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Abstract— It is known that the separation principle was
deduced in the linear systems theory from both the optimal
and asymptotic points of view. But, it has not sufficiently been
solved in non-linear case yet. The method proposed in this paper
represents a new approach to the solution of the separation
principle problem for a certain class of non-linear systems. As
the theoretical basis of the approach the well known dissipative
systems theory has been chosen. The Lyapunov’s stability theory
is the other basic point of the method.

I. I NTRODUCTION

This paper deals with a new approach to the solution of
a separation principle problem for a certain class of non-
linear systems. It is based on so called thedissipation normal
form and consists in combining two methods. In both the
methods the dissipation normal form is used. One of them
solves the stabilization problem of non-linear systems. The
dissipation normal form is used here in such a way that the
structure of the representation of a closed loop system is only
chosen in this form. An appropriate controller is proposed so
that the demands required of the behaviour of a closed loop
system are implemented. The other method solves the state
reconstruction problem of non-linear systems. The dissipation
normal form is used here in such a way that the structure
of the representation of an error system is only chosen in
this form. By means of integrating the stabilization and state
reconstruction methods mentioned above the solution of the
separation principle problem for a certain class of non-linear
systems is found. It is in general embodied in the proposal
of a compensation functionthat guarantees the asymptotical
stability of a resulting closed loop system after applying the
separation principle if it is put to a proposed controller as an
addition. This method is similar to the method described in
[1]. The problem is solved there with the help of a damping
function added to a proposed controller as well. Then, the
damping function guarantees the asymptotical stability of a
closed loop system where the separation principle was used.
Other approaches to the solution of the separation principle
problem for non-linear systems present for example methods
described in [2], [3], [4], [5]. Some comparisons with the
method mentioned in [4], [5] are performed in this paper. It
is shown that a certain similarity can be also found there.

II. PROBLEM FORMULATION

Consider the representationR(S) of a systemS in the form:

dx(t)
dt

= f [x(t), u(t)] (1)

y(t) = h[x(t)], (2)

where x(t) ∈ Rn is a state vector,u(t) ∈ R1 is an input,
y(t) ∈ R1 is an output andf [x(t), u(t)] ∈ C∞ : Rn ×R1 →
Rn, h[x(t)] ∈ C∞ : Rn → R1 are non-linear mappings.
The state vectorx(t) is supposed not to be accessible for
measurement.

Assume that the representationR(S) (1), (2) is controllable
and observable.

Our aim is to propose a controller

u(t) = L[x(t)] (3)

and an observer

R̂(S) :
dx̂(t)

dt
= f̂ [x̂(t), u(t), y(t)] (4)

in such a way that the closed loop systemScl containing the
original systemS (1), (2), the controller (3) and the observer
(4):

R(Scl) :
dx(t)

dt
= f{x(t), L[x̂(t)]} (5)

dx̂(t)
dt

= f̂{x̂(t), L[x̂(t)], h[x(t)]} (6)

y(t) = h[x(t)] (7)

is asymptotically stable. It means that

V [x(t), x̂(t)] > 0 for x(t) 6= xe, x̂(t) 6= x̂e (8)

V [x(t), x̂(t)] = 0 for x(t) = xe, x̂(t) = x̂e (9)
dV [x(t), x̂(t)]

dt
< 0 for x(t) 6= xe, x̂(t) 6= x̂e (10)

dV [x(t), x̂(t)]
dt

= 0 for x(t) = xe, x̂(t) = x̂e, (11)

whereV [x(t), x̂(t)] : Rn × Rn̂ → R is a Lyapunov function
related to the representationR(Scl) of a closed loop system
Scl (5), (6), (7) andxe, x̂e is its equilibrium state for which
it holds that

dxe

dt
= 0,

dx̂e

dt
= 0. (12)

III. D ISSIPATION NORMAL FORM

Definition 1: Consider the representationR(S) of a system
S and assume that there exists an accumulation function
W [x(t)] defined on a domainΩ ⊂ Rn. The representation
R(S) will be called thedissipation normal formif the accu-
mulation functionW [x(t)] fulfills the following conditions:

W [x(t)] = ‖x(t)‖2 (13)

Lf{W [x(t)]} = β[y(t)] ≤ 0. (14)



Remark 1:The accumulation functionW [x(t)] represents
measure of the signal energy stored in a systemS at a time
instant t. There is an obvious connection with a Lyapunov
function V [x(t)]. The accumulation functionW [x(t)] is also
related to the available storage [6] and the non-linear function
β[y(t)] corresponds to the Rayleigh function [7].

A. Structural Asymptotical Stability

The following theorem will be used later for guaranteing
the asymptotical stability of the closed loop systemScl (5),
(6), (7).

Theorem 1:Let k2, . . . , kn ∈ R; k2, . . . , kn 6= 0 are con-
stants andϕ1[x1(t)], α[x1(t)] are non-linear functions which
satisfy the following conditions:ϕ1[x1(t)] < 0 for x1(t) 6= 0,
∃ α−1[y(t)] andα[x1(t)] = 0 ⇐⇒ x1(t) = 0.

If a representationR(S) has the structure [8]:

dx(t)
dt

=




ϕ1[x1(t)] k2 0 . 0
−k2 0 k3 . .
0 −k3 . . 0
. . . . kn

0 . 0 −kn 0




x(t)

(15)

y(t) = α[x1(t)], (16)

then the only equilibrium statexe = 0 is asymptotically
stable and the corresponding accumulation functionW [x(t)]
fulfills the conditions (13), (14) for anyϕ1[x1(t)], α[x1(t)]
andk2, . . . , kn.

Proof: Assume that a representationR(S) has the form
(15), (16) and consider the accumulation functionW [x(t)] =
‖x(t)‖2.

1) The relation (15) implies that

dx(t)
dt

= 0 ⇔ x(t) = 0. (17)

Hence,x(t) = xe = 0 is the only equilibrium state of
the representationR(S).

2) It holds that

W [x(t)] > 0 for x(t) 6= 0 (18)

W [x(t)] = 0 for x(t) = 0 (19)

Lf{W [x(t)]} = 2x2
1(t)ϕ1[x1(t)] =

= 2{α−1[y(t)]}2ϕ1{α−1[y(t)]} =
= β[y(t)] < 0 for x(t) 6= 0 (20)

Lf{W [x(t)]} = 2x2
1(t)ϕ1[x1(t)] =

= 2{α−1[y(t)]}2ϕ1{α−1[y(t)]} =
= β[y(t)] = 0 for x(t) = 0. (21)

It follows from the relations (18), (19), (20), (21) that the
accumulation functionW [x(t)] is a Lyapunov function.
Thus, the equilibrium statexe = 0 is asymptotically
stable. It is also obvious that the accumulation func-
tion W [x(t)] fulfills the conditions (13), (14) for any
ϕ1[x1(t)], α[x1(t)] andk2, . . . , kn.

Remark 2:The relation (20) implies that

ϕ1[x1(t)] < 0 for x1(t) 6= 0 (22)

is a necessary and sufficient condition for the structural
asymptotical stability of a systemS.

Remark 3:If the accumulation functionW [x(t)] is defined
on the whole state spaceRn and the relations (18), (19), (20),
(21) hold, then a systemS is globally asymptotically stable.

Remark 4:The structure of the dissipation normal form
is related to the Schwarz matrix [9] and can be seen as the
generalization of a corresponding linear system representation.

B. Structural Observability

It holds that

det Ho[x(t)] = det
∂

∂x(t)




α[x1(t)]
Lf{α[x1(t)]}

...
Ln−1

f {α[x1(t)]}


 =

= kn−1
2 · kn−2

3 · . . . · kn · {dα[x1(t)]
dx1(t)

}n,

(23)

whereHo[x(t)] is a generalized observability matrix.
It follows from the relation (23) that the conditions

k2, . . . , kn 6= 0, ∃ α−1[y(t)] andα[x1(t)] = 0 ⇐⇒ x1(t) = 0
are necessary and sufficient conditions for structural observ-
ability of the dissipation normal form.

IV. N ON-LINEAR OBSERVER DESIGN BASED ON

DISSIPATION NORMAL FORM

A. Problem Formulation

Consider the representationR(S) of a systemS in the form
(1), (2).

Our aim is to design an observer̂R(S):

R̂(S) :
dx̂(t)

dt
= f̂ [x̂(t), u(t), y(t)] (24)

which will generate the asymptotic estimatex̂(t) of the state
vectorx(t) using the inputu(t) and the outputy(t) in such a
way that the following two demands will be satisfied.

The first one is thestate error invariance condition:

R̃(S) :
dx̃(t)

dt
= f̃ [x̃(t), x(t), x̂(t), u(t), y(t)] =

= f̃ [x̃(t)], (25)

wherex̃(t) is a state error defined as

x̃(t) = x(t)− x̂(t). (26)

The second one is thestate error convergence conditionto
zero

lim
t→∞

x̃(t) = lim
t→∞

[x(t)− x̂(t)] = 0 (27)

corresponding to the asymptotical stability of the state error
systemR̃(S) (25).



B. Problem Solution

This method consists in the prior choice of the structure
of a state error system representation selected in order to
fulfill structurally the two demands mentioned above. The
structure of the state error system representation is chosen in
the dissipation normal form:

R̃∗(S) :
dx̃∗(t)

dt
=

= ω0




δ∗1 [x̃∗1(t)] δ∗2 0 . 0
−δ∗2 0 δ∗3 . .
0 −δ∗3 . . 0
. . . . δ∗n
0 . 0 −δ∗n 0




x̃∗(t),

(28)

whereδ∗1 [x̃∗1(t)], ω0, δ∗2 , . . . , δ∗n are design parameters.
It holds that

Lf̃∗{Ṽ ∗[x̃∗(t)]} = Lf̃∗{‖x̃∗(t)‖2} = 2ω0x̃
∗2
1 (t)δ∗1 [x̃∗1(t)],

(29)
whereṼ ∗[x̃∗(t)] = ‖x̃∗(t)‖2 is the Lyapunov function related
to the representatioñR∗(S) (28). The relations (28), (29) im-
ply that both thestate error invariance conditionand thestate
error convergence conditionto zero are satisfiedstructurally
if the design parameters are properly chosen. Ifω0 > 0 and
δ∗1 [x̃∗1(t)] < 0 for all x̃∗1(t), then the state error system is
globally asymptotically stable. Ifω0 > 0 and δ∗1 [x̃∗1(t)] < 0
only for x̃∗1(t) ∈ 〈x̃∗

1

1 , x̃∗
2

1 〉, |x̃∗
2

1 −x̃∗
1

1 | = σ 6= 0, then the state
error system is semi-globally asymptotically stable over a finite
area of the state spaceRn. The constantω0 represents a time
scale transformation and therefore it affects the convergence
rate. The non-linear functionδ∗1 [x̃∗1(t)] describes in what way
the system energy dissipates and therefore it specifies the
convergence mode. It is clear from the relation (29) that the
constantsδ∗2 , . . . , δ∗n 6= 0 do not have any effect on either rate
or mode of convergence. From this point of view, they can in
principle be chosen in an arbitrary way.

Remark 5:In fact, δ∗2 , . . . , δ∗n can be non-linear functions
in general:δ∗2 = δ∗2 [x̃∗(t), x̂∗(t), x∗(t), u(t), y(t), t], . . . , δ∗n =
δ∗n[x̃∗(t), x̂∗(t), x∗(t), u(t), y(t), t]. Nevertheless, this compli-
cation is not necessary. It has already been said that they have
no effect on either rate or mode of convergence. Because of
this, they are chosen without loss of generality as constants.

Remark 6:If ω0 → ∞ ( 1
ω0

→ 0), then an appropriate
observer corresponds to the high-gain observer [10], [4], [5].

Further, the original representationR(S) of a systemS (1),
(2) is supposed to be transformed into a proper state equivalent
canonical form. Then, substituting to the relation for the state
error (26) we get an observer structure.

The parametrization of the observer is performed via the
generalized observability normal form and consists in general
in solving a system of differential equations, which is the
consequence of the validity of a certain structural condition
unwinding from an equivalence relation.

Finally, the proposed observer is transformed into original
coordinates.

More information about this method can be found in [11],
[12], [13], [14], [15], [16].

V. STABILIZATION OF NON -LINEAR SYSTEMS BASED ON

METRIC EQUIVALENCE

A. Problem Formulation

Consider the representationR(S) of a systemS in the form
(1), (2).

Our aim is to propose a controller

u(t) = L[x(t)] (30)

in such a way that a closed loop systemScl:

R(Scl) :
dx(t)

dt
= f{x(t), L[x(t)]} (31)

y(t) = h[x(t)] (32)

is asymptotically stable.

B. Problem Solution

We would like to use the Lyapunov’s stability theory for
solving the stabilization problem mentioned above. However,
the application of the theory for stabilization problem solving
is quite complicated because a Lyapunov functionV [x(t)]
related to the given original representationR(S) of a system
S (1), (2) is not explicitly known in general. Therefore, the
dissipation normal form will be used for the synthesis of a
control law because its Lyapunov function is explicitly known.

Choose the representationR∗(Scl) of a closed loop system
Scl in the dissipation normal form:

R∗(Scl) :
dx∗(t)

dt
=

= ν0




f∗1 [x∗1(t)] f∗2 0 . 0
f∗2 0 f∗3 . .
0 f∗3 . . 0
. . . . f∗n
0 . 0 f∗n 0




x∗(t)

(33)

y = x∗1(t), (34)

wheref∗1 [x∗1(t)], ν0, f∗2 , . . . , f∗n are design parameters. They
have the same influence on closed loop system behaviour as
mentioned in the section IV-B.

Remark 7:(metric equivalence vs. state equivalence) The
structure of the representationR∗(Scl) of a closed loop system
Scl (33), (34) is only one of possible structures which conform
to the conditions (13), (14). We will obtain another one if
we use an orthonormal transformation applied to the relations
(33), (34). We chose this one, but we could still choose another
one. The reason we selected this form is that it has a structural
asymptotical stability property and therefore certain measure
of robustness is held.



Further, suppose that the original representationR(S) of a
systemS (1), (2) can be transformed to the following form:

R̄(S) :
d

dt




x̄1(t)
...

x̄n−1(t)
x̄n(t)


 =




x̄2(t)
...

x̄n(t)
µ[x̄(t), u(t)]


 (35)

y(t) = x̄1(t), (36)

whereµ[x̄(t), u(t)] is a non-linear function.
Remark 8:Conditions for the existence of an appropriate

transformationx̄(t) = T [x(t), u(t)] are controllability and
observability of the representationR(S) (1), (2).

Then, the controlleru(t) = L[x̄(t)] is proposed with using
an equivalence relation and specified by the following term:

u(t) = L[x̄(t)] = µ−1{x̄(t), η[x̄(t)]}, (37)

whereη[x̄(t)] = Ln
f∗ [x

∗
1(t)] for x∗(t) = T−1[x̄(t)].

Finally, the proposed controller is transformed into original
coordinates.

More information about this method can be found in [13],
[17],[18], [19], [16].

VI. SEPARATION PRINCIPLE– COMPENSATION FUNCTION

Consider for now that

u(t) = L[x̄(t)]|x̄(t)=ˆ̄x(t) = L[ˆ̄x(t)] =

= µ−1{ˆ̄x(t), η[ˆ̄x(t)]}. (38)

Then, the representation̄R(Scl) of a closed loop systemScl

has the form:

R̄(Scl) :
d

dt




x̄1(t)
...

x̄n−1(t)
x̄n(t)


 =




x̄2(t)
...

x̄n(t)
γ[x̄(t), ˆ̄x(t)]


 (39)

y(t) = x̄1(t), (40)

whereγ[x̄(t), ˆ̄x(t)] = µ{x̄(t), µ−1{ˆ̄x(t), η[ˆ̄x(t)]}}.
If the methods for non-linear observer design mentioned

in the chapter IV and stabilization of non-linear systems
mentioned in the chapter V are combined, then the represen-
tation R̄(Scl) of a closed loop systemScl (39), (40) can be
transformed back to the dissipation normal form:

R∗(Scl) :
d

dt




x∗1(t)
x∗2(t)

...
x∗n−1(t)
x∗n(t)




=

=




f∗1 [x∗1(t)]x
∗
1(t) + f∗2 x∗2(t)

−f∗2 x∗1(t) + f∗3 x∗3(t)
...

−f∗n−1x
∗
n−2(t) + f∗nx∗n(t)

ζ[x∗(t), x̂∗(t)]




(41)

y(t) = x∗1(t), (42)

where

ζ[x∗(t), x̂∗(t)] =
n−1∑

i=1

∂T−1
n [x̄(t)]
∂x̄i(t)

Li
f∗ [x

∗
1(t)]+

1
f∗n

γ[x̄(t), ˆ̄x(t)]

(43)
for x̄(t) = T [x∗(t)] and ˆ̄x(t) = T̂ [x̂∗(t)].

The representationR∗(Scl) of a closed loop systemScl is
the dissipation normal form if and only if

ζ[x∗(t), x̂∗(t)] =
n−1∑

i=1

∂T−1
n [x̄(t)]
∂x̄i(t)

Li
f∗ [x

∗
1(t)] +

+
1
f∗n

γ[x̄(t), ˆ̄x(t)] = −f∗nx∗n−1(t) (44)

for x̄(t) = T [x∗(t)] and ˆ̄x(t) = T̂ [x̂∗(t)].
Unfortunately, the condition (44) can not be fulfilled in any

way.
Suppose for now thatγ[x̄(t), ˆ̄x(t)] = γ1[x̄(t)] + γ2[ˆ̄x(t)]. It

means thatµ[x̄(t), u(t)] = µ1[x̄(t)] + u(t).
Then

ζ[x∗(t), x̂∗(t)] =
n−1∑

i=1

∂T−1
n [x̄(t)]
∂x̄i(t)

Li
f∗ [x

∗
1(t)] +

+
1
f∗n

γ1[x̄(t)] +
1
f∗n

γ2[ˆ̄x(t)] (45)

for x̄(t) = T [x∗(t)] and ˆ̄x(t) = T̂ [x̂∗(t)].
The representationR∗(Scl) of a closed loop systemScl is

the dissipation normal form if and only if

ζ[x∗(t), x̂∗(t)] =
n−1∑

i=1

∂T−1
n [x̄(t)]
∂x̄i(t)

Li
f∗ [x

∗
1(t)] +

+
1
f∗n

γ1[x̄(t)] +
1
f∗n

γ2[ˆ̄x(t)] = −f∗nx∗n−1(t)

(46)

for x̄(t) = T [x∗(t)] and ˆ̄x(t) = T̂ [x̂∗(t)].
The condition (46) holds if and only if
1) the original representationR(S) of a systemS (1), (2)

can be transformed to the dissipation normal form:

R∗(S) :
dx∗(t)

dt
= a∗[x∗(t)] + b∗[x∗(t)]u(t)

(47)

y(t) = c∗[x∗1(t)], (48)

where

a∗[x∗(t)] =




a∗1[x
∗
1(t)] a∗2 0 . 0

−a∗2 0 a∗3 . .
0 −a∗3 . . 0
. . . . a∗n
0 . 0 −a∗n 0




x∗(t)

2) f∗2 = a∗2, · · ·, f∗n = a∗n
3) a certain function

%[ˆ̄x(t)] = − 1
a∗n

γ2[ˆ̄x(t)], (49)

where
γ2[ˆ̄x(t)] = µ1[ˆ̄x(t)]− Ln

f∗ [x
∗
1(t)] (50)



for x∗(t) = T−1[x̄(t)] and x̄(t) = ˆ̄x(t).
The function%[ˆ̄x(t)] is the compensation function added to
the proposed controller:

u(t) = L[ˆ̄x(t)] + %[ˆ̄x(t)]. (51)

Finally, if the condition (46) holds, then the asymptotical
stability of a closed loop systemScl (5), (6), (7) is guaranteed.

Remark 9:The formula for the function%[·](γ2[·]) does not
depend on observer equations. It means that it can be used
another method for non-linear observer design proposing an
asymptotic observer, not necessarily the mentioned one.

VII. I LLUSTRATIVE EXAMPLE

Consider the second order non-linear systemS (van der Poll
equation):

R(S) :
dx1(t)

dt
= x2(t) (52)

dx2(t)
dt

= −ε[ψ − βx2
1(t)]x2(t)−

− Kx1(t) + u(t) (53)

y(t) = x1(t), (54)

where ε = −2, ψ = 4, β = 2, K = 4 are the system
parameters. The response of the systemS to certain initial
conditions foru(t) = 0 is shown on the fig. 1.

At first we propose a controller using the method mentioned
in the section V so that the closed loop system is asymptoti-
cally stable. Then, the controller is the following:

u(t) = −(0.3+εβ)x2
1(t)x2(t)+(K−1)x1(t)+(εψ−2)x2(t).

(55)
The response of the closed loop systemScl to the initial
conditions is shown on the fig. 2.

At second we propose an observer using the method men-
tioned in the section IV so that its state error system is
asymptotically stable. Then, the observer is the following:

R̂(S) :
dx̂1(t)

dt
= x̂2(t)− ε[

β

3
x̂2

1(t)− ψ]x̂1(t) +

+
εβ

3
y3(t)− εψy(t) + 0.5ω0[y(t)− x̂1(t)]

(56)
dx̂2(t)

dt
= −ε[ψ − βx̂2

1(t)]x̂2(t)−Kx̂1(t) + u(t) +

+ [εβx̂2
1(t)− εψ]{−ε[

β

3
x̂2

1(t)− ψ]x̂1(t) +

+
εβ

3
y3(t)− εψy(t) + 0.5ω0[y(t)− x̂1(t)]},

(57)

whereω0 = 2. The state error course of the observer is shown
on the fig. 3, 4.

The response of the closed loop systemScl containing the
original systemS, the controller and the observer is shown on
the fig. 5. The output of the resulting closed loop systemScl

diverges and goes to infinity at a finite time.

It can be shown that it is possible to transform the given
representationR(S) of the systemS into the dissipation
normal form:

R∗(S) :
dx∗(t)

dt
=

[
a∗1[x

∗
1(t)] a∗2

−a∗2 0

]
x∗(t) +

[
0
b∗2

]
u(t)

(58)

y(t) = c∗[x∗1(t)] (59)

with a∗1[x
∗
1(t)] = εβ

3 x∗
3

1 (t) − εαx∗1(t), a∗2 = 2, c∗[x∗1(t)] =
x∗1(t) andb∗2 = 1

2 .
Now we compute a compensation function and add it to

the proposed controller. The compensation function is the
following:

%[x̂(t)] = −(0.3 + εβ)x̂2
1(t)x̂2(t) + (εψ − 2)x̂2(t). (60)

In the consequence off∗2 = a∗2 the controller is changed to
the form:

u(t) = −(0.3 + εβ)x̂2
1(t)x̂2(t) + (εψ − 2)x̂2(t). (61)

The response of the resulting closed loop systemScl is shown
on the fig. 6. The compensation function stabilized the closed
loop systemScl when the separation principle was used.

Remark 10:It can be seen that the compensation function
has the same form as the controller.
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IX. CONCLUSIONS

The separation principle for a certain class of non-linear sys-
tems has been successfully deduced. It consists in guaranteing
the asymptotical stability of the closed loop system where the
separation technique was used. The method mentioned in the
paper is exact and does not require any system linearization
in the sense that the system to be stabilized is replaced by a
linear one. In comparison with the method described in [4], [5]
it is analytical. It means that no numerical approach is used.
However, a certain similarity can be found (see the section
IV-B). The problem is that the dissipation normal form is not
general enough. The extension of the method mentioned in the
paper could consist in generalizing this form.
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Fig. 1. The response of the systemS
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Fig. 2. The response of the closed loop systemScl
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Fig. 3. The course of the first component of the state error
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Fig. 4. The course of the second component of the state error
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Fig. 5. The response of the resulting closed loop systemScl without a
compensation function
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Fig. 6. The response of the resulting closed loop systemScl with the
compensation function
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