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On the determination of moving sensor policies for
parameter estimation of distributed systems

Dariusz Uciński

Abstract— An activation strategy of pointwise discrete

scanning sensors used for estimating unknown parameters

in models described by partial differential equations is ad-

dressed. In contrast to the common approach based on

parameter-space criteria, attention is paid here to a crite-

rion in output space, which is of interest if the purpose of

parameter estimation is to accurately predict system out-

puts. The performance index thus constructed constitutes

the average variance of the predicted response and is called

the V-optimality criterion. The setting examined here may

correspond to situations where one has many sensors and

activates only some of them during a given time interval, or

alternatively, has several sensors which are mobile. The pro-

posed approach being a non-trivial extension of Fedorov’s

idea of directly constrained design measures consists in im-

posing constraints on the sensor density in a given spatial

domain. One of the main results is an efficient iterative pro-

cedure whose each step reduces to replacing less informative

sensors with the ones which furnish more informaton about

the parameters. This planning algorithm is verified through

a numerical example on a two-dimensional heat equation.

Keywords—Distributed-parameter systems, parameter es-
timation, sensor location, experimental design.

I. Introduction�
INCE for distributed parameter systems it is impossible
to observe their states over the entire spatial domain,

the question arises of where to locate discrete sensors so
as to accurately estimate the unknown system parameters.
Both researchers and practitioners do not doubt that ma-
king use of sensors placed in an ‘intelligent’ manner may
lead to dramatic gains in the achievable accuracy of the
resulting parameter estimates, so efficient sensor location
strategies are highly desirable. In turn, the complexity of
the sensor location problem implies that there are very few
sensor placement methods which are readily applicable to
practical situations. What is more, they are not well known
among researchers. This generates keen interest in the po-
tential results, as the motivations to study the sensor loca-
tion problem stem from practical engineering issues. Opti-
mization of air quality monitoring networks is among the
most interesting ones. One of the tasks of environmental
protection systems is to provide expected levels of pollu-
tant concentrations. But to produce such a forecast, a smog
prediction model is necessary which is usually chosen in the
form of an advection-diffusion partial-differential equation.
Its calibration requires parameter estimation, e.g. the unk-
nown spatially-varying turbulent diffusivity tensor should
be identfied based on the measurements from monitoring
stations Since measurement transducers are usually rather
costly and their number is limited, we are faced with the
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problem of how to optimize their locations in order to obta-
in the most precise model. Other stimulating applications
include, among other things, groundwater modelling, re-
covery of valuable minerals and hydrocarbon from under-
ground permeable reservoirs, gathering measurement data
for calibration of mathematical models used in meteorolo-
gy and oceanography, automated inspection in static and
active hazardous environments where trial-and-error sen-
sor planning cannot be used (e.g. in nuclear power plants),
or emerging smart material systems.

The sensor placement problem was attacked from vario-
us angles, but the results communicated by most authors
are limited to the selection of stationary sensor positions
(for reviews, see [1], [2], [3]). An intuitively clear generali-
zation is to apply sensors which are capable of continuously
tracking points providing at a given time moment best in-
formation about the parameters (such a strategy is usually
called continuous scanning). However, communications in
this field are rather limited. Rafajłowicz [4] considers the
determinant of the Fisher Information Matrix (FIM) asso-
ciated with the parameters to be estimated as a measure of
the identification accuracy and looks for an optimal time-
dependent measure, rather than for the trajectories them-
selves. On the other hand, Uciński [2], [19], [3], [20], [18],
apart from generalizations of Rafajłowicz’s results, deve-
lops some computational algorithms based on the FIM. The
problem is then reduced to a state-constrained optimal-
control one for which solutions are obtained via gradient
techniques capable of handling various constraints impo-
sed on sensor motions.

Apart from mobile sensors, discrete scanning devices can
also be used in applications. The observation system com-
prises then multiple sensors whose positions are already
specified and it is desired to activate only a subset of them
during a given time interval while the other sensors rema-
in dormant [7]. A reason for not using all the available
sensors could be the reduction of the observation system
complexity and the cost of operation and maintenance [8].
Such a scanning strategy of taking measurements can be
also interpreted in terms of several sensors which are mo-
bile but the time necessary for taking measurements may
be neglected. The problem has received little attention yet
(though some trials have been conducted in a related con-
text of state estimation, see e.g. [9]). A first attempt to
fill this gap was reported in [21], where the idea of the
so-called clusterization-free designs set forth in [10] was
extended, based on Fedorov’s idea of replication-free desi-
gns [11], [12], [13] which have emerged relatively late in the
context of spatial statistics (see the monograph [5]). In spi-
te of its somewhat abstract assumptions and the inherent
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combinatorial nature of the sensor scheduling problem, the
resulting algorithm of exchange type is very easy to imple-
ment, extremely fast and efficient.
As opposed to most existing aproaches, where sensor lo-
cations are determined in experiments performed for the
most accurate determination of parameter values which
may have some physical significance, in the present paper
we consider the reliability of model predictions. In many
applications, especially when a control scheme is to be bu-
ilt, the accuracy of model predictions is more important
than the accuracy of model parameters, because the ulti-
mate objective in modelling is the prediction or forecast
of the system states [5]. The topic was discussed to some
extent in [6], but without connection to constructive so-
lution methods. This failing was the main motivation for
the study [18] undertaken in order to extend sensor motion
planning techniques set forth in [2], [3] based on optimal
control techniques. In this note, we consider the discrete
scanning sensor scheduling problem for the most accurate
model prediction and show how the results obtained in [21]
can be appropriately extended.

II. Scanning Problem for Optimal Prediction

As our fundamental state system we consider the scalar
(possibly non-linear) distributed system

∂y

∂t
= F

(

x, t, y,
∂y

∂x1
,
∂y

∂x2
,
∂2y

∂x21
,
∂2y

∂x22
, θ

)

,

x ∈ Ω, t ∈ T (1)

with initial and boundary conditions of the general form

y(x, 0) = y0(x), x ∈ Ω (2)

E(x, t, y, θ) = 0, x ∈ ∂Ω, t ∈ T (3)

where Ω ⊂ � 2 is a fixed, bounded, open set with sufficiently
smooth boundary ∂Ω, the points of which will be denoted
by x = (x1, x2), F and E are some known functions, y0
is a given initial state, t stands for time, T = [0, tf ], y =
y(x, t) signifies the state variable with values in � . F may
include terms accounting for given a-priori forcing inputs.
The system evolves from t = 0 to t = tf , the period over
which observations are available.
Note that the system state at a spatial point x ∈ Ω and
time instant t ∈ T depends on an unknown constant pa-
rameter vector θ to be estimated using observations of the
system. Consequently, in order to stress this dependence,
we will use the notation y(x, t; θ).
In what follows, we form an arbitrary partition on the
time interval T by choosing points 0 < t1 < t2 < · · · <
tK = tf defining subintervals Tk = [tk−1, tk], k = 1, . . . ,K.
We then consider N moving sensors which possibly will be
changing their locations at the beginning of every time sub-
interval but will be remaining stationary for the duration of
each of the subintervals. In other words, the measurement
process can be formally represented as

zj(t) = y(xjk, t; θ) + ε
j(t), t ∈ Tk (4)

for j = 1, . . . , N and k = 1, . . . ,K, where zj(t) is the scalar

output, xjk ∈ X stands for the location of the j-th sensor
on the subinterval Tk, X signifies the part of Ω where the
measurements can be made, and εj( · ) denotes the measu-
rement noise. It is customary to assume that the noise is
zero-mean, Gaussian, uncorrelated in both time and space
[11], [1].

We assume that the parameter estimate θ̂, defined as
the solution to the usual output least-squares formulation
of the parameter estimation problem, is to provide a basis
for prediction of certain variables depending on spatial lo-
cation and/or time. Since in general the conditions applied
for prediction may differ from the conditions of the expe-
riment, the prediction equations need not be the same as
the state equations, nor need the variables to be predicted
coincide with the state y. Let the solution to the predic-
tion problem in context be a scalar quantity q = q(x, t; θ).
We are interested in selecting the sensors’ configurations
in such a way as to maximize the accuracy of q in a gi-
ven compact spatio-temporal domain Q = X ×T . Clearly,
in order to compare different configurations, a quantitati-
ve measure of the ‘goodness’ of particular configurations is
required. A logical approach is to choose a measure related
to the expected accuracy of prediction.
For a given (x, t) ∈ Q, the variance of q obtained by a
first-order expansion around a preliminary estimate θ0 of
θ has the form

var(q(x, t; θ̂)) = E
(

(q(x, t; θ) − q(x, t; θ̂))2
)

≈
(

∇θq(x, t; θ
0)
)T
cov(θ̂)∇θq(x, t; θ

0)
(5)

where we write ∇θq for the gradient of q with respect to
θ. It is customary to choose θ0 as a nominal value of θ or
a result of a preliminary experiment. As for cov(θ̂), under
some assumptions it can be approximated by the inverse
of the Fisher Information Matrix (FIM) whose normalized
version can be written down as [4]

M =
1

N

K
∑

k=1

N
∑

j=1

Υk(x
j
k), (6)

where

Υk(x) =
1

tf

∫

Tk

g(x, t)gT(x, t) dt, (7)

g(x, t) = ∇θy(x, t; θ)
∣

∣

θ=θ0
, (8)

θ0 being a prior estimate to the unknown parameter vector
θ [3]. Such a formulation is generally accepted in optimum
experimental design for DPS’s, since the inverse of the FIM
constitutes, up to a constant multiplier, the Cramér-Rao
lower bound on the covariance matrix of any unbiased es-
timator of θ [22].
Consequently, we get

var(q(x, t; θ̂)) ∼
(

∇θq(x, t; θ
0)
)T
M−1∇θq(x, t; θ

0) (9)

A criterion may now be set up such that the ‘optimal’ sen-
sor configurations xjk minimize var(q(x, t; θ̂)) overQ. Based
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on the suggestions of (Fedorov and Hackl, 1997, p.25), in
the sequel the following V-optimality criterion is conside-
red:

Ψ[M ] =

∫∫

Q

var(q(x, t; θ̂)) dx dt = trace
{

CM−1
}

(10)

where

C =

∫∫

Q

(

∇θq(x, t; θ
0)
) (

∇θq(x, t; θ
0)
)T
dx dt (11)

Sensor positions which guarantee the best accuracy of
the least-squares estimates of θ are then found by choosing
xjk, j = 1, . . . , N , k = 1, . . . ,K so as to minimize Ψ.
The assumption of independent measurements made by
different sensors implies that we admit of replicated me-
asurements, i.e. some values xjk may appear several times
in the optimal solution (this is an unavoidable consequen-
ce of independent measurements). Consequently, it is sen-
sible to distinguish only the components of the sequence
x1k, . . . , x

N
k which are different and, if there are `(k) such

components, to relabel them as x1k, . . . , x
`(k)
k while intro-

ducing r1k , . . . , r
`(k)
k as the corresponding numbers of repli-

cations. The redefined xik’s are said to be the design or
support points. The collection of variables

ξNk =

{

x1k , x2k, . . . , x
`(k)
k

p1k, p2k, . . . , p
`(k)
k

}

, (12)

where pik = r
i
k/N , N =

∑`(k)
i=1 r

i
k , is called the exact design

of the experiment on the subinterval Tk. The proportion p
i
k

of observations performed at xik can be considered as the
percentage of experimental effort spent at that point.
On account of the above remarks, we rewrite the FIM in
the form

M(ξN ) =M(ξN1 , . . . , ξ
N
K ) =

K
∑

k=1

`(k)
∑

i=1

pikΥk(x
i
k). (13)

Here the pik’s are rational numbers, since both r
i
k’s and N

are integers. Removing this constraint by assuming that
they can be any real numbers of the interval [0, 1] such

that
∑`(k)
i=1 p

i
k = 1, we may think of the designs as discrete

probability distributions on X . But if so, we may attempt
to take one more step to widen the class of admissible de-
signs a bit further, i.e. to all probability measures ξk over
X which are absolutely continuous with respect to the Le-
besgue measure and satisfy by definition the condition

∫

X

ξk(dx) = 1, k = 1, . . . ,K. (14)

Such an extension of the design concept allows us to
replace (13) by

M(ξ) =

K
∑

k=1

∫

X

Υk(x) ξk(dx), (15)

where
ξ = (ξ1, . . . , ξK) (16)

and the integration in (14) and (15) is to be understood
in the Stieltjes-Lebesgue sense. This leads to the so-called
continuous designs which constitute the basis of the mo-
dern theory of optimal experiments [11], [22]. It turns out
that, in spite of its slightly abstract form, such an approach
drastically simplifies the design.
Then we may redefine an optimal design as a solution to
the optimization problem

ξ? = argmin
ξ∈Ξ
Ψ[M(ξ)], (17)

where Ξ denotes the set of all designs of the form (16).
In the remainder of this paper we shall make the follo-
wing assumptions:
(A1) X is compact,
(A2) g( · , · ) is continuous,
Moreover, the following properties can be easily proved:
(P1) Ψ is convex,
(P2) If M1 ≤M2, then Ψ(M1) ≥ Ψ(M2),
(P3) There exists a finite real q such that

{

ξ : Ψ[M(ξ)] ≤ q <∞
}

= Ξ(q) 6= ∅,

(P4) For any ξ ∈ Ξ(q) and ξ̄ ∈ Ξ, we have

Ψ[M(ξ) + λ(M(ξ̄)−M(ξ))]

= Ψ[M(ξ)] + λ

K
∑

k=1

∫

X

ψk(x, ξ) ξ̄(dx)

+ o(λ; ξ, ξ̄),

(18)

where lim
λ↓0

o(λ; ξ, ξ̄)/λ = 0.

As regards the notation in (P2), we adopt that of the
Loewner ordering of symmetric matrices, i.e. M1 ≤ M2 iff
M2 −M1 is non-negative definite. Note that (P4) simply
amounts to the existence of the directional derivative whose
form must be on one hand specific, but on the other hand,
such a condition is not particularly restrictive. In fact, we
obtain

ψk(x, ξ) = trace
[ ◦

Ψ(ξ)Υk(x)
]

−
1

K
trace
[ ◦

Ψ(ξ)M(ξ)
]

, (19)

where

◦

Ψ(ξ) =
∂Ψ(M)

∂M

∣

∣

∣

∣

M=M(ξ)

= −M−1(ξ)CM−1(ξ).

III. Problem Reformulation Using the Notion of

Clusterization-Free Designs

Independent observations are convenient from a theore-
tical point of view, but they can hardly be justified when
in an optimal solution several sensors are to take measure-
ments near one another (this phenomenon is called sensor
clusterization). Indeed, in the spatial data collection sche-
mes there is usually no possibility of replicated measure-
ments, i.e. different sensors cannot take measurements at
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one point without influencing one another. Anyway, several
sensors situated in the close vicinity of one another usually
do not give more information than a single sensor.
In order to avoid such clustered sensor configurations, we
implement the idea of operating on the density of sensors
(i.e. the number of sensors per unit area), rather than on
the sensors’ locations, which is justified for a sufficiently
large total number of sensors N . In contrast to the desi-
gns discussed in the previous section, however, we impose
the crucial restriction that the density of sensor allocation
must not exceed some prescribed level. This amounts to
the condition

ξk(dx) ≤ ω(dx), k = 1, . . . ,K, (20)

where ω(dx) signifies the maximal possible ‘number’ of sen-
sors per dx [11] such that

∫

X

ω(dx) ≥ 1. (21)

Consequently, we are faced with the following optimization
problem: Find

ξ? = argmin
ξ∈Ξ
Ψ[M(ξ)] (22)

subject to

ξk(dx) ≤ ω(dx), k = 1, . . . ,K. (23)

The design ξ? above is then said to be a (Ψ, ω)-optimal
design on the analogy of the definition introduced in [11]
in the context of directly constrained design measures.
Apart from Assumptions (A1) and (A2), a proper ma-
thematical formulation calls for the following proviso:
(A3) ω(dx) is atomless, i.e. for any ∆X ⊂ X there exists
a ∆X ′ ⊂ ∆X such that

∫

∆X′
ω(dx) <

∫

∆X

ω(dx). (24)

In what follows, we write Ξ̄ ⊂ Ξ for the collection of all
the design measures (16) which satisfy the requirement

ξk(∆X) =

{

ω(∆X) for ∆X ⊂ supp ξk,

0 for ∆X ⊂ X \ supp ξk ,
(25)

k = 1, . . . ,K. Given a design ξ, we will say that the func-
tion ψk( · , ξ) defined by (19) separates sets X1 and X2
with respect to ω(dx) if for any two sets ∆X1 ⊂ X1 and
∆X2 ⊂ X2 with equal non-zero measures we have

∫

∆X1

ψk(x, ξ)ω(dx) ≤

∫

∆X2

ψk(x, ξ)ω(dx). (26)

We can now formulate the main result which provides a
characterization of (Ψ, ω)-optimal designs.
Theorem 1: Let Assumptions (A1)–(A3) hold. Then:
(i) There exists an optimal design ξ? ∈ Ξ̄, and
(ii) A necessary and sufficient condition for ξ? ∈ Ξ̄ to be
(Ψ, ω)-optimal is that ψk( · , ξ?) separates X?k = supp ξ

?
k

and its complement X \ X?k with respect to the measure
ω(dx), k = 1, . . . ,K.
This constitutes a fairly straightforward generalization
of Theorem 4.3.1 of [11, p. 63], also see [12], and the main
ideas of the proof given therein are retained here.

IV. Sensor Scheduling

From a practical point of view, Theorem 1 means that
at all the support points of an optimal design component
ξ?k the mapping ψk( · , ξ

?) should be less than anywhere el-
se, i.e. preferably supp ξ?k should coincide with minimum
points of ψk( · , ξ?), which amounts to allocating observa-
tions to the points at which we know least of all about the
system response.
If we were able to construct a design with this proper-
ty, then it would be qualified as an optimal design. This
conclusion forms a basis for numerical algorithms of con-
structing solutions to the problem under consideration.
As regards the interpretation of the resultant optimal
designs (provided that we are in a position to calculate
at least their approximations), one possibility is to parti-
tion X into subdomains ∆Xi of relatively small areas and
then, on the subinterval Tk, to allocate to each of them the
number

N?k (∆Xi) =

⌈

N

∫

∆Xi

ξ?k(dx)

⌉

(27)

of sensors whose positions may coincide with nodes of some
uniform grid (here dζe is the smallest integer greater than
or equal to ζ). This grid can consist e.g. of points at which
scanning sensors may be located, which will be exploited
in what follows.
Clearly, unless the considered design problem is quite
simple, we must employ a numerical algorithm to make the
outlined conceptions useful. Since ξ?k(dx) should be non-
zero in the areas where ψk( · , ξ?) takes on a smaller value,
the central idea is to move some measure from areas with
higher values of ψk( · , ξn) to those with smaller values, as
we expect that such a procedure will improve ξn. This is
embodied by the iterative algorithm presented below:

Algorithm for sensor scheduling

Step 1. Guess an initial design ξ0 ∈ Ξ̄. Set n = 0.
Step 2. For k = 1, . . . ,K separately set Xn1 (k) = supp ξ

n
k

and Xn2 (k) = X \X
n
1 (k). Determine

xn1 (k) = arg max
x∈Xn

1
(k)
ψk(x, ξ

n),

xn2 (k) = arg min
x∈Xn

2
(k)
ψk(x, ξ

n).

If ψk(x
n
1 (k), ξ

n) > ψk(x
n
2 (k), ξ

n) + η, where η � 1, then
find two sets Sn1 (k) ⊂ Xn1 (k) and S

n
2 (k) ⊂ Xn2 (k) such

that xn1 (k) ∈ S
n
1 (k), x

n
2 (k) ∈ S

n
2 (k) and

∫

Sn
1
(k)

ω(dx) =

∫

Sn
2
(k)

ω(dx) = αn

(i.e. the measures of Sn1 (k) and S
n
2 (k) must be identical)

for some αn > 0. Otherwise, set S
n
1 (k) = Sn2 (k) = ∅. If

ψk(x
n
1 (k), ξ

n) < ψk(x
n
2 (k), ξ

n) + η for all k = 1, . . . ,K,
then STOP.
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Step 3. Construct ξn+1 such that

supp ξn+1k = Xn+11 (k)

= (Xn1 (k) \ S
n
1 (k)) ∪ S

n
2 (k).

for k = 1, . . . ,K. Increment n and to go Step 2.
Convergence is guaranteed if the sequence

{

αn
}∞

n=0
sa-

tisfies the conditions

lim
n→∞

αn = 0,

∞
∑

n=0

αn =∞, (28)

which is established in much the same way as in [13].
Within the framework of sensor placement, we usually
have ω(dx) = %(x)dx, where % is a density function. But
in this situation we may restrict our attention to constant
%’s (indeed, in any case we can perform an appropriate
change of coordinates). Moreover, while implementing the
algorithm on a computer, all integrals are replaced by sums
over some regular grid elements. Analogously, the sets X ,
Xn1 (k), X

n
2 (k), S

n
1 (k) and S

n
2 (k) then simply consist of

grid elements (or potential sensor locations). Consequen-
tly, the above iterative procedure may be considered as
an exchange-type algorithm with the additional constra-
int that every grid element must not contain more than
one supporting point and the weights of all supporting po-
ints are equal to 1/N . In practice, αn is usually fixed and,
what is more, one-point exchanges are most often adopted,
i.e. Sn1 (k) =

{

xn1 (k)
}

and Sn2 (k) =
{

xn2 (k)
}

, which sub-
stantially simplifies implementation. Let us note, however,
that convergence to an optimal design is assured only for
decreasing αn’s and hence some oscillations in Ψ[M(ξ

n)]
may sometimes be observed. A denser spatial grid usually
constitutes a remedy for this predicament [5].

V. Numerical Example

Consider the two-dimensional diffusion equation

∂y(x, t)

∂t
=

∂

∂x1

(

κ(x)
∂y(x, t)

∂x1

)

+
∂

∂x2

(

κ(x)
∂y(x, t)

∂x2

)

+ 20 exp
(

−50(x1 − t)
2
)

on Ω× T = (0, 1)3,

(29)

subject to homogeneous initial and boundary conditions,
where

κ(x) = θ1 + θ2x1 + θ3x2,

θ01 = 0.1, θ02 = −0.05, θ03 = 0.2

θ01 , θ
0
2 and θ

0
3 being treated as nominal and known to the

experimenter prior to the identification itself. The forcing
term in (29) imitates a line source whose support is con-
stantly oriented along the x2-axis and moves with constant
speed to the right. Our purpose is to estimate y inside the
circle X with centre (0.5, 0.5) and radius 0.2 during the ti-
me horizon T = T . In the course of the experiment, the
sensors must be placed outside X .
In order to numerically solve the measurement location
problem, a computer program was written in Lahey Fujitsu

Fortran 95 v.5.6 using a PC with Pentium IV running Win-
dows 2000. The state and sensitivity equations (cf. [2]) were
first solved using the finite-element method on an even grid
(with 15 divisions along each space axis, and 30 divisions
of the time interval). The sensitivity coefficients were then
interpolated via tri-cubic spline interpolation and the cor-
responding spline parameters stored in computer memory.
The problem of locating N = 90 scanning sensors
was considered. For that purpose, a (20 × 20)-point uni-
form grid was introduced to approximate the design spa-
ce, from which only points from the outside of X were
selected as feasible. The initial design was generated by
randomly selecting its support points. The sensors we-
re allowed to take measurements over the time intervals
Tk = [(k − 1)/20, k/20], k = 1, . . . , 20. The resulting opti-
mal solution is shown in Fig. 1, where dots represent the
grid points (these were potential sites where the sensors
could be placed, but at most one sensor at one point) and
open circles indicate the actual sensor positions.
In order to calculate a V-optimal design, a simple one-
point correction algorithm was employed (η = 10−2) which
produced the solution after only 79 iterations (practically,
within several seconds).
As regards the forcing term in our model, it approxima-
tes the action of a line source whose support is constantly
oriented along the x2-axis and moves with constant speed
from the left to the right boundary of Ω. This is reflected
by the consecutive configurations of scanning sensors which
also advance to the right.

VI. Conclusion

This paper considers the optimal sensor location pro-
blem in an experiment performed for prediction of certain
variables depending on spatial location and/or time. An ef-
ficient iterative algorithm capable of handling the adopted
V-optimum design criterion has been developed. Thereby,
it is possible to enforce a wide variety of constraints im-
posed on sensor configurations. The general formulation
applies to a large class of systems. Research is conducted
on extending this approach to include robust or Bayesian
designs and applications in fault detection schemes.
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