
 
Abstract: This paper deals with the model predictive control 
(MPC) with constraints. Each MPC application is based on a 
model – here, it is based on a Volterra model. Volterra model 
drawback is a lot of parameters, but making Volterra model of 
lower order means less parameters. Optimum is to find such 
model, which suits to process and has as low parameters as 
possible. This model predictive control is looking for optimal 
control value by using optimization techniques. It is examined 
on continuous mixed reactor. 
 
Keywords: MPC – model predictive control, optimization, 
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I. INTRODUCTION 

Model predictive control is well studied in the linear theory. 
Problems arise, when we need to control nonlinear 
processes. There are several ways how to solve this 
problem, whereby each one starts with finding a model. 
One possible way is to design a Volterra model of a 
process. Then MPC problem can be be solved by a lot of 
approaches [1], one of them is to reduce problem to a 
simple optimization task. Problems with constraints were 
solved by adding some penalization function to cost 
function. This theory was examined on a model of a 
chemical continuous mixed reactor described in Section 2. 
Main theoretical results on control and identification of 
Volterra models are presented in Section 3. Optimization 
problems with constraints are solved in Section 4 and 
conclusions are given in Section 5.  

II. CONTINUOUS MIXED REACTOR  

This model can be described by three equations, the first 
two describe energy balance and the third describes material 
balance: 
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The system output ac  is controlled by input 1M . Input 1M  
should be in the range >< skgskg /3.0;/0 . Constants in 
equations (1), (2), (3), (4) are the following: 
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III. MODEL PREDICTIVE CONTROL 

A. Modeling with AR-Volterra Models 
Volterra models are used to model nonlinear processes. The 
problem is that with increasing level of nonlinearity N (see 
equations (6), (7)) the number of parameters increases 
sharply. That’s why we have used only Volterra model with 
N = 2. This kind of model can compensate processes with a 
quadratic transmission characteristic 
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M1 denotes the size of history dependence of new output on 
previous outputs, M2 is the size of history dependence of 
the new output on previous inputs. For N = 2 the number of 
parameters is as follows: 
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If we have steady-state input and output, we can denote 
input as constant U, and output as constant Y. Then for N = 
2 , equations (6), (7) change to: 
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From equation (9) we can get: 
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This is the reason, why with this AR-Volterra model we can 
handle only processes with quadratic transmission 
characteristic. 

B. Identification of AR-Volterra Parameters 
Identification of AR-Volterra parameters has been 
performed using the least square method. Equation (1) can 
be transformed to 
 

θH

y

y

y

Mk

k

k

=





















+

+

+

...
2

1

    ... (11)  

where 
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Matrices Y  and θ  are known from observation of process 
output responses to input sequence u . Due to noise we can 
add the vector E to the Eq. (11) 
 

EHY += θ     ... (12) 
The aim of the identification is to find optimal solution 
θ for the cost function J 
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The optimal solution *θ  has to satisfy 
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Thus optimal parameters in the vector θ  are computed as 
follows 

YHHH TT 1* )( −=θ     ... (15) 
1) Identification of chemical reactor 

Volterra model have been checked in two ways. First, the 
transmission characteristic was checked, as the coefficients 

210 ,, ϕϕϕ in Eq. (10) are known, we are able to compare both 
transfer functions. We have found history 
dependence 32,31 == MM  in Eqs. (6), (7) sufficient and we 
chose the time period sT 200= . The dash-dotted line in Fig. 
3-1 displays transmission characteristic of the reactor and 
the solid one the transfer function of Volterra model. 

 
Figure III-1 Comparison of transmission characteristic of Volterra 

model and model of reactor 

To check the dynamic behavior we compared responses of 
the reactor model and the Volterra model with same inputs. 
The dash-dotted line depicts the reactor response of and the 
solid one the Volterra model response to the like input. 

 
Figure III-2 Comparison of responses of the reactor and the 

Volterra model to the same input 

As the dash-dotted lines in Figures 3-1 and 3-2 are almost 
matching the solid ones, we conclude that the Volterra 
model with the chosen number of parameters M1, M2 is 
adequate for the process of reactor. 

C. Model predictive control 
The model predictive control is an optimization problem of 
finding such an input vector U that minimizes the cost 
function J. P is the control horizon. (The control horizon 
and prediction horizon has been chosen of the same size). 
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where the vector U is 
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Constant γ  compensates for different magnitudes of the 
output y and input u( 1γ ) and also indicates what is more 



important for our controller, whether the speed of the output 
y reaching the setpoint w, or the size of control steps u∆  
( 2γ ). This way we can factorizeγ  as  
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const=1γ  is square of fraction of adequate change of 
response of process to change of input. If 12 =γ , the weight 
of y reaching w and size of control steps are the same, if 

12 <γ then y reaches w earlier and if 12 >γ  then y reaches w 
slower, however this often helps to have smaller overshoot 
of the controlled variable y with respect to the setpoint w. 
For finding the optimal vector *U  we will use the gradient 
method with a changeable step. Consider vector of setpoints 
(from Eq. (16)) 
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Then for every setpoint w, there exists such a control u, 
which is a solution to Eq. (10). Thus the starting vector U 
will be (there are two solutions, however just one u is from 
the applicable control interval): 

















+

+
=

−

−

))((
...

))1((

1

1

0

pkw

kw

U

ϕ

ϕ
   ... (20) 

As mentioned before, to find the optimal U we are using a 
gradient method. The following approximation by Taylor 
expansion has been used 
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where g is the gradient: 
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and H is the Hesse matrix: 
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Due to using the gradient method, a new approximation will 
be: 
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Substituting (22) in (21) we obtain 
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Partial derivative of (25) has to be zero, because we are 
looking for optimal step size, i.e. 
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A first problem is how to find the vector g: 
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where },...,2,1{ Pi ∈   
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Now, dependence on previous y in (6) will be eliminated 
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where of course if ji < or }2,...,2,1{ Mi ∉  or }2,...,2,1{ Mj ∉  then 
0),( =jiγ . 

Now we will add back dependence on previous outputs to 
(28) 

jk

M

m
m mjkyjky +

=
+−+=+ ∑ ψα

1

1

)()(   ... (29) 

thus the jth line of J depends on the lines j-1,..., j-M1 (if they 
exist). So we start on the second line and continue up to last 
line. The algorithm works as follows 
for line=2 to P 
 for k=1 to M1 
  if (line-k>=1) 

  ALLklinekALLlineALLline JJJ ,,, −+= α  
 endif 

next k 
next line 
Starting from the lowest line and coming up to the last one 
we find all partial derivatives. Due to knowing J we can 
find all ig ´s and thus we finally find the gradient vector. 
Now, the Hesse matrix is to be found. 
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After putting equation (27) to (30): 
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The second sum in (31) is known because we know all 
partial derivatives. The first sum consists of second partial 
derivatives. To get them we start with (28). The second 
partial derivative is 
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Again, if ji <  or }2,...,2,1{ Mi ∉  or }2,...,2,1{ Mj ∉  then 
0),( =jiγ . 

After adding back to (28) dependence on previous outputs, 
we obtain dependence on previous partial derivatives. Let 
the vector d be 
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Again, we can fill this vector d using (32) and afterwards 
we will apply the same algorithm as for the matrix J: 
for line=2 to P 
 for k=1 to M1 
  if (line-k>=1) 

)()()( ,,, klinedlinedlined jikjiji −+= α   
 endif 

next k 
next line 
Now there is only one unknown in (31) remaining 
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else partial derivative of F is zero. Now we are able to 
construct the whole Hesse matrix H and using to (24) we 
can iterate to the best solution. Iteration stops, if 

εγγ <))(())(( kk
T

kk UgUg  (if last iteration step is very small). 
If control action u(k+i) steps outside interval 

>∉<+ maxmin ,)( uuiku algorithm will set it to nearest bound. 
The final iteration U(k) can be used as part of the starting 

vector for the next period U(k+1): 
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. There is only one unknown position in the vector and this 
is filled using (20). Now there is only one thing to do. As 
you can see from Sections 3.2.1 and 3.2.2, the Volterra 
model doesn’t match with process perfectly. So some 
corrections during computation are to be made. We need to 
change the setpoint as shown on zoom of Figure 3-1. If we 
want the controlled variable to reach yr, we need to have 
control u0, but because we are controlling the Volterra 
model, the optimal control is u1. Thus if we don’t want to 
have differences between the setpoint and the output from 
process, we need to make correction to w (from yr to yv). 
We have to make same correction for measured process 
output. This problem was caused due to the fact that the 
model is of a higher order than the Volterra model 
(quadratic). 

 
Figure III-3 Correction of the setpoint and the process output  

1) Results for chemical reactor 
Mostly after 10 periods output is almost constant, if we 
don’t change input to this process with chosen period time 
200s. That’s why for control of such process we decided for 
prediction P=10. 
Results with 12 =γ  (equation 18): 

 
Figure III-4 Controlled variable and setpoint (higher graph), 

Control (lower graph) 

On higher graph in figure 3-6 you can see dash-dot line – 
setpoint and solid one – controlled variable. On lower graph 
you can see control. 
Results with 1.02 =γ : 



 
Figure III-5 Controlled variable and setpoint (upper plot), control 

(lower plot) 

If you compare it to Figure 3-6, because change of control 
is less important, control is faster, but with higher 
overshoot. 

IV. PROBLEMS WITH CONSTRAINTS 

Problem arises, if 002 =⇒= γγ  and solution is near to 
bound. Then such optimization problem can have problems. 
You can see it on figure  

 
Figure IV-1 Problems of optimization problems with constraint 

There is simple explanation of such problem. Prediction P 
doesn’ t last enough to come to wanted state (because of 
constrains, it’ s not possible to come there so soon) and 
that’ s why action oscillates. There are two ways how to 
solve this problem: 

1. Enlarging P 
We enlarged P from 10 to 20 and result is following: 

 
Figure IV-2 Problems of optimization problems with constraint 

2. Putting something to equation, what will not let 
iteration diverge. 

When we want to remove checking of possible values of 
control we can add to cost function something, what would 
worse much cost function in case of not possible control. 
Function should look this way: 

 
Figure IV-3 Penalization function 

The problem is that we have to ensure, that in interval 0 – 
0.3 it should not have big waves (or difference of local 
maximums and their neighbor minimums should be small 
enough, so cost function of controller will be more 
important than minimizing of penalization function. This 
means that iteration will converge to optimal control not 
optimal penalization function). 
This function was approximated by polynomial function by 
least square method (for every predicted control action): 
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So final cost function will be PJJJ +=’ . Now we have to 
change vector g and matrix H. We will just add what we 
added to cost function. 
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And change of matrix H will be just on diagonal 
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10=P  algorithm will converge: 

 
Figure IV-4 Converge of algorithm with modification for 

constrains 



This new algorithm has advantage that we don’ t need to 
enlarge prediction horizon, because enlarging of horizon 
increases complexity of algorithm. 

V. CONCLUSION 

Joining three fields (model predictive control, Volterra 
models, optimization) leads to a successful predictive 
control. Volterra models of second order are suitable to 
model reactors. With a higher order, the model would be 
more precise, but control would become more complex. For 
our reactor Volterra model of degree two is satisfying, 
because it covered well transmission characteristic. Small 
differences lead to small differences between setpoint and 
controlled variable. This problem was solved by correction 
to setpoints. Simple optimization technique has been used 
to find the optimal control vector. Whenever this control 
was outside the allowed interval of control >< maxmin ,uu , 
it was set to the nearest bound. At the end it has been 
shown, how to modify the algorithm if we don’ t want to 
have troubles in the vicinity of bounds and we don’ t want 
long prediction, because of complexity of algorithm. A 
simulation case study is provided to demonstrate the 
effectiveness of the predictive design procedure based on 
AR Volterra models. 
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