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Stability analysis of low-order
combustion systems

Qing-Chang Zhong, Silviu-Iulian Niculescu and Anuradha M. Annaswamy

Abstract— In this paper, the stability conditions of second-
order systems including a single-delay or two delays are
considered. Such a model is frequently encountered in
combustion systems. The stability analysis are vital for
the safe operation of such systems. For the single-delay
model, complete stability criteria are proposed; for the two-
delay model, necessary conditions, sufficient conditions and
necessary and sufficient conditions are obtained.

Index terms: combustion system; delay; stability analysis;
dual-locus diagram

I. INTRODUCTION

In recent years, there are more and more applica-
tions involving the stability analysis of low-order systems
including delay(s), apart from the stability analysis of
general time-delay systems using time-domain approaches
[1], [2], which in general only offers sufficient conditions
and hence no clear information about how far away from
the necessity these conditions are. However, there is a great
need from engineering of such information. For example,
the control of combustion systems [3], [4] relies on the
stability analysis of a second-order system including two
delays and a mass-spring-damper system controlled over
communication networks [5], [6] relies on the stability
analysis of a second-order system including one delay. It is
crucial to understand the stability region of such systems
so that the instability can be avoided.

Complete stability criteria were given in [6] for the
mass-spring-damper system controlled over communica-
tion networks, where the control gain is assumed to be
negative. In this paper, the result in [6] is extended to a
more general case which allows the control gain to be
positive as well. Hence, it can be used to analyze the
stability of combustion systems [4], which can be modeled
(linearized) as the following general second-order linear
systems including two delays:

H0(s) = s2 + 2ζαs + α2 + k1e
−sτ1 + k2e

−sτ2 = 0 (1)
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under the hypothesis 0 < τ1 < τ2. Here, τ1 represents the
connective delay (due to the transport lag from the supply
to the burning plane of the flame), and τ2 represents the
propagation delay (velocity perturbations). Our objective
in this paper is to find the stability condition of (1).

II. THE SINGLE-DELAY CASE

The single-delay case, e.g. when k2 = 0 without loss of
generality, was considered in [6] for negative gain k1 using
dual-locus diagram. Here, we extend the results obtained
there to the case of k1 ∈ (−∞, +∞).

When k2 = 0, the system (1) becomes

s2 + 2ζαs + α2 + k1e
−sτ1 = 0. (2)

The stability of (2) is equivalent to that of

1 + G(s)e−sτ1 = 0,

where
G(s) =

k1

s2 + 2ζαs + α2
.

The magnitude response of G(s) is

|G(jω)| = |k1|√
(α2 − ω2)2 + 4ζ2α2ω2

.

For 0 < ζ < 1√
2

, the peak of |G(jω)| is

|G(jω)|p =
|k1|

2ζα2
√

1− ζ2

at ωp = α
√

1− 2ζ2; for ζ ≥ 1√
2

, the peak of |G(jω)| is

|G(jω)|p =
|k1|
α2

at ωp = 0. In other words, the magnitude response has two
kinds of shapes, as shown in Figure 1. In one case (0 <
ζ < 1√

2
), there is one peak and in the other case (ζ ≥ 1√

2
)

the magnitude response is monotonically decreasing. It is
worth noting that the step response has a peak if ζ < 1,
which should not be confused with the case of frequency
responses.

According to the well-known small-gain theorem, the
system (2) is delay-independently stable when |G(jω)|p <

1. This provides two stability conditions: (i) |k1| < α2 if
ζ ≥ 1√

2
; (ii) |k1| < 2ζα2

√
1− ζ2 if 0 < ζ < 1√

2
. In

these cases, the magnitude curves do not intersect with
the straight line ”1” shown in Figure 1 (a) and (b) and
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Fig. 1. The magnitude response of G(s)

hence the system is delay-independently stable. Naturally,
another two cases are: the magnitude curve intersects
with the straight line twice at ωA and then at ωB (this
only happens when 0 < ζ < 1√

2
) or only once at ωC .

The stability criteria for these two cases will be analyzed
below:

Case 1: |k1| ≥ α2

The magnitude curve starts above ′1′, see Figure 1 (a)
and (b), and there is only one intersection at

ωC = α

√
1− 2ζ2 +

√
4ζ4 − 4ζ2 + k2

1/α4, (3)

which is the positive solution of |G(jω)| = 1, i.e. of

(α2 − ω2)2 + 4ζ2α2ω2 = k2
1 .

If k1 is positive, i.e. if k1 ≥ α2 , then (2) is delay-
dependently stable if

ωCτ1 + arctan
2ζαωC

α2 − ω2
C

< π.

Since there is only one intersection ωC , there is only one
delay interval so that the system is stable. If k1 is negative,
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Fig. 2. The dual-locus diagram of the single-delay system

i.e. if k1 ≤ −α2 , then (2) is always unstable because there
is no phase margin left for the delay term.

Case 2: 0 < ζ < 1√
2

and α2 > |k1| ≥ 2ζα2
√

1− ζ2

The magnitude curve starts above ′1′ but the peak stays
below ”1”, see Figure 1(a). There are two intersections
with the straight line ‘1‘ at

ωA = α

√
1− 2ζ2 −

√
4ζ4 − 4ζ2 + k2

1/α4

and

ωB = α

√
1− 2ζ2 +

√
4ζ4 − 4ζ2 + k2

1/α4,

which are the positive solutions of |G(jω)| = 1, i.e. of

(α2 − ω2)2 + 4ζ2α2ω2 = k2
1 .

The dual-locus diagram in this case, L1(s) = G(s) and
L2(s) = eτ1s, is shown in Figure 2 for ω = 0 ∼ +∞. A
similar dual-locus diagram was used in [7], but here we
can recover the phase angle (equal to the phase difference
between the two loci) in the Nyquist plot. The locus L1

starts inside the locus L2 and moves outside of L2 at ωA

then moves inside L2 at ωB. For positive k1, L1 (the solid
one) starts on the positive real axis; for negative k1, L1 (the
dashed one) starts on the negative real axis. The stability
will be analyzed below according to the sign of k1:

(i) k1 is positive
When L1 arrives at ω = ωA, the phase difference φA

(between L1 and L2) is

φA = − arctan
2ζαωA

α2 − ω2
A

− (ωAτ1).

There exists a unique nonnegative integer i such that the
phase difference φA biased by 2iπ belongs to (−π, π),
i.e.,

−π < φA + 2iπ < π. (4)

A different i is called a different cycle, which starts above
the negative real axis and ends below the negative real axis
(i.e. the negative real axis is split). When i = 0, the above
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inequality includes the principle half cycle −π < φA ≤ 0.
According to the Nyquist criteria, the system (2) is stable
if and only if the phase difference φB between L1 and L2,
when L1 arrives at ω = ωB , is still in the same cycle, i.e.,

−π < − arctan
2ζαωB

α2 − ω2
B

− (ωBτ1) + 2iπ. (5)

Otherwise, the Nyquist plot encircles the point (−1, 0),
which implies the instability. The inequalities (4) and (5)
together provide the following delay intervals to guarantee
the system stability:

1

ωA

(2iπ −π−arctan
2ζαωA

α2 − ω2
A

) < τ1 <
1

ωB

(2iπ +π−arctan
2ζαωB

α2 − ω2
B

), (6)

where i = 0, 1, 2, · · · till the right side is no longer larger
than the left.

(ii) k1 is negative
In this case, due to the negativeness of k1, there is an

extra phase shift −π, i.e.,

φA = −π − arctan
2ζαωA

α2 − ω2
A

− (ωAτ1).

Due to this extra phase shift, the principle cycle (corre-
sponding to i = 0) becomes (−π,−3π) and hence there
exists a unique nonnegative integer i such that the biased
phase shift, φA + 2iπ, satisfies

−3π < φA + 2iπ < −π. (7)

The system (2) is stable if and only if the phase difference
φB between L1 and L2, when L1 arrives at ω = ωB , is
still in the same cycle, i.e,

−3π < −π − arctan
2ζαωB

α2 − ω2
B

− (ωBτ1) + 2iπ. (8)

The inequalities (7) and (8) together provide the following
delay intervals to guarantee the system stability:

1

ωA

(2iπ − arctan
2ζαωA

α2 − ω2
A

) < τ1 <
1

ωB

(2iπ + 2π − arctan
2ζαωB

α2 − ω2
B

), (9)

where i = 0, 1, 2, · · · till the right side is no longer larger
than the left. This condition, although in different form, is
equivalent to that obtained in [6].

In summary, the following three lemmas hold:

Lemma 1. The system (2) is always unstable if − k1
α2 ≥ 1.

See region RU in Figure 3.

Lemma 2. The system (2) is delay-independently stable,
see region RI in Figure 3, if one of the following conditions
hold:

(i) |k1| < α2 if ζ ≥ 1√
2

;

(ii) |k1| < 2ζα2
√

1− ζ2 if 0 < ζ < 1√
2

.

Lemma 3. The system (2) is delay-dependently stable if
one of the following conditions hold:

(i) 0 < ζ < 1√
2

and 1 > − k1
α2 ≥ 2ζ

√
1− ζ2. See

region RA in Figure 3. The delay intervals guaranteeing
the stability are given in (9);

(ii) 0 < ζ < 1√
2

and −1 < − k1
α2 ≤ −2ζ

√
1− ζ2. See

region RB in Figure 3. The delay intervals guaranteeing
the stability are given in (6);
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Fig. 3. The stability regions of the single-delay system

(iii) − k1
α2 ≤ −1 and 0 ≤ τ1 < 1

ωC
(π − arctan 2ζαωC

α2−ω2
C

)
with ωC given in (3). See region RC in Figure 3.

III. MAIN RESULTS

A. Sufficient conditions

The system (1) can be reformulated as

1 + M(s)e−sτ1 = 0

where

M(s) =
k1 + k2e

−s(τ2−τ1)

s2 + 2ζαs + α2
.

Since
∣∣e−s(τ2−τ1)

∣∣ = 1 for any ω ∈ (−∞, +∞), M(s)
has the following upper envelope

Me(s) =
|k1|+ |k2|

s2 + 2ζαs + α2
.

According to the result in the last section, Me(s) has a
peak value of

Mep =
|k1|+ |k2|

2ζα2
√

1− ζ2

for 0 < ζ < 1√
2

or a peak value of

Mep =
|k1|+ |k2|

α2

for ζ ≥ 1√
2

. According to the small-gain theorem, the
following theorem holds:

Theorem 1. The system (1) is delay-independently stable
if one of the following conditions hold:

(i) |k1|+ |k2| < α2 if ζ ≥ 1√
2

;

(ii) |k1|+ |k2| < 2ζα2
√

1− ζ2 if 0 < ζ < 1√
2

.

These conditions can be depicted as shown in Figure 4.
The smaller the damping ratio, the smaller the stability
region. When ζ ≥ 1√

2
, the stability region does not

change.
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Fig. 4. The delay-independent stability region of (1)

B. Necessary conditions

Lemma 4. [8], [9] Consider the following quasipolyno-
mial

H(s) =
r∑

l=1

n∑
i=0

hils
n−ieτls,

where τ1 < τ2 < · · · < τr, τr + τ1 > 0 and the main term
h0r �= 0 (corresponding to the largest τl and the highest
degree of s).

If H(s) is stable, then the derivative of H(s) w.r.t s,
H

′
(s), is also a stable quasipolynomial.

This lemma will be used to derive a necessary condition
for the combustion system (1). Denote

H1(s) = (s2 + 2ζαs + α2)esτ2 + k1e
−s(τ1−τ2) + k2,

then the following result holds:

Theorem 2. The system given in (1) is unstable if
−k1(τ2 − τ1) ≥ α2τ2 + 2ζα.

The system given in (1) is delay-dependently stable only
if one of the following conditions hold:

(i) |k1| < (2ζ+ατ2)α
τ2−τ1

and
√

2(τ2ζα + 1) ≥√
α2τ2

2 + 2ζατ2 ;

(ii) |k1| < 2(τ2ζα+1)
τ2(τ2−τ1)

·√ατ2(2ζ + ατ2)− (τ2ζα + 1)2

and
√

2(τ2ζα + 1) <
√

α2τ2
2 + 2ζατ2;

(iii)
√

2(τ2ζα + 1) <
√

α2τ2
2 + 2ζατ2 and

α2τ2+2ζα
τ2−τ1

> −k1 ≥
2 ζατ2+1

τ2(τ2−τ1)

√
α2τ2

2 + 2ζατ2 − (ζατ2 + 1)2 and
1

ω̂A
(2iπ − arctan 2(ζατ2+1)ω̂A

α2τ2+2ζα−τ2ω̂2
A

) < τ1 < 1
ω̂B

(2iπ +

2π − arctan 2(ζατ2+1)ω̂B

α2τ2+2ζα−τ2ω̂2
B

);

(iv)
√

2(τ2ζα + 1) <
√

α2τ2
2 + 2ζατ2 and

−α2τ2+2ζα
τ2−τ1

< −k1 ≤
−2 ζατ2+1

τ2(τ2−τ1)

√
α2τ2

2 + 2ζατ2 − (ζατ2 + 1)2 and
1

ω̂A
(2iπ−π−arctan 2(ζατ2+1)ω̂A

α2τ2+2ζα−τ2ω̂2
A

) < τ1 < 1
ω̂B

(2iπ+

π − arctan 2(ζατ2+1)ω̂B

α2τ2+2ζα−τ2ω̂2
B

);

(v) − k1(τ2−τ1)
α2τ2+2ζα ≤ −1 and 0 ≤ τ1 < 1

ω̂C
(π −

arctan 2(ζατ2+1)ω̂C

α2τ2+2ζα−τ2ω̂2
C

).

The above-mentioned ω̂A, ω̂B and ω̂C are given below
when the corresponding conditions hold:

——————————–

ω̂A =
1
τ2

√√√√α2τ2
2 + 2ζατ2 − 2(ζατ2 + 1)2(1 +

√
1− α2τ2

2 + 2ζατ2

(ζατ2 + 1)2
+

k2
1τ

2
2 (τ2 − τ1)2

4(ζατ2 + 1)4
),

ω̂B =
1
τ2

√√√√α2τ2
2 + 2ζατ2 − 2(ζατ2 + 1)2(1−

√
1− α2τ2

2 + 2ζατ2

(ζατ2 + 1)2
+

k2
1τ2

2 (τ2 − τ1)2

4(ζατ2 + 1)4
),

ω̂C =
1
τ2

√√√√α2τ2
2 + 2ζατ2 − 2(ζατ2 + 1)2(1−

√
1− α2τ2

2 + 2ζατ2

(ζατ2 + 1)2
+

k2
1τ

2
2 (τ2 − τ1)2

4(ζατ2 + 1)4
).

——————————–

Proof. Obviously, H1(s) holds the same stability as
H0(s). According to Lemma 4, if H1(s) is stable, then

H
′
1(s) = (2s+2ζα+τ2(s

2+2ζαs+α2)+k1(τ2−τ1)e
−sτ1)esτ2

is also stable, which means the following quasipolynomial
is stable:

H2(s) = s2+2(ζα+
1
τ2

)s+(
2ζ

τ2
+α)α+k1(1− τ1

τ2
)e−sτ1 .

This is the single-delay system of which the complete sta-

bility criteria was given in the last section. Directly using
those results with the following substitutions completes
the proof:

α←:

√
α2 +

2ζα

τ2

ζ ←:
ζατ2 + 1√

α2τ2
2 + 2ζατ2

k1 ←: k1(1− τ1

τ2
)
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k1

α2
←:

k1(τ2 − τ1)
α2τ2 + 2ζα

arctan
2ζαωC

α2 − ω2
C

←: arctan
2(ζατ2 + 1)ωC

α2τ2 + 2ζα− τ2ω2
C

C. Necessary and sufficient conditions

Lemma 5. The argument of k1 + k2e
−jω(τ2−τ1) is mono-

tonically decreasing with respect to ω : 0 → +∞ iff
|k2| ≥ |k1|. Hence, so is the argument of M(jω) if
|k2| ≥ |k1|.
Proof. Denote the argument of k1 + k2e

−jω(τ2−τ1) by φe

and τ2 − τ1 by ∆, then

φe(ω) = arctan
−k2 sin ∆ω

k1 + k2 cos∆ω
.

Differentiate φe with respect to ω, we have

dφe

dω
= −∆ · k1k2 cos∆ω + k2

2

(k1 + k2 cos∆ω)2 + k2
2 sin2 ∆ω

.

Since ∆ = τ2 − τ1 > 0, dφe

dω
≤ 0 if and only if

k1k2 cos∆ω + k2
2 ≥ 0,

which is equivalent to

|k2| ≥ |k1| .
It is easy to check that the other part of the argument of
M(jω) is always monotonically decreasing for ω : 0 →
+∞. Hence, so is the argument of M(jω). This completes
the proof.

This condition can be depicted as the shadowed area
shown in Figure 5. If this condition is satisfied, then the
Nyquist curve of k1 + k2e

−jω∆ encircles the origin for
indefinite times. In the sequel, we will analyze the stability
when this condition is met. Another important condition is
that if |k1 + k2| < α2 or not. Using these two conditions,
the shadowed area is split into 4 regions (RU, RA, RB and
RC) as shown in Figure 5. The typical dual-locus diagrams
with L1(s) = M(s) and L2(s) = eτ1sare shown in Figure
6 for these regions. When k2 > 0, the locus starts on
the positive real axis; when k2 < 0, the locus starts on the
negative real axis. If |k1 + k2| < α2, the locus starts inside
of the unit cycle; if |k1 + k2| > α2, the locus starts outside
of the unit cycle. All locus approaches the origin when
ω → +∞. Hence, the locus intersects with the unit cycle
for finite times: odd times if |k1 + k2| > α2 or even times
if |k1 + k2| < α2. Denote the first outgoing (w.r.t. the unit
cycle) crossing frequency by ω1 and the rest ingoing and
outgoing frequencies by ω2, · · · ω2r−1 and ω2r. The locus
crosses the unit cycle for r rounds. If |k1 + k2| > α2, the
first crossing is ingoing and the corresponding crossing

k
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Fig. 5. The stability regions of (1). The dotted box is the delay-
independent stability region (see Figure 4)
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Fig. 6. Dual-locus diagrams of (1) when |k2| ≥ |k1|

frequency is denoted by ω0. Apparently, these frequencies
are the ordered positive solutions of the equation

|M(jω)| = 1,

i.e. of

k2
1 + 2k1k2 cos∆ω + k2

2 = (α2 − ω2)2 + 4ζ2α2ω2.

Bearing in mind, when the conditions given in Theorem
1 are satisfied there will be no crossing. The locus L1

remains inside of the locus L2.
If there is no delay τ1 (i.e. τ1 = 0), then the system is

stable if and only if the locus does not encircle the point
(−1, 0). In other words, the crossings at ω2i−1 and ω2i are
in the same cycle ci. When τ1 �= 0, the phase shift due to
τ1 should be considered. Using the similar arguments in
the previous section, the following results can be obtained.

Theorem 3. When |k2| ≥ |k1|, the system (1) is unstable
for any delays τ1 > 0 and τ2 > 0 if k1 + k2 ≤ −α2. See
region RU in Figure 5.

Theorem 4. When |k2| ≥ |k1|, the system (1) is (delay-
dependently) stable if one of the following conditions hold:

(i) 0 > k1 + k2 > −α2 and
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there exists a ci ≥ 0 for each i = 1, 2, · · · , r such that

1
ω2i−1

(2ciπ+φe(ω2i−1)−arctan
2ζαω2i−1

α2 − ω2
2i−1

) < τ1 <
1

ω2i
(2ciπ+2π+φe(ω2i)−arctan

2ζαω2i

α2 − ω2
2i

).

See region RA in Figure 5;
(ii) 0 < k1 + k2 < α2 and
there exists a ci ≥ 0 for each i = 1, 2, · · · , r such that

1
ω2i−1

(2ciπ−π+φe(ω2i−1)−arctan
2ζαω2i−1

α2 − ω2
2i−1

) < τ1 <
1

ω2i
(2ciπ+π+φe(ω2i)−arctan

2ζαω2i

α2 − ω2
2i

).

See region RB in Figure 5;
(iii) k1 + k2 > α2 and
0 ≤ τ1 < 1

ω0
(π + φe(ω0)− arctan 2ζαω0

α2−ω2
0
) and

there exists a ci ≥ 0 for each i = 1, 2, · · · , r such that

1
ω2i−1

(2ciπ−π+φe(ω2i−1)−arctan
2ζαω2i−1

α2 − ω2
2i−1

) < τ1 <
1

ω2i
(2ciπ+π+φe(ω2i)−arctan

2ζαω2i

α2 − ω2
2i

).

See region RC in Figure 5.

The axis k1/α2 in Figure 5 has been cut into four
pieces corresponding to the four regions. This is exactly
the results given in lemmas 1-3. Hence, one might expect
that the four regions shown in Figure 5 can be extended,
at least, to the axis k1/α2. However, we haven’t found
solid evidence to support this.

IV. CONCLUSION

In this paper, the stability of combustion systems mod-
eled as a second-order including one or two delays are
analyzed. When there is only one delay, the complete sta-
bility criteria have been given; when there are two delays
in the model, necessary conditions, sufficient conditions
and necessary and sufficient conditions are obtained.
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