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Abstract. In this paper a fuzzy LMI control 
strategy for a rectangular thermosyphon is 
proposed. These thermo-fluid-dynamic systems 
are used to refrigerate heat sources by means of 
natural circulation of a fluid without mechanical 
pumping. 
Two different fuzzy LMI controllers have been 
designed in order to guarantee closed loop 
stability, on the basis of a suitable nonlinear T-S 
fuzzy model of the system. .In particular the 
controllers are  designed in order to prevent 
temperature oscillations, associated with the 
inversion of the flow direction, which 
compromise the heat removal from the thermal 
source. Two different strategies have been 
adopted to introduce suitable constraints on the 
control action. 

 
1. INTRODUCTION 

 
Thermal convection loops, often named closed loop 
thermosyphon, are thermo-fluid-dynamical systems 
mainly devoted to the refrigeration of a heat source 
by means of natural circulation of a fluid in a closed 
loop, without mechanical pumping.  
The absence of moving components drastically 
reduces the probability of a failure in the heat 
removal from the heat source. In fact, this is the main 
reason for which natural is preferred to force 
convection in those energy plants in which safety is a 
primary requirement. Therefore, refrigeration of 
reactors in nuclear power plants and electrical 
machine rotor cooling [1], [2], represent the main 
applications of closed loop thermosyphons.  
Other important applications in which closed loop 
thermosyphons are preferred to forced circulation 
loops, are those in which the absence of pumping 
elements allows a considerable costs reduction, e.g. 
geothermal plants or solar heaters, that have low 
temperature thermal sources but relatively high 
circulating flow rate [3], [4], or, finally, where the 
pumping system cannot be conveniently positioned, 
such as cooling systems for internal combustion 
engines, turbine blade cooling or computer cooling  
[5], [6]. 
In their basic scheme natural circulation loops lye on 
a vertical plane, are symmetrical with respect to the 
vertical axis and consist of a heat source (placed in 
the bottom and cooled by the circulating flow), a heat 
sink (placed on top of the loop) in which the 
circulating flow is cooled, and may have or not two 

thermally isolated vertical legs connecting the heat 
exchanging sections.  
The boundary conditions usually examined in 
experimental studies are those in which the bottom 
section is heated using an imposed heat power [7], 
[8], [9], whereas the topmost section is generally 
refrigerated imposing a constant wall temperature at 
its wall. Whatever the boundary conditions are, the 
buoyancy caused by the density gradients existing in 
the loop represents the driving force for the fluid 
motion. Moreover, the flow direction is determined 
by the temperature difference existing between 
different points of the loop, on which the buoyancy 
depends. 
The stability of natural circulation loops mainly 
depends on the entity of the buoyancy, which is 
proportional to the vertical temperature difference 
and therefore is determined by the boundary 
conditions imposed at the heating section. In 
particular, for increasing values of the vertical 
temperature difference, ∆T, the flow will be 
accelerated due to the growth of the forcing term. On 
the other hand, the growth both of ∆T and of velocity 
causes a destabilising effect, which can be 
schematised as follows: 
 
1. for low ∆T the buoyancy is too weak to cause 

the fluid motion: heat removal is ensured by 
conductive heat transfer; 

2. when ∆T increases the fluid starts moving either 
in the clockwise or in the counter-clockwise 
direction (ideally with the same probability); 
once the motion has started in one direction it 
keeps moving in this direction; 

3. for higher ∆T the velocity of the flow becomes 
too high and the flow cannot be sufficiently 
cooled in its passage through the cooling section. 
The temperature at the outlet of the cooling 
section increases and its velocity decreases until 
the mass of fluid coming out from the cooling 
section has grown so much to exert a sort of 
sudden impulse, which makes the fluid move 
rapidly again. 

4. when the temperature at the outlet of the cooling 
section is higher than that at the inlet, the 
buoyancy inverts its direction, causing therefore 
the flow inversion. The velocity in the opposite 
direction, which is initially very low, gradually 
increases so that steps 2) and 3) are repeated for 
the current flow direction. 

In the last two cases, the dynamics is often 
characterised by non-periodical oscillations, which 



 

     

have been shown to be chaotic. Hence, the process 
leads to temperature oscillations and is associated to 
inversions of the flow direction. The flow inversion 
compromises the heat removal from the thermal 
source and should therefore be avoided. 
Stabilising the dynamics of the process therefore 
represents the main task in the field of natural 
circulation loops  [8], [9], [11]. In particular suitable 
control action may consist in varying the refrigerant 
flow rate to the “cold” sink or the heat power to the 
“hot” source. 
A set of PID controllers has been designed by the 
authors as described in [12] on the basis of the 
linearised analytic model of the system. Even if they 
gave good results, no global stability conditions are 
analytically guaranteed for the non-linear system. 
In order to design a controller which guarantees 
stability, in this paper a different controller design 
strategy, based on a Fuzzy LMI controller is 
proposed.  
The proposed controller has been designed on the 
basis of a fuzzy T-S model, obtained by using the 
approach proposed in [16], starting from an accurate 
mathematical model. 
An efficient modelling approach of the considered 
system is based on an approximation of its non linear 
partial derivative equations by using a truncated 
Fourier series expansion of the variables [13], even if 
different modelling strategy, based on neural 
NARMAX models are reported in [14], [15], directly 
obtained from experimental data.  
In Section 2 the experimental system on which the 
analytical model has been tested is briefly described, 
while in Section 3 the analytical model and the 
corresponding fuzzy model are reported. The 
proposed control strategy and some results are given 
in section 4. 
 
 

2. THE EXPERIMENTAL SYSTEM 
 
The experimental natural circulation loop is depicted 
in Fig. 1.It consists of two copper horizontal tubes 
(heat transfer sections), two vertical phirex tubes, 
four horizontal phirex tubes and four 90° phirex 
bends. The lower heating section consists of twelve 
independent electrical heating wires, able to provide 
0.5 kW each, winding on the outside of the copper 
tube, so that the system is able to provide up to 6kW. 
The upper heat extraction system is a coaxial heat 
exchanger with tap water flowing in the annulus 
created by an external iron case. In this way it is 
possible to impose desired values both of the heat 
flux in the lower heating section and of the 
temperature of the coolant. The latter condition can 
be obtained by adopting high values of the water 
flow rate so to minimise the temperature difference 
between the inlet and the outlet of the cooling water. 
An expansion tank open to the atmosphere is 
installed on the topmost elevation of the loop 
allowing the fluid volumetric expansion. 
The whole system is equipped with eight calibrated 
(± 0.1 K) T-thermocouples (diameter 1.6 mm) 
located (see Fig. 1): T2 and T4 on the left vertical 

tube; T5 and T6 on the right vertical tube; T1 and T3 
on the lower horizontal tubes; T7 and T8 on the input 
and output of the cooling water. 
An inductive flowmeter is inserted in the main loop 
while another inductive flowmeter and a 
electromechanical servo-valve are inserted to 
measure cooling flow rate.  
All the sensors are connected to a data acquisition 
board in the external computer. The sampling 
frequency adopted was 1 Hz. 
The described experimental system has been used to 
validate the performance of the mathematical 
models. 
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Fig.1 The Experimental system. 

 
 

3. THE MATHEMATICAL MODEL 
 
The aim of this section is to give a mathematical 
description of the behaviour of the natural circulation 
represented in Fig. 1, having generic height and 
width, indicated respectively with L and L1, and 
constant tubes inner diameter equal to r. 
The reported model will be converted, as described 
in the following in a fuzzy model suitable to apply 
the fuzzy LMI control strategies described in Section 
4. 
In the following, x represents an abscissa parallel to 
the loop pipes, with positive direction corresponding 
to the clockwise path on the loop and with an 
arbitrarily chosen origin in the left down corner of 
the loop, as indicated in Fig. 1. 
The analytic model, obtained applying the thermo-
fluid-dynamic equations to the rectangular geometry 
of the loop is given as: 
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where: v is the fluid velocity, d and b are parameters 
to be determined experimentally, ν is the cinematic 
viscosity, g is the gravitational acceleration, β is the 



 

     

volumetric expansion coefficient, T is the fluid 
temperature, T0 is a reference temperature, a is the 
fluid thermal diffusivity, f(x)=dz/dx and h(x) 
describes the boundary conditions. 
By means of a suitable Fourier series expansion of 
the known function f(x) and h(x) and of the variable 
T(x,t), arresting the Fourier series expansion to the 
third mode and applying the method of residuals in 
order to separate the terms of the same order, it is 
possible to rewrite the model as [12]: 
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where iα  and iβ (i=1,3) are the real and imaginary 
part of the coefficients ak of the expansion T(x,t), 
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q is the heat flux, ∆T is the inlet-outlet temperature 
difference of the cooling section, m&  and cp are mass 
flow rate and specific heat of the cooling fluid. 
In order to validate the model it is necessary to 
compare its simulation with measurements detected 
on an experimental loop. To this purpose, it is 
necessary to reconstruct the temperature function 
T(x,t) from the variables of the model )t(kα  and 

)t(kβ ,this is  performed with the relation: 
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In order validate the model several simulations have 
been compared with experimental data.  
 
As an example, a comparison between a simulation 
and experimental measurement for the temperature 
T4 with a constant heating  power of 1800 W is 
reported in Fig. 2 and Fig. 3 
 
 

Fig. 2. Simulated temperature T4 for an heating 
           power of 1800 W. 
 
Many other simulations have been compared with 
experimental data for a set of different power, 
confirming in all cases the good accuracy of the 
model. 
 

 
Fig. 3. Experimental temperature T4 for an heating  
           power of 1800 W.  
 
The corresponding fuzzy T-S model of the system 
has been obtained using the approach reported in 
[16].  
 
The method is based on a local description of 
systems of the type: 
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The model is constituted by a set of r IF-THEN rules 
representing local linear I/0 relations in the form: 
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where  Mij  are  fuzzy set, and  x(t)∈ Rn , u(t)∈ Rm , 
y(t)∈ Rq, are the state, input and output respectively, 
Ai∈ Rnxn , Bi∈ Rnxm , Ci∈ Rqxn and the variables z1(t), 
..., zp(t) depend on the the state variables. 
 
The global system is described by: 
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In our application the state vector is given by: 
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The suitable fuzzy sets are built on the basis of the 
maximum and minimum values of each variable 
( im and in ), obtained by the simulation of the 
system mathematical model. The 

iz variables have 
been defined as follows: 
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where the fuzzy set are built satisfying the 
constraints: 
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A set of 32 fuzzy rules have then been built by using 
all the possible combinations of the two membership 
functions for each variable, in the form (9) and the 
system output using relation (10). 
The fuzzy LMI controller design strategy, based on 
the above fuzzy model is described in the next 
Section. 
 
 

4. THE LMI FUZZY CONTROLLER 
 
The fuzzy LMI control strategy, proposed in [16], is 
based on partial distributed compensation (PDC), i.e. 
a compensator fuzzy rule is designed for each system 
rule.  
Each rule of the controller is in the form: 
 

IF z1(t) is Mi1 and ... and zp(t) is  Mip,THEN  
)()( txFtu i−=  i=1,2,..,32 (11) 

 
and the controller output is given by: 
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The design strategy consists therefore in designing 
the local gains Fi  of the consequents by using 
suitable global stability conditions expressed as LMI 
problems, as proved in [16]: 

 
The equilibrium of a closed Fuzzy control system is 
asymptotically stable in the large if there exist a 
common positive definite matrix P such that for: 

hi(z(t))⋅ hj(z(t))≠0, : 
 

{ Ai – BiFj}TP+P{ Ai – BiFj}<0         ∀t,  i,j=1,2,…,r 
 
In our application the input matrix is the same in all 
the 32 subsystems, so that the above conditions 
reduce to:  
 

{ Ai – BFi}TP+P{ Ai – BFi}<0  i=1,2,..,r 
 
This can be written as an LMI in the form:  
 

-XAi
T+ Mi

TBT- AiX + BMi>0 i=1,2,..,r 
 
where X= P-1 and M=FX. 
 
The resulting control system is then described by 32 
rules in the form: 
 

IF z1(t) is M1 and z2(t) is N1 and z3(t) is P1 and z4(t) 
is Q1  and z5(t) is R1, THEN   )()( 1 txFtu −=  

 
However stability is not the only requirement to be 
satisfied in our application. In particular it is 
fundamental to impose suitable constraints on the 
control power.  
To this aim two different strategies have been 
pursued. The first strategy is based on directly 
imposing a constraint on the control input in the 
form: 

||u(t)||2<µ 
The corresponding LMI problem is then:  
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where φ is chosen such that:  
 

||x(0)||<φ 
 
In fig. 4 the trend of the variable  ∆T25=T2-T5  is 
reported with the control inserted for t=1000 s. 

 
Fig. 4. Trend of the controlled variable  ∆T25=T2-T5 

 
As it can be observed the oscillations are damped out 
and the designed controller stabilises the system. The 
long transient response is due to the imposed 
constraint on the control input. A previous design 
performed without considering power input 
constraint lead to a very fast transient with 
unacceptable values of power. 
A second strategy was adopted based on the 
minimisation of the quadratic performance index: 
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where X=P-1 and Yi=FiX., that can be written as an 
LMI problem: 
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The weighting matrix Q has been selected in order to 
minimize the fluid velocity, while guaranteeing, by 
an high value of the R parameter, small power 
oscillations. 
Figure 5 reports the trend of the variable  ∆T25=T2-T5  
with the previous controller inserted at t=1000 s. 

 
Fig. 5. Trend of the controlled variable ∆T25=T2-T5 
 
From this figure it can be observed that this second 
strategy leads to a faster transient with an increment 
of the peak value of the temperature oscillations. 
 
 

5. CONCLUSION 
 

In this paper a Fuzzy LMI control strategy has been 
applied to the control of a natural circulation loop. 
The controller has been designed in order to avoid 
fluid inversion, which compromises efficient heat 
removal from hot source. In a previous work [12] a 
set of PID controllers were designed on the basis of 
the linearised analytical model of the circuit. 
However no global stability conditions were 
guaranteed.  
The strategy proposed in this paper has been chosen 
in order to analytically guarantee global  stability. 
This approach required to write the non-linear system 
in the fuzzy T-S form and then solving a suitable 
LMI problem to derive the controller gain. 
The two designed controllers stabilise the system 
imposing constraints on the control power. The first 
approach resulted in a slow transient with low peak 
temperature values, whereas the second design 
resulted in a very fast transient with greater 
temperature peaks. Work is in progress in order to 
implement both controllers in the experimental 
circuit, in order to obtain an experimental evaluation 
of the results and to compare their performance. 
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