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Abstract

In this paper the problem of position control of an un-
deractuated planar 2R manipulator is solved by track-
ing suitable off-line planned optimal trajectories via a
robust feedback control. The sliding modes technique
is used to synthetize the robust feedback control such
that the manipulator’s coordinates track the planned
trajectories with bounded uniformly tracking error, un-
der error modeling, small deviations on the initial con-
ditions and errors introduced by computing the control
law. By experiments, it is illustrated that if the coor-
dinates of the underactuated system track the off-line
planned trajectories then the links of the manipulator
are placed close to any desired configuration.

Keywords: Underactuated manipulator, position con-
trol, robust control law, sliding modes.

1 Introduction

The study of underactuated mechanical systems, that
is, mechanical systems with less control inputs than gen-
eralized coordinates, is an interesting and growing area.
They are subject of research by many authors (see [4],[5],
[6], [14]-[17]). Several laboratory prototypes such as the
pendubot [14], the acrobot [15], the TORA [9], the in-
verted pendulum [17], the ball and beam system [8], etc.,
are useful to prove new control techniques. Underactu-
ated mechanical systems are desirable in view of their
saving in energy, reduced cost and weight. However they
have the disadvantage that special control techniques
must be used. Moreover, fully actuated mechanical sys-
tems can become into underactuated systems if some
actuator fails, and for this situation it is convenient to
have a controller for the underactuated system [7].

An interesting class of underactuated systems are ma-
nipulators with rigid links and unactuated joints. The
basic control problems are the tracking of oscillatory
trajectories and the position control (i. e. to place the

links at desired position with zero velocity). The under-
actuated manipulators can be studied under the gravity
force or without it. Underactuated manipulators under
the gravity force can be controlled by many techniques
with acceptable results [14], [15], [17]. However, the con-
trol of manipulators whose dynamics are not affected by
gravity force is a challenge, because they are not linear
controllable. A manipulator that has its links moving
in a horizontal plane, such that the gravity force does
not affect their motion, is known as a planar manipu-
lator. In [1] and [3] a class of 3R planar underactuated
manipulator is controlled taking advantage of the prop-
erty of Small-Time Local Controllability. To regulate
the configuration of a 2R planar underactuated manip-
ulator with an actuator in the first joint only, interesting
control strategies are proposed. For example, in [6] the
2R manipulator is stabilized to a desired configuration
by using an iterative steering technique, based on the re-
peated application of an error contractive command. In
[2] the same class of manipulator is controlled by track-
ing time-scaling planned trajectories.

In this paper the configuration for a 2R planar un-
deractuated manipulator is addressed. Because of the
Brockett’s theorem, [12], the manipulator only can be
stabilized at desired positions by discontinuous or by
time-varying control laws. Basically, the position con-
trol is solved by using algorithmic or open loop con-
trollers, see [6], and there are few time-varying control
laws, [2]. The strategy followed here is to use a time-
varying control law based on planned optimal trajecto-
ries, so the position control problem is solved by making
the manipulator’s links track suitable optimal trajecto-
ries. The planned optimal trajectories are obtained by
using the optimal trajectory planner proposed in [13].
Hence, given some off-line planned trajectories it is pro-
posed a robust control law that achieves the objective of
tracking the prescribed trajectories. So, the main con-
tribution in paper is to give a time-varying control law
that solve the position control problem of an underac-
tuated manipulator of 2dof. Moreover, this control law



has robustness property.

This paper is structured as follows. In section 2, the
problem statement is addressed. In section 3, the tra-
jectory planning is considered. In section 4, a robust
feedback control based on the sliding mode technique
is proposed. In the section 5, experimental results are
given to illustrate the position control of an underactu-
ated system based on the methodology given in sections
3 and 4. Finally, some conclusions are given in section

6.

2 Problem statement

The manipulator considered here has two degrees of free-
dom with revolute frictionless joints whose links move in
the horizontal plane. See Fig. 1.

If the first joint is active and the second link is passive,
the model of the manipulator is given by [12]

(a1 + 2as cos qg) g1+ (a3 + ag cos QQ) q2
—agsingy (24142 + q%) =Ty, (1)
(a3 + agcos g2) 41 + asdo + azsin(gz)d? = 0

where al = myl2 + mol¥ + mol2, + .1 + Lo, as =
malylea, ag = mal2, + I,.5, m; denotes the mass of link
i, l; denotes the length of link i, [.; denotes the center
of mass of link i with respect to its rotation axis, I,,;
is the inertia of link ¢ with respect to its rotation axis,
g1 denotes the position of the first link measured from a
reference system, ¢; denotes the position of the second
link measured from the first link, ¢; and §; denote the
angular velocity and angular acceleration, respectively,
of link i. 7y is the applied torque in the first joint. In
this case, the second equation of (1) represents a dy-
namic constraint which cannot be integrated to obtain
an algebraic relation between the coordinates ¢, and g,
that is, it is a second-order nonholonomic constraint [12].
This dynamic constraint plays an important role to plan
the necessary trajectories that make possible the regu-
lation of the underactuated system.

The control goal is stated as: To find a control law
u that moves the links of the manipulator close to a
desired configuration from an initial configuration, both
of them having zero velocity.

There are some control problems that must be con-
sidered at the control design process, as: The Taylor
linearization of (1) is not controllable at positions with
zero velocities, the model (1) is not Small Time local
Controllable (STLC) in some configurations [11] and the
system only can be stabilized at some desired configu-
ration by discontinuous control laws or by time-varying
controls, because of the Brockett’s theorem [12].

The strategy followed to reach the control goal is to
use a time-varying control law based on off-line planned
optimal trajectories. This is achieved in two phases,

1. Optimal trajectory Planning.

2. Robust feedback control.

Because of the property STLC implies that the sys-
tem can reach close configurations in arbitrarily small
time, the lack of the STLC in some configurations indi-
cates that sometimes the control law can not eliminate
small errors and consequently the system does not track
trajectories asymptotically.

3 Trajectory planning

To move the links near the desired positions, by tracking
trajectories, it is necessary to plan proper and feasible
trajectories that connect the initial configuration with
the desired one. So, in this section it is described the
procedure to obtain proper planned trajectories, pro-
posed in [13]. The trajectories depend on parameters
that must be determined in function of the initial and
final configurations.

The problem of trajectory planning to be solved can
be stated as follows: find feasible trajectories connect-
ing the initial configuration (¢1 (¢o0), g2 (t0)) = (¢10,920)
of the system (1), with (¢1 (f0) , 42 (f0)) = (0,0), to the
desired configuration, (¢1(tf),q2(tr)) = (¢14,924) With
(d1(tf),d2(tf)) = (0,0) in a given time ¢;, where ¢ rep-
resents the initial time and ¢; the final time. A feasi-
ble trajectory means a trajectory satisfying all the con-
straints imposed on the dynamics of the manipulator
and performing a desired task. Here, it is neither consid-
ered the problem of avoiding obstacles nor the bounded
of the states of the system. The constraints to be satis-
fied by the trajectories of the physical system to reach
a static desired configuration are

(a3 + az cos q2) §1 + asdz + agsin(g2)¢i = 0.
q1 (ty) —q1a =0,
@2 (ty) — g2qa =0, 9
g1 (t) =0, @
da (t7) =0,
<

71 (8)]

where Ty.x 18 the maximum torque given by the actuator
of the system.

To find a suitable planned trajectories, the trajec-
tory planning methodology given in [13] is followed.
Since the considered manipulator has one actuator in
the first joint, only the coordinate ¢; can be controlled
directly. In this manner, by tracking the planned trajec-
tory g1, (t) the links of the manipulator must reach the
desired configuration. The planned trajectory gy, (%) is
obtained off-line, while the trajectory gop, () can be com-
puted in-line by solving the dynamic constraint, where

1 = Qips @1 = Q1p and Gi = Gip.

4 Feedback control

The trajectories planned in the previous section can be
used to synthesize a feedforward control that allows to



reach the control objective. However, if the system is
controlled only with feedforward control and there ex-
ists some perturbations, modeling errors or incorrect ini-
tial conditions, then the system does not reach the de-
sired configuration. So, a feedback control must be used
to guarantee the regulation of the system. The sliding
mode technique has been chosen to synthesize a feed-
back control.

There are several feedback control techniques used in
underactuated systems. However, there are few control
schemes used to solve the trajectory tracking. Here, a
sliding mode technique is used the to propose a control
law to ensure that coordinates track the off-line planned
trajectories. This approach gives a robust control law
and guarantees bounded uniformly errors [10]. Because
the model of the manipulator does not have the STLC
property, it is difficult to design a controller that elimi-
nates the tracking errors without large deviations from
the planned trajectories. However, the sliding mode con-
trol law ensures that the states of the system are close
to the sliding surface such that the links are near of the
desired positions.

The control design strategy is as follows. Based on
switching surfaces, which are functions of the tracking
errors and their time derivatives, a control law is ob-
tained. This control law is derived by using the pseudo-
inverse of a non square matrix. Besides, it is proved that
the computed control law makes attractive the switching
surfaces, making that the tracking errors are ultimately
uniformly bounded. So, this ensures that the coordi-
nates of the manipulator are moving about the planned
trajectories.

The system model (1) can be written in matrix form
as follows

D(@)d+C(q,4)a=Mu 3)

where q = [g1,q2]° € R? is the generalized position
vector, the generalized velocity vector § and accelera-
tion vector § are defined in similar way, D (q) € R**?2
denotes the inertia matrix, C (q,q)§ €R" defines the
vector of centrifugal and Coriolis forces. In this case the
vector M = [1,0]".

The structure of the control law is proposed from the
following relation, which is obtained by solving for §
from (3),

§+D7 "' (@) Cla,g9)a=B(qu (4)

where B (q) = D™1(q) M, so the controller is proposed
with the structure

B@u=& (t)+D ' (q)C(q,a)q+v, (5

with
v = —ks — kysign (s) — Aq. (6)

where §, (t) € R? denotes the vector of planned ac-
celerations, q. = q —q, € R? is the tracking error
vector, g, € R? is the time derivative of the vector of
planned trajectories qe, k and k; are positive constants,

A € R?*2 js a positive diagonal matrix, and s = [s, s5]"
is the vector of switching surfaces defined by!

s =q. + Aq,. (7)

Because of the structure of s, if the control law u,
(5), makes stable the surface s, then the errors g, are
bounded.

To study the behavior of the closed loop system and
the stability conditions, the dynamic model (3) is ex-
pressed as function of the switching surfaces. The time
derivative of (7) is given by

$§ =g, + AQe. (8)

The term g, can be put in function of v, i. e. §. = v,
by substituting directly (5) into (4). So §, Eq. (8), takes
the form,

S=v+Aq4.

and applying (6), it is written as
§ = —ks — kysign(s), 9)

where k and &, are chosen such that stability is guaran-
teed.

The reduced system (9) does not consider some ap-
proximations made during computation of the control
law. In fact, the control law u applied to the manipu-
lator must be explicitly solved from (5), but B(q) is a
vector so it is not possible to obtain the control law u
in a direct way. For this reason, the left pseudo-inverse
of B(q) is used to obtain an approximated control law.
Since rank (B (q)) = 1, the left pseudo-inverse of B (q),
denoted by B# (q), is given as follows

B¥(q) = [BT (a) B(a)] ' B” (a),
so u is given by
u=B*(q) [6, () + D" (@ Cla,@a+v]. (10
Applying (10) to (4), and simplifying, one obtains
e = v+ [B(a@)B#(q) — I] [&, (t) + D™ (q)C(q,&)q + v] .

The second term is an error of approximation for the
ideal relation §. = v, which can be considered as part
of a vector of uncertainties V. So,

v =[B(q)B¥(q) —I] [§ (t)+ D" (q)C(q,fl)c'lzrl\lf)] :

So, §. is written as

e =Vv+V,

1The function sign(s) is defined as

(sign(s1), sign(s2))T, where

. 1 ) 5 >0 .
szgn(si)z{ _’1 1;: SZ<0 ,i=1,2.



therefore $, Eq. (8), takes the form
§=v+Aq.+V. (12)
Applying the control law (6) to (12), one obtains
§ = —ks — kysign(s) + V. (13)

The stability of (13) can be ensured if the positive
constants k and kq are properly chosen. In particular,
the value of k; depends on the upper bound of the un-
certainty v. It is well known that in controlling a real
system there exist measurement errors. Besides there
are uncertainties on its model and on their parameters.
It is supposed that these errors and uncertainties can be
put into the vector V.

Lemma 1 Let consider the system model described by
(4) with the control law (5), i.e. the closed loop system
(13). If the uncertainty vector ¥ is bounded, ||V| < «,
then the switching surfaces s are attractive, continuous
and uniformly bounded when ki > c.

Proof By taking the first time derivative of the follow-
ing candidate Lyapunov function,

V= %STS,
and using (13), it gives
V =s"8 =87 (ks — kysign(s) + ¥). (14)
Simplifying and taking upper bounds,

14

—ksT's — kysTsign (s) +s'¥
—k|[s[* = Fu [lsl| + [ls]| 1¥]]
= —kllsl* = (& — %) [Is]

< ksl = (k= o) [Is]|.

IA

So, by taking kq > « the switching surfaces s are
attractive,

V< —k|s|?.
]

It is important to point out that the vector of un-
certainties v is a bounded function, ||¥|| < «, since it
depends on uniformly bounded functions, the variables
q is physically bounded, and ¢, is planned bounded.

Following the Lemma 1, the tracking errors are
bounded. However, it is possible to show that these
errors are ultimately uniformly bounded. This can be
done by using the following Lema to show that s is ul-
timately uniformly bounded.

Lemma 2 [10, pag. 204/Consider the perturbed system

z=f(t,z)+g(tz)

where z € R"™ and g (t,z) € R" is a nonvanishing per-
turbation term for the nominal system

z=f(tz).

Let x = 0 be an exponentially stable equilibrium point of
the nominal system. Let V (t,z) be a Lyapunov function
of the nominal system that satisfies

c llel* SV (t,2) < eallz],

ov oV 9
AT < _
V) < —ealol?
ov
H%H < cql|z|

in [0,00] x D, where D = {x € R"|||z|| <r}, and
c1,co, c3 and ¢y are positive constants. Suppose the per-
turbation term satisfies

ool <5< [P
Cq Co

for allt > 0, all x € D, and some positive constant
8 < 1. Then, for all |z (to)|| < \/c1/car, the solution of
the perturbed system x (t) satisfies

o (@) < klla (to)]| 1), Ve < t <ty

and
e ()] < b,v >

for some finite time t{, where
1-6 6
K = 0—2,")/:—( )03,b:% 0_2—.
C1 202 Cc3 C1 0

From (13), the perturbed system is identified as
$=—ks+g(ts),

where the perturbation term g (¢, s) is given by g (¢,8) =
—kysign (s) + ¥. So, the nominal system

s =—ks

has a exponentially stable equilibrium point at s = 0,
since k& > 0. The perturbation g (¢,s) is bounded,

lg @8l <Er + V]| < k1 + < 6.

Ts = % ||s||2, SO

Moreover V (s) = 3s
. 2 2
V < —k[s|” — k1 [ls]| + a[lsl| < —E||s[| + & [Is|
from here it is possible to identify
C1 = C9 =

c3 = k,C4:1

p o G b 18
o Cc3 Cla_ka,



for some positive constant § < 1. Besides, an estimated
bound of g (¢,s) is given by 4,

g (t,8)|| < 6 < Z20r = kbr.
Cq

Therefore, for a finite time &,

16
s ()l < 358> ta. (15)

Remark 1 To avoid the chattering phenomena, when
the discontinuous function sign (-) is used to compute
the control law u, the function sign (s;) is approzimated
by the continuous function

sign (s;) = tanh (ésl> (16)
T

where the parameter €; gives the width of the switching
region near to the switching surface s;. By using the
approzimated function (16), a sliding mode does not ex-
ist but the state vector of the system will move around
the switching surface. The introduced error by the use
of (16) can be estimated by using Lemma 2, resulting in
the same conservative bound (15).

5 Experimental results

The methodology given in the last sections was applied
to one laboratory prototype consisting of an underactu-
ated planar 2R manipulator is obtained. The parame-
ters of this system are: I,,; = 0.00622489kg m?, Iy =
0.2034m, la = 0.156713m, m1 = 0.839713bkg, I,.o
= 0.005499 kg m?, Iy = 0.352425m, I, = 0.139462m,
mg = 0.385286 kg. The electronic hardware used to
control the manipulator consists of four main parts: a
personal computer, a D/A card, a servo amplifier, and
a specialized card to read the encoders. The control al-
gorithm is programmed to use the C-language, under a
time-interrupt mode such that the sampling period was
set to 1 ms.

If the manipulator has the initial configuration
(910,920) = (0,0) and one wants to move it to the fi-
nal configuration (0, %), then the parameters of the
optimal trajectory are oy = 1.12135677Trad, oy =
—0.27875577rad, t; = 5.4553 s.

The parameters of the control were chosen as k () =
1,]1?1 (t) = 70,)\11 = )\22 = 60,61 = € = 0.001. Flg 2
shows the behavior of the variables ¢; and g9 together
with the planned trajectories g, and go,, moreover the
control law u is given. The error on the initial con-
figuration is (0.0065, —0.0005) rad and the error on the
final configuration is (—0.0064, —0.02353) rad. The ro-
bustness of the control law, under uncertainty on the
physical parameters of the manipulator, was tested by
placing a body of mass m = 0.05kg at the end of the
second link. In Fig. 3 is shown the dynamic behavior of
variables ¢; and ¢, together with the planned trajecto-
ries, g1p and gap, and the control law u. The error on the

initial configuration is (0.00657,0.0026) rad and the er-
ror on the final configuration is (0.0504, —0.00061) rad.

During the experimentation was verified that control
law is robust in the sense that it can handle approxima-
tions made during the computation of the control law,
parametric uncertainties, friction forces and bounded
control law. Moreover, it was noted that the perfor-
mance of the controller is sensitive to large incorrect
initial conditions and choices of the values of control
parameters.

6 Conclusions

In this paper the control position problem of an underac-
tuated system by means of tracking planned trajectories
is solved. The proposed control law results in a robust
varying-time control, because the use of sliding modes
technique and the use of planned trajectories. This con-
trol law guarantees the state of the system to stay into
neighborhood of the intersections of the surfaces (s = 0).
Besides, it is shown it makes tracking errors to be ulti-
mately uniformly bounded. Experimentally, the control
law was verified to be robust although its performance
is sensitive to large incorrect initial conditions.
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Fig. 1. Two dof underactuated planar manipulator.
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