

A Control System for Teams of
Off-the-Shelf Scouts and MegaScouts

Bennett Jackson Ian Burt Bradley Kratochvil Nikolaos Papanikolopoulos*
Center for Distributed Robotics, University of Minnesota

Abstract-- Two new robotic platforms, the MegaScout and the
Commercial Off-the-Shelf Scout (COTS Scout), have been
developed recently at the University of Minnesota's Center for
Distributed Robotics. The two systems were initially unable to
communicate with each other. This paper discusses the
development of a communications system and a novel software
architecture designed to allow the two systems to work in
autonomous cooperation.

Index terms—robotic teams, mobile robotics, miniature robots

I. INTRODUCTION

The new additions to the family of Scout [2,3,7] robots
were designed with different goals. The low cost, low
weight and small size of new COTS Scout (Figure 1) make
it an appealing platform for many kinds of exploration and
surveillance. However, its lack of onboard processing
power and its analog-only communications have limited its
domain of applications to those where it is operated by a
human. The new MegaScout platform has a convenient
programming environment for onboard processing, high
ground speed and reliable digital communications, but its
relatively high cost, weight, and size make it less flexible
than the COTS Scout for many purposes. By providing a
mechanism for digital, computer-based control of the
COTS Scout, cooperative groups can be composed from
several COTS Scouts and one MegaScout. Once this is
possible, many of the advantages of both systems can be
combined into a single exploration team. Previous work
with heterogeneous teams of robots [1,4,6] has shown
encouraging results.

The effort to develop such cooperative units proceeded in
two distinct phases. First, at the lowest level, it was
necessary to establish a computer-controllable
communications link between the two types of robots,
allowing the MegaScout to transmit commands to the
COTS Scout. This communications link was built in such a
way as to make future development with similar
components as easy as possible. Next, access to this

communications link was made more convenient and more
standard by means of a wrapper API designed to work with
libUMNRobot, a novel software model for abstracting
access to robotic components that was initially developed to

support the MegaScouts. This paper will first address each
development phase and then present the results of testing
and some possible future work, and conclusions.

Figure 1: A COTS Scout with a commercially available RC
controller.

*Author to whom correspondence should be addressed.

II. PHASE ONE: ESTABLISHING A COMMUNICATIONS LINK

The COTS Scouts are equipped with two onboard
communications systems. First, a video transmission
system broadcasts an analog video stream from the robot's
single camera over a fixed FM band. A receiver attached to
a teleoperation unit, a mobile or desktop control computer,
or another more sophisticated robot can make the video
available for viewing or vision processing. In the case
where a MegaScout receives the video transmission,
existing code makes the individual image frames available
to software developers writing vision algorithms.

The second communications system on the COTS Scout is
a RC receiver of the type found in many hobby cars and
airplanes. This system receives commands from a
commercially available, hand-held joystick containing a
corresponding transmitter like those shown in Figure 2.
This joystick can be used by a human, in cooperation with a

video display, to operate the robot remotely. The
transmitter relays the two-dimensional position of two
different joysticks to the robot by merging four data
channels into a single signal. As summarized in Table 1,

only three of the channels are currently in use on the COTS
Scout.

A. RC Signal Specifications

The signal is a continuously repeating binary waveform,
one cycle of which is shown in Figure 3. The input signal
consists of some number of low periods whose widths
indicate the values of each of the data channels and which
are separated by brief high periods of a small, constant
length, as described in [3]. The data portion of the signal is
followed by a relatively long low period used to help the
receiver identify the beginning and end of each data frame
and to stay synchronized with the transmitter. The length
of each high period is 500µs. The length of each low
periods plus the preceding high period varies between
800µs and 2200µs. The framing gap is 15ms.

Although Figure 1 shows three data channels, any number
from one to six may be used. The receiver increments a
counter each time a data channel is received and resets that
counter when a framing gap is received. In this way, it can
track an arbitrary number of channels.

B. A Signal Generation Application

Development of a digitally controlled device for
commanding the COTS Scouts was based on several
requirements. The system should be reliable and provide
the fastest possible response time. It should be as easy to
use as possible both for COTS Scout communications as
well as for any future development based on similar
components. Support for multiple transmitters in

simultaneous communication with multiple robots would be
preferred. Above all, it must be able to produce a high-
resolution version of the signal described above.

A PIC16F877 microcontroller, shown in Figure 4, with a
20MHz oscillator was determined to be sufficient for the
demands of the requirements [5]. The first step was a proof
of concept task: to generate an input signal to a transmitter
using hard-coded values and verify that a robot responded
with correct corresponding action. The task was
accomplished by programming the PIC in assembly
language. Six one byte file registers store the desired
output values. A continuous loop uses the PIC's timers to
set a digital output pin high or low according to the signal
specification. A resolution of approximately one
microsecond was achieved, which is more than sufficient.
A visually correct signal was observed on an oscilloscope.
Attaching a transmitter input to the PIC's digital output
showed that a robot responded correctly. By assembling
the program with different channel values, the robot could
be made to move at different speeds.

Once the potential effectiveness of the solution had been
demonstrated, it was necessary to establish a secondary
communication link between the PIC and a PC so that
updated values could be sent to change the behavior of the
robot in real time. In a final application, the PC might be
either a desktop machine or the primary processor of a
MegaScout. Because it was desirable to select a common

Figure 2: Two RC transmitters. On the left there is a
transmitter in its original casing while on the right there is
the circuit board inside.

Channel Purpose
1 Speed of servo 1
2 Speed of servo 2 (reversed)
3 Video transmission on/off
4 Not used.

Table 1: Use of each RC data channel by the COTS Scout.

Figure 3a: Transmitter input signal.

Figure 3b: Transmitter output.

communications standard and because of an existing IIC
network in the MegaScouts (based on the BrainStem board,
made by Acroname), it was decided that a simple
implementation of the IIC protocol would be appropriate.

IIC (often written i2c) stands for Inter-Integrated Circuit. It
is a very simple, two-line, serial communications protocol.
Networks consist of a single bus supporting up to 126
devices (more in some versions) at clock speeds of
100KHz, 400KHz, and 1MHz. Each network has a single
master device and any number of slave devices. The
master is responsible for establishing the regular pulse on
the clock line and mitigating collisions on the data line.
Many devices, including many commonly available robotic
sensors, come equipped for IIC communication.

The protocol provides a simple, byte-oriented packet
structure. First, a start signal is sent by a transmitting
device, indicating that bytes are about to be sent. The first
byte of every packet is the seven-bit address of the target
device and a bit indicating whether this is a request to
initiate a read operation from the target or whether more
bytes will follow that should be written to the target. The
target machine must send an ACK pulse after each byte. In
the case of a write operation (the only portion of the
standard implemented for this project), one or more data
bytes follow the address. Finally, the transmitter sends an
end pulse to mark the conclusion of the packet.

The PIC provides a convenient, interrupt-driven
implementation of IIC. After configuring all appropriate
settings, a PIC assembly program that is part of a slave
receiver need only have a single interrupt handling routine
that will be called each time a byte has been fully received.

The packet structure chosen for this project is illustrated in
Figure 6. All correctly formed packets consist of four

bytes. First, according to the IIC protocol is the device's
address. Next is the ID of a particular transmitter. Though
not yet implemented, this will allow two or more

transmitters to be controlled simultaneously by the same
PIC, making larger robotic teams more practical. The third
byte is the number (between 0 and 5) of the data channel
being changed. Finally, the last byte gives the new value to
be transmitted on that channel. A value of 0 will cause the
shortest possible signal (about 0.8ms) and a value of 255
will cause the longest possible signal (about 2.2ms). After
completion, the IIC communications system was tested by
connecting it to the IIC pins of a BrainStem, and manually
sending packets from the BrainStem's console application,
successfully, though awkwardly, controlling a robot.

Figure 5: Final prototyping circuit showing the transmitter,
PIC, and BrainStem fully connected for IIC
communications.

Figure 4: A PIC16F877 prototyping chip with in-circuit
debugging hardware. Versions used in the final products
are much smaller.

The result of the PIC development is a fully functional
communication link from a PC to a COTS Scout. The
system is fast, built on industry standards, cheap to
assemble, and easy to use. It can be easily expanded to
support simultaneous control of multiple robots.

III. PHASE TWO: WRAPPER API

A. The libUMNRobot Framework

The libUMNRobot framework is a novel suite of object-
oriented programming tools written in C++ and designed to
provide a convenient, uniform interface to a wide variety of
robotic components. The library was originally written to
support the MegaScout platform, but with the additional
goal that it should support multiple, heterogeneous robotic
platforms with little or no modification. Use of the
framework to support the COTS Scout is the first test of
this heterogeneous use. The framework provides a
mechanism for enumerating all the components of a robot
and all the configuration and calibration properties of each
component in a single, hierarchical XML document. This

makes it very easy to express the subtle differences
between large numbers of similar robots without having to
make any modifications to the control code for those
robots.

A greatly simplified UML diagram of the object model for

the framework can be seen in Figure 7. The framework is a
set of loosely coupled libraries, each with a specific goal.

At the core is the UMNRobot library itself. This library
defines a generic interface called Capability that is the root
interface of all robotic components. Capabilities can have
a set of child Capabilities. Robots are composed of such
hierarchies of Capability objects. Sensor and Actuator are
sub-interfaces of Capability written as templates. The
UMNRobot core library also defines a standard for
instantiating arbitrary robots by means of a RobotFactory.

An affiliated library, "UMNRobot Xerces Components"
provides a concrete implementation of RobotFactory that
instantiates Robots from XML descriptor files.

Another library, "UMNRobot Common Components",
provides a richer set of generic interfaces that model a wide
variety of frequently used robotic sensory and actuation
components. This library contains interfaces such as
Motor, Servo, RangeFinder, DigitalSwitch, AxelEncoder,
PhotoelectricSensor, and VideoSource. These interfaces
impose a data type and a set of units on the inputs and
outputs to their corresponding devices, but they contain no
specific code for communicating with actual devices.

[ADDR] [XMIT ID] [CHAN ID] [DATA]

Figure 6: Packet structure expected by PIC consists of four
bytes: The IIC address of the PIC, the ID of a transmitter,
the ID of the data channel being modified, and the new
data value for that channel.

Such communication is accomplished by a lower level suite
of libraries that provide models for specific hardware. For
example, the library "UMNRobot BrainStem Components"
contains implementations for controlling many sensors and
actuators through the BrainStem board. Similarly,
"UMNRobot V4L Components" contains implementations
for video inputs that use the Linux video standards.

These libraries are not all intended for use in every robotic
application. Instead, each application developer picks the
set of libraries appropriate to the hardware in use and only

Figure 7: Simplified UML diagram of the libUMNRobot object model.

compile against the relevant implementations. In this way,
many robots can use the same generic interfaces for
different underlying implementations while maintaining
installation footprints that are as small as possible.

B Incorporating the COTS Scout into the UMNRobot
framework

Because this framework is the basis for the ongoing
development of the MegaScout platform and because there
was interest in validating the idea that the same framework
could be applied to distinct robotic platforms, it was
decided that the new computer control system for the
COTS Scout would be written against libUMNRobot.
These modifications first required expansion the core
libraries and then the addition of a new package dedicated
to the COTS Scout. Each step is discussed below.

The UMNRobot core packages were expanded first to
contain a generic interface for RC communication, and then
a specific implementation based on proxying the IIC
packets discussed earlier through a BrainStem. Another
implementation could easily be added that communicated
with an IIC bus through some other conduit.
BrainStemComponents::RCMotor derives from Motor and
RCDevice. Similarly, RCDigitalSwitch extends
DigitalSwitch and RCDevice. These components can be

instantiated from XML descriptors jut like the previously
existing components.

The new COTS Scout package relies on the additions to the
UMNRobot core and provides an API for instantiating a
COTS Scout::Robot object through a derivative of
RobotFactory. An example of an XML descriptor file for a
COTS Scout can be seen in Figure 8, which illustrates all
the configurable parameters of each component.

IV. TESTING

As a test for the whole structure that was built in phases
one and two, a simple interface was built to allow a human
to drive the robot. The application was a text-based
application for a Linux console, and it was run on the
machine used for prototyping MegaScout software. The
program accepts directional input from the user by means
of keyboard arrow keys. The space bar provided an
immediate stop function.

This application made it possible to drive the robot
effectively. It was necessary to calibrate the zero point of
the servos for the robot so that a command packet of zero
actually caused the corresponding wheel to stop. This
calibration was done empirically and the results were

<capability type="COTSScout::Robot" name="Robot">

<capability type="UMNRobot::CommonComponents::Wheel" name="PORT_WHEEL">
<parameter name="diameter" type="float" value="8.25" />
 <capability type="UMNRobot::BrainStemComponents::RCMotor" name="MOTOR">
 <parameter name="range-min" type="int" value="-100" />
 <parameter name="range-max" type="int" value="100" />
 <parameter name="pic-i2c-address" type="unsigned int" value="100" />
 <parameter name="transmitter-id" type="unsigned int" value="0" />
 <parameter name="channel-id" type="unsigned int" value="1" />
 <parameter name="invert" type="bool" value="t" />
 <parameter name="offset" type="int" value="140" />
 <parameter name="brainstem-id" type="unsigned int" value="2" />
 </capability>
</capability>

<capability type="UMNRobot::CommonComponents::Wheel" name="STARBOARD_WHEEL">
<parameter name="diameter" type="float" value="8.25" />
 <capability type="UMNRobot::BrainStemComponents::RCMotor" name="MOTOR">
 <parameter name="range-min" type="int" value="-100" />
 <parameter name="range-max" type="int" value="100" />
 <parameter name="pic-i2c-address" type="unsigned int" value="100" />
 <parameter name="transmitter-id" type="unsigned int" value="0" />
 <parameter name="channel-id" type="unsigned int" value="0" />
 <parameter name="invert" type="bool" value="f" />
 <parameter name="offset" type="int" value="120" />
 <parameter name="brainstem-id" type="unsigned int" value="2" />
 </capability>
</capability>

<capability type="UMNRobot::CommonComponents::VideoSource" name="CAMERA">
 <description>Camera</description>
 <parameter name="port" type="unsigned int" value="0" />
 <parameter name="video-set-name" type="string"
 value="FRAMEGRABBER" />
 <capability type="UMNRobot::BrainStemComponents::RCDigtialSwitch" name="CAMERA_POWER_SWITCH">
 <description>Switch that turns the video transmission on and off.</description>
 <parameter name="pic-i2c-address" type="unsigned int" value="100" />
 <parameter name="transmitter-id" type="unsigned int" value="0" />
 <parameter name="channel-id" type="unsigned int" value="2" />
 <parameter name="invert" type="bool" value="f" />
 <parameter name="brainstem-id" type="unsigned int" value="2" />
 </capability>
</capability>

<capability type="UMNRobot::V4LComponents::VideoSet" name="FRAMEGRABBER">
<description>Picasso PC104-2SQ Framegrabber</description>
<parameter name="video-device-number" type="unsigned int" value="0" />
</capability>

</capability>

Figure 8: A sample XML descriptor for a COTS Scout object.

specified to the control architecture in the XML descriptor.
Due to the nature of the program and the poor precision of
the robot's components, the robot turned sluggishly at high
speeds and was difficult to drive exactly straight. With
more work spent on the algorithm for selecting speeds
based on input keystrokes a more natural control interface
could be developed.

This application highlighted one of the known problems
with the COTS Scout platform: adjustment of wheel trim.
The servos used in the robot do not provide a constant
output for the same inputs. The data value used to stop the
motors shifts over time, and the exact speeds during motion
appear to vary slightly as well. The result is that keeping
the robot stationary requires constant intervention. When
combined with the irregularity and flexibility of the wheels,
this arbitrary variation in motor output makes controlled,
straight motion difficult to achieve.

V. FUTURE WORK

In order for a working MegaScout to control a team of
COTS Scouts, it will first be necessary to produce a
compact version of the electronics that can be placed in a
MegaScout sensor bay. The components are sufficiently
small to make this possible.

The availability of a programming API for the COTS Scout
brings a range of new applications into reach. Ideas for
such applications and specific plans are discussed below.

A WindowsCE teleoperation unit for the MegaScout was
recently completed. This system runs on a Compaq iPaq
and provides streaming digital video, streaming sensor data
and the ability to drive the robot. The interface can now be
easily adapted to drive the COTS Scout. Alternatively, the
interface could be expanded to allow the user to switch at
runtime between the control of a MegaScout and one more
COTS Scouts controlled via the MegaScout. This would
allow video-based teleoperation of an entire robot team
from a single hand-held device.

Many possible autonomous applications for a single COTS
Scout exist. A hide-in-darkness behavior similar to the one
implemented on the original scouts is possible. A visual
feedback loop that automatically adjusts the wheel trim of
the robot would be very helpful. Possible applications for
teams of robots include recognition of other robots,
formation driving, and follow-the-leader. A larger robot
like a MegaScout may eventually be equipped with a
marsupial system for carrying a fleet of COTS Scouts into
an environment. COTS Scouts would then need to be able
to explore and return to the base of operations.

VI. ACKNOWLEDGEMENTS

This material is based upon work supported by Microsoft
Corporation, the National Science Foundation through
grant #EIA-0224363, and the Defense Advanced Research
Projects Agency, Microsystems Technology Office
(Distributed Robotics), ARPA Order No. G155, Program
Code No. 8H20, issued by DARPA/CMD under Contract
#MDA972-98-C-0008.

Everyone at the Center for Distributed Robotics especially
Andrew Drenner, Derek Goerke, Colin McMillen, Sascha
Stoeter, Kristen Stubbs, and David Waletzko helped in the
development COTS Scout and MegaScout platforms. This
work would not have been possible without their efforts.

VII. REFERENCES

[1] Y. U. Cao, A. S. Fukunaga, and A. B. Khang. Cooperative mobile

robotics: Antecedents and directions. Autonomous Robots, 4(1), pp.7
-27, Mar. 1997.

[2] A. Drenner, I. Burt, B. Kratochvil, B. J. Nelson, N.
Papanikolopoulos, and K. B. Yesin. Communication and mobility
enhancements to the scout robot. In Proc. of the IEEE//RSJ Int'l
Conf. on Intelligent Robots and Systems, Lausanne, Switzerland, Oct.
2002.

[3] D. F. Hougen, J. C. Bonney, J. R. Budenske, M. Dvorak, M. Gini,
D. G. Krantz, F. Malver, B. Nelson, N. Papanikolopoulos, P. E.
Rybski, S. A. Stoeter, R. Voyles, and K. B. Yesin. Reconfigurable
robots for distributed robotics. In Government Microcircuit
Applications Conf., pp. 72-75, Anaheim, CA, Mar. 2000.

[4] Y. Ishida, H. Asama, S. Tomita, K. Ozaki, A. Matsumoto, and I.
Endo. Functional complement by cooperation of multiple
autonomous robots. In Proc. of the IEEE Int’l Conference on
Robotics and Automation, pp. 2476-2481, 1994.

[5] D. Rus and K. Kotay. Versatility for unknown worlds: Mobile
sensors and self-reconfiguring robots. In A. Zelinsky, editor, Field
and Service Robotics. 1998.

[6] J. Spofford, D. Anhalt, J. Herron, and B. Lapin. Collaborative
robotic team design and integration. In Proceedings of SPIE
Unmanned Ground Vehicle Technology II, Apr. 2000.

[7] S. A. Stoeter, P. E. Rybski, K. N. Stubbs, C. P. McMillen, M.
Gini, D. F. Hougen, and N. Papanikolopoulos. "A robot team for
surveillance tasks: design and architecture." Robotics and
Autonomous Systems, Elsevier, vol. 40/2-3, pp. 173-183, September
2002.

	Conference Program
	Author Index
	Main Menu

