibility problem (4) with
the constraint (5) can be obtained as follows: while
using standard genetic algorithm, we pose v as a
vector concatenation of the pairs (g;,7;). It con-
sists in moving an initial population P; of My;.. in-
dividuals vy, [ € {1,..., My;.c} toward a final pop-
ulation Py, constituted of individuals vimawi,
l € {1,..., M.} and having better “quality” in
the sense of the closed-loop almost-sure stability
constraint. The hybrid stabilization test algorithm
(H.S.T.A.) given below describes this heuristic pro-
cedure.



HybridStabilization TestAlgorithm(H.S. T.A.)
1. Initialization. Choose a population size Mg;..
(that is an odd number) and a stopping criterion (an
desired bound, or maximum number of generations).
Randomly generate a population P; of individuals vy,
lel, ..., My... Set k=1.
2. While (not stop). Set Py11 = ¢
2.1. evaluation and selection:
2.1.1. For each vector vy, of the population P:

‘Aikz (BZ}/ZI\I) <0
(BiYi, )" —Xw |~ (6)
i=1,---,N,
with As, = 17 X+ (Ao, 1) Xia(Ai i, 1) —

(Ai - qikl-[) (1/7;1«1
2.1.2. calculate
{ Kil\-z = }/il\-l()(lkl)_l
Th = (Xp) 2
2.1.3. with K;, et Ty, evaluate the correspon-
dant Lyapunov exponent upper bound:

)T(Bi)T - BiY;kl (AZ - qimI)T

(7)

N

M =Y pilog | Ti(Ai — BiK,, )T, |
=1

(8)

2.1.4. Sort the vectors in P}, by increasing order of
Akl

2.1.5. Include the first (Ms;.. —1)/2 solutions (vec-
tors) in Pgyg.

2.2. While (size(Pyy1) < (Mgize —
BEGIN (Crossover)

2.2.1. Select two consecutive solutions (in the sens
of the A\ order) v and V41

2.2.2. Mate vg; and vy41 to produce one offspring
V411 in the following manner:

M)

9)

7, can be considered as an indice of non real similar-
ity randomly getting in interval [0 1] and can change
in each generation.

2.2.3. Include vi417 in Pyyq

END (Crossover)

2.3. Mutation : Randomly generte M, solutions
and include them in Pp .

2.4. Elitism: it consists in enhancing the perfor-
mance of the algorithm by including in the population
Py 1 super individual vg_ = which is the best one of

sup

all the individuals up to generation k, by imposing:

Vk+1141

End.
Since k;qe generations are running long, we

extricate the best gains K f“f, i=1,...,N and the

Viep1l = Tk(Vil — Viig1) + Vi

= Vksup

transformation Ties' := (X;ij)_% correspending
to the minimum A7) of all the calculated A, | =
1oy Myize and k = 1, ..., Epae. Should the A5 be
negative, the closed-loop system is made almost-
sure stable via the switching gains Kf:flt

Note that equation (6) is not other than an
LMI formulation, equivalent to equation (4). This
one is easily obtained by introducing the variables’s
change X = S~ ' and Y¥; = K; X.

The genetic operations that were used are ini-
tialization, selection, crossover, mutation, along with
a specific replacement strategy including an oper-
ation of elitism. Further explanation of these op-
erators can be found in [1].

The outcome of the above algorithm could be
either positive or negative. That is, should the
outcome of the latter algorithm be a positive Lya-
punov, ie., X% > 0, then one doesn’t know how
to almost-surely stabilize the given system within
the proposed framework. Now, should A% < 0,

then it is possible to assign the closed-loop Lya-

punov exponent such that A5t < Adesired <,

IV. LARGEST LYAPUNOV EXPONENT
ASSIGNEMENT

A. Problem formulation

The preceeding phase makes it possible to esti-
mate the level of almost-sure stability (A\%) made
possible via switching gains feedback. If the degree
of stability is rather high, it would be possible to
target a desired site. This one being defined by
a desired interval Ing = Emm Xmam], such that

ALt < N
sup main

In this case, our objective, for the lagest Lya-
punov exponent assignemernt, is formulated as fol-
lows:

N disks Dy,, 1 =1,..., N of radii r; and centers
¢; are chosen. It is then a question of finding the
adequate K;, i = 1,..., N which verify condition 1
(see above), as well as the following condition:

Condition 8: the K;, i = 1,...,N and the non
singular matrix 7" := S 3 generated by the feasibil-
ity problem (4) satisfy

Xma:c < Zi\il P IOg

— 1
\T(A; — BE)T | < Ko (10)

The conditions 1 and 3 are satisfied with non-
switching gains if K; = K, 1 =1, ..., N.

To satisty the above conditions, the hybrid test
stabilization algorithm will be modified in the way
detailed in the following paragraph.



B. Hybrid Assignement Algorithm

A solution to the feasibility problem (4) with
the design constraint (10) can be obtained as fol-
lows: we pose v as a vector concatenation of the
pairs (g;,7;). It consists in moving an initial popu-
lation Py of M. individuals vy, 1 € {1,..., Msize }
toward a final population Piy,q. constituted of in-
dividuals vgmaazt, [ € {1, ..., Mgz} and having bet-
ter “quality” in the sense of the closed-loop largest
Lyapunov assignement constraint. The genetic pole
placement design algorithm given below describes
this heuristic procedure.

Genetic Pole Placement Design Algorithm
(G.P.P.D.A)
1. Initialization. Choose a population size M,;.,.
(that is an odd number) and a stopping criterion
(an desired bound, or a maximum number of gen-
erations). Randomly generate a population P; of in-
dividuals vy, I € 1,...,Mg;.. Set k= 1.
2. While (not stop). Set P11 = ¢
2.1. evaluation and selection:
2.1.1. For each vector vy, of the population Py, re-

solve (6)
2.1.2. calculate (7)
2.1.3. with Kik-,,,, and , Ty, evaluate:

N
Mo = > pilog || T (A — BiKi)Ti7' |,
=1

A - Akl‘ - |X7nam -

/\7nin |

(11)

2.1.4. Sort the vectors in Py by increasing order of
dkl-

2.1.5. Include the first (M;;.e —1)/2 solutions (vec-
tors) in Pgy;.

2.2. Crossover

7| Apae A mis
dy = 2

2.3. Mutation
2.4. Elitism
End.

Since kjq. generations are running long, we
extricate the best gains Kiup, i = 1,..,N and

the transformation Tsdup correspending to the min-
imum dgy), of all the calculated A\, I =1, ..., My,
and k = 1,..., kmae. Should the dg., be negative,
the largest Lyapunov exponent of the closed-loop
system is made inside the desired interval via the
switching gains K¢

sup

L.V. NUMERICAL ILLUSTRATION

In this example a two-dimensional, one-input,
three-form jump parameter system, found in [6], is
used. The (A;, B;), i =1,...3, are given below.

[05 -1 0]
Al - -0 _2:|7 Bl_|:1_’

[ 15 1 [ 1
Az = -1 —0.25]’ BQ__Q}’

(1 1 1]
A= o5 1}’ 33_[1_

The Markov chain is described by the following
transitions matrix II

0.67 0.1 0.23
II=1| 035 047 0.18
0.06 03 0.64

The eignvalues of the three forms are (0.5, —2),
(—0.8750 4 0.7806i¢) and (£0.7071). That is only
the first form is unstable. For the largest Lya-
punov exponent, we choose the desired intervall
Ing=[-0.5 —0.45].

A. Stabilisation test with switching gains
A.1. Hybrid stabilisation test

Using the (H.S.T.A.), with 51 individuals and
a maximum number of generation equal to 10, the
system turned out to be almost-surely stabilizable
and the Lyapunov exponent upper bound was found
to be A{5*h = —0.8569. The upper Lyapunov expo-
nent lower bound, calculated using the left member
n (77), is found to be —1.5133. Moreover,

Kiest = [ —0.2678 —1.4655 |,

K& [ -0.2263 —0.3351 ],

Ki = [ 14005 —3.7164 ],
stest _ | 91916 51903 ]
sup 5.1903  2.9967

In figure 2, the 'x’ marked poles and disk
D;(0.0126,0.6353) correspond the to first close-
loop form. The "*’ marked poles and

D4y(—0.3590, 1.0686) corresponds to the second close-
loop form. The 4+’ marked poles and
D5(1.2576,0.2869) correspond to the third close-

loop form. The ’o’ marked point corresponds to

test
A -



15

-15

-15 -1

Fig. 1. the pole placement and A¢%! for the

sup

(H.T.S.A) with 51 indiviuls.

The obtained value of AL being lower than

—0.5, one can consider largest Lyapunov exponent
assignement.

A.2. Largest Lyapunov exponent assignement

Using the (G.P.P.D.A.), with 51 individuals and
a maximum number of generation equal to 10, the
Lyapunov exponent upper bound was found to be
¢ = —0.4848. The closed-loop upper Lyapunov

e)iglz)nent lower bound is equal to —1.0299, with
K¢ = [ 01571 —1.6566 ],
K = [-0.2326 —03255 ],
Kf = [07415 —25101 ],
i _ [ 13764 053827
sup 0.5382  0.2778

In figure 3, the ’x’ marked poles and D;(—0.0703,
0.7230) correspond to the first close-loop form. The
* marked poles and Dy(—0.2770,1.0240) corre-

spond to the second close-loop form. The '+’ marked nent is turned out to be positive. Indeed,

“choose” to destabilize the third form, origi-
nally stable!, in order to almost-surely stabilize the
jump parameter system!
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Fig. 2. the pole placement, Ing and \¢  for the

sup

(G.P.P.D.A) with 51 indiviuls.
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Fig. 3. assignement of X4, in [-0.5 —0.45].

B. Stabilisation with non-switching gains

Using the (H.S.T.A.), with 51 individuals and
a maximum number of generation equal to 10 for

non-switching gains, the largest Lyapunov expo-

test —
ASUPNSG -

poles and D5(1.1509, 0.5172) correspond to the third 0-0858 and the system may be almost-surely not

close-loop form. The 0’ marked point corresponds
to ¢ The >’ marked point corresponds to

sup-

Amaz and the <’ marked point corresponds to

Amin- Figure 3 illustrates a zoomlens of 2 and

_c sup
gmin Awm:r] .

It is worth noting that in order to accomplish
the design specification, the applied algorithm

stabilizable with non-switching gains. In this case
Dy, (qiy73), © = 1,...,N are D;(—1.0168,1.6722),
D»(0.3907,1.1809) and D3(0.8380,2.5832), with

K

SUPNSG

= [ -0.1207 —0.8246 |,

7.2470 3.9512

X = | 30512 34155

SUp NSG



On the basis of the fact that for [ = 1, Ao
constitute a first approximation, it is possible to
choose [ as large as one needs. To achieve a bet-
ter accuracy while computing the upper bounds of

Z;ZS;N <> @ series of increasingly upper bounds are

provided using the genetic test algorithm in [1].
The results are illustrated in figure 4.

largest Lyapunov exponent

upper Lyapunov exponent

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
|

Fig. 4. Atest"”

supnse for the non-switching gains

closed-loop

'I[‘Il]le circle curve stands for the evolution of
ALt e With respect to 1. The solid curve corre-
sponds to the upper closed-loop Lyapunov expo-
nent. Althrough A2 is positive, the GTA [1]
succeeds in finding a similarity transformation such
that the almost-sure stability of the closed-loop is
guaranteed for [ > 1. Indeed, for [ > 2, X;ffzfg]s .
are found to be negative.

Before closing this section, we would like to un-
derline the key role played by the parameters of
the genetic algorithms. Let us suppose that the
desired design interval is [—1; —0.9]. By consider-
ing the first test, worked out in section 6.1, one
cannot deduce the possibility of this assignement.
But if one ncreases the number of individuals in
the initial population, using the (H.T.S.A.), with
5001 individuals and a maximum number of gen-
eration equal to 10, the system turnes out to be
almost-surely stabilizable and the Lyapunov expo-
nent upper bound is found to be A% = —1.2022.
This is attests the importance of the genetic algo-
rithm parameters.

Finally let us note the cases of test and pal-
cement with switching gains. Although the third
form in open loop was stable, the almost-sure sta-
bility of the jump parameter system was ensured
depends on a destabilization of Ag in closed-loop
(figures 1 and 2).

VI. CONCLUSION

In this paper, hybrid algorithms for the closed-
loop almost-sure stabilizability test for the class
of jump parameter systems was proposed. Should
the considered test be achieved, one can apply the
hybrid design algorithm to assign the largest Lya-
punov exponent in a desired interval. The new
proposed algorithms take advantages of the pole
placement approach and the genetic techniques for
search and optimization of the almost-sure desired
specifications.

For instance, to check the achieved closed-loop
Lyapunov spectrum it is not enough to assign the
upper bound, but it is necessary to assign the com-
plete spectrum. In addition and due to the com-
plexity of the considered problemt, one immediate
extension would be to assign the lower Lyapunov
exponent bound as wel as the upper one.
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