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Abstract— In this paper, the performance evaluation of two
configurations of the Multiple-Model Adaptive Estimation (MMAE)
algorithm is shown for identification and modeling of a complex
Mass-Spring-Dashpot (MSD) system. The algorithms compare two
distinct MMAE strategies using either constant-gain or time-
varying gain Kalman filters to identify the true model of the MSD
system. Assuming that the true MSD model belongs to the set of
models adopted, simulation results of the constant-gain and time-
varying gain MMAE algorithms (under a variety of different sensor
configurations, measurement noise, and mass uncertainties) show
that both MMAE algorithms identify the true model of the MSD
system and are robust to uncertainties. Furthermore, identification
achieved by time-varying gain MMAE algorithms shows a slight
improvement over constant-gain MMAE algorithms. 1

Index Terms— Multiple-Model Adaptive Estimation, Kalman
filtering, System Identification and Modeling

I. INTRODUCTION

Mass-Spring-Dashpot (MSD) systems arise in many applications
in industrial and manufacturing systems, automotive active suspen-
sions, flexible manipulators, and space structures to name but a few.
Many works dealing with estimation and identification problems
in such applications have been carried out. There is, however, a
growing need to develop fast-robust estimators under parameter
uncertainties. Most estimation algorithms, such as the Kalman
Filter (see e.g., [1], [2]), are based on the nominal system model.
However, in many cases, there are uncertainties in model param-
eters and even model structures. Estimators, which are designed
without taking into account parameter uncertainties, may perform
quite poorly in such applications. This problem has been addressed
in the literature in the scope of robust estimator designing with
performance-robustness in the presence of model uncertainties. The
so-called multiple-model adaptive estimation (MMAE) methodology
is a model-based adaptive estimation strategy using a set of models
rather than insisting a single model (see, e.g. [1]-[3]). The MMAE
can be used to handle parametric uncertainties and hence has
become popular for many applications (see, e.g., [4]-[7]). In this
paper, MMAE algorithms using either constant or time-varying
gain Kalman filters as well as steady-state or time-varying residual
covariance matrices are evaluated for identification of a complex
MSD system in the presence of uncertain masses. Each mass in
any configuration of the MSD system has a specific nominal value,
but is considered uncertain and can vary between known limits.
The MSD system is drived by the deterministic control forces.

1This work was supported in part by a PhD grant from the FCT
(Portuguese Foundation for Science and Technology) under program
Ref. SFRH/BD/6199/2001.

There are external disturbances on the masses and measurement
noise on the sensors under Gaussian assumptions. We assume
that the true MSD system belongs to set of N models designed
in the architecture of the MMAE. In Sections II and III, the
Kalman filter and the MMAE algorithm are discussed briefly. In
Section IV, the dynamical MSD system is introduced. Simulation
results are shown for both seady-state gain and time-varying gain
MMAE algorithms under different noisy measurement assumptions
in Section V. Concluding remarks and discussion about performance
evaluation of the MMAE identification strategies are summarized
in Section VI.

II. DISCRETE-TIME KALMAN FILTERING

The Kalman filtering (KF) algorithm, perhaps, is the best-
known estimation method for linear systems where its important
(and desirable) property is that it converges when the system is
stable and time-invarient [1]. It can be implemented in the linear
continuous-time or discrete-time systems based on the Bayesian
state estimation. For the sake of using MMAE methodology, the
discrete-time version KF has been used in this study.

Consider the kth model of a dynamical system

xk(t + 1) = Akxk(t) + Bku(t) + Lkξ(t) (1)

zk(t + 1) = Ckxk(t + 1) + θ(t + 1) (2)

where xk(t) ∈ Rn is the state vector of thekth model at time t,
uk(t) ∈ Rm is the control input (which in mechanical systems is
the various actuators),zk(t) ∈ Rr is the noisy measurement vector,
ξ(t) ∈ Rp is white noise process andθ(t) ∈ Rr is measurement
noise.

The fundamental problem associated with such a linear system
is to compute the best estimate of the statex(t) from the noisy
measurements{z(τ); 0 ≤ τ ≤ t} using a discrete KF, which is
driven by the control vector u(t) as well as the noisy measured
output. The KF based on kth model generates a state estimate
vector x̂k(t) and an output estimate vectorẑk(t + 1|t) as shown in
Fig. 1.

The recursive KF algorithm minimizes the covariance of the
estimation error using two cycles,prediction cycle that propagates
the state mean using a model of system dynamics andupdate cycle
that updates the predicted mean with measurement information.
The prediction and update cycles are repeated for each available
measurement. The solution of KF for thekth model, utilizing these
two cycles, is provided below.
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Fig. 1. The discrete-time Kalman filter

Prediction cycle: The predicted state covariance matrixΣk(t + 1|t)
together with the predicted state estimatêxk(t + 1|t) at time t + 1,
are computed as

x̂k(t + 1|t) = Akx̂k(t|t) + Bku(t) (3)

Σk(t + 1|t) = AkΣk(t|t)AT
k + LkΞkL

T
k (4)

where Σk(t|t) is the updated state covariance matrix at timet
with the given state covariance of thekth model at time 0, Σk0 =
Σk(0|0), and Ξ is the intensity matrix of the white noise process.
Update cycle: The updated state estimatex̂k(t + 1|t + 1) and the
updated error covariance matrix Σk(t + 1|t + 1) at time t + 1 are
defined in (5) and (6), respectively.

x̂k(t + 1|t + 1) = x̂k(t + 1|t) + Hk[zk(t + 1) − Ckx̂k(t + 1|t)] (5)

Σk(t + 1|t + 1) = Σk(t + 1|t).

[I − C
T
k S

−1
k (t + 1)CkΣk(t + 1|t)]

(6)

The so-called residual covariance matrix of thekth model at time
t + 1 is defined as

Sk(t + 1) = cov[rk(t + 1); rk(τ + 1)] = CkΣk(t + 1|t)CT
k + Θ (7)

where Θ is intensity matrix of the measurement white noise. The
KF gain matrix of the kth model, Hk(t) ∈ Rn×r, is defined as

Hk(t) = Σk(t + 1|t + 1)CT
k Θ−1 (8)

The residual vector of thekth model at time t + 1 is

rk(t + 1) = z(t + 1) − ẑk(t + 1|t) (9)

which is depicted in Fig. 1.

III. MULTIPLE-MODEL ADAPTIVE ESTIMATION (MMAE)
ALGORITHM

The Multiple-Model Adaptive Estimation (MMAE) filter archi-
tecture is shown in Fig. 2 where the unknown plant can be a linear
time-varying system with the stochastic inputs. The dynamical
model of the plant is assumed to belong in the given model set.
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Fig. 2. Visualization of the MMAE Filter

Let us assume the set of past controls and measurements to
be Z(t) = {u(0), u(1), u(2), . . . , u(t− 1), z(1), z(2), . . . , z(t)}. This
vector drives the MMAE filter to generate both the updated state
estimatex̂(t|t) and the state covariance matrixΣ(t|t) of the present
state vectorx(t) using (10)-(11). respectively.

x̂(t|t) = E{x(t)|Z(t)} (10)

Σ(t|t) = E{[x(t) − x̂(t|t)][x(t) − x̂(t|t)]T |Z(t)} (11)

The equations (10)-(11) show that the MMAE filter updates the
state estimate and covariance matrix at any time a new control is
applied or a new sensor measurement is obtained.

The objective of developing the MMAE architecture is to identify
an unknown linear system and estimate its state variables. In
the MMAE algorithm, as shown in Fig. 3, we construct a bank
of N parallel Kalman filters. Each KF is being matched to the
corresponding model. Assume that the unknown system is one of the
N known linear systems, but we do not know at the initial time t=0
which one. Thus, at time t=0 each one of the N models has the same
initial probability of being the true one. Each KF is driven by the
same deterministic control applied to the unknown system as well
as by the noisy measurements generated by the unknown system.
Then each KF generates a local state estimate and a residual signal,
together with state-covariance and residual-covariance matrices,
see(5)- (9). It is then possible to evaluate in real time theposterior
probability, Pi(t), that each of the N models is indeed the unknown
system, given the measurements up to time t. The optimal state
estimate is obtained by weighting the individual Kalman filter state-
estimates by the respective posterior probabilities. We can also
calculate the correct (global) state-covariance matrix on-line. The
theory guarantees that as we obtain more and more measurements,
the unknown system will be identified with probability one, see
e.g., [3]. All of the N available KF residual vectors are used to
generate (on-line) the posterior probabilities for t = 1, 2, . . . ,∞,
defined as
Pk(t) = Prob{kth model is true model|Z(t)} ∀k = 1, 2, . . . , N .
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Fig. 3. The architecture of the MMAE Filter structure

It has been shown that maximum likelihood and related Bayesian
identification procedures converge to a model in the model set,
which is closest to the actual system generating the observations
in the information distance measure even if the model set under
consideration does not necessarily include the observed system [8]-
[9]. We have consequently assumed that the true model is included
in the given model set in studying of identification and modeling
results.



The initial probabilities called prior probabilities are assumed
to be given asPk(0), such that ΣN

k=0Pk(0) = 1 and Pk(0) ≥ 0
for all k = 1, 2, . . . , N . The dynamics of the posterior probability
evaluator, as a probability weighting computation unit, are shown
in (12)-(14) in which the prior probabilities Pk(0) are known and
rk(t) and Sk(t) are the residual vector and the covariance matrix
of the kth Kalman filter, respectively. See(7)-(9).

Pk(t + 1) =
βk(t + 1)e−

1

2
wk(t+1)

∑N
j=1 βj(t + 1)e−

1

2
wj(t+1)Pj(t)

Pk(t) (12)

βk(t + 1) =
1

(2π)m/2 det Sk(t + 1)1/2
(13)

wk(t + 1) = r
T
k (t + 1)S−1

k (t + 1)rk(t + 1) (14)

After computing all posterior probabilities Pk(t) for all hypotheses
(models) at timet, the state estimate and the state covariance matrix
are computed as

x̂(t|t) =

N∑
k=1

Pk(t)x̂k(t|t) (15)

Σ(t|t) =
N∑

k=1

Pk(t).

[
Σk(t|t) + [x̂k(t|t) − x̂(t|t)] [x̂k(t|t) − x̂(t|t)]T

] (16)

It should be noticed, (see [1], [3]), that the time-varying gain
MMAE is a truly optimal estimator, in the sense that it computes
the conditional mean and covariance of the state, under Gaussian
assumptions. Thesuboptimal constant-gain MMAE algorithm uses
steady-state KF, in the sense that each KF gain,Hk(t), in Eq. (8)
is replaced by its constant steady-state value,Hk. Also, the
residual covariance matrices,Sk(t), in Eq. (7) are also replaced
by their constant steady-state values,Sk, and used in the posterior
probability evaluation of Eq. (12).

IV. DYNAMIC MODEL OF THE MSD SYSTEM

As a case study, consider a continuous-time eighth order LTI
mass-spring-dashpot system shown in Fig. 4. In this figure,xi and
xi+4 denote the position and velocity, respectively, of massMi(i =
1, 2, 3, 4).

Fig. 4. The MSD system

Let us take the position and velocity of each mass as states to
be x(t) = [x1 x2 x3 x4 ẋ1 ẋ2 ẋ3 ẋ4]

T (measuring from equilibrium).
The continuous-time dynamics of the motion are

ẋ(t) = Ax(t) + Bu(t) + Lξ(t) (17)

z(t) = Cx(t) + θ(t) (18)

where A, B, C, and L are continuous-time state matrix, input
matrix, output matrix and process noise gain matrix, respectively
as follow.

A =

[
04×4 I4×4

A21 A22

]

A21 =



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B =

[
04×4

B21

]
; B21 = diag(1/mi); L =

[
04×4

L21

]
; L21 = diag(li/mi)

C =




[ 0 0 1 01×5 ]; one position measurement (z3)[ 1 0 0 01×5

0 0 1 01×5

]
; two position measurements (z1 and z3)

[ I4×4 04×4 ] ; four position measurements (z1, . . . , z4)

(19)

The equations above indicate that we have treated the external forceu as
the control input. There are, however, external forces (plant disturbances)
that affect the system and act despite our will. It should also be emphasized
that we shall discretize the continuous-time MSD system together with all
the models to obtain the correspondent discrete models so as to apply
the discrete-time MMAE methodology. [Ak, Lk] and [Ak, Ck] are assumed
stabilizable and detectable for all models, respectively.

V. SIMULATION RESULTS

We evaluate the system in three different sensor combinations i.e. one, two
and four measurements. For the one measurement case, the only sensor in
the system measures the displacement of the third mass alone. There is noise
in this sensor. Similarly, for the two measurement case, the displacements of
the first and third masses and for four measurement case, all displacements
of all masses are measured. The average of 100 Monte-Carlo simulation
results are provided for both constant-gain and time-varying gain MMAE
algorithms. The statistical assumptions below have been used in our results.

• The measurement noiseθ(t) is a stationary white noise (sensor noise)
with intensity matrix Θ.

• The process noiseξ(t) is a stationary white noise with intensity matrix
Ξ.

• ξ(t) and θ(t) are Gaussian, independent and there is no correlation
between them,cov[ξ(t); θ(τ)] = 0.

• The initial state vector x(0) is a Gaussian random variable with zero
mean and covariancecov[x(0); x(0)] = Σ0. It is also assumed to be
uncorrelated with all noises.

The nominal parameters of the MSD system (mass, damper and spring
stiffness coefficients) are assumed linear and time-invariant. Their values
convey natural frequencies less thanω = 10rad/sec and damping ratios
ζ ≤ 0.01 showing that the system is a lightly-damped MSD system. Table I
shows the mass coefficients of the true system and four different models used
in MMAE algorithms. The mass parameter setMi ∈ R

+ is a closed interval
Mi = {mi : mmin

i ≤ mi ≤ mmax
i }. For example, the trueM2 is an unit

mass for which the discrete mass model set isM2 = {0.5, 1, 2, 3}. For the
rest of masses, uncertainties are taken as0.5 ≤ M1 ≤ 3.0, 0.5 ≤ M2 ≤ 3.0,
0.2 ≤ M3 ≤ 2.0 and 0.5 ≤ M4 ≤ 3.0 whereas their true values are 2, 1,
0.5 and 1, respectively. Also, note that model #1 is always the correct model
of the MSD system.
Fig. 5 shows the control forceFu and Fc applied on the unknown mass and
the massM4, respectively. It is also assumed thatFc drives the massM2

when massM4 is uncertain. The other parameters used in the simulations
are listed below.

• Spring stiffness coefficients of the MSD system and all the models:
k = 10(i = 1, .., 5)

• Damping coefficients of the MSD system and all the models:bi =
0.01(i = 1, .., 5)

• Sampling time of simulations: Ts = 10msec (to translate it into a
discrete-time LTI system)

• Prior probabilities: Pk(0) = 0.25 ∀k = 1, 2, 3, 4
• Initial state vector of true system and all the models:x(0) = [0]8×1

• Covariance of the initial state: E{x0(t)xT
0 (τ)} = Σ0 = diag(0.1)

• Intensity of the process noise:Ξ = diag(1)
• Low measurement noise intensity:ΘL = diag(0.01)



TABLE I

THE MASS COEFFICIENTS OF ALL MODELS

Uncertain mass MSD system m1 m2 m3 m4

Model #1 (True) 2.00 1.00 0.50 1.00

Model #2 0.50 1.00 0.50 1.00

M1 Model #3 1.00 1.00 0.50 1.00

Model #4 3.00 1.00 0.50 1.00

Model #1(True) 2.00 1.00 0.50 1.00

Model #2 2.00 0.50 0.50 1.00

M2 Model #3 2.00 2.00 0.50 1.00

Model #4 2.00 3.00 0.50 1.00

Model #1(True) 2.00 1.00 0.50 1.00

Model #2 2.00 1.00 0.200 1.00

M3 Model #3 2.00 1.00 1.000 1.00

Model #4 2.00 1.00 2.00 1.00

Model #1(True) 2.00 1.00 0.50 1.00

Model #2 2.00 1.00 0.50 0.50

M4 Model #3 2.00 1.00 0.50 2.00

Model #4 2.00 1.00 0.50 3.00

• High measurement noise intensity:ΘH = diag(1.0)
• Elements inserted in the matrix gainL21 of the white noise process:

li = 10, see(19).
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Fig. 5. Driving forces used in the MSD and all models.Fu(t) and Fc(t)
are exerted on uncertain mass and the massM4, respectively.Fc(t) drives
the massM2 when the massM4 is uncertain.

Figs. 6-7 show the performance evaluation of the constant-gain MMAE
algorithms for three different measurement configurations i.e. using one
displacement measurement of massM3 (case 1), two displacement measure-
ments of massesM1 and M3 (case 2) and all displacement measurements of
all masses (case 3). As it can be seen from all simulation results, the posterior
probability of model #1, P1(t), reaches unity eventually (as it is expected)
certifying that MMAE algorithms recognize the correct model. Furthermore,
the identification and modeling results under the influence of low intensity
measurement noise are faster than those with high intensity measurement
noise. Figs. 6(a)-7(a) depict the posterior probability results associated with
uncertain mass M1 for all measurement cases. The displacement of the
uncertain massM1 is measured in both case 2 and case 3 and hence these
two cases identify the correct model, approximately at the same time, faster
than the case 1.

Figs. 6(b)-7(b) present the posterior probability results associated with
uncertain massM2 for all measurement cases. Since there is no measure-
ment on massM2 in case 1 and case 2, the case 3 identifies the correct
model faster than those cases. In fact, while all measurement cases identify
the correct model, identification of constant-gain MMAE algorithm with
four sensors is faster than other measurement configurations since it has
a measurement on uncertain mass. However, the identification process in
case 3 is faster only due to using the displacement sensor on massM2.

Figs. 6(c)-7(c) show the posterior probability results with uncertain mass
M3. As shown, since the displacement of the uncertain massM3 is measured
in all cases, the achieved identification yields almost equal results. Therefore,
putting additional sensors on the other certain masses seem fruitless as long
as the displacement of the uncertain mass is measured.

The identification results of the MMAE with uncertain mass M4 are
depicted in Figs. 6(d)-7(d) where case 1 and case 2 identify the correct

model closely. However, case 3 (which contains a measurement on uncertain
massM4 is faster than the cases 1 and 2.

The posterior probability of the model #1,P1(t), using time-varying gain
MMAE algorithms are shown in Figs. 8-9. Three different measurement
configurations are the same we used in constant-gain MMAE algorithms.
Similarly, under the influence of low measurement noise, time-varying gain
MMAE algorithms are able to identify the true model faster than that of
high measurement noise. One can see that parameter identification results of
the MSD system are similar to that of the constant-gain MMAE algorithms.
However, due to using the time-varying KF gains as well as the time-varying
residual covariance matrices in time-varying gain MMAE algorithms,
identification process achieved by time-varying algorithms are better than
the constant-gain MMAE algorithms. Also, similar to constant-gain results,
there is a noticeable time difference between system identification in case
1, case 2 and case 3 measurement configurations with uncertain massM2

or mass M4, as shown in Figs. 8(b)-9(b) and Figs. 8(d)-9(d), respectively.
It is also seen that using additional sensors in measurement configuration
in Figs. 8(c)-9(c), with an uncertain massM3, does not improve the filter
performance. However, significant improvement is obvious in other cases.

In conclusion, if there is no measurement on the uncertain mass, although
the true model can be identified properly, the identification process is
considerably slow. Using either MMAE algorithm, the more displacement
sensor approaches an uncertain mass, the better identification results are
gained which somehow makes intuitive sense! Thus, putting the sensors
on the uncertain masses to measure their displacements in the MMAE
algorithms is more informative rather putting on the known ones.

VI. CONCLUSION

In this paper, we presented the performance evaluation of two multiple-
model adaptive estimation algorithms for identification and modeling of a
complex mass-spring-dashpot system in the face of the mass uncertainties.
Simulation results illustrated that both constant-gain and time-varying gain
MMAE filters yield acceptable identification results in this MSD system
with mass uncertainties. The results obtained by the time-varying MMAE
methodology do not show significant improvement over that of the constant-
gain MMAE. Since constant-gain MMAE algorithms are computationally
much simpler, it is conjectured that they can be used with confidence
in other applications. Meanwhile, advances in computational speed and
digital parallel computer hardware and software make MMAE-type of
implementations more and more practical for very complex identification
and state estimation problems constructing more linear models within the
model set under consideration. Doing so, the MMAE algorithms would be
a better solution for identifying and modeling the actual-unknown plant
perfectly among the provided model set.
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Fig. 6. The posterior probabilities of the true model (#1) usingconstant-
gain MMAE under low intensity measurement noise
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Fig. 7. The posterior probabilities of the true model (#1) usingconstant-
gain MMAE under high intensity measurement noise
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Fig. 8. The posterior probabilities of the true model (#1) usingtime-
varying-gain MMAE under low intensity measurement noise
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Fig. 9. The posterior probabilities of the true model (#1) usingtime-
varying-gain MMAE under high intensity measurement noise
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