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Abstract— Time-state control form (TSCF) provides and al-
ternative way to stabilization of symmetrical affine systems.
These systems usually arise as nonholonomic driftless systems.
It is, however, not precisely determined which systems can be
transformed into this form. Conversion of a general driftless
system to the TSCF is a subject of this paper. For control
purposes, it is desired that the state variable part of TSCF has
a controllable approximate linearization. We give a procedure
for conversion once a special vector field called the time axis
vector field is known. Since this vector field is hard to find, we
turn for help to the machinery of exterior differential systems.
It turns out that any flat system can be transformed to TSCF
with controllable linearization of state variable part. We show
an example of a system of dimension 5. As a side product, we
obtain a result on linearization by time scaling.

I. INTRODUCTION

An interesting and important class of nonlinear systems is
formed by systems with uncontrollable linearization. They are
challenging as they can not be stabilized by a smooth (not even
continuous) feedback and they are important as they contain
systems subject to nonintegrable velocity constraints referred
to as nonholonomic systems. These are often encountered
among mechanical systems and in some sense are the most
generically nonlinear systems. For symmetrical affine systems,
i.e., nonholonomic systems without drift, transformation into
chained form [1] greatly simplifies the control problem and
leads to a number of control designs based on discontinuous,
time varying or hybrid feedback, see, e.g., [2] and the refer-
ences within.

A different approach to tackle the problem was taken in
[3]. The proposed time-state control form (TSCF) is based on
the fact that driftless systems are time scalable and decouples
the original system into a state part and a time part. If the
linear approximation of the state part is controllable, one can
stabilize the system using traditional linear control methods.
Time flow of the state part is directly controlled by the time
part. This approach is appealing for its simplicity and also for
the fact that the class of systems that can be transformed into
the TSCF is obviously larger than the class of systems that can
be transformed into the one generator chained form. To which
extent is the class larger remains, however, an open problem.

We are interested in converting a driftless controllable non-
holonomic system to the TSCF. In this paper, we first review
the structure of the TSCF and then show the possibilities of
conversion in a vector field setting. We give a methodology
of transformation for the case a special vector field called the
time axis vector field is known and also propose a complete
transformation algorithm for systems that admit the time axis

vector field as a constant vector field. After introducing a
dual approach of treating nonholonomic systems based on
Pfaffian systems, we briefly review the basic facts on dynamic
feedback linearization. Then, search for systems that can be
transformed into TSCF with controllable linearization of the
state part. Connection to flat systems is investigated. We also
obtain a new result on linearization by time scaling which
directly generalizes the known facts on exact linearization of
single input system on plane. An example of a flat system of
dimension 5 with 3 inputs is given.

Notation. The following notation will be used through the
paper:

�
denotes the field over the reals, ����� the Kronecker

product. The exterior derivative of a � -form � is denoted by� � . A differential of a smooth function 	 is denoted by 
�	
and for a one-form � and vector field � , the interior product is
written as ������ . Wedge product is represented by � . ����	 is the
Lie derivative of a function 	 along the vector field � and �����
denotes the Lie derivative of a covector field � along � defined
by [4] ���������������! #"��$&%(' � � ���$ . For a map )+*-,/.10 , )32
denotes the push forward )324*�576�,8.95;:=< 6?> 0 .

II. TIME-STATE CONTROL FORM

Consider a driftless system given by@A �B��C� A �EDFC 'HG?GIG!' �KJL A �MDNJPO ARQ �TS OUD � Q � O (1)

where VXWZY , � �  A � are smooth, mutually independent vector
fields on

� S
. The control problem is to stabilize (1) to AN[4Q � S

using a feedback controller. We also assume the controllability
Lie algebra \] A � of (1) [4] spans

� S
around A7[ which implies

local controllability at A7[ .
We are looking for a (static) feedback transformationD&�H^ C  A �E_7O (2)

where D`�a�D C OIb?bIb?OcD J �dOc_ Q � J , and a diffeomorphic change
of coordinatese �f)� A �gOh)� A ���ij	NC� A �gOIb?bIb?Ok	 S  A �c� (3)

such that (1) is transformed into the first control form (1st CF)@e �ml @n@e Spo �rqs C  n �E_ C ' qs�t  n �E_ t 'HG?G?G!' qs J  n �M_ J O (4)

where
n �u e C�O?b?bIb?O e S�v Cd� and it holds that all qs � are free of

e S . Moreover, we require thatqs C  e [ �w�xqs C  n [ �w�ijyzO?bIb?bdOkyzOI{�� � b (5)

Once the system (1) is in the 1st CF, there always exists
another input transformation _|�/^ t  n �M}]OR} Q � J such



that after scaling by }~C we obtain the time-state control form
(TSCF
 n
 e S ���NC� n � ' � t  n �E} t!� }�C '�GIG?G�' �7JP n �M};J � }�C@e S ��} C (6)

and (5) renders �;C� n [ �p��y . The

e S part of (6) is referred to
as the time state (TS) and the subsystem having

n
as the state

variable is called the state part (SP) and has an equilibrium
at
n [ .
If the linear approximation of SP is controllable, the system

(1) can be stabilized by means of standard tools from linear
control theory. The TS is increasing/decreasing at a constant
rate and linear state feedback stabilizing SP is easily designed
for both modes.

III. TRANSFORMATION USING VECTOR FIELDS

The requirement that the vector fields qs �U n � do not con-
tain the last coordinate

e S suggests existence of a vec-
tor field �� A � , such that the Lie bracket � �- A �dO s �U A �M�i�) v C2 � q�- n �dO�qs �k n ���E� ����:=< $ > � y , �u� {KOIb?bIbdOcV . Indeed, the
existence of a time axis vector field satisfying one more
property to ensure the TSCF will have an equilibrium at n [ O e S [ �w�H)� A7[ � is the key idea of a necessary and sufficient
condition stated below.

Theorem 1 (Sampei et al. [3]): The following conditions
are equivalent:

A. (1) can be transformed to (6).
B. There exists a vector field �- A � such that� �- A �dOE�K�k A ��� QH� �  A �gO��~�i{KOIb?bIbdOcV�- A [ � QH� �  A [ �dO

where � �- A �3�f�c�=�K�����C� A �gO?bIb?bIOE�KJP A �U� is a distribution
and the span is over all smooth real functions.

C. There exists a vector field �- A � such that for s C� A �gO?bIb?bIO s JP A �c�3�a���C� A �dO?bIb?b�OE�KJL A �U�E^�C# A �gO
where ^NC� A � of dimension VX�&V is nonsingular for allA , holds that� �- A �gO s �  A �M�p��yzO �T��{#O?bIb?b?OcV�- A7[ �L� s C� A=[ �gb
Proof: See [3].

These conditions, although necessary and sufficient, are
based on existence of another object, the vector field �- A � .
We will call this vector field the time axis vector field. It
not clear whether for a given system such vector field exists,
neither is it clear how to find it besides solving a set of
partial differential equations (PDE) given in item B. or C.
of Theorem 1. Moreover, even assuming we have the vector
field �- A � available, there is no method to find the feedback
transformation (2). Note that the coordinate transformation (3)
can be found from Frobenius’ theorem.

In order to remedy these shortages, we find the feedback (2)
in case �- A � is known and then note the problem is greatly
simplified for systems for which �- A � is constant.

We will need covector fields of certain properties. Let � � ,� �r{KOIb?bIbdOcY+��V , and ��� , ���x{#O?bIb?bdOUV , denote linearly
independent covector fields (one-forms) such that for �Z�{KOIb?bIbdOcV holds that � � �� � ���uy and �#�z�� � ���u�I� � . Now, we
can proceed to the following lemma.

Lemma 1: Let
s  A � be a smooth vector field on

� S
that

can be written as a linear combination of smooth vector fields� C  A �dO?b?bIb?Oc� J  A � :s �a���C!OIb?bIb?OE�KJ��M NO  (�a� �C�O?b?bIb?OE #J�� � b (7)

Then, for any given smooth vector field �- A � , there always
exists a solution  F A � which satisfies��¡�¢� �  s �c�w�a���¡�� � �d s �dO �~��{#O?bIb?bdOUV�b (8)

The coefficient vector  F A � is given by one of the V linearly
independent fundamental solutions of the partial differential
equation £  F A �£ A �- A �3��¤¥ A �M F A �gO (9)

where

¤L A ���§¦¨¨¨©
���¡���CI�d���Cd� G?GIG ¢��¡��-Cd�d��KJ�����¡�� t �d���Cd� G?GIG ¢��¡�� t �d��KJ��...

...¢� ¡ � J �?�� C � G?GIG �� ¡ � J �d�� J �
ª¬««« b

Proof: By definition, � � �� � �w�f� ��� and thus�#�U s �d A �3�H K�c A �gO®�� ¡ �K�¯�? s �3� J°� � C   � �� ¡ �K�¯�d�� � �gb
Therefore, (8) becomes£   �£ A ��� J°� � C  #�����¡�� � �d��#���gO
and putting the equations together for all �T��{#O?b?bIbdOcV yields
(9).

Now, we show that the PDE (9) can be solved in time
domain. First, note that the solutions  N A ¢±c�c� to a set of
differential equations@A �H�- A �gO @ P�f¤L A �E  (10)

provide the solution  N A � to (9), since@ (� £  £ A @A � £  £ A ���H¤² Nb
We will solve (10) using a coordinate change

e *³�f)� A � such
that @e �a @n O @e S �w�H) 2 �- A �w�ijyzO?bIb?bdOI{��db
Then, we have

@e S �X{ and
n ��´&��´?µ!Y�¶?± , and from A �) v C  e � , the second equation in (10) becomes@ P�f¤L¢´�O e S �M Nb (11)



Scaling(11) by
@e S yields
# 
 e S �f¤L¢´�O e S �M NO

and   can be solved as a function of

e S and there areV fundamental solutions   C O?bIb?bdOU  J for linearly independent
initial conditions  -C�¢y��gOIb?b?b?Oc KJP¢y�� . After deriving  F e S � , e S
is replaced by a function of A which can be calculated from
e �H)� A � .

Remark 1: If �- A � is such that the distribution generated by
the vector fields � �  A � is invariant under �- A � , then Lemma 1
is equivalent to the case when  F A � , defined in (7), is to be
found such that � ��O s ���fy holds.

Hence we have obtained an algorithm for calculating the
feedback transformation (2), provided the time axis vector field
is known. Although there is another PDE to be solved, it was
shown that the solution can be obtained in time domain setting.

Investigation of existence of �- A � starts with a review of a
well-known lemma:

Lemma 2: If a smooth distribution � is invariant under the
vector field

s
, then the codistribution ·B� �¹¸ is also invariant

under
s

. If a smooth codistribution · is invariant under the
vector field

s
, then the distribution � �º· ¸ is also invariant

under
s

.
Proof: See [4].

From Theorem 1 and Lemma 2 directly follows the next
observation.

Corollary 1: When � is a constant vector, checking the
invariance of � � under � reduces to checking either of the
following two equivalent conditions£ � �£ A � Q»� � or ¼ £ �~��£ A ��½ � Q»� ¸� O (12)

where �T��{KOIb?b?b?OcV ,
� �i{KOIb?bIbdOcYP�`V and the covector fields�F� were defined above.

Remark 2: If, moreover, � can be found such that � Q� ��jy#� , we have the time axis vector field satisfying Theorem
1. For constant � , the matrix ¤¥ A � in (9) becomes a zero
matrix and hence the input transformation (2) becomes a linear
combination with real constant coefficients.

The resulting algorithm for transformation of (1) to the 1st
CF (4) is then given as follows:
Step 1. Check whether there exists a constant vector field �
satisfying any of the conditions in (12). Then check if the
candidate satisfies � Q»� �� A7[ � . If so, proceed to Step 2.
Step 2. Solve

s C� A=[ �X� ���C� A=[ �gOIb?b?bIOE�KJ¥ A=[ �c�c
-CK A7[ � for
-C� A=[ � . Then, complete 
 t  A=[ �dO?bIb?b?Ok
#J( A=[ � to have a set
of V independent vectors. It follows from Lemma 1 and
Remark 2 that the feedback transformation (2) is given asD¾�¿�!C� A �M_R�À� 
-CK A �gO?bIb?bIOU
�J¥ A ���Á_ . Use Frobenius’ theorem
to the find coordinate transformation (3) and transform (1) to
(4). Â

The algorithm above is based on the assumption that the
system (1) admits a constant time axis vector field � . While this
holds for some simple systems, the condition is not satisfied
for all of practically interesting systems. For this reason, we

turn to a different setup to find more about systems for which
a general �- A � exists.

IV. DIFFERENTIAL FORM SETTING

Different point of view can bring more insight into the
problem. We note that control systems can also be modeled by
the use of one-forms instead of vector fields. This framework
proved itself useful in nonholonomic motion planning and
control or in (dynamic) exact linearization. We refer to [5]
for monograph on exterior systems and to [6] for their use in
control theory.

Let , be a smooth manifold of dimension Y and let·�Ãpj,�� denote the set of smooth exterior p-forms on , .
Then, we define ·Ä¯,��²�aÅÄ·pÃpj,�� to be the set of smooth
exterior forms of all orders on , . An exterior differential
system is given by an ideal Æ¾Ç�·Äj,�� that is closed under
differentiation.

An exterior differential system of the form� C �f� t � GIG?G �f�~Èp�HyzO (13)

where � � are independent one-forms on manifold , is called
a Pfaffian system of codimension Y&�É¶ .

If Ê�� � OIb?b?bIOc� SNË is a basis for · C j,�� , then the setÊ�� ÈMÌ C O?bIb?b?Ok� S�Ë is called the complement to the Pfaffian sys-
tem (13). The one-forms � ÈMÌ C O?b?bIb?Ok� S generate the algebraic
ideal Æ¥��Ê�^ Q ·Ä¯,���*K^4�P� C � GIG?G �¥� È ��y Ë b

An important role is played by the independence condition
for the Pfaffian system, which is a one form Í which does
not vanish on integral curves ´��±c� of the system, that isÍ;¢´K�±c�c�?¢´dÎM¢±c�c�iÏ�Ðy . If Í is integrable, the Pfaffian system
corresponds to a system of first order ordinary differential
equations.

The first derived system of Æ is defined asÆ < Cc> �ºÊ?Ñ Q Æ¹* � Ñ+ÒÓV&µ�
HÆ Ë b
When proceeding iteratively, one can construct the derived flag
of Æ as a filtrationÆ¥�HÆ < [ >�Ô Æ < [ >3Ô Æ < CE>�Ô G?G?G Ô Æ <ÖÕ > O
which stops decreasing for some finite 0 , as dimension ofÆ is finite. If Æ <ÖÕ > �hy , the system is called completely
nonholonomic.

Control system
@A � s  A OcDF� on

� S � � J can be regarded
as a Pfaffian system on

� � � S � � JÆ?×L��Ê�
 A � � s �  A OUDN�c
K±gOØ�T��{#O?bIb?b?OcY Ë b (14)

Clearly a completely nonholonomic system corresponds to a
strongly accessible control system.

To a driftless control system (1) is naturally associated a
Pfaffian system Æ¹*���Ê?�#Ù!OIb?b?b?OE�KJ Ë ¸ (15)

of dimensional ¶4��YÚ�ÉV and it holds that Æ < Cc>× �ºÆ . Recall
that Chow’s theorem asserts that a completely nonholonomic
system is equivalent to a controllable driftless system.



On the other hand, for a Pfaffian system to correspond
to a control system

@A � s  A OcDF� , the ideal Ê!ÆI×=OcÍ Ë must be
integrable. As expected, this is usually satisfied for ÍÛ��
#± .

By replacing a system of differential equations by a Pfaf-
fian systems, one gains the tools and methods of coordinate
independent differential geometry. But something is also lost:
the sense of an independent variable. We are actually going
to use this fact to our advantage. Indeed, when dealing with
driftless systems in Pfaffian setting, one does not have to carry
around neither input variables, nor the time, which simplifies
the analysis.

a) Canonical forms.: First, we introduce a special struc-
ture of Pfaffian systems. If for a Pfaffian system Æ on

� � � S �� J of codimension V ' { there exist coordinates

e
such thatÆ¥�ºÊ!
 e �� � e �� Ì C 
 e [ O²�T��{KOIb?b?b?Ok¶ � O � ��{#O?b?bIbdOcV Ë (16)

we say that Æ is in extended Goursat normal form. This form is
closely related to Brunovsky canonical form [7] known from
linear systems theory, which is formed by V chains of ¶I�
integratorsÑ �� *���
#  �� �Ü  �� Ì C 
#±gO²�T�i{KOIb?bIbdOk¶ � O � ��{#O?b?bIbdOcVÜb (17)

Note that the two forms differ only by the independence
condition.

b) Associated system.: Having two vector fields
s

and �
on , that describe an affine control system

@A � s  A � ' �F A �MD ,
one may construct an associated system on

� � � S � � as��Cp�9l {s o O � t �ml y� o b (18)

Obviously, if the original affine system is feedback lineariz-
able, i.e., it can be transformed to the Brunovsky canonical
form (17) by a static feedback and coordinate change, then
(18) can be transformed to the Goursat form. It can be
shown that the converse is not true. For, by creating the
associated system we gain the possibility to choose different
independence condition Í .

c) Generator.: Having a collection of vector fields� C O?bIb?bdOc� J on , such that its controllability Lie algebra\]¢Ý��Û�ßÞ-
 ��Uà �K� , ���ßy=O?{KOIb?bIb spans the tangent space 5 Ù ,
around the equilibrium for some

�
, we call the vector field ���

a generator for a driftless system (1). Here Þ-
 � Ì C× �(�i� s OkÞ-
 �× ���
and Þ-
 [ × ����� . The generator may be a pointwise combina-
tion of the original vector fields. One proceeds similarly for
multiple generators.

V. TSCF IN PFAFFIAN SYSTEMS

After introducing a new framework, we need a definition of
the TSCF dual to (6). Since (6) can always be obtained from
the 1st CF (4), we will give an alternative definition of the 1st
CF:

Lemma 3 (1st CF in codistribution): The Pfaffian systemÆ��ÐÊ�� C O?bIb?bIOU� È Ë on , , ázâÖãä¯,��Ü�§Y corresponds to a
driftless control system in the 1st CF (4) defined on ,ß� � S-v È ,
if (and only if)

1) Æ maximally nonholonomic, and

2) the one-forms � � ��å S� � C Þ � �  A �E
 A � are such that Þ � �  A �
are smooth functions and there exists

�
, {4æ � æZY such

that
£ Þ � � � £ A � �çy , �¹�è{KOIb?bIbdOcY¾��V , �f�é{KOIb?b?b?OcY .

Moreover,
3) Þ ��  A=[ � , �~��{#O?bIb?bdOUY²��V and Þ ��  A ��Ï��y , ê AÚQ ,|ëFÊ A7[ Ë

for at least one �~�i{KO?bIb?bdOUY`�ÜV .
Proof: The first condition is equivalent to controllability

of the system (1). The next conditions directly follow from
construction of an associated Pfaffian system as shown in (14)
and (15). The second one requires that there exists a stateA � such that all vector fields dual to the Pfaffian system are
independent of this state. The last condition is to ensure that
the drift vector obtained by selecting A � as the time state has
an equilibrium at A [ and is not identically zero.

It is clear that any system in (extended) Goursat form
satisfies the conditions of Lemma 3. Moreover, the TSCF then
has an exactly linearized state part (hence it is controllable).
Also note that the 
 A � is the independence condition Í and
thus belongs to the complement of Æ .

We also note that as well as the 1st CF (4) does not ensure
that the linear approximation of the state part is controllable,
the same statement holds for Lemma 3. This is clear from the
following example.

Example 1: Consider a symmetrical affine system in the
form

¦© @Ý C@Ý t@Ý�ì ª �fí ì D�O ¦© @Ý!î@Ý�ï@Ý�ð ª � ¦© Ý
t �²Ý C yÝ�ìñy �²Ý CyòÝ�ìé�²Ý t ª D�O

where í is an identical matrix. This is an example of a system
in two-generator chained form and it is easy to show that its
Pfaffian system Æ given byÆ¥�óÊ�
�Ý!îp�ÉÝ t 
#Ý C ' Ý C 
#Ý t OU
�Ý�ï��ÜÝ�ì�
�Ý C ' Ý C 
#Ý�ìKO
#Ý ð �ÉÝ ì 
�Ý t ' Ý t 
�Ý ì Ë
is completely nonholonomic. Applying the coordinate change
e *³�1jÝ C OkÝ t OkÝ�ì�OUÝ C Ý t ��Ý!îKOkÝ C Ý�ì4��Ý�ï�OkÝ t Ý�ì4��Ý�ð�� we obtainÆ¥��Ê�
 e î�� e C 
 e t OU
 e ïw� e C 
 e ìKOU
 e ð3� e t 
 e ì Ë which satisfies
conditions of Lemma 3 for Íß�Ó
 A � �Ó
 e ì . The linear
approximation of the state part is, however, uncontrollable.Â

The system in the above example is not controllable using
the usual control method developed for TSCF. It can be
stabilized by switching between the generators, but that is out
of scope of this paper. Since the simplicity of the original sta-
bilization methods [3] is the main merit of the TSCF, we focus
on systems that yield TSCF with controllable approximation of
the state part. Then, we can look at relations with the structure
of Goursat forms, which is of one generator, that is equal to
a vector field associated to the independence condition. We
conclude that the existence of a vector field � � whose iterated
Lie brackets generate the controllability distribution becomes
the necessary condition for such TSCF.

When looking for a sufficient condition, we may start by
analysis of systems according to dimension of their Pfaffian
systems. The simplest case is covered in the following propo-
sition.



Proposition 1: Any controllable driftless system underactu-
ated by one control can be put into TSCF with controllable
linear approximation of the state part.

Proof: Pfaffian system associated to a system underac-
tuated by one control is given by ÆR��� , � Q · C ¯,�� . The
rank ô of � is defined by � �T�Eõ��¥�HÏ�Hy=O and  � �T�cõUÌ C �P���Hy=b
By Pfaff’s theorem [6], there exists a coordinate chart on ,
such that in these coordinates�Ü�H
 e C ' e t 
 e ì 'HG?GIG�' e t õ 
 e t õUÌ C O
where 
 e t õUÌ C is such that  � �T� õ �P�¥�P
 e t õUÌ C �Hy . This ideal
satisfies the conditions of Lemma 3 for any of 
 e t � Ì C , �L�{KO?bIb?bdOUô as a generator and hence corresponds to the 1st CF.
If we interpret that ideal Æ back in terms of vector fields, we
get @e � �uDN�EOÓ�]�Hö�ô ' {KOkö�ô-O?b?bIb?OUö@e C � e t D ì ' e îdD ï 'HG?G?G!' e t õ D t õUÌ C b

Using any of the coordinates

e t � Ì C , �T��{KO?bIb?bIOEô for the time
state (TS), the system is in the TSCF. It is easy to check that
the linear approximation of state part is controllable for any
such choice. Moreover, as ÷ [ ���U�=���;¢� C O?bIb?bdOU� t õ v C � is not
involutive for ôÛøi{ , the state part is not exactly linearizable
[4] and the system can not be transformed into the chained
form for YÜø�ù .

This transformation requires solving one PDE at each step
of generating new coordinate

e � . For ôçøú{ the system
can not be transformed into extended Goursat form (i.e.
the chained form) by static feedback and coordinate change.
This is, however, not true if one considers a wider class of
transformations. Indeed, it was shown by Charlet et. al. [8] that
a system with Y states and YÛ�B{ inputs is dynamic feedback
linearizable.

d) Dynamic feedback.: Linearization of a smooth control
system @A � s  A OcDF� (19)

defined on ûX�ýüaÇ � S � � J consists of finding a feedback@e �uÞN A O e Oc_��DB�u^] A O e OU_-� (20)

defined on a subset þûÿ���B���¿ÇBûÀ� � õ � � Ù such that the
closed loop system @A � s  A Ok^] A O e Oc_��c�@e ��Þ� A O e OU_-� (21)

is diffeomorphic to a controllable linear system on þû1��� .
Note that in Pfaffian systems, static linearization can be

written as a simple diffeomorphism ) (recall that we have
lost the notion of independent variables, inputs, etc.), which is
a map û1�»ü�. þû1� þü . This is no longer true for dynamic
feedback, where ázâÖã»wþûR��øiá�â ãÚ¢û�� and one has to use the
term of dynamic immersion. The Pfaffian system Æ is then
prolonged into a system � and the systems are equivalent if
their trajectories are equal [9].

e) Differential flatness.: A control system (19) is called
differentially flat if there exists a (dynamic) feedback (20),
such that the system is diffeomorphic to Brunovsky canonical
form (17). For driftless system, this condition is relaxed to dif-
feomorphism to extended Goursat form (16). The linearizing
outputs are then referred to as flat outputs.

Proposition 2: Any symmetrical affine system (1) that is
differentially flat can be transformed into TSCF with control-
lable state part.

Proof: For space reason, we only give a sketch here.
By assumption, the system (1) can be transformed to an
extended Goursat form by dynamic feedback (prolongation in
Pfaffian systems). That implies existence of a single generator
associated to the independence condition Íè� 
 e S . This
implies that the coordinate

e S
is never prolonged and also

that

e S
does not appear in the extended Goursat form (only

in a form of 
 e S ).
Now, we need to show that the coordinate

e S
does not

appear in the system after application of a coordinate trans-
formation and static feedback transforming it to the 1st CF, so
that all conditions of Lemma 3 are satisfied. This is shown by
contradiction. Construct the state part of TSCF by choosing
the time state as state corresponding to generator of the
extended Goursat form and applying a construction inverse
to that we showed when designing an associated system (18).
Appearance of

e S
in any of the vector fields

s
and � � implies

that we have obtained a time-variant system. Removing the
time variance by a dynamic feedback, however, yields an
uncontrollable system. This contradicts the assumption that
the state part can be converted to Brunovsky canonical form
(controllable linear system) in a time scale

e S
.

To prove the controllability of the linear approximation
of the state part, assume an affine system (state part of
TSCF). By assumption, this system can be linearized in the
e S

time scale by (possibly dynamic) feedback. Recall that
the necessary condition for static feedback linearizability is
controllability of the linear approximation around the origin.
This was generalized in [8]: if a system

@e � s  e � ' å J v C� � C �K�¢_��
is dynamic feedback linearizable, then its linear approximation
at the origin

@e ���	� s ¢y�� e ' å J v C� � C � � jy#�M_ � is controllable.
Example 2: Consider a controllable system (1), where AäQ� ï and D Q � ì . It was shown in [10] that its Pfaffian systemÆ¥��Ê?Ñ C OcÑ t Ë can always be written asÑ C �f
 A C �ÉÞN A �c
 A ì � A ï 
 A î O8Ñ t �f
 A t � e ì 
 e î O

which can be converted to the Goursat form by prolongation
��*��òÆ ' Ê�
 A ìä� A ð?
 A î Ë and coordinate change

e *³� A C O A C O A ì#O A î#O A ï ' ÞN A � A ð#O A ð�� . Hence it is a flat system.
Obviously, the system satisfies Lemma 3 if Þ î � £ Þ � £ A î²�y . This may not be always the case and so we write the

structure equations� Ñ C Ò�ÞzCg
 A ì��LÑ C' Þ t 
 A ì��LÑ t ' ¢ÞzC A ï ' Þ t A ì ' Þ î �c
 A ì��P
 A î' Þ ï 
 A ì �P
 A ï ' 
 A î �P
 A ï� Ñ t Ò�
 A î~�P
 A ì V&µ�
�Ñ C OEÑ t b



For Þ ï �§y around the equilibrium, we have Ê!Æ=Ok
 A î Ë in-
tegrable and, by Engel’s theorem, Æ can be transformed toÆ¥��Ê!
 e C � e t 
 e [ OU
 e ìT� e î?
 e [ Ë , that is, a Goursat form with
2 towers.

Finally, assume for example Þ� A �É� A î A ï which means
there exists no static feedback to transform the system to
the Goursat form and the system is not in the 1st CF. The
coordinate change

e *��  A C O A t � A ì A î#OI� A î#O A ì#O A ïI� yieldsÆ¥��Ê!
 A C � A ïI
 A ì3� A ì A ï�
 A î�OU
 A t � A ìI
 A î Ë which is that of
the 1st CF. Â

From the above arguments follows an interesting corollary,
which is a generalization of the well known fact that a locally
accessible affine system on a plane with a single input is
always linearizable.

Corollary 2: Any locally accessible affine system
@A �s  A � ' �F A �MD with single input and AÐQ � ì is exactly

linearizable by time scaling.
Proof: First, construct the associated driftless system

(18). It is easy to see that we can apply Engel’s theorem to
obtain Goursat form with one tower in four dimensions. Now,
we only need to show that the independence condition of the
Goursat form is not independent of time ± . This can be shown
by contradiction and it goes along the same lines as the proof
of Proposition 2.

VI. SUMMARY AND FUTURE WORK

Time-state control form is an interesting approach to control
of nonholonomic driftless systems. We were interested in
conversion of given systems into the TSCF. This is not a
simple task as in its full generality it requires solving a set
of partial differential equations. This, even if some existence
criteria were available is barely tractable for general systems.

By showing how to proceed if the time axis vector field is
known we have given and algorithm to design a static feedback
transformation for converting the system (1) to 1st control
form. The time axis vector field is easy to find if there exists
a constant one for system (1).

Using the machinery of Pfaffian systems we have shown
that any differentially flat system can be transformed to TSCF
with a controllable approximation of its state part, by static
feedback and coordinate change. TSCF satisfying the control-
lability condition are of special interest as their stabilization
is very intuitive and easy.

Last, we note that the condition in Proposition 2 is only
sufficient. For, if it was a necessary one, it would imply that
every system with controllable linear approximation can be
converted to a linear systems by a (possibly dynamic)feedback
and time scaling.
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