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A resultant based computation of the Greatest
Common Divisor of two polynomials

N. Karcanias , M. Mitrouli , S. Fatouros

Abstract—The problem of finding the greatest common di-
visor (GCD) of a given polynomial set has interested math-
ematicians for a very long time and has widespread applica-
tions in several branches of Control Theory, Matrix Theory,
Statistics, Network Theory etc. Since the existence of a
common divisor of polynomials is a property that holds for
specific sets and is not true generically, extra care is needed
in the development of efficient numerical algorithms calcu-
lating correctly the required GCD. In the present paper, we
study the application of a resultant-based computation of
the GCD of two polynomials to two numerical methods, the
ERES method and the Matrix Pencil method. A compari-
son of these two methods is performed and various numerical
results are described.

Keywords—Polynomials, Resultant set, Greatest Common
Divisor.

I. Introduction

Some of the key problems of algebraic computations are
the computation of the greatest common divisor (GCD),
the computation of the least common multiple (LCM) of a
set of polynomials and the computation of the factors of a
polynomial. From the engineering applications in control
theory viewpoint, the GCD is linked with the characterisa-
tion of zeros of representation whereas LCM is connected
with the derivation of minimal representations of rational
models. The problem of finding the GCD of a set Pm,d,
of m polynomials of R[s] of maximal degree d, is a clas-
sical problem that has been considered before, see [5], [6],
[8], [10], [2]. The numerical computation of GCD has been
considered so far by transforming it to an equivalent prob-
lem of real matrix computations (see methods such as Ex-
tended Row Equivalence and Shifting (ERES) [6], Matrix
Pencil see [5] and [10] for other methods). The advan-
tage of real matrix computations is that we can discuss
the problem of approximate solutions and thus introduce
the notion of “approximate GCD”. In several engineering
computations it is useful to define an approximate GCD of
the set within a specified accuracy. The ERES method car-
ries out successfully the computation of approximate GCD.
In [9] other methods for computing approximate GCD are
also proposed. The problem of computing the LCM of
polynomials has also widespread applications and requires
implementation of algorithms computing the GCD.

In the present paper we examine a resultant-based com-
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putation of the GCD of two polynomials and we study its
application to the ERES and the Matrix Pencil method.

Throughout the paper R[s] denotes the ring of real poly-
nomials. The symbol ∂{f(s)} denotes the degree of a poly-
nomial. Nr(A) denotes the right null space of a matrix A.

Consider the two polynomials a(s), b(s) ∈ R[s],
∂{a(s)} = m, monic and ∂{b(s)} = n, n ≤ m, where

a(s) = sm + am−1s
m−1 + . . . + a1s + a0

b(s) = bnsn + bn−1s
n−1 + . . . + b1s + b0 (1)

The resultant of the two polynomials S(a, b) is defined by



1 am−1 . . . . . . a0 0 . . . . . . 0 0
0 1 . . . . . . a1 a0 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 . . . 1 . . . . . . a1 a0

− − − − − − − − − −
bn bn−1 . . . . . . . . . b0 0 . . . 0 0
0 bn . . . . . . . . . b1 b0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 . . . . . . bn bn−1 . . . . . . b1 b0




(2)
and clearly S(a, b) ∈ R(n+m)×(n+m). With the pair

(a(s), b(s)) we also define the associated resultant set
of polynomials Pa,b as the polynomial coordinates of the
vector

Pa,b(s) = S(a, b)




1
s
...

sn+m−1


 = S(a, b)en+m(s) (3)

The properties of GCD of (a(s), b(s)) in terms of the re-
sultant are summarised below:

Theorem 1: [1] Let a(s), b(s) ∈ R[s], ∂{a(s)} =
m,∂{b(s)} = n, m ≥ n and let z(s) = sr + zr−1s

r−1 +
. . .+ z1s+ z0 be their GCD. The following properties hold
true:
(i) (a(s), b(s)) is coprime, if and only if rank(S(a, b)) =
n + m.
(ii) r = ∂{z(s)} = m + n− rank(S(a, b)).
(iii) If SH(a, b) is the row echelon form of S(a, b), then
the last non-vanishing row gives the coefficients of GCD of
(a(s), b(s)).

II. The resultant ERES and the resultant
Matrix Pencil methods

The computation of GCD may be performed using the
standard methodologies of ERES, or Matrix Pencils. For
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two polynomials, it will be shown that the above method-
ologies may be drastically simplified using properties of the
resultant of two polynomials.

In the following, we will deploy the above two methods
for computing the GCD of two polynomial using simpler
procedures than the two general procedures mentioned be-
fore. More specifically, we shall explore the special prop-
erties of computation of GCD of two polynomials using
both the ERES framework [6], [8] and the Matrix Pencil
approach [5].

The ERES method applied on the basis matrix of the
pair (a(s), b(s)) involves a number of triangularisations and
shifting operations and eventually leads to the GCD which
is defined by the nonzero row of a unity rank matrix. If we
use the resultant set Pa,b a simplified computational pro-
cedure is introduced by the following result.

Corollary (1): Let S(a, b) be the resultant of the pair of
polynomials (a(s), b(s)), ρ = rank(S(a, b)) and let S∗(a, b)
denote the upper triangular form of S(a, b) obtained under
the Gauss row transformations, i.e.

S∗(a, b) =




x x . . . . . . x . . . . . . x
0 x . . . . . . x . . . . . . x
...

... . . . . . .
... . . . . . .

...
0 0 . . . . . . x . . . . . . x
...

... . . . . . .
... . . . . . .

...
0 0 . . . . . . 0 . . . . . . 0




(4)

where the x leading element of each nonzero row is also
nonzero. The nonzero elements of the last nonzero row of
S∗(a, b) define the coefficients of GCD in reverse order.

Proof: By reducing S(a, b) to the S∗(a, b) form we have
completed the first step in deriving the echelon form. The
following steps involve making the first nonzero element of
each of the nonzero rows (Pivots), 1, and then with row
operations eliminating all elements above them. However,
such a procedure does not affect the elements of the last
nonzero row (apart from scaling by the leading coefficient).
Thus, the resulting echelon form has the last nonzero row
equivalent modulo scaling to that of S∗(a, b) and by Theo-
rem (1) the result follows.

Remark (1): The above result provides a simpler way
for computing the GCD of two polynomials and implies
that only the first step of the ERES algorithm is needed (a
single triangularization with no shifting and further trian-
gularisations) when the resultant set is used. The increase
in the number of polynomials (from two to n+m), improves
the speed of the algorithm since the additional polynomials
are simply defined from the original set.

The above procedure will be referred to as triangular-
ization of the resultant set. Clearly, partial pivoting
may be used in the Gaussian transformation to improve
numerical stability.

Algorithm res-ERES

STEP (1): Form the resultant matrix S(a, b).
STEP (2): Specify r = ∂{z(s)} = m + n− rank(S(a, b)).
STEP (3): Apply Gauss row transformations with partial
pivoting and transform S(a, b) to S∗(a, b).
STEP (4): The coefficients of the last nonzero row of
S∗(a, b) define the coefficients of the GCD in reverse order.

Implementation of the algorithm

Computational Complexity: Since the algorithm uses Gaus-
sian elimination with partial pivoting the complexity of the
algorithm will be O(k3

3 ), where k is the dimension of the
matrix S(a, b).

Error Analysis: The following Theorem holds.
Theorem 2: Let S(a, b) a given matrix of order k, If we

perform Gaussian Elimination with partial pivoting using
floating point arithmetic with unit roundoff u, the following
relation holds:

L · S∗(a, b) = S(a, b) + E, ||E||∞ ≤ k3 · u · p · ||S(a, b)||∞
where L a lower triangular matrix with units on the diago-
nal, and p is the growth factor of the Gaussian elimination.

Remark (2): The triangularisation of the resultant set
and thus the computation of the GCD may also be
achieved by QR factorisation using orthogonal transforma-
tions. This provides an alternative procedure for comput-
ing GCD than that based on Gaussian transformations.

An alternative procedure for computing the GCD may
now be indroduced by using the framework of the Ma-
trix Pencil approach for the computation of GCD [5].
Let Pm,d = {pi(s) : pi(s) ∈ R[s] , i = 1, 2, . . . ,m, di =
deg{pi(s)},

d = max{di, i = 1, 2, . . . ,m}}

be the set of m polynomials of R[s] of maximal degree d.

For any Pm,d set we define a vector representative p
m

(s)
and a basis matrix Pm by

p
m

(s) = [p1(s), . . . , pm(s)]t = [p
0
, p

1
, . . . , p

d
] ed(s) = Pmed(s)

(1)
where Pm ∈ Rk×µ, µ = d− p + 1, ed(s) = [1, s, . . . , sd]t.

rank(Pm) = v < d + 1, we define a basis M ∈ Rk×µ, µ =
d− p+1, for the right null space of Pm denoted by Nr{P}
and denote by M1,M2 ∈ Rd×µ the matrices obtained from
M by deleting the last, first row of M respectively. The
pencil Z(s) = sM1−M2 is known as the GCD pencil of
the set P and its properties are summarised below:

Theorem 3: [5] The GCD pencil Z(s) = sM1 −M2 has
the following properties:
(i) The set of Kronecker invariants consists of row minimal
indices (rmi) and possibly finite elementary divisors (fed).
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(ii) The zero polynomial of (Z(s) product of all fed) is the
GCD of the set P.

The above result provides the basis for the matrix pen-
cil approach. The fact that Z(s) may have nonzero rmi
(generic case from dimensions) requires further analysis for
the computation of the zero polynomial. For the special
case where P = (a(s), b(s)) and we use the associated re-
sultant set, the above result takes the following form:

Theorem 4: Consider the pair of polynomials (a(s), b(s))
with resultant polynomial set Pa,b and associated basis ma-
trix the resultant S(a, b). Then,
(i) The polynomials (a(s), b(s)) are coprime, if and only if
Nr{S(a, b)} = {0}.
(ii) The polynomials (a(s), b(s)) have a nontrivial GCD
(t1) if and only ifNr{S(a, b)} 6= {0}. In this case ∂{z(s)} =
dimNr{S(a, b)} and for the GCD pencil Z(s) = sM1−M2

we have the properties:
(a) Z(s) is characterised by fed and posibly only zero rmi.
(b) Z(s) may be expressed as

Z(s) = sM1 −M2 = M̃(sI − Z̃) (5)

where the characteristic polynomial of Z̃ defines the monic
GCD z(s).

Proof:
(i) This part follows directly from Theorem (1).
(ii) Clearly the GCD is nontrivial when Nr{S(a, b)} 6=
{0}. In this case sM1 − M2 is defined and by Theorem
(3) it has rmi and always fed, as this follows from part
(i). The pencil Z(s) has the following general Kronecker
decomposition

Z(s) = R




· · · · · ·
0 0
· · · · · ·

Ln(s) 0
0 sI −A




, Q (6)

where Ln(s) is the set of blocks associated with the nonzero
rmi and sT − A characterise the finite zeros. Cleraly,
if Ln(s) exist, then ∂ = ∂{z(s)} = ∂{|sI − A|} <
dimNr{S(a, b)} and by Theorem (1) we are led to a contra-
diction. Thus, Z(s) has nonzero rmi and thus its structure
as expressed by the Kronecker decomposition becomes

Z(s) = R




0
· · ·

sI −A


 , Q (7)

By partitioning R according to the partitioning of the Kro-
necker form we have

Z(s) = [R′, R]




0
· · ·

sI −A


 , Q = R̄(sI −A)Q (8)

and part (b) of (ii) is established.
Remark (3): If Nr(S(a, b)) 6= {0} and Z(s) is the GCD

pencil of Pa,b, then any minor of maximal order of Z(s)
which is not identically zero defines the GCD of (a(s), b(s)).

Algorithm res-MP

STEP (1): Form the resultant matrix S(a, b).
STEP (2): Specify a basis M for Nr(S(a, b)).
STEP (3): Form the GCD pencil Z(s).
STEP (4): Compute any minor of maximal order of Z(s)
which is not zero. From this minor define the coefficients
of the GCD.

Implementation of the algorithm

Computational Complexity: The determination of the ba-
sis matrix will be accomplished numerically using the Sin-
gular Value Decomposition (SVD) of matrix S(a, b). The
complexity of this computation will be O(k3), where k is
the dimension of the matrix S(a, b). The specification of a
nonzero maximal minor can be done symbolically without
requiring additional flops.

Error Analysis: The computation of the right null space of
S(a, b) using the SVD is a stable process which guarantees
the stability of the computation.

III. Numerical results

The results of the above section lead to two new al-
ternative procedures for computing the GCD of a pair
(a(s), b(s)), which are summarised below:

Computation of GCD of a pair of polynomials

For the pair (a(s), b(s)) with resultant set Pa,b and resul-
tant matrix S(a, b) their GCD is defined by the following
two alternative by equivalent new procedures:

Procedure (A): Reduce S(a, b) to upper triangular
form by elementary Gaussian tranformations or orthogonal
transformations and then define the coefficients of GCD
from the nontrivial elements of the last nonzero row.

Procedure (B): Compute the GCD pencil from
Nr{S(a, b)} using SVD and then define GCD as any max-
imal order nontrivial minor of this pencil.

The above procedures for GCD evaluation were pro-
grammed in MATLAB environment and tested on a Pen-
tium machine over several sets of polynomials Pm,d char-
acterised by various properties. Next, for each set of data
we present the exact GCD and a table summarising the
achieved results. In the first column of the table the applied
method is mentioned. Specifically, the notation ERES de-
notes the standard ERES method, Res-ERES denotes the
modification of the ERES using the resultant matrix, Or-
thogonal denotes the application of QR factorisation, MP
denotes the Matrix Pencil method and Res-MP denotes the
modification of the MP method using the resultant matrix.
In the second column of the table the obtained relative er-
ror in the final result is written; in the third column the
required accuracy of the method is mentioned for several



4

intermediate calculations performed by each method, and
finally in the fifth column the total number of floating point
operations (flops) , counted using an appropriate MATLAB
function is given.

Example (1):
Consider the two polynomials a(s), b(s) ∈ R[s], ∂{a(s)} =
4, monic and ∂{b(s)} = 3, 3 ≤ 4, where

a(s) = s4 + s3 + 12s2 + s + 11, b(s) = 2s3 + 5s2 + 2s + 5

Exact GCD = s2 + 1

METHOD ERROR ACCUR. FLOPS
ERES ≤ 10−16 ε = 10−15 826

Res-ERES ≤ 10−16 ε = 10−15 464
Orthogonal ≤ 10−16 ε = 10−15 1328

MP ≤ 10−16 ε = 10−15 3283
Res-MP Exact ε = 10−15 5529

Formula

Table 1

Example (2):
Consider the two polynomials a(s), b(s) ∈ R[s], ∂{a(s)} =
4, monic and ∂{b(s)} = 3, 2 ≤ 4, where

a(s) = s4−59s3−4560s2+45500s+50000, b(s) = s2+31s+30

Exact GCD = s + 1

METHOD ERROR ACCUR. FLOPS
ERES ≤ 10−16 ε = 10−15 1029

Res-ERES ≤ 10−16 ε = 10−15 312
Orthogonal ≤ 10−16 ε = 10−15 905

MP ≤ 10−16 ε = 10−15 3318
Res-MP Exact ε = 10−15 3282

Formula

Table 2

Remark (4): From the above tables we see that the re-
sultant ERES method attains the less number of required
floating point operations. Actually, for two polynomials the
ERES has the worst behaviour [8] and thus the resultant
ERES is a great improvement. This difference is apparent
only if we don’t compute the rank of the resultant matrix.
If this computation is done then since the dimension of the
resultant matrix is large, many flops will be required and
the method will not be efficient. Thus we will perform the
full triangularisation of the resultant matrix and then we
will specify as GCD the first nonzero row from the bottom
of the modified matrix. The orthogonal method uses QR
for the triangularization and thus a remarkable number of
flops is required. The difference between the MP method
and the resultant MP method is not so great since both
methods requires the computation of null spaces. The re-
sultant MP requires the computation of the null space of a
much larger matrix (the resultant matrix) and thus it has
more flops. Actually all the required flops in the resultant
MP method are applied for the computation of the null

space since the rest computations can be performed sym-
bolically. From the above tables we see that the relative
error for all the above methods is very small i.e. the accu-
racy of the computed results is very good. Specifically the
Res-ERES method applies only Gaussian transformations
with partial pivoting which guarantees the stability of the
applied algorithm.
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