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Abstract— This paper introduces a novel path tracking con-
troller for an over-actuated robotic vehicle moving in an agri-
cultural field. The vehicle itself is a four wheel steered, four
wheel driven vehicle subject to the two non-holonomic constraints
of free rolling and non-slipping wheels. A dynamic model of
the vehicle is developed and used, together with an artificial
potential field method, to synthesize a path tracking controller.
The controller drives the vehicle to its destination way-point
while avoiding crossing obstacles, e. g. crop rows. One of the key
features of the controller is a novel method of relating artificial
forces with the drive torques of the vehicle.

I. INTRODUCTION

Throughout modern history agricultural research has been,
and still is, an area of large economic, environmental and
political interests and with the introduction of robotics we are
seeing innovative new tools for increasing the size and quality
of agricultural outputs.

The work presented in this paper is an offspring of the
interdisciplinary research project Autonomous Platform and
Information system for registration of crops and weeds (API),
which is a joint research effort between Aalborg University,
The Danish Institute of Agricultural Sciences, The Royal Vet-
erinary and Agricultural University, and a number of private
investing companies.

The goal of the API project is to develop a system for crop
and weed registration, and apply it to precision farming in
agricultures with high profit crops. The registration consists
of close range vision based collection and interpretation of
crop and weed data, both present and historical. Using this
information, the farmer is able to direct his farming effort
(watering, weeding, fertilizing, spraying etc.) toward individ-
ual plants or patches of plants and hereby gain a number of
advantages, such as

� Less use of fertilizers and chemicals
� Better crop quality
� Less strain on the field

The API system is comprised of two distinct segments

1) One or more small Autonomous Vehicles (AVs), whose
purpose is to traverse the field along rows of crops and
collect visual data from it.

2) The Base Station, whose purpose is to interpret the data
gathered from the AVs and serve it to the farmer.

This paper focuses on the AV segment alone and in partic-
ular the navigation and control of this vehicle. A picture of
the AV is shown in figure 1.

Fig. 1. The Autonomous Vehicle.

The wheel configuration of the AV differs from most other
small vehicles, in that it is possible to steer and drive all
of its four wheels individually. This gives the AV a large
degree of mobility and enables it to perform sophisticated
maneuvers, such as sideways driving and rotation around
any point. The AV is equipped with a range of sensors for
position and attitude estimation; A Differential GPS receiver,
a magnetometer, a one axis fiber-optic gyro, a two axes tilt
sensor, one encoder in each of the four steering actuators and
one odometer in each of the four driving actuators. The AV
is also equipped with a vision based row sensor, which can
measure a relative position and direction of a crop row in front
of the vehicle. This local information is very useful, since one
of the design goals of the control strategy is to enable the AV
to drive through a field without crossing crop rows.

As mentioned earlier the AV is supposed to traverse a
field of row crops and collect visual data from it. The AV
receives a discrete set of way points, in global coordinates,



at which a high resolution photo of the field must be taken.
The problem at hand is to somehow drive the AV toward
the next way point without crossing any crop rows under the
following assumptions: First, the next way point is situated
further down, but not necessarily on, the same crop row as
the AV is currently moving along, unless the AV has reached
the end of the field. In this case the next way point will lie near
a crop row to the left or right of the AV. Second, no knowledge
of the absolute position of the rows is known, only the relative
position and orientation directly in front of the AV, given by
the output from the row sensor.

A prerequisite for the control strategy proposed in this paper
is that a dynamic model of the AV is known. A generic
model of non-holonomic wheeled vehicles has already been
introduced in [1] and adapted to the AV in [2] and [3]. [1]-
[3] also introduced a trajectory tracking controller based on
an exact linearizing state feedback of the highly nonlinear
model. One major problem with this controller was that the
full reference trajectory to be tracked had to be known in
advance. Apart from this, there was also some minor problems
with a singularity in the linearizing feedback at zero velocity.
The strategy proposed in this paper does not involve any
linearization of the model and the aforementioned singularity
is no longer an issue. Also, the controller solves the problem
of unknown trajectories by linking a very intuitive artificial
potential field (APF) method directly together with the vehicle
dynamics. The APF method has been used extensively in many
different varieties for robotic path planning because of its
simplicity [4], [5], but has also been criticized for having
a number of inherent shortcomings [6], such as local trap
situations and oscillations in narrow passages. None of these
problems appear to have any relevance on the API system,
though. The proposed controller uses an APF to generate an
artificial force that would pull a free floating object toward
the next way point and at the same time toward the center of
the current crop row. The idea is then to steer the four wheels
of the AV in such a way that the drive motors can generate
torques which, when mapped onto the center of mass of the
AV, are equivalent to the desired artificial force.

A dynamic model of the AV is briefly described in section
II. Section III-IV describes the APF and the controller, and
section V presents simulations of the closed loop system. The
construction of the AV is not yet completed and hence no
physical experiments have been executed.

II. DYNAMIC MODEL

The following section gives an overview of the derivation
of a dynamic model of the AV. For a more in depth discussion
of the model please refer to [1], [2] and [3].

A. Vehicle Definition

The AV consists of a rigid rectangular body frame and
four wheels. The wheels are placed at the four corners of the
vehicle and are all both steerable and drivable. The vehicle
is driving in the horizontal plane and hence the position and

rotation of the vehicle frame can be described by the triplet
� � �� � ��� , as defined in figure 2.
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Fig. 2. Definition of the vehicle body frame coordinates. �� ��� are the
position of the vehicle Center of Mass in the inertial coordinate frame � . �
is the rotation of the vehicle coordinate frame � relative to the � -frame.

Before proceeding, the parameters and coordinates associ-
ated with each wheel need to be defined, see figure 3.
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Fig. 3. Definition of parameters and coordinates related to the �’th wheel. ��
and �� defines the fixed polar position of the wheel in the �-frame, whereas
�� defines the horizontal rotation (or steering angle) of the �’th wheel itself.

The figures also defines the Instantaneous Center of Ro-
tation (ICR). This point lies at the intersection of each of
the four lines passing through the center of the corresponding
wheel, perpendicular to the orientation of the wheel. Only two
lines are needed to define an ICR, but only when all four
lines intersect at a single point is the ICR defined uniquely.
A unique ICR is a prerequisite for upholding the constraint
of pure rolling. From now on �� and �� will therefore be
determined by functions of �� and ��
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� and � are the length and width of the vehicle respectively.
It is worth noting from these equations that there is a problem
when �� � ��� � ����. In this case the ICR lies somewhere
on the line passing through the centers of wheel 1 and 2, but
it is not possible to determine exactly where based on �� and



�� alone. This is remedied by restricting the two wheel angles
to lie in the open interval ��	 �� � �� �

�
	 �
�
�.

B. Non-holonomic Constraints

The AV is subject to the non-holonomic constraints of pure
rolling and non-slipping wheels. That is, the centers of the
wheels are not allowed to skid sideways, nor are they allowed
to slip.

The constraint of pure rolling is described mathematically
by

�������� �� � � (1)
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The left side of (1) is a four dimensional vector describing the
sideways velocities of the four wheel centers. In a pure rolling
motion there must be no sideways movement of the wheels
and hence the zero vector on the right side.

The constraint of non-slipping is described by
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The left side of (2) describes the forward velocities of the
wheel centers. If the wheels do not slip, then the velocities
must equal the rotational velocities �� of the wheels multiplied
with their radii ��.

C. Kinematics

From (1) we see that the constraint implies that the rotated
velocity vector ���� �� lies in the null-space of ����. If we
can find a set of vectors, that spans this null-space, then there
exists a signal � such that

���� �� � ����� (3)

where
��������������� � �����������

One possible ���� is
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The dimension of � is determined by the dimension of
�����������, i.e. � is a scalar. We are now left with the
following kinematic relations

�� � �� �������� (4)
�� � ���

�
���������� (5)

� ��� ����
� � � (6)

with � � � and � � �
� being the inputs to the kinematic

model.

D. Dynamics

The equations (4)-(5) are difficult to use in a controller
directly. � is not easy to measure and it is not a direct physical
input to the system. A dynamic relation that connects the input
torques of the wheels to � is needed. The dynamics of � will
not be considered further, as it is assumed that it is possible
to control the wheels based only on the kinematic relation of
(6). This assumption is valid if the dominating dynamics are
determined by the movement of the vehicle body and not by
the turning of the wheels.

The dynamics of � is derived using the Lagrange formalism
on differential geometry [9]. The two Lagrange equations
governing the dynamics of the generalized coordinates � and
� are
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��	 �� � �
� are the Lagrange multipliers, which are derived

from the non-holonomic constraints of (1) and (2). The torque
vector �� � �� is the input to the four drive motors and � is
the total kinetic energy of the AV
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where � is a constant symmetric positive definite matrix
derived from the wheel masses and the mass and moment
of inertia of the vehicle body itself. �� is a diagonal positive
definite matrix derived from the moments of inertia of the
wheels. After some manipulation of the Lagrange equations
the final dynamic equation emerges
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where ���� � ���

�
����� and ���	 ��� � ������.

The dynamic equation (10) and the two kinematic relations
in (4) and (6) constitutes the complete nonlinear model of the



vehicle. The kinematics and dynamics of � have been left out
of the final model, since only the control of � and � will be
of interest in the following.

III. ARTIFICIAL POTENTIAL FIELD

Artificial potential field (APF) methods have been used
extensively in robot path planning and obstacle avoidance,
mainly because of its elegance and intuitive simplicity.

The basic idea of the method is to generate an artificial
potential field map ���� in the environment surrounding the
robot. The most common way to build the map is to let the
reference path or point represent a potential that decreases,
when the robot approaches the reference. Obstacles on the
other hand represents increasing potentials when the robot gets
closer. In other words the reference represents valleys and
ravines, whereas obstacles represents mountains and ridges
on the potential map. To reach the reference and avoid the
obstacles, the robot should then follow the path with the least
potential. An obvious way would be to use the method of
steepest descent and move in the direction of the gradient
������. The gradient can be seen as an artificial force that
pushes the robot toward a steady state, i.e. a minimum in the
potential field.

In the case of the AV there is a known reference way-point
and a partially unknown reference path, which should be along
a crop row. A potential difference between the way-point and
the position of the AV can easily be defined. For example by
using the square of the distance from the current position of
the AV to the way-point
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the diagonal matrix��� is a design parameter, with which the
amplitude of the potential field can be scaled. The reference
path toward the way-point is only known by a distance to, and
an orientation of a nearby crop row relative to the AV. Under
the assumption, that the crop row is approximately linear in
the vicinity of the AV, the position and orientation of the crop
row at the point closest to � can be calculated. This will be
denoted ���. If the AV is to track the crop row, then the
squared distance between � and ��� should approach zero
and a potential difference associated with the crop row would
be
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where another design parameter ��� has been introduced.
At first glance this APF seems to be a reasonable guess for a

APF, that would drive the AV to the way-point, if the gradient
�� ��� � ��������� � �������� is used as the driving
force. This is visualized in figure 4 at three different points.
Note that the orientation of the AV is left out for readability.

There is a problem, though. Only the ’potential energy’ has
been discussed, and nothing has been said about the kinetic
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Fig. 4. Different gradients derived from the artificial potential field.

energy of the vehicle. The build up of kinetic energy will
surely make the AV overshoot the way-point, so the kinetic
energy has to be included somehow to make sure that the total
energy of the vehicle is zero at the way-point. The kinetic
energy has already been defined in (9), but this is a rather
complex term. To keep it simple the following approximated
kinetic energy equation is used instead
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This also gives the designer more freedom to scale the effects
of the different energy terms by choosing appropriate values
of ���, ��� and �� .

The final driving force becomes

�� ��	 ��� � �������������������� ���� � ���

� ������� � �� ������� � ����� ��
(11)

which closely resembles the feedback of an ordinary PD-
controller.

IV. CONTROLLER SYNTHESIS

The artificial force �� ��	 ��� � ��� �	 �
�
� describes the

translational force ��� �	�
� and rotational torque �
 needed

to drive the AV toward the next way-point along a crop row. If
the AV had been an omni-directional vehicle, then �� ��	 ���
could be applied directly through the driving actuators, and
the vehicle would eventually reach the way-point. But the
AV is subject to kinematic constraints, which makes a direct
application of �� ��	 ��� difficult. The only direct applicable
forces/torques �� are through the four drive motors, along the
direction of each wheel.

The controller proposed in this section uses the assumption
that the wheels can always be oriented in such a way that it
is possible to apply a force through �� that corresponds to
the outside artificial force �� ��	 ���. The idea is to map the
artificial force onto the centers of the wheels and then turn
the wheels, so that they point in the same direction as the
mapped force. With this configuration the artificial force only
exerts a force in the forward direction of each wheel and it is



possible to imitate this force completely with the use of the
drive motors. The last task is then to find the relation between
�� ��	 ��� and ��.

A. Wheel Steering

It is assumed that the center of mass of the AV is approx-
imately equal to the geometric center of the vehicle. In this
case the four drive motors contribute equally to the total force
exerted on the vehicle.

Figure 5 shows the mapping of the elements of �� ��	 ���
onto the �’th wheel where
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Fig. 5. Artificial forces acting wheel �.

The vector ��� �	�� is the same for all four wheels. ����
�
on the other hand, which is the force exerted on the wheel by
the turn torque �
, will differ if �
 �� �. ���

� ��� �	 �
� 

����
� is the total artificial force exerted on wheel � and to
avoid any sideways forces acting on the wheels, the reference
to the wheel must be

����� � ����
� �

Note that the amplitude of ���
is not scaled down to size,

because only the angle of the resulting force is of interest.
How one should design a controller to follow the reference

depends on the steering actuator. The physical actuators on
the AV are fast turning DC-motors with negligible dynamics
and a very simple positioning controller with feedback gain
 � should be sufficient
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B. Force Equivalence

Now that the wheel steering has been dealt with, the last
step in the controller synthesis is to find the drive torque
vector ��, which will be equivalent to the known artificial
force �� ��	 ���. This is done by comparing two models. One
is the original model derived earlier, where the AV is driven

by ��, and the other is a model, where the AV is driven by
the artificial force �� ��	 ���.

The original Lagrange equations of (7) and (8) resulted
in the dynamic equation of (10). The generalized force ��
acted on the generalized coordinates � and it was inserted
accordingly in (8). If the AV is to be driven by the generalized
force �� ��	 ��� instead, then this force would act on the
generalized coordinates � and the Lagrange equations takes
the form
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These two equations leads to the slightly modified dynamic
model
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The left side of (10) and (12) are the same and equating them
yields the important relation

�� ����� ����� � �� ��������� ��	 ��� (13)

This is a scalar equation with four unknown and therefore
impossible to solve uniquely, but nothing prohibits us from
distributing the wheel torques evenly by setting �� � 	�,
where 	 � �� � � ��� . Now, there is only one unknown and
(13) can be solved
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It can be shown by inspection [2] that the denominator is non-
zero as long as the constraint of non-slipping wheels are not
violated and both �� and �� lie in the open interval �� �

�
	 �
�
�.

An analytic proof of stability and convergence will not
be given in this paper, but after inspection of numerous
simulations, one of which is shown in the next section, the
proposed controller structure seems to be stable. It has not
been possible to force it into an unstable configuration (yet),
but proof of stability should be the next obvious step in an
analysis of the proposed controller structure.

V. SIMULATION RESULTS

Figure 6 depicts a simulation run where the AV is following
two parallel crop rows. The AV starts at � � �� � ��� and is
given a way-point (WP 1) at the end of the first row. The only
information it has about the crop row is the position of the
nearest point on the row and the direction of the row at this
point. When it has reach WP 1, it is given two intermediate
way-points (WP 2 and 3), one at a time, to help it reach the
beginning of the next row. During the row change it does
not receive any crop row information. When the row change
is completed the AV is given it’s final way-point (WP 4) at



the end of the second row. The values of the way-points are
summarized in table I.
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Fig. 6. Row tracking and row change.

TABLE I

WAY-POINT COORDINATES.

� � �

Initial state � � �

�

WP 1 �� ��� �

�
�

WP 2 (intermediate) ���� ��� ��

�
�

WP 3 (intermediate) ���� ��� ��

�
�

WP 4 � �� ��

Figure 7 shows the input and error signals for this simula-
tion. !""�"� is the least square distance between the AV and
the crop row and !""�"
 is the orientation difference between
the AV and the crop row. Between � � �� and � � �� the AV
is changing rows and data from the row sensor is turned off.
The error signals are not defined in this interval, hence the
black boxes.

The curvature of the crop rows of figure 6 is rather large
compared to an average field. The potential of the target way-
points will always try to drive the AV in a straight line toward
the next way-point, and the large curvature means that the
AV will be forced away from the crop row at the beginning
of the row. The error is hence larger in the beginning of the
simulation and again after � � ��, where the AV hits the
second crop row. More important is the fact that the controller
is still able to keep the wheels from touching the crops, despite
the error. In a field with straighter crop rows the errors are
reduced considerably.

VI. CONCLUSION

In this paper we considered the path tracking problem of a
four wheel steered, four wheel driven autonomous vehicle or
AV, subject to non-holonomic constraints. The mission of the
AV is to traverse a field of crop rows and gather visual data
from it. The AV has to drive through the field along the crop
rows, doing as little damage to the crops as possible. At the
same time it has to reach certain way-points given to it from a
higher level in the navigation structure. The only information
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Fig. 7. Input and error signals from the simulation run of figure 6.

the AV has of the field is the absolute position of the next
way-point and the relative distance to and orientation of the
nearest crop row.

A path tracking control strategy was proposed based on an
artificial potential field together with a dynamic model of the
AV. The proposed controller had one distinct advantages as
opposed to typical controllers based on linearizing feedback.
The method of linking the theory of artificial potential fields
directly to the dynamics of the vehicle made the controller
very intuitive and easy to grasp. As seen in a simulation of
the controller, it effectively guided the AV toward the next
way-point without damaging the crops.
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