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Abstract—In this paper, we proposed one methodology to 

parameterize all quadratically stabilizing controllers for linear 
parameter varying (LPV) system based on coprime factorization 
conception. That is, conception of doubly coprime factorization 
and Youla parameterization of LTI system is extended to LPV 
system. Such numerical solutions of these stabilizing controllers 
parameterization problem can be transferred to finite vertex LMI 
optimal problems according to the assumption of polytope 
characteristic of these LPV systems. 
 

Index Terms— Coprime factorization; Linear parameter 
varying; Polytopic system; Quadratic stability; Youla 
parameterization. 
 

I. INTRODUCTION 
T is well known that doubly coprime factorizations of linear 
time invariant systems are very efficient algebraic tools for 

solving many relevant control problems. Youla-Kučera 
parameterization [1], [2] construct the whole set of output 
feedback stabilizing controllers by one stable system, is also 
based on the coprime factorizations. A very important property 
of this parameterization is that it transforms the feedback 
control problem to a much simple open loop model-matching 
problem.  

In linear time varying case, until now, Youla 
parameterization conceptions of LTV system have not been 
explored systematically. There are almost few papers 
concerning how to use those conceptions to solve numerical 
solutions of all stabilizing controllers for linear time varying 
system. 

On the other hand, Shamma & Athans [3], [4] formalized a 
certain type of nonlinear system or LTV systems as a linear 
parameter varying (LPV) system, and succeeded in developing 
a control strategy for this system based on classical gain 
scheduled methodology. In [5], for polytopic LPV systems a 
necessary and sufficient condition for quadratic stability can be 
formulated in terms of a finite of linear matrix inequalities. The 
underlying quadratic Lyapunov functions can be also used to 
derive bounds on robust performance measures. Recently, 
significant progress has been made in this area, and a unified 
H-infinity approach is being developed that is also reducible to 
a linear matrix inequality (LMI) optimization problem [6]–[8]. 

In the present paper, as to LPV system with on-line 
measurable dependent parameter, firstly, conception of 
coprime factorization is extended to applying to LPV systems 

with state space function expression. Then a systematic way of 
obtaining all quadratically stabilizing controllers like Youla 
parameterization is presented. Such numerical solution of 
quadratically stabilizing controllers’ parameterization problem 
can be transferred to finite LMI optimal problems according to 
polytope characteristic of these LPV systems. 

The paper is organized as follows. First, the definition of 
LPV system and some tools are introduced in preliminary 
section. Second, Youla parameterization of LTI systems is 
overviewed. Youla parameterization for LPV systems is 
derived concisely. Then all stabilizing controller for polytopic 
LPV system is obtained according to conception of Youla 
parameterization in section four.  Finally, a numerical example 
is presented to illustrate the design method. 

 

II. PRELIMINARY  
In this section, firstly the notation and some assumption 

regarding LPV system are introduced. Useful conceptions and 
several lemmas are recapped. 

Definition 1: LPV system 

Consider the generalized LPV plant: ))(( tG θ  described by 
state space equations as 
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Here state-space matrices have compatible dimensions. 

Moreover we have the following assumptions. Notations 
follow the reference [6]. 
(1) The state-space matrices )(),(),(),( θθθθ wzzw DCBA   
depend affinely on ( )tθ . 
(2) The real parameter )(tθ is continuous real-time measurable 

in the polytope Θ of vertices ,21 ,,, Nωωω L  rN 2= ; it can 
be expressed as: 
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(3) The pairs ( ( ), )uA Bθ and ( ( ), )yA Cθ are is quadratically 

stabilizable and quadratically detectable over Θ  respectively. 
The original LPV plant )(22 θG  from u to y can be 
expressed as: 
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with  1,0 1 =≥ ∑ =
N
i ii αα . 

Here, )( ii AA ω= for  Ni ,,1L= .                              

Remark 1 

In the classical LPV gain scheduled H infinity approach, it is 
required that the matrices yu CB , , wyuz DD , of augmented 

plant )(θG be time invariant [6],[10]. However, when they are 
time varying, a simple means to enforce these requirements 
consists of filtering the control input and the output through 
low-pass filters having sufficiently large bandwidth. By this 
trick, the parameter trajectory is shifted into the state matrix A . 

Lemma 1 Schur complement 

The block matrix 






2212

1211
AA
AA

T  is negative definite if and 

only if 022 <A  and 012
1

221211 <− − TAAAA , where 22A  is a 
regular matrix. 

Lemma 2 Quadratic stability 

Considering polytopic LPV system )()()( txAtx θ=& , a 
necessary and sufficient condition for quadratic stability of 
above system is that there exists a quadratic Lyapunov function 

PxxV T=   such that 
 
       0,  0, 1, ,T

i iP A P PA i N> + < = L                        (4) 

Lemma 3  

If matrices )(11 θA and )(22 θA are quadratically stable, 
every block triangle matrix whose diagonal matrices consist of 

)(11 θA  and )(22 θA is quadratically stable. 
 

Proof:  Consider a lower triangle matrix: 
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According to the assumption, there exists 1P  and 2P , 
respectively, which satisfy 
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Considering the following matrix 
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 for 1, ,i N= L .                                                                       (6) 
 

Therefore, using Lemma 1, inequality (6) is equivalent to the 
following inequalities as 

0)( 222222 <+ PAAP T
iiλ   
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 for 1, ,i N= L  (7) 
 

This condition (7) can always be satisfied for any 0>λ such 
that 0<− ii λνµ  for Ni ,,1L= , 

where )( 111111max
T

iii APPA += δµ  

and  [ ] ))()(( 212
1

222222221min
T

i
TT

ii APAPPAPA −
+= δν  

The similar proof is also used for upper triangle matrix. 
 

III.  YOULA PARAMETERIZATION OF LTI SYSTEM 
 

In this section, firstly traditional coprime fraction and Youla 
parameterization of LTI system is overviewed. Using this 
conception, all quadratically stabilizing controller design for 
LPV systems is discussed in the next section. 
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Fig.1 Standard feedback system 
 

For LTI system (θ  is frozen), original plant 22G is given as 
followed 
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where the pairs ),( uBA and ),( yCA are also stabilizable and 
detectable respectively. 
The doubly coprime factorization is given by 
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with each transfer functions in ∞RH , and where 
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All stabilizing controllers are parameterized from the central 
controller llrr YXXY =−1  as follows: 
 

1))(( −++= QNYQDXK rlrl    ∞∈ RHQ                    (12) 
 

IV. YOULA PARAMETERIZATION FOR LPV SYSTEMS 
 

As to LPV systems, conception of doubly coprime 
factorization and Youla parameterization of LTI system is 
extended to polytopic linear parameter variant (LPV) system. A 
systematic way of obtaining all quadratically stabilizing 
controllers like Youla parameterization will be investigated in 
this section.  

A. Quadratically stabilizing observed-based controller for         
LPV systems 

The original LPV polytopic plant )(22 θG  can be expressed 
as: 
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where the plant is assumed to be quadratically stabilizable 
and quadratically detectable over Θ  shown in (2). 
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Fig.2. Quadratically stabilizing observed-based controller 

 
Lemma 4  
A quadratically stabilizing observed-based controller for the 

plant (13) can be formulated as   
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where )(θF and )(θL can be constructed as  
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,where 1−= fii PVF  and ili WPL 1−= ,  that satisfy the 
following  LMIs 
 

NiBVVBAPPAP T
u

T
iiu

T
iffif ,,1,0,0 L=<+++>

NiWCCWAPPAP T
i

T
yyiill

T
il ,,1,0,0 L=<+++>

                                                                                             (16) 
 
Proof: if the controller (14) is substituted into plant (13), the 
closed-loop state matrix can be expressed as 
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Based on (15), (16) and lemma 2, we see that 
)()( θθ FBA u+ and yCLA )()( θθ + are quadratically 

stable. Thus, using lemma 3, the system (17) is quadratically 
stable and consequently the controller (14) can be said to be 
quadratically stabilizing one for the LPV polytopic plant (13). 

 
Remark 2 
Using the elimination procedure of variable [8], conditions 

(16) can be replaced by the following equivalent condition (18) 
in which variables iV and iW do not appear.  

NiBBAPPAP T
uu

T
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T
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T
il ,,1,2,0 L=<+> µ      

0, 0δ µ> >   (18)      

Substituting  fP , lP  satisfying (18) and  also i i fV F P=  , 

i l iW P L=  into (16), we obtain iF   and iL . Finally  )(θF  

and )(θL  are also derived by (15).                                     

Definition: Coprime factorization for LPV plant 
Now we can define the coprime factorization of LPV plant 

that resembles the case of LTI system 
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Where )(),( θθ LF matrices satisfy the LMIs(16). 
 

B. All quadratically stabilizing controller for LPV system 
 
In this section, parameterization of all quadratcially stabilizing

 controller for LPV system is investigated. 
Theorem 
All quadratically stabilizing controller that make LPV plant  

(1) quadratically stable can be parameterized by the figure.3, 
where ( )M θ is given by (20) and ( )Q θ is arbitrary 
quadratically stable LPV system as (21) 

y
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Fig.3 All quadratical stabilizing controller 
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where there exists a positive definite matrix QP such that 

( ) ( ) 0T
Q Q Q QA P P Aθ θ+ < .                                         (22) 

Proof: 

Sufficiency  
Using (20) and (21), the controller ( )K θ in Fig.3 is derived 

as 
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Connecting (23) to (13), the closed loop system can be 
expressed as 
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where ˆe x x= −  and Qx  is state variable of the ( )Q θ . 

Using Lemma 3 twice, there exists a quadratic Lyapunov 
function xPxV cl

T=  that clP is positive definite and 
symmetric matrix such that 
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where qf λλ , are positive definite numbers, this assures that 
above system is quadratically stable. 

Necessity  
We will show that any stabilizing controller )(θK is 

expressed with a quadratically stable 0Q as ),( 0QMFK l= ,  

Considering a function ),ˆ(0 KMFQ l= ,where 
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Fig.4      A function ),ˆ(0 KMFQ l=  

 
Since (2,2) block of )(ˆ θM is same as the original plant (13), 

we can get )(0 θQ  is a quadratically stable. 

Now we substitute )(0 θQ into ))(),(( 0 θθ QMFl , we get 
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where tmpJ can be obtained by using the sate space star product 
formula 
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Hence )())(,())(),(( 0 θθθθ KKJFQMF tmpll == . 
This shows that any quadratically stabilizing controller can be 
expressed in the form as Fig.3 with quadratically stable 

)(0 θQ . 

V. NUMERICAL EXAMPLE 
 

A classical example of parameter-varying unstable plant that 
can be viewed as a mass-spring-damper system with 
time-varying spring stiffness is considered. The state space 
equation of this unstable un-weighted LPV plant is as follows  
 







−−−= 2.05.05.0
10)( θθA , 



= 1
0

uB  

[ ]01−=yC , 0=uyD  

Here the scope of nominal time-varying parameter )(tθ  is in 

polytopic spaces }.1,1{:1 −=Θ Co  
According to the following LMIs 
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Using Matlab toolbox [9] then solving the six linear 
inequalities matrices, we got 
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Finally we obtained all quadratically stabilizing controllers as 
Fig.3 with the following observer based controller; 
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by setting by setting )(θF and )(θL as ∑
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VI. CONCLUSION 
A method to parameterize all quadratically stabilizing 

controllers for linear parameter variant (LPV) system has been 
proposed based on coprime factorization conception. This 
parameterization problem can be transferred to finite LMI 
optimal problems according to polytope characteristic of the 
LPV system. A numerical example is presented. 

Based on proposed parameterization method, well known 
Q-parameter approach can be applied to variety of 
multi-objective control system design for LPV system. 
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