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Inversion of LPV systems
Z. Szabó, J. Bokor,G. Balas

Abstract— This paper investigates the problem dynamic
system inversion for linear parameter varying (LPV) sys-
tems, where the system matrix depends affinely from the pa-
rameters. The paper presents a method for the construction
of the inverse for LPV systems by using parameter varying
invariant subspaces and the results of classical geometrical
system theory.
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I. Problem formulation

The solution of the problem of dynamic inversion of sys-
tems gave rise to considerable attention in the control lit-
erature in the past years. Silverman e.g., considered the
properties and calculation of the inverse of LTI systems
in his classical paper [15] guaranteeing neither minimality
(or observability, detectability) nor stability properties of
the resulting inverse system. The problem was also con-
sidered by Fliess [4] for nonlinear input-output systems.
For certain classes of nonlinear state space representations
Isidori provided algorithms and also sufficient or necessary
conditions of invertibility in [6]. Dynamic inversion based
controllers are popular in aerospace control, see e.g. [7],
[8], [9].

Throughout this paper the problem of dynamic inversion
for the class of linear parameter–varying (LPV) systems
of which state matrix depends affinely on the parameter
vector will be considered. This class of systems can be
described as:

ẋ(t) = A(ρ)x(t) + B(ρ)u(t)

y(t) = Cx(t), (1)

where C is right invertible and

A(ρ) = A0 + ρ1A1 + · · · + ρNAN , (2)

B(ρ) = B0 + ρ1B1 + · · · + ρNBN , (3)

and ρi are time varying parameters. It is assumed that each
parameter ρi and its derivatives ρ̇i ranges between known
extremal values ρi(t) ∈ [−ρi, ρi] and ρ̇i(t) ∈ [−ρ̇i, ρ̇i], re-
spectively. Let us denote this parameter set by P.

The paper attempts to provide a better understanding
of the inversion procedure for LPV systems. In the dis-
cussions the concepts of geometrical system theory is used.
We derive a procedure based on the concept of invariant
subspaces and on the related coordinate transforms that
result in an inverse system supposed it is given in state
space form and it is left invertible. A numerical example is
presented which demonstrates the theoretical results and
the procedure on which the inverse calculation is based.
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II. Linear Time Invariant(LTI) systems

Let us recall first the results for LTI systems. An LTI sys-
tem is invertible if the corresponding input–output map is
injective, i.e., whenever u1 and u2 are distinct input func-
tions then the corresponding output functions y1 and y2

are different. An LTI system is invertible if and only if
R∗ = 0, where R∗ is the maximal controllability subspace
contained in kerC, see [13]. If V ∗ denotes the maximal
(A,B)-invariant subspace contained in kerC, then the in-
vertibility conditions can be formulated as, [1], [17]:

dim ImB = m, V ∗ ∩ ImB = 0. (4)

Let us observe, that if these conditions are fulfilled, one
can always choose a basis of the state space as

{ Λ ImB V ∗ }, Λ ⊂ V ∗⊥,

that induces a coordinate transform of the form

x = T−1z, where T−1 =
[

Λ ImB V ∗
]

.

Accordingly, the system will be decomposed to:

ẋ1 = A11x1 + A12x2 + B1u (5)

ẋ2 = A21x1 + A22x2 (6)

y = C1x1. (7)

It is clear that ImB = ImB1. Follows, that applying the
feedback

w = F1x1 + F2x2 + u, (8)

such that V ∗ is (A + BF,B) invariant, one can obtain the
system:

ẋ1 = A11x1 + B1u (9)

y = C1x1. (10)

For the dynamical system (9) the subspace of unknown-
input state unobservability by means of differentiators is
exactly V ∗

1 , the maximal (A11,B)-invariant subspace con-
tained in kerC1. Moreover, the system (9) can be inverted
for u belonging to the complementary subspace of B−1V ∗

1 ,

see [1]. By the maximality of V ∗ follows that V ∗

1 = 0, i.e.,
both x1 and u can be expressed as functions of y and its
derivatives.

Follows, that (6) and (8) gives the inverse system equa-
tions, moreover, this realization is minimal.

Denoting by ci the rows of C1 let us consider

span{c1, · · · , c1A
γ1

11, · · · , cp, · · · , cpA
γp

11} (11)

where ciA
l
11B1 = 0, for l < γi, and γi are chosen such that

the system to be linearly independent.
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By choosing a solution of the equation A12 + BF2 = 0
one can set F1 = 0. Follows, that choosing the basis (11)
for V ∗⊥, one has a particulary simple form of the decom-
position (6) and feedback (8) with F1 = 0, revealing imme-
diately the structure of the minimal inverse system.

III. Invariant subspaces

These ideas can be also extended to the LPV case. To
do this we have to introduce first the parameter varying
counterparts of the LTI invariant subspaces.

For the parameter varying case one can extend these no-
tions, and introduce the parameter varying (A,B)-invariant
subspaces, as follows, [16]:

Definition 1: Let B(ρ) denote Im B(ρ). Then a subspace
V is called a parameter-varying (A,B)-invariant subspace
(or shortly (A,B)-invariant subspace) if for all ρ ∈ P one
has

A(ρ)V ⊂ V + B(ρ). (12)
As in the classical case one has the following characteriza-
tion of the parameter varying (A,B)-invariant subspaces:

Proposition 1: V is a parameter varying (A,B)-invariant
subspace if and only if for any ρ ∈ P there exists a state
feedback matrix F (ρ) such that

(A(ρ) + B(ρ)F (ρ))V ⊂ V. (13)

The set of all parameter varying (A,B)-invariant subspaces
containing a given subspace C, is an upper semilattice with
respect to the intersection of subspaces. This semilattice
admits a maximum, denoted by

V∗

p.v.(C) := maxV(A(ρ), B(ρ), C). (14)
In what follows the subscript p.v. will be dropped.
This maximum which can be computed from the (A,B)-
Invariant Subspace Algorithm:

ABISA : V0 = K (15)

Vk+1 = K ∩

N
⋂

i=0

A−1
i (Vk + B). (16)

The limit of this algorithm will be denoted by V∗ and its
calculation needs at most n steps, for details see [16].

IV. Inversion of LPV systems

Let us consider the class of linear parameter-varying
(LPV) systems of m inputs and p outputs that can be de-
scribed as:

ẋ(t) = A(ρ(t))x(t) + B(ρ(t))u(t) (17)

y(t) = Cx(t) (18)

where

A(ρ(t)) = A0 + ρ1(t)A1 + . . . + ρN (t)AN , (19)

B(ρ(t)) = B0 + ρ1(t)B1 + . . . + ρN (t)BN , (20)

(21)

and the dimension of the state space is supposed to be n.

Let us recall, first, some elementary definitions and facts
from [6] and [12] stated for nonlinear input affine system
Σ :

ẋ = f(x) +
m

∑

i=1

gi(x)ui (22)

(yj)j=1,p = (hj(x))j=1,p.

A smooth connected submanifold M which contains the
point x0 is said to be locally controlled invariant at x0 if
their is a smooth feedback u(x) and a neighborhood U0

of x0 such that the vector field f̃(x) = f(x) + g(x)u(x) is
tangent to M for all x ∈ M ∩U0, i.e., M is locally invariant
under f̃ .

Let us denote by Z∗ the locally maximal output zero-
ing submanifold. Then the invertability conditions can be
stated as:

dimspan{ gi(x0) | i = 1,m} = m, (23)

and

dimspan{ gi(x) | i = 1,m} ∩ TxZ∗ = 0. (24)

An algorithm for computing Z∗, the zero dynamics algo-
rithm, for a general case can be found in [6] and [12]. How-
ever, in some cases Z∗ can be determined relative easily
relating it to the maximal controlled invariant distribution
∆∗ contained in kerdh.

It is not hard to figure out that if some technical condi-
tions for the parameter functions (persistency) are fulfilled,
then TxZ∗ = V∗, where V∗ is the maximal (A,B)-invariant
subspace contained in kerC.

Conditions (23) and (24) reduce then to:

dim ImB = m, V∗ ∩ ImB = 0.

Let us observe, that if these conditions are fulfilled, one
can always choose a coordinate transform of the form

z = Tx, where T−1 =
[

Λ ImB V∗
]

, Λ ⊂ V∗⊥.

Accordingly, the system will be decomposed to:

ẋ1 = A11(ρ)x1 + A12(ρ)x2 + B1u (25)

ẋ2 = A21(ρ)x1 + A22(ρ)x2 (26)

y = C1x1. (27)

Follows, that applying the feedback

w = F1(ρ)x1 + F2(ρ)x2 + u, (28)

such that V∗ is (A + BF,B) invariant, one can obtain the
system:

ẋ1 = A11(ρ)x1 + B1u (29)

y = C1x1. (30)

If starting from the rows ci of C1, one can choose a lin-
early independent system such that the dual space of X1

is spanned by

{c1, · · · , S
γ1

1 (ρ), · · · , cp, · · · , Sγp
p (ρ)}, (31)
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where Sl
i(ρ)B1 = 0, for l < γi, and

S0
i (ρ) = ci, (32)

Sk+1
i (ρ) = Ṡk

i (ρ) + Sk
i (ρ)A11(ρ), (33)

see [19], [18], then one can define a coordinate transform
S(ρ) that maps x1 to ỹ, where

ỹ =
[

y1, · · · , y
(γ1)
1 , · · · , yp, · · · , y

(γp)
p

]T

. (34)

Since one can chose F1(ρ) = 0, the inverse system is
given by:

η̇ = A22(ρ)η + A21(ρ)S−1(ρ)ỹ, (35)

u = F2(ρ)η + B−r
1 S−1(ρ)( ˙̃y −

− (S(ρ)A11(ρ)S−1(ρ) + Ṡ(ρ)S−1(ρ))ỹ),

where B−r
1 is the right inverse of B1.

Remark 1: In general the structure of the matrix S(ρ),
i.e., the indices γi, can change during the time. From a
practical point of view this is an unconvenience since one
might prefer to work with a fix set of derivatives.

Let us denote by

Ak,11 = {Ai1,11Ai2,11 · · ·Aik,11 | ij ∈ {0, 1, · · · , N}}.

In order to determine a good matrix S(t), one can compute
the sets

{ ci, · · · , ciAγk
i ,11 },

where ciAl,11B1 = 0 for all l < γk
i , and one has to deter-

mine the indices γi = mink γk
i .

If the set

{c1, · · · , S
γ1

1 (ρ), · · · , cp, · · · , Sγp
p (ρ)}

span the dual space of X1, then the matrix S(ρ) will be a
good choice in order to ensure that its structure remains
unchanged, i.e., one can always use the same set of outputs
and derivatives.

Remark 2: It is clear that the method presented above
can also be applied for quasi LPV systems.

One can observe that to compute the matrix S(ρ) one
needs certain derivatives of the parameter functions ρi(y),
i.e., certain derivatives of the output y, but the order of
these derivatives are bounded by maxi γi.

V. Example

As an illustrative example for the (q)LPV inversion
scheme let us consider the following linearized parameter
varying model:

ẋ(t) = A(ρ)x(t) + Lu(t)

y(t) = Cx(t),

where A(ρ) = A0 + ρ1A1 + ρ2A2.
The state matrices are:

A0 =













−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1













, A1 =













0 −1 1 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0













,

A2 =













0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0













, L =













1 0
0 1
0 1
0 0
0 0













, C =





0 0 0 0 1
0 1 0 0 0
0 0 0 1 1



 .

The parameter varying subspace V∗ =
[

0 0 1 0 0
]

.
Applying the transformation

T i =













0 0 1 0 0
0 0 0 1 0
0 0 0 1 1
0 1 0 0 0
1 0 0 0 0













(, i.e., )













0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 −1 1 0 0













the system splits as

[

A0
11 A0

12
A0

21 A0
22

]

=













−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0

0 0 0 0 −1













,

[

A1
11 A1

12
A1

21 A1
22

]

=













0 0 1 0 0
0 0 0 0 0
0 1 0 0 1
1 0 0 0 0

−1 0 0 0 0













,

[

A2
11 A2

12
A2

21 A2
22

]

=













0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 1 0 0













,

[

L1
0

]

=













0 0
0 0
1 0
0 1

0 0













,
[

C1 0
]

=





1 0 0 0 0
0 0 0 1 0
1 0 0 0 0



 .

The matrix F (ρ) = F0 + ρ1F1 + ρ2F2, is given by F0 =

0, F2 = 0 and F1 =

[

0 0 −1 0 0
0 0 0 0 0

]

.

The transformation S(ρ) = S0 + ρ1S1 + ρ2S2, where

S0 =









1 0 0 0
−1 0 0 0
0 0 0 1
1 1 0 0









, S1 =









0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0









, S2 =









0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0









,

maps x1 to ỹ =
[

y1 ẏ1 y2 y3

]T
.

One can figure out that

S
−1

(ρ) =











1 0 0 0
−1 0 0 1
1

ρ1
1

ρ1
−

ρ2
ρ1

0

0 0 1 0











and

Ṡ(ρ)S
−1

(ρ) =











0 0 0 0
ρ̇1
ρ1

ρ̇1
ρ1

−

ρ̇1ρ2
ρ1

+ ρ̇2 0

0 0 0 0
0 0 0 0











It follows, that

S(ρ)A11(ρ)S
−1

(ρ) =









−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









+

+ρ1















1
ρ1

1
ρ1

−

ρ2
ρ1

0

−

2
ρ1

−

1
ρ1

ρ2
ρ1

0

1 0 0 0
1

ρ1
1

ρ1
−

ρ2
ρ1

0















+ ρ2









0 0 1 0
0 0 −1 0
0 0 0 0
0 0 1 0









,

and

L−r
1 S−1(ρ) =

[

1
ρ1

1
ρ1

−ρ2

ρ1
0

0 0 1 0

]

.

For the inverse system one has

η̇ = −η + (
ρ2

ρ1
− ρ1)y1 +

ρ2

ρ1
ẏ1 −

ρ2
2

ρ1
y2,
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and

u =

[

1
0

]

η +

[

1
ρ1

1
ρ1

−ρ2

ρ1
0

0 0 1 0

]

(









ẏ1

ÿ1

ẏ2

ẏ3









−

−









0 1 0 ρ1
ρ̇1−2ρ1

ρ1

ρ̇1−2ρ1

ρ1

ρ̇2ρ1−ρ̇1ρ2

ρ1
0

ρ1 0 −1 0
1 1 0 1

















y1

ẏ1

y2

y3









).

VI. Conclusion

This paper investigated the problem of input reconstruc-
tion by means of dynamic system inversion for linear pa-
rameter varying (LPV) systems, where the system matrix
depends affinely from the parameters. A procedure for the
construction of the inverse, based on the geometric con-
cept of parameter varying invariant subspaces and on the
related coordinate transform was given.
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