
Abstract – Algebraic methods in control theory have brought 
many effective and efficient algorithms which are easily 
programmable and applicable. The contribution is focused on 
algebraic control design utilized for continuous-time systems 
with periodic parameters. Controllers are obtained via general 
solution of Diophantine equations in the ring of proper and 
stable rational functions. Various control problems are solved 
by conditions of divisibility in this ring. A Matlab+Simulink 
package was developed for automatic design and simulation. 
The program system cover generalized PI and PID controllers 
designed for first and second order systems. A scalar real 
parameter is introduced for tuning of proposed controllers. 
Robust properties of developed algorithms are studied 
through the infinity norm, Kharitonov`s theorem and 
visualized by Polynomial toolbox functions. 
   
Index terms - Periodic Systems, Uncertainty, Robust Control, 
SISO Systems, PID Controllers 
 

I. INTRODUCTION 
 
Control systems affected by bounded perturbations have 
been deeply studied in recent years [2], [8], [9]. The 
attention of researches concentrated on new robustness 
tools, such as H∞, Kharitonov’s theorem, µ synthesis, etc. 
Many industrial processes contain as at least two types of 
uncertainties, namely unstructured (nonparametric) and 
structured (parametric) [8]. The parametric uncertainty is 
more suitable and more realistic from the control engineer’s 
point of view. A frequent case of such systems is the case 
with interval polynomials. It means that polynomials have 
coefficients lying within given intervals. Systems with 
periodically varying parameters can be considered as a 
special case. 
The aim of this paper is to study the control design and 
behavior for a class of continuous-time systems with 
periodically varying parameters. The control design in the 
robust sense is outlined according to [5], [6], then tools for 
analysis are defined and the program environment for 
automatic design and simulation is described. 
The paper is organized as follows. In Section 2 possible 
way of description of systems with periodical parameters is 
introduced. Section 3 gives basic outline of robust control 
design. In Section 4, some tools for robust analysis are 
studied. Program environment – software application of 
proposed algorithms – is described in Section 5. Further, in 
Section 6 an example for illustrating of possibilities of the 
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toolbox is given. Finally, Section 7 offers some conclusion 
remarks. 
 

II. DESCRIPTION OF TIME-VARYING SYSTEMS 
 
Time-varying continuous-time dynamic systems can be 
interpreted as transfer functions with harmonic parameters, 
for example the first order system is described by 
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The value of the parameter a0 is responsible for stability or 
instability of the controlled system. Time varying 
parameters in (1) are described by equations: 
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where 00 , βα  are real constants. The choice 021 == λλ  
represents a time invariant linear system. It is clear that 
minimal and maximal values of parameters (2) are defined 
as: 
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In the case of second or higher order system are parameters 
varied analogically. 
 

III. OUTLINE OF CONTROL DESIGN 
 
Let RPS be a set of proper and Hurwitz stable rational 
functions. The fractional approach developed in Vidyasagar 
[10] and Kučera [4] supposes the description of linear 
systems in RPS as a ratio of two rational fractions: 
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The scalar positive parameter m>0 can be conveniently 
used as a tuning knob for control behavior. 
A general feedback system is shown in Fig.1. It represents 
for 
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sP
sQsC =  a classical feedback one-degree-of freedom 

(1DOF) loop with the control law 
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In a two-degree-of freedom (2DOF) control system, the 
controller C(s) consists of two transfer functions ( )

( )sP
sQ  and 

( )
( )sP
sR . The control law is governed by 
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Fig. 1: General feedback system 
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are supposed to be coprime in RPS(s). The disturbance v 
usually represents a harmonic signal while n can be 
modeled by a stepwise signal. 
The objective is to design controller transfer functions P(s), 
Q(s), R(s) such that the feedback system is internally BIBO 
stable, the reference error tends asymptotically to zero and 
the disturbances v and n are asymptotically eliminated from 
the plant output. 
Commonly, it is desirable that the feedback system be 
internally BIBO stable in the sense that any bounded input 
produces a bounded output (e.g. [4], [10]). All transfer 
functions of the feedback system (Fig. 1.) have common 
denominator AP+BQ. One of the nice and convenient 
results of the algebraic philosophy is that this denominator 
should be a unit in the ring RPS(s). In other words, the term 
(AP+BQ)-1 resides in RPS(s) and the feedback system is 
BIBO stable. If the elements A and B are coprime in RPS(s) 
then all stabilizing controllers are given through a solution 
of Diophantine (Bézout) equation: 
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in a parametric form 
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where T varies over RPS(s) while satisfying P0+BT≠0.  
From the practical point of view, it is often desirable to 
ensure more than stability. Probably the most frequent 
problem of importance is that of reference tracking. Then 
the tracking error e tends to zero if 
 
a) Fw divides P for 1DOF (9) 
b) Fw divides 1-BR  for 2DOF (10) 
 
Another control problem of practical importance is a 
disturbance rejection and disturbance attenuation. In both 
cases, the effect of disturbances v and n should be 
asymptotically eliminated from the plant output. Since the 
both disturbances are external inputs into the feedback part 
of the system, the effect must be processed by a feedback 
controller. The algebraic approach enables to express these 
conditions by the notion of divisibility. The details can be 
found e.g. [4], [5] or [7]. More precisely, Fv must divide the 
multiple AP and Fn the multiple BP. When define relatively 
prime elements A0, Fv0 and B0, Fn0 in RPS(s) 
 

 
0

0

0

0 ,
nnvv F

B
F
B

F
A

F
A

==  (11) 

 
then the problem of disturbance rejection and attenuation is 
solvable if and only if the pairs Fv, B and  Fn , B are 
relatively prime and the feedback controller is given by 
 

 
000 nv

b FFP
Q

P
QC ==  (12) 

 
where P0, Q are the solution of the equation 
 
 1000 =+ BQPFAF nv  (13) 
 
Moreover, for simultaneous reference tracking and 
disturbance rejection and attenuation Fw must divide P0 for 
1DOF or 
 1=+ BRZFw  (14) 
 
for 2DOF structure. 
 

IV. TOOLS FOR ROBUST ANALYSIS 
 
The H∞ norm of the system (4) in RPS(s) is defined by 
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This (called infinity) norm is the radius of the smallest 
circle containing the Nyquist plot of the transfer function 
and it is a convenient tool for the evaluation of uncertainty. 
Almost all mathematical models differ from physical 

systems. Let 
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where ε1, ε2, ε are positive constants. 
For robust control, it is necessary to choose a part of all 
stabilizing controllers (7), (8) which stabilize perturbed 
plants. The answer can be found in [10]. For perturbed 
plants choose such P, Q in (7), (8) which fulfill the 
conditions 
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For a deeper insight into robustness the notion of the 
sensitivity function: 
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can be used in the sense of [3]. For the mentioned SISO 
systems, sensitivity function ∈ is a nonlinear function of m 
> 0 and it can be minimized by a simple scalar optimization 
method. In this way, the “most robust” controller of given 
structure can be obtained. 
Another insight for the robust stability analysis can be 
performed through inspecting of open-loop Nyquist plots. 
The class of transfer functions (1), (2) can be confined by a 
two dimensional convex polygon. The vertices of this 
polygon are characterized by the following values of 
parameters ( ) ( )tbta 00 , : 
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Then, for a designed feedback controller 
P
Q  the open loop 

Nyquist plots 
AP
BQ  for all vertices can be studied. A natural 

way for the stability test is the Nyquist criterion. If all four 

vertices exhibit the stable result then the designed controller 

P
Q  achieves the robust stability for all transfer functions 

(1), (2). 
Another tool for robust stability analysis can facilitated via 
interval polynomials and Kharitonov’s theorem. This 
theorem can be used for testing stability of the closed-loop 
characteristic polynomial; it means the numerator of the 
rational function AP+BQ: 
 

 ( ) ( )BQAPnumtsc +=,  (22) 
 
The closed-loop characteristic polynomial (22) is then 
supposed as an interval one according to minimal and 
maximal values of parameters ( ) ( )tbta 00 , . In this case, 
Mikhailov-Leonhard test can be applied. Four stable 
Kharitonov’s polynomials means stability of the 
characteristic polynomial (22) with all possible 
combinations of parameters ( ) ( )tbta 00 , . 
 

V. PROGRAM IMPLEMENTATION 
 
A MATLAB-package with simulation support in 
SIMULINK was developed for plants with periodic 
parameters of the first and second orders with and without 
time-delay. The program for automatic control design was 
created in Matlab R12, Simulink and Polynomial Toolbox 
2.5. It covers two control design strategies and both 
structures of the closed loop as described and outlined in 
Section III. The first strategy generates the controller by a 
user defined value of the tuning parameter m. The second 
one minimizes the sensitivity function (20) in the sense of 
H∞ norm and without any knowledge of the perturbed plant 
tries to find the “most robust” controller for the nominal 
plant. The main menu window of the program is shown in 
Fig. 2. 
 

 
Fig. 2: The main menu window 

 
The program system enables design and simulation of a 
wide spectrum of robust control problems. It is desirable for 



robust control that the nominal and perturbed (really 
controlled) plant is different. The program is user friendly 
as much as possible. A user can set up two different plants 
with different degrees, time constants and delays. First, a 
nominal plant of a desired structure (first or second order) 
with its transfer function and dead-time has to be defined. 
Then, a transfer function of the given perturbed plant can be 
set up. All parameters in this transfer function (including 
time-delay) can be time-varying according to (2). The 
situation is outlined in Fig. 3 and Fig. 4. 
 

 
Fig. 3: Definition of nominal plant 

 

Fig. 4: Definition of perturbed plant 
 
If the nominal plant contains transport delay then the 
important step is to choose an approximation method of the 
time delay term. There are four possibilities of 
approximation as it is illustrated in Fig. 5. 
 

 
Fig. 5: Approximation of time delay 

 
The program is not able to support Pade or Taylor 
approximation in denominator with 2nd order nominal plant 
since the resulting controller would be too high order. 
 

 
 

Fig. 6: Choices of control strategies 
 
The program also covers both well-known control 
structures: feedback (1DOF) and feedback-feedforward 
(2DOF) one. Further, there are two options for the control 
loop structure and two mentioned options for the control 

design. These choices are defined in the main menu 
according to Fig. 6 and Fig. 7. 
 

 
 

Fig. 7: Structure of the control scheme 
 
The mentioned algebraic approach is able to design 
controllers which are prepared for simultaneous tracking 
and disturbance rejection. There are two possibilities which 
can be defined in the subwindow according to Fig. 8. 
 

 
 

Fig. 8: Ability of the controller 
 
Then a simulation run of the designed controller and the 
perturbed plant can follow. In some cases it is necessary to 
adjust simulation parameters: a simulation horizon, initial 
and final reference values, time of load disturbances and so 
on. It can be performed very simply in the part of the main 
window in Fig. 9. 
 

 
Fig. 9: Simulation parameters 

 
The software tools also enable to corrupt the measured 
output of the controlled plant by a harmonic or ramp signal. 
The user can define the presence and type of the 
disturbance according to Fig. 10. 
 

 
Fig. 10: Harmonic and ramp disturbances 

 
A very important part of the simulation is the display of 
obtained results. The program environment enables 
comparison between step responses of nominal and 
perturbed plant and also it shows Kharitonov’s rectangles 
for closed-loop characteristic polynomial in the selected 
range of frequencies – see Fig. 11. 
 



 
Fig. 11: Selection of the output display 

 
The plots of Kharitonov’s rectangles are computed and 
displayed with help of the Polynomial Toolbox. The 
simulation of the perturbed plant (with harmonically 
perturbed parameters) with the controller designed for the 
nominal transfer function is performed in the standard 
Simulink environment. All simulation variables can be 
stored and transferred out of the Matlab workspace and 
ITAE, IAE or IE criteria can be calculated as a tool for 
comparison and quality evaluation of the control behavior. 
 

VI. ILLUSTRATIVE EXAMPLE 
 
A controlled time-varying system is given by a second 
order transfer function: 
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It means a nominal system was supposed in the form: 
 

 ( )
23

2
2 ++

=
ss

sG  (24) 

 
The comparison of step responses of systems (23) and (24) 
is shown in Fig. 12. 
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Fig. 12: Step responses of (22) and (23) 

 
Further, it was supposed the 1DOF and 2DOF control 
structure with a reference tracking controller, load 
disturbance -1 in 2/3 of a simulation time and user defined 
tuning parameter m=4. The feedback controller then takes a 
form: 
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which gives the closed-loop characteristic interval 
polynomial according to minimal and maximal values of 
parameters in transfer function (23) in the sense of (3): 
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Kharitonov’s rectangles for interval polynomial (26) are 
shown in Fig. 13. Fig. 14 then gives detailed view on the 
area near the point [0; 0j]. As can be seen, this interval 
characteristic polynomial is stable in the sense of Mikhailov 
criterion for all possible combinations of periodic 
parameters. 
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Fig. 13: Kharitonov’s rectangles for (25) 

 

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-1500

-1000

-500

0

500

1000

1500

Real Axis

Im
a
g A
xi
s

Kharitonov Rectangles for an Interval Polynomial

 
Fig. 14: Kharitonov’s rectangles for (25) – detail for 

lower frequencies 
 
The feedforward controller (for the 2DOF control structure) 
has a form: 
 



 ss
sssC f 13
128648)( 2

2

+
++

=  (27) 

 
The finally closed-loop control behavior of the system (23) 
for the 1DOF and 2DOF control structure is given in Fig. 
15. These control responses represent a very acceptable 
behavior. 
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Fig. 15: The 1DOF and 2DOF control behavior of the 

system (22) 
 

VII. CONCLUSION 
A design method based on fractional representation was 
developed for SISO continuous-time systems with periodic 
parameters, generally with time delay. A time delay term 
can be approximated in various ways. Resulting control 
laws for first and second order systems give a class of 
generalized PI and PID structures. The algebraic 
methodology enables to derive controllers rejecting also 
disturbances. The robustness and control behavior can be 
tuned and influenced by a single scalar parameter m>0. The 
proposed methodology is supported by a Matlab + Simulink 
program system for automatic design and simulation. 
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