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Abstract

The reduction of the navigation error in an inertial navigation system by optically tracking a ground
object is investigated. Multiple observations of the ground object are used, however the location of
the ground object is assumed unknown. The analysis of the measurement situation on hand reveals
that by optically tracking an unknown ground object using passive, bearings-only measurements,
the aircraft’s angle of attack and sideslip angle can be measured. Thus, two new independent
measurement equations featuring the aircraft’s angular navigation variables ψ, θ, φ, γ and H are
obtained and inertial navigation system aiding is possible. Moreover, simultaneously, and in parallel,
the estimation algorithm also updates the aircraft’s positional navigation variables and the geo-
location of the ground object. The theory allows inclusion of information on the coordinates of the
ground object. Thus, the theory is sufficiently general to encompass the conventional methods of
inertial navigation system updating where the coordinates of the ground object are known.

1 INTRODUCTION

An Inertial Navigation System (INS) is a self-
contained and autonomous navigation instrument
wherein all the required measurements are ob-
tained without the aid of external sources. Ac-
celeration and angular rate information necessary
for dead reckoning navigation are measured by on
board accelerometers and gyroscopes, which are
non-jammable and non-radiating. Unfortunately,
INS instruments suffer from drift, a degradation
in accuracy of the position and velocity estimates
over time. Since the accuracy of an INS deterio-
rates over time, it needs to be updated periodi-
cally.
Optical bearing measurements of an unknown
landmark have been suggested in [3], where INS
aiding using bearings-only measurements of an
unknown (lunar) landmark was considered for the
Apollo mission. The tracker envisioned in this pa-
per consists of a precision telescope mounted on
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a gimbal system. This allows the telescope to re-
main pointed to the ground object independent
of vehicle motion. The direction of the Line of
Sight (LOS) relative to the aircraft body axes is
measured by pickups attached to the gimbals. In
addition, the inertial angular rate ~ω of the LOS
is measured.
The paper is organized as follows. In Sect. 2, the
optical flow kinematic measurement situation is
introduced. The measurement equation derived
from the optical flow is developed in Sect. 3. The
INS aiding scheme is developed in Sect. 4, fol-
lowed by concluding remarks in Sect. 5.

2 ANALYSIS

We consider the plane P formed by the aircraft’s
velocity vector V and the point P on the ground -
see, e.g., Fig 1. The inertial reference frame is X,
Y, Z. A local frame of reference x, y, z is also intro-
duced. Its origin is collocated with the aircraft’s
initial position X0, Y0, Z0, the x-axis is aligned
with the aircraft’s inertial velocity vector V, the
y-axis is in the plane P, normal to the x-axis, and
points in the direction of the point P , and the z-
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axis complements the right handed axes system.
The aircraft’s body axes are xb, yb, and zb. The

Figure 1: The measurement situation in 3-D case

bearings-only kinematic measurement scenario is
illustrated in Fig.1.The raw measurements are

1. The time instants tk, k = 0, 1, ..., N .

2. The LOS rate with respect to inertial space,
i.e., σk, k = 0, 1, ..., N .

3. The angle of depression of the initial LOS,
θD ; it is the angle included between the air-
craft’s x-body axis and the initial LOS to the
ground object P.

We’ll show in Sect. 3 that the following holds.
Theorem 1 Consider the kinematic measure-
ment scenario shown in Fig 1 where bearing mea-
surements on a ground object, whose position is
not known, are taken over time. It is then possible
to estimate the angles which specify the direction
of the aircraft’s inertial velocity vector V relative
to the aircraft’s body axes, viz., α′ and β′, where

α′ = arctan(
w

u
) , β′ = arctan(

v

u
) ,

and where u, v, and w are the components of the
inertial velocity vector V resolved in the body
axes.
Thus, we realize that:
Corollary 2 An optical flow sensor measures the
angles α′ and β′ which specify the direction of
the aircraft’s inertial velocity vector relative to
the aircraft’s body axes.

We also realize that - see, e.g., Sect 3.3:
Proposition 4 The angles α′ and β′ are re-
lated to the aircraft’s angular navigation variables
ψ, θ, φ, γ and H.

Theorem 1 and Proposition 4 are exploited to lay
the foundation for INS - aiding using bearings-
only measurements, as stated in:
Theorem 5 The kinematic measurement sce-
nario which entails bearing measurements over
time on a ground object whose position is not
known, yields two new independent measurement
equations featuring the aircraft’s angular naviga-
tion variables ψ, θ, φ, γ and H.

Indeed, the proposed INS aiding concept is a
modern mechanization of a driftmeter [4] . In
other words, the gist of the paper is an investiga-
tion into INS aiding using a modern driftmeter,
a.k.a., optical flow.

3 ESTIMATION

3.1 The Regressor H

In the sequel we’ll confine our attention to flight
in the vertical plane (X,Y ) (≡ P). The naviga-
tion variables are X0, Y0, V, γ, θ, and the ground
object coordinates are XP , YP .
The ground object, referred to as the point P ,
has the coordinates (x, y) in the local frame in
the plane P. The point P is located at the inter-
section of the N + 1 circles Ck - see, e.g, Fig. 2b.
After some algebraic manipulations, a linear ho-

mogeneous system, compactly written in matrix
form as

Hθ = 0 (1)

is obtained, where the parameter vector

θ =
[

x y V
]T

and the N × 3 regressor matrix H =






2T1−t1−t0 t1 cotσ1−t0 cotσ0 −T1(T1−t1)
. . .
. . .

2Tk−tk−t0 tk cotσk−t0 cotσ0 −Tk(Tk−tk)
. . .
. . .

2TN−tN−t0 tN cotσN−t0 cotσ0 −TN (TN−tN )







N×3

3.2 The γD Formula

As shown in Fig. 3, the navigation variables con-
sist of 3 positional variables and 2 angular vari-
ables. They are X0, Y0, V , and γ, θ, respectively.
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Figure 2: Geometry of bearings-only measure-
ments - a) k th circle, b)Four circles (N=3)

Figure 3: The measurement situation in the 2-D
case - the plane P

The navigation variables are assumed constant
during the short measurement interval.
The raw measurements are pre-processed and the
regressor H is formed according to the develop-
ment in Section 3.1. The angle γD included be-
tween the velocity vector V and the initial LOS
is computed as follows.
Performing a Singular Value Decomposition
(SVD) of the noise corrupted regressor H yields

H = UΣV T

where U and V are N × 3 and 3 × N matrices,
respectively. The 3 × 3 diagonal matrix Σ has 3
singular values. The third singular value is much
smaller than the first two singular values. Set the
third singular value to 0 and only the nonzero
elements of Σ are preserved in a reduced 2 × 2
matrix Σ. This allows us to replace the original
linear homogeneous system of N equations with
the reduced linear homogeneous system of 2 in-
dependent equations in 3 unknowns

Kθ = 0 (2)

Thus, eq. (2) is a set of 2 linear equations in the
3 unknowns x, y and V , viz.,

K1,1x+K1,2y +K1,3V = 0

K2,1x+K2,2y +K2,3V = 0 (3)

This yields the solution

x = KxV

y = KyV (4)

where the “gains”

Kx =
K1,2K2,3 −K2,2K1,3

K1,1K2,2 −K1,2K2,2

Ky =
K2,1K1,3 −K1,1K2,3

K1,1K2,2 −K1,2K2,2
(5)

Evidently, x and y are homogeneous in V .
Now, the angle γD = arctan( y

x
).

The SVD yields the “gains” Kx and Ky and, in
view of eqs. (4), we calculate

γD = arctan(
Ky

Kx

)

where the “clean” Kx and Ky parameters are the
result of the SVD. The above calculated angle γD

included between the A/C velocity vector and the
initial LOS to P is referred to as γDmeas

.
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3.3 The Angle θD

The angle included between the A/C body axis
and the initial LOS to P,

θD = γD + α (6)

where α, the angle included between the aircraft
body axis xb and flight path axis x, is the air-
craft’s Angle Of Attack (AOA). The θD measure-
ment is generated as follows

θDmeas
= θD + v2, v2 = N (0, σ2

θD
) (7)

At the same time, α is the difference between θ

and γ, which are the INS measured pitch angle
and flight path angle, respectively:

θ = γ + α (8)

The difference between γD and θD is also equal
to α - see, e.g., eq.(6). The γD and θD measure-
ments are provided by the optical arrangement
described above. Thus, subtracting equation (6)
from equation (8) yields the equation which re-
lates the optical bearing measurements to the an-
gular navigation variables, as stated in Preposi-
tion 4,

θD − γD = θ − γ (9)

Equation (9) makes INS-aiding using bearings-
only measurements of a ground object, possible.
The development in this section constitutes the
proofs of Theorem 1 and Proposition 4 for the
simplified two dimensional case.

4 INS Aiding

4.1 Phase 1 - Angular Navigation

Variables

The measurement equation used for INS-aiding is
based on the development leading to Eq. (9).
We define the measurement

z = θDmeas
− γDmeas

(10)

where

γDmeas
= γD + v3, v3 = N (0, σ2

γD
) (11)

Combining eqs. (7), and (9)-(11) yields the mea-
surement equation for INS aiding:

z = θD + v2 − γD − v3

= θ − γ + v6 (12)

where v6 = v2 − v3, the measurement noise, is

v6 = N (0, σ2
θD

+ σ2
γD

) (13)

On the other hand, at the time instant of INS
updating, the stand alone INS provides the prior
estimates of θ and γ, θ̂− and γ̂−, respectively:

θ̂− = θ + v4 (14)

γ̂− = γ + v5 (15)

where v4 and v5 are white Gaussian noise with
the INS error statistics v4 = N (0, σ2

θ), v5 =
N (0, σ2

γ).
To eqs. (14) and (15), one appends the measure-
ment equation (12), thus obtaining a linear re-
gression in γ and θ. Hence, we can write the
linear regression for INS aiding as follows:

Z = H X + V




θ̂−

γ̂−

z



 =





1 0
0 1
1 −1





[

θ

γ

]

+





v4
v5
v6



 (16)

The linear regression (16) is solved using the
Weighted Least Squares / Minimum Variance
(MV) formulae [1]:

X̂+ = [HTR−1H]−1HTR−1Z (17)

P+ = [HTR−1H]−1 (18)

where X̂+ is the minimum variance parameter es-
timate, P+ is the predicted parameter estimation
error covariance matrix, and the weighting matrix
R is the equation error covariance

R =





σ2
v4

0 0
0 σ2

v5
0

0 0 (σ2
v2

+ σ2
v3

)



 (19)

The solution (17) and (18) of the linear regres-
sion (16) yields the improved angular navigational

variables estimates θ̂ and γ̂, thus accomplishing
phase 1 of INS aiding.

4.2 Phase 2 - Positional Navigation

Variables

In Phase 1, we obtained the improved angular
navigation variables’ estimates θ̂+ and γ̂+. We
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have the estimates

γD = N (γ̂D , σ
2
γD

), γ = N (γ̂, σ2
γ) (20)

In order to update the positional variables, we
need to include additional measurements.

4.2.1 Basic Linear Regression

We recognize that

x = R cosγD , y = R sinγD (21)

where R is the initial slant range to the point P.
Replacing in eqs. (21) γD with γ̂D, and using eqs
(20), we obtain

x ≈ R cosγ̂D −R sinγ̂D .vγD

y ≈ R sinγ̂D +R cosγ̂D .vγD

Furthermore, we recall the equalities

x = KxV, y = KyV

where, the gains Kx and Ky obtained after the
application of the SVD algorithm, are “clean”.
Hence, we declare R and V the primary parame-
ters and write the linear regression in R and V :





0
0
Vm



 =

[

cosγ̂D −Kx

sinγ̂D −Ky

0 1

] [

R

V

]

+
[

−R sinγ̂D 0
R cosγ̂D 0

0 1

]

[

vγD

vV

]

(22)

We also have the coordinate transformation equa-
tions

x cosγ + y sinγ = XP −X0

x sinγ − y cosγ = YP − Y0 (23)

Inserting eqs. (21) into the coordinate transfor-
mation equations (23), we obtain

R cos(γD − γ) = XP −X0

R sin(γD − γ) = Y0 − YP (24)

Eqs. (20) yield

γD − γ = γ̂D − γ̂ + vγD
− vγ

and thus, linearization yields

cos(γD − γ) ≈ cos(γ̂D − γ̂) − sin(γ̂D − γ̂)vγD

+ sin(γ̂D − γ̂)vV γ

sin(γD − γ) ≈ sin(γ̂D − γ̂) + cos(γ̂D − γ̂)vγD

− cos(γ̂D − γ̂)vγ (25)

Inserting eqs. (25) into eqs. (24), we obtain the
linear regression in the parameter (R,X0, Y0,XP ,
YP ):

[

0
0

]

=

[

cos(γ̂D − γ̂) 1 0 −1 0
sin(γ̂D − γ̂) 0 −1 0 1

]





R
X0

Y0

XP

YP





+

[

−sin(γ̂D − γ̂) sin(γ̂D − γ̂)
cos(γ̂D − γ̂) −cos(γ̂D − γ̂)

] [

vγD

vγ

]

(26)

We have the additional non-linear equality con-
straint:

√

(X0 −XP )2 + (Y0 − YP )2 −R = 0 (27)

The linearization of eq. (27) about a prior param-
eter estimate yields an additional linear regression
equation.
At this point, we use the INS provided measure-
ments Vm, Xom

, Yom
, the linear regression equa-

tions (22) and (26), and the linear constraint
which were derived so far, and we augment the
linear regression by including the complete prior
information on the ground object. Thus, the ad-
ditional “measurement” equations are included

YPm
= YP + vYP

(28)

XPm
= XP + vXP

(29)

The ensuing augmented linear regression Z =
Hθ + ΓV is given in eq. (31), where the super-
script “-” denotes a prior estimate of the parame-
ter. The 10×10 equation error covariance matrix
is

R = Γ

















σ2

V 0 0 0 0 0 0

0 σ2

X0
0 0 0 0 0

0 0 σ2

Y0
0 0 0 0

0 0 0 σ2

γ 0 0 0

0 0 0 0 σ2

γD
0 0

0 0 0 0 0 σ2

YP
0

0 0 0 0 0 0 σ2

XP

















ΓT (30)

and rank(R)=7. The technicalities of dealing
with a singular equation error covariance matrix
are dealt with in [2]. The solution of the linear
regression (31) yields improved A/C and ground
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object position estimates.

































Vm

0
0
0
0
0

Xom

Yom

YPm

XPm

































=







































1 0 0 0 0 0
−Kx cosγ̂D 0 0 0 0
−Ky sinγ̂D 0 0 0 0

0 cos(γ̂D − γ̂) 1 0 −1 0
0 sin(γ̂D − γ̂) 0 −1 0 1

0 1

√

1 −

(

Ŷ−
P

−Ŷ−
0

R̂−

)2
Ŷ−

P
−Ŷ −

0

R̂−
−

√

1 −

(

Ŷ −
P

−Ŷ−
0

R̂−

)2
Ŷ −

0
−Ŷ−

P

R̂−

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0























































V

R

X0

Y0

XP

YP

















+

+

































1 0 0 0 0 0 0

0 0 0 0 −R̂−sinγ̂D 0 0

0 0 0 0 R̂−cosγ̂D 0 0
0 0 0 sin(γ̂D − γ̂) −sin(γ̂D − γ̂) 0 0
0 0 0 −cos(γ̂D − γ̂) cos(γ̂D − γ̂) 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





















































vV

vX0

vY0

vγ

vγD

vYP

vXP





















(31)

5 CONCLUSIONS

INS - aiding by optically tracking a stationary
ground object over time is investigated. A careful
analysis of the parsimonious optical measurement
scheme reveals that the LOS measurements are
conducive to a stand alone estimate of the angles
α’ and β’ included between the aircraft’s inertial
velocity vector V and the aircraft body axes.
The measured α’ and β’ angles are related to the
aircraft’s attitude, heading, and flight path angle
angular navigation variables. Thus, the α’ and
β’ angle measurements provided by the optical
sensor can be used for INS aiding. In other
words, the gist of the paper is an investigation
into INS aiding using a modern driftmeter,
a.k.a., optical flow.
The INS-aiding process entails two phases.
We exclusively address the angular navigational
variables in Phase 1 and update the INS provided
estimates of θ and γ using the optically provided
α’ measurement. The results of Phase 1 are used
in Phase 2 to improve the INS provided position
estimates. In order to improve the estimates of
the positional navigation variables, information

on the position of the ground object is used.
Accurate own ship position estimation and
accurate geo-location are possible, using prior
ground object position and altitude information.
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