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In this paper, a strategy that combines a single-layer 
feedforward network model with self tuning indirect 
adaptive control, is proposed. The proposed control 
structure is based on the single-layer feedforward network 
model linearization at every operating point. A standard 
linear state space model of the form 

)k(Ku)k(Hx)1k(x +=+  is derived and a state space 
feedback decoupling controller u )k(Gx)k(Fr)k( −=  is 
applied.  

Abstract – In this paper a real time control technique for a 
nonlinear multivariable system is presented. The proposed 
technique is a hybrid approach, which combines the ability of 
a single-layer feedforward neural network for modeling 
purposes and a linear control law to design the controller, 
providing a bridge between the field of neural networks and 
the well known linear adaptive control methods. To solve the 
control problem in this paper, we consider that the state of 
the system is accessible. Simulation results are presented 
toward the end of the paper to show the effectiveness of the 
proposed methodology. 

With simultaneous online training of the single layer 
feedforward neural network and control synthesis the 
resulting algorithm is an indirect adaptive control law.  

 
I. INTRODUCTION 

There has been considerable interest in the past few 
years in exploring the applications of artificial neural 
networks for identification and adaptive control of 
dynamical systems [1]-[7].  

The proposed method is applied to the nonlinear 
multivariable system given in [8]. The simulation results 
given at the end of the paper show the effectiveness of the 
proposed hybrid approach with respect to set-point 
tracking. 

It has been realized by systems theorists that most real 
dynamical systems are nonlinear [6]. However, 
linearizations of such systems around the equilibrium 
states yield linear models which are mathematically 
tractable. In particular, based on the superposition 
principle, the output of the system can be computed for any 
arbitrary input, and alternately, in control problems, the 
input which optimizes the output in some sense can also be 
determined with relative ease. In adaptive control 
problems, where the plant parameters are assumed to be 
unknown, the fact that the latter occur linearly makes the 
estimation procedure straightforward. While the above 
facts are responsible for the popularity of linear models in 
theoretical studies, the fact that most nonlinear systems 
thus far could be approximated satisfactory by such models 
in their nominal ranges of operation has made them 
attractive in practical contexts as well. It is this combined 
effect of ease of analysis and practical applicability that 
accounts for the greet success of linear models and has 
then the subject of intensive study for over four decades. 

The paper is organized as follows: In section II the 
mathematical preliminaries related to control of linear 
decoupled multivariable systems is given. Section III 
introduces the problem to solve in detail. In section IV the 
network architecture used for the identification process is 
given. Section V study the linearization of the  nonlinear 
process obtained from the neural network. In section VI 
the algorithm that used to solve the control problem is 
stated in details. Section VII gives the simulation study on 
a real example. A comparison with other works is given in 
section VIII to show the effectiveness of the proposed 
method. 

 

II. MATHEMATICAL PRELIMINARIES 
A discrete-time linear multivariable system with m 

inputs and m outputs can be described by the state 
equations 
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Most of he results reported in the above literatures of the 

adaptive control of nonlinear dynamical systems are 
related to a single-input single-output systems. But most 
practical systems have multiple inputs and multiple outputs 
(MIMO) then our interest in this paper is to study the 
problem of controlling nonlinear multivariable systems 
when the state variables are accessible.  

where  is the state vector at instant k, 

 is the input vector, and  is the 
output vector. A, B, and C are constant matrices and are 
assumed to be known. Our objective is to determine the 
control input u  such that the output  of the plant 
tracks a desired output vector  asymptotically, that 
is, 
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limk . A closely related problem 
is one of decoupling. In this case, a reference input m-
vector  is defined and a control input has to be 
generated so that  affects only one component  
of the output for i

)k(yi

m ,= . As seen from the 
following, weather or not a multivariable system can be 
decoupled depends upon the relative degrees of the outputs 

The problem of controlling a plant can be conveniently 
divided into the regulation and tracking problems. In the 
former, the main objective is to stabilize the plant around a 
fixed operating point. In the later, the aim is to make the 
output of the plant follow a specified signal asymptotically. 
While our ultimate goal is to determine the control input, 
u, based only on output measurement for both regulation 
and tracking. We will confine our attention in this paper to 
the problem of tracking when the state variables of the 
multivariable system are accessible. 



with respect to the inputs, or alternatively, upon the delay 
between each input-output pair.      

hence, using state feedback, the output of the plant can be 
made to the desired output . )k(r

By the successive application of (1) we obtain  In the following we will show how (5) can be used as an 
adaptive linear controller for a nonlinear multivariable 
system. 
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III. STATEMENT OF THE PROBLEM 
Consider a discrete-time nonlinear multivariable system 

S be described by the state equations 

S:
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                         (6) If the system is controllable (i.e., the  matrix nmn×
[ ]B , ,BA ,BA 2n1n −−
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 is of rank n), any initial state can be 
transferred to any final state in at most n steps. Using the 
relation , the following equation for the 
value of the output at time  in terms of the states and 
inputs can be obtained: 

)
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where and  are the input, 

output, and state, respectively, at time t and .  
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Consider the reference input r  is defined as 

 is specified and 
the state variables are accessible. The control problem is to 
determine the input u  so that follows the 
reference input . Note that we consider that  is 
unknown and only input, output state variables are known.  
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For the case of an SISO system (when B is a vector), it 
readily follows that if  are zero but 

 is not zero, (3) reduces to 
BCA , CAB, ,CB 2-d

BCA 1d− Our primary objective in this paper is to suggest a 
hybrid method using a single-layer feedforward neural 
network and a state space feedback controller for dealing 
with control problem mentioned above.   
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In this case, the input-output pair is said to have a relative 
degree d. In the multivariable case, we can define, in a 
similar fashion, the relative degree  for each input-
output pair ( . If ,  is called the 

relative degree of the ith output . It corresponds to the 
minimum time delay between any one of the inputs and the 
ith output. 
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Some prior information concerning the system is 
required to determine the controller which are the order of 
the system and relative degree of each output . For 
known system some additional conditions are required to 
determine the controller as given in [8] which are: 

id iy

1) the linearized system  is controllable observable and 
can be decoubled using state feedback. 

SL

Let  be the ith row of . Considering the row vector 

, only those elements that are nonzero 
correspond to inputs from which the delay is  to the 
output . Let the matrix  be defined such that its ith 

row . It is well known [9] that the system 
(1) can be decoupled iff 
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E  is nonsingular. Qualitatively, 
this implies that the delays through the system are such 
that there is adequate freedom to control one output by one 
input.   

2) the plant satisfies the minimum phase condition.   
 

IV. NETWORK ARCHITECTURE 
The network architecture used in this paper depends on 

the concept of relative degree of a nonlinear multivariable 
system S given below. 

The vector relative degree of a multivariable system S 
can be defined as the vector  where 

 denotes the relative degree of the ith output. The latter, 
in turn, is the minimum of the relative degrees of the ith 
output with respect to all the inputs. It can be shown that if 
the vector relative degree exists for the multivariable 
system S, in some neighborhood 

T
m21 ]d, ,d ,d[d =

id

Ω  of the equilibrium 
point ( 0u ,0x == ), the nonlinear system S can be 
expressed as 

The following representation of linear multivariable 
systems, which can be derived from the above procedure, 
is important for the developments given in sections IV and 
V. 
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if the desired output vector  the desired value of the 
vector on the left-hand side of (4)  is denoted by , 
it follows that the desired  can be expressed as a 
linear combination of  and  so that  
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Assume that the unknown nonlinear multivariable 
system to be considered is expressed by (7) where 

and . The single-layer 
feedforward network architecture used in this case is 
shown in Fig. 1, in which the input layer is composed of 
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+  nodes for n states, m inputs all at time k and 
an additional node for input bias its value is always 1 (note 
that: we consider that this additional input is add to the set 
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inputs of the system at time k and then the network has 
m+1 inputs) and the output layer of m nodes for the m 
outputs of the system at times m21 dk , ,dk ,dk +++

n,myx ℜ∈

. 

The interconnection matrices are W  and 
, respectively among the output-state nodes 

and output-input nodes.    
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Fig. 1. The neural network structure. 

The dynamics of the network is described by the following 
equations: 

ˆ)dk(ŷ jj Ψ=+                             (8) 
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The activation functions Ψ̂  are hyperbolic tangent given 
by (10) 
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Then the neuro model for the system (7) can be expressed 
as 

x[ˆ)dk( jj Ψ=+                     (11) 
In section VI we will show the training process used to 

serve our purpose of controlling the unknown nonlinear 
multivariable decoupling system (6).    

 
V. LINEARIZATION OF THE NEURAL MODEL 

The neural model k(ŷ j +  is a 
nonlinear function. However it is possible to derive a linear 
model by computing the derivatives from the outputs with 
respect to the inputs of the network (x(k),u(k)). The 
linearized system is given by 
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where the two matrices H and K are of orders  and 
 respectively which are defined by 
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Experimentally, the linearized system (12) is similar to the 
linear system given in (4). Then a linear controller similar 
to (5) can be derived so that outputs of the system at times 

 become close as possible to a 
specified corresponding setpoints   

mdk , +

In the following section, the algorithm that describe 
simultaneous online training of the single-layer 
feedforward neural network and control synthesis using the 
linearization process mentioned above is given in detail. 

Also we will see that the resulting algorithm is an indirect 
adaptive control law. 

 

VI. ALGORITHM DESCRIPTION 
Assume that the unknown nonlinear system to be 

considered is expressed by (7). The purpose of our control 
algorithm is to select a control signals 

, such that the the outputs of the 
system at times 

(k)u , ),k(u ),k(u m21

1dk m2 dk , ,dk , +++ , are made as 
close as possible to a prespecified setpoints 

  ).k(r , ),k(r ),k(r m21

Fig. 2 shows the adaptive control structure using a 
single-layer feedforward neural network which consists of 
1) the system (7). 
2) a single-layer feedforward network which estimates 

] , , ,[ m21 ΨΨΨΨ = .  
3) a controller realized by the linearization of the neural 
model. 

 
Fig. 2. Adaptive control structure using single layer 

network. 
The neuro model  for the unknown system (7) can be 
expressed as  (11) 

]u(k) ),k(x[ˆ)dk(ŷ jj Ψ=+  

where )dk(ŷ jj +  is the jth output of the neural network 

and Ψ̂  is the estimate of the functons m21  , , , ΨΨΨ . The 
training algorithm used guarantees that 
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)dk(ŷ jj +  is also referred to as a predicted jth output of 
the system (7) at time . The objective function J is 
defined as follows: 
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)dk(ŷ)dk(y)k(e jjjjj +−+= .                     (17) 

The elements of the gradient of J with respect to both W  
and W is given by the following two equations 
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The weight changes may be made along the negative 
gradient of of J by means of the equations 
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Once change of the weights occur, the linearization process 
start using the process stated in section V. Then the 
linearized system of the form (12) 

u(k) K)k(x H)dk(ŷ̂ jj +=+  
is obtained . 

Having a linear model describe the process the state 
feedback control low can be defined by 

)k(Gx)k(Fr)k(u −=                          (22) 
more details of the process can be find in the simulation 
results. 

Then equation (22) can now be used in computer 
program for real time control.  
A pesudocode outline of the algorithm is presented below:  
Select initial weights 
Select the state 
Select the values of  the desired set points r(k) 
u(k) = any random value (very small) or equal to zero. 
Repeat up to approximately no change occur in the control 
signal 
     { 

produce  using (11); )dk(ŷ jj +

find  using (16); J
update the weights using (18), (19), (20) and (21); 
find the linearized model (12); 
compute new control signals u(k+1) using  (22); 

)1k(u)k(u += ; 
    } 
 

VII. SIMULATION RESULTS 
In this section, we describe the application of the 

proposed model on a real problem. Note that the learning 
used for the network used in this example takes the value 
0.001. The values of both a and b in the activation function 
takes the values 1 and 8 respectively and random initial 
weights in the range ( .       0.1) ,1.0−

Example: 
The plant considered here is a third-order system given 

in [8] with two inputs and two outputs and is described by 
the state equations 
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where  represents the state, 

 the input, and 

 the output, at instant k. The 

delay from either of the inputs to  is unity, and the 

delay to  is three from input u  and two from input 

. Hence, 
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which can also be described by the input-output equations 
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The linearized system is controllable, observable, and is 
of minimum phase. Hence, a nonlinear decoupling 
controller exists for the nonlinear plant in a neighborhood 
of the origin. Our objective is to realize this nonlinear 
controller using neural networks to make the two outputs 

 and  follow two independent reference 

signals  and , respectively. We assume that 

 and  are 
specified at instant k. Hence, the control problem is to 
determine a control input u(k) so that 
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Using the network architecture and Algorithm given in 

sections IV and VI it was found that: 
The state input output neural model obtained in this case 

is given by: 
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where u2 =  is the additional input used for bias.  
After a weight change obtained using (20) and (21) the 

linearization process started using the method given in 
section IV which in our example is given by 
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Because our objective is to determine a control input 
u(k) so that outputs of the network i.e )1k(y1 +  and 

)2k +  follow a prespecified setpoints  and 
. We have to find a control low that match our 

purpose. In our method we use a control low similar to that 
given in (5). Then we replace  and  
by the desiresd prespecified setpoints  and . 
Then we have to find a control signals  and  in terms 
of the states and desiresd prespecified setpoints. The 
process is shown in the following equations: 
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The processes of the training, linearization, and 
obtaining the control signals are continued until no change 
occur in the control signals. 
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            (24) The performance of the proposed method for controlling 
the system given in this section was tested with the 
sinusoidal reference inputs given by 
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is shown in figures  3, 4, and the control signals are shown 
in Fig. 5. 
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Fig. 3. Performance of linear controller when the plant 
equations are unknown; solid line is the desired output, and 
dotted line is the actual output of the plant.   
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      (25) 

Fig. 4. Performance of linear controller on a linearized 
model; solid line is the desired output, and dotted line is 
the output of the linear model.   
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equation (25) represent the state feedback control low used 
which is similar to that given in (5). 

Once the control signals are obtained using  (25) it can 
be used instead of the old value. 

Fig. 5. The required control signals; solid line represent 
 and dotted line represent u .  1u 2

 



VIII. COMPARISON WITH OTHER WORKS 
In this section, we will make a comparison between the 

model given above to obtain a multivariable decoupling 
controller with that given in [9] (section 5.3) to solve the 
same problem.  

As was stated in [9], for the identification of the 
multivariable plant as well as for the design of the 
nonlinear decoupling controller, three-stage procedure is 
usually employed.  
1) Identification;  
2) Off-line controller design; 
3): On-line adjust of identifier and controller. 

Both identifier and controller are updated at every time 
instant based on their respective errors, the former using 
static back propagation and the latter using dynamic back 
propagation. 

From above, it is clear that, dynamic back propagation 
needs to be used to adjust the controller parameters which 
is quite slow and computationally intensive as compared to 
their static counterparts for computation of u(k).  

The performance of the controller in this case was tested 
with the sinusoidal reference inputs given in equation (26) 
and it is shown in Fig. 6 and the control signals are given 
in Fig. 7. 

In comparison between the mode proposed in this paper 
and that given in [9] it was found that: 
1) the model presented in this paper use a simple training 
algorithm. In the method present in [9], the training 
process involves dynamic gradient methods which are 
computationally intensive. 
2) the performances given by the model given in this paper 
are more accurate than that obtained by the method given 
in [9]. 

IX. CONCLUSION 

In this paper a strategy of using a single-layer 
feedforward neural network with a conventional linear 
controller is developed. The result strategy is an indirect 
adaptive control scheme. The ability of a single layer a 
conventional decoupling technique was used to derive the 
adaptive control law.neural network, with on line learning, 
was used to the identification of an arbitrary dynamic 
nonlinear system and a conventional decoupling technique 
was used to derive the adaptive control law.  
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Fig. 6. Performance of neural network controller when the 
state variables are accessible, but the plant equations are 
unknown; solid line is the desired output, and dotted line is 
the actual output of the plant. 
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Fig. 7. The required control signals; solid line represent 

 and dotted line represent u .  1u 2

 
The effectiveness of this strategy was validated in a 

multivariable real system. A comparison between the 
model proposed and that given in [9] is made in section 
VIII.  

From the simulation studies shown in section VII it was 
found that the performances of the controller described is 
very perfect than that given in section VII to solve the 
same problem. 

The advantage obtained from using the strategy given in 
this paper than that obtained in section VII are (1) the 
control input u(k) can be obtained easily from the 
linearization process, (2) the identification model use a 
simple training process with a simple architecture network.
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