
DERIVATION OF KINEMATIC PARAMETERS FROM A 3D ROBOT
MODEL USED FOR COLLISION-FREE PATH PLANNING

Tomislav Reichenbach, Zdenko Kovačić

University of Zagreb, Faculty of Electrical Engineering and Computing

Unska 3, 10000 Zagreb, CROATIA
E-mail: tomislav.reichenbach@fer.hr, zdenko.kovacic@fer.hr

URL: http://flrcg.rasip.fer.hr

Abstract: This paper presents a method of deriving a
kinematics model from a 3D robot model positioned in
the virtual environment. This method is applicable to
non-convex hierarchical polygons models constructed
of triangles and allows determination of kinematic
parameters for each point (triangle) on the model
including those on the surface of the model. Real-time
collision detection algorithm, based on the usage of
oriented bounding boxes and the triangle/triangle
intersection is used for determining the exact collision
point. Using the collision point as a new end of a
kinematic chain, new kinematic parameters derived
from colliding triangles are calculated. A collision-free
robot motion is then enforced by planning collision-
free trajectories for these critical points or regions.

1. Introduction

Many techniques used in robotics such as spline-
interpolation, collision detection and representation of
3D objects in the virtual reality environment have been
actually adopted from computational geometry.

Owing to these methods, new approaches to
design, analysis, control, dynamics simulation and
visualization of robotic systems and flexible
manufacturing systems (FMS) have been enabled.
Instead of building real systems, a designer first builds
new layouts and configurations in the virtual
environment and refines them without actual
production of physical prototypes. In this sense, virtual
models of robotic systems and FMS can be viewed as
a set of virtual robots, machine tools, rotary tables, belt
conveyers and other elements put within the virtual
environment. One such virtual robotic work cell for
palletization is shown in Fig. 1.

Virtual reality 3D models are usually generated
using programming languages such as Virtual Reality
Modeling Language (VRML) or by using various
popular CAD programs (e.g. AutoCAD, Catia or 3D-
Studio). So obtained virtual models differ in format
and way of creation, but often, they can be converted

into concurrent formats and vice versa. In this paper
we have adopted a 3D-Studio format (*.3ds) of all
considered virtual models.

Figure 1. Virtual robotic work cell for palletization

(Courtesy of Euroimpianti S.p.a, Italy)

One of interesting aspects in analysis of robotic

systems is detection of possible collisions among
entities in a virtual world. Good examples are robotic
systems with two or more robots sharing their
workspace during task execution. Collisions may also
occur during pick and place or palletization operations.

Providing that virtual models are accurate,
collisions in a virtual environment should occur in the
same way as in the real world. By using programs
which contain 3D virtual reality models and
accompanying dynamic simulators, design, analysis,
control, dynamic simulation and visualization of
complex robotic systems becomes a fully feasible task
(e.g. programs eMPower, Grasp2000, RobotStudio,
Flexman [8], [9] or Leonardo [10]).

According to the 3D model taxonomy, 3D models
used in this paper are polygonal structured, i.e.
polygons form a closed manifold, hierarchical non-
convex models undergoing a series of rigid-body
transformations [3]. Polygons are made entirely of
triangles as hardware accelerated rendering of the

triangles is commonly available in the graphic
rendering pipeline.

There are numerous approaches to a collision
detection problem which can be mainly grouped into
space-time volume intersection, swept volume
interference, multiple interference detection and
trajectory parameterization [1].

A collision detection algorithm used in this paper
belongs to multiple interference detection category,
which reduces a general collision detection problem to
multiple calls to static interference tests focused on
detecting intersections between simple geometrical
entities, triangles and oriented bounding boxes (OBB)
belonging to objects being tested. As the algorithm is
static, i.e. collision detection occurs only at discrete
times, it is fast enough and effective from the
computational point of view to provide real-time
collision detection in very complex (high polygon
count) virtual environments.

A next logical step is to use information about a
location of intersection (i.e. collision) and try to
prevent collision by changing the path of one or both
elements in collision. Assuming that at least one of the
elements tested against collision is a robot, one must
know kinematic parameters of the robot to be able to
plan correct collision-free robot trajectories. Usually,
kinematic parameters of real robots are determined
according to the Denavit-Hartenberg (D-H) convention
[2], while their concrete values are obtained by very
precise measurements.

When collision of such a robot is considered, then
regular kinematic parameters associated with positions
and orientations of all robot joints and end effectors
are not sufficient for proper collision-free trajectory
planning. Namely, these parameters do not describe all
points on the robot surface which could collide with
the environment.

While practically, determination of kinematic
parameters for an arbitrary point on the real robot
surface is not an accomplishable goal, in the virtual
environment this may be resolved in an elegant way by
using a kinematics model of the robot derived from the
virtual 3D model of the robot.

This paper is organized in the following way. First
we describe an algorithm for determination of
kinematic parameters for the objects in the virtual
environment that have their own kinematic structures.
The assumption is made that the geometric structure of
all objects is known, either generated from the
stereovision or from a 3D modeling. For geometry
interpretation triangle meshes are used and all the
parameters (joint positions, link lengths etc.) are
extrapolated from a 3D description. Then, based on the
kinematic parameters obtained for any point (triangle)
on the robot surface, inverse kinematics solution is
found. This solution will be further used for planning

collision-free trajectories referred to the critical point
(the point or the area that is actually colliding) in
accordance with a fuzzy logic-based collision
avoidance strategy.

2. Derivation of kinematic parameters
from a 3D robot model

Each virtual object is composed of an arbitrary

number of links that form a parent-child hierarchy.
There is no limit on the number of child links for a
parent, so complex kinematic configurations can be
formed out of serial and/or parallel kinematic chains.
In this paper we will consider only serial kinematic
configurations as most of robotic arms can be
represented with such a configuration. Frames
(coordinate systems) are assigned to the links
sequentially and are either static or dynamic. Dynamic
local frames may undergo rigid-body transformations
during a simulation in a virtual environment.

A local k-th coordinate frame is defined with its
center vector and a rotation around a vector. If

xkc ,

ykc and
zkc are values at the x, y and z axes of the k-

th coordinate system, the center vector is defined as

x y zcenter k k kk c c c =   
p . Similarly, θk is a rotation

angle around vector rotation x y zk k k kr r r = p .

Respective homogenous transformation matrices
for kcenterp and

rotationkp can be given as,

1 0 0
0 1 0
0 0 1
0 0 0 1

x

y

C z

k
k

k k

c
c
c

 
 = 
  

T (1)

and

() ()
() ()
() ()

()
()
()

2
2

2

1 cosθ cosθ 1 cosθ sinθ
1 cosθ sinθ 1 cosθ cosθ
1 cosθ sinθ 1 cosθ sinθ

0 0
1 cosθ sinθ 0
1 cosθ sinθ 0
1 cosθ cosθ 0

0 1

R

k k k k
k k k k

k k k k k

k k
k k
k k

x xy z
xy z y
xz y yz x

xz y
yz x
z

 − + − −
 − + − += − − − +


− +
− −
− + 


T

 (2)

Note that

xkc ,
ykc ,

zkc ,
xkr ,

ykr ,
zkr and θk are

fixed (geometric) parameters that depend only on a
manipulator geometric 3D structure. Transformation
for the i-th joint dynamic frame is defined as:

cos cos sin sin
sin cos cos sin
sin sin cos cos

0 0 0 1

x
y

q z

i i i i i
i i i i i

i i i i i i

c
c
c

β γ γ β
γ α γ α
β α α α

⋅ − 
 ⋅ −= − ⋅ 
 

T (3)

where iα , iβ and iγ are roll-pitch-yaw (RPY) angles
denoting rotations around the x, y and actual z-axis
with angles iγ , iβ and iα , respectively. A vector

c x y zi i i ic c c=
 
 p is a translation vector of the origin

of the i-th joint local frame.
Finally, transformation from the n-th local frame

to the global frame can be expressed as follows:

()0

0 0

n n

C R q l
k k

n k k k k
= =

= ⋅ ⋅ =∏ ∏T T T T T , (4)

where k is index of all local frames. If index i is
involved with dynamic local frames, matrix

qkT is

defined as
qiT (see (3)), otherwise it assumes the form

of the unity matrix.
The solution of a direct kinematics problem (D-H

parameters) may be now derived from (4).
Parameter b, representing the link length in y-axis

direction has been added to D-H parameters to
generalize the solution. Accordingly the order of
transformations between a link frame i-1 and a link
frame i is a rotation around axis 1i−z with angle iθ ,

translation along the 1i−z with displacement id ,

translation along the 1i i−=x x with displacement ia ,

translation along the 1i−y with displacement ib and

rotation along 1i−x with angle iα .

Because of the ambiguity of the trigonometric
solutions, to get the DH parameters []θa b d α
for the i-th link from the joint frame transformation
matrix 1i

i
− T a correct solution has to be chosen from a

set of possible solutions { }1 2 3 1 2 3, , ,θ ,θ ,θS α α α= :

()1 1 1=atan2 (3,2), (3,3)i i
i i iα − −T T (5)

()2 1 1=atan2 - (2,3), (2,2)i i
i i iα − −T T (6)

()3 1 1=atan2 (1,3),- (1,2)i i
i i iα − −T T (7)

()1 1 1
iθ =atan2 (2,1), (1,1)i i

i i
− −T T (8)

()2 1 1
iθ =atan2 (1,2), (2,2)i i

i i
− −− T T (9)

 ()3 1 1θ =atan2 (1,3),- (2,3)i i
i i i

− −T T (10)

If there is no solution from the set S for equations

(5)-(10), matrix 1i
i

− T can be decomposed by inserting
a transformation of an auxiliary frame *iT :

1 1 *
*

i i i
i i i

− −= ⋅T T T (11)
The auxiliary frame should be chosen so that

satisfies * (3,1) 0i
i =T .

The 3D model of the robot Kuka Kr150 has been
used to illustrate derivation of D-H parameters from
the model. There are seven local frames - six joint
frames and a base frame (Fig. 2). A created kinematic
chain is shown in Fig. 3 and the corresponding D-H
parameters are displayed in Table 1.

 Figure 2. A 3D model of the robot Kuka Kr150 with highlighted joint coordinate frames

Figure 3. A created kinematic chain for the robot Kuka Kr150

Table 1. D-H parameters of the robot Kuka Kr150

a b d α ϑ
0.000 0.000 0.000 0.000 0.000
0.000 0.000 1.919 0.000 0.000
2.132 0.050 1.892 1.571 0.000
-0.057 5.051 0.050 0.000 0.000
4.592 0.257 0.000 -1.571 0.000
1.510 0.005 -0.028 0.000 0.000
0.005 0.964 0.029 1.571 1.571

3. Collision detection

Oriented bounding boxes (OBB) are used to
determine the distance and collision between different
objects at the first hierarchical stage. As it has been
proved in [5], overlaps between OBBs are rapidly
determined by performing 15 simple axis projection
tests. By descending down the generated OBB tree
(hierarchy) a search for the collision point becomes
narrower, which finally allows the exact collision
point determination with triangle/triangle intersection
test performed on the final overlapping OBB nodes
[4]. How descent will go far down the OBB tree or
when the triangle/triangle test will be used instead of
OBB overlap check can be specified depending on
the available computational time and the complexity
of the 3D model.

Once the triangle/triangle intersection test has
given the exact collision point, it has also given the
colliding link to which it belongs. For more than one
link in collision, the preferred one has the highest

level in the object hierarchy. A new D-H kinematic
model is generated from equations (1)-(3) with the
given collision point serving as the origin of the last
"joint" local frame. Based on this model, inverse
kinematics for this collision point can be calculated.

4. Collision avoidance strategy

Although collision detection is a very important

part of a space-time analysis of studied robotic systems,
collision avoidance is even more important goal when
real-time operating conditions are concerned. In the
adopted concept, collision avoidance is done in two
stages, first a collision-free path is calculated with
respect to the known static objects (it allows the usage
of an off-line trajectory planner), and then an on-line
trajectory planner is used to generate a collision-free
path with respect to the dynamic objects. In such a
concept unknown static objects are treated as they were
dynamic objects.

Regarding the precision of collision checks, an off-
line trajectory planner may operate with a deeper level-
of-detail (LOD) than an on-line trajectory planner, due
to a different amount of the computational time
available. During an on-line search for a collision-free
path, a progressive LOD approach is used. Objects that
are considered far from each other are tested only in the
first level of the OBB tree hierarchy. As objects are
approaching, LOD increases and deeper level OBB in
the hierarchical tree are checked against collision (see
Fig. 4).

Further improvement of the collision-free path
search is made by reducing a number of checks.

 Figure 4. Second level oriented bounding boxes (OBB) for the robot Kuka Kr150

Normal vectors projection of an object face to a
relative velocity vector of the object must be positive,
as proposed in [6], or more recently in [7], otherwise
the object's face is not checked against collisions.

With the knowledge how far the objects are and
how rapidly they move, a time interval when collision
can possibly take place can be determined. An exact
amount of a trajectory correction, magnitude and
direction, is determined by a fuzzy logic based
collision avoidance strategy using object proximity
and object velocity as its inputs.

In the vicinity of a studied robot a fuzzy potential
field is used to determine possible collisions with the
environment. Input membership functions for the
object proximity are "very near", "near", "medium"
and "far", while "stop", "slow", "medium" and "fast"
represent the input membership functions for the
object velocity. While calculating an exact amount of a
trajectory correction, magnitude and direction, the
fastest evasion and minimal joint movement criterion
is favored.

 Volume sweep checks are made and possible
collision points are used to get new kinematic
parameters from the 3D model (Fig. 5). Updated
trajectory points are processed in the on-line trajectory
planner and searches for the fastest possible collision-
free path around the object are made. When a
continuous path planning has been used as an off-line
trajectory planning method, return to a previous
position is enforced, if blocking object has moved. In
case such a movement is not possible or a point-to-
point path planning has been used, then a return to a

reference trajectory is achieved with a minimum
motion.

5. Conclusions

There are many robotic applications where
collisions of robots with the environment may occur –
palletization, pick and place or assembly operations
are very good examples.

Regarding collision prevention, regular kinematic
parameters associated with positions and orientations
of all robot joints and end effectors are not sufficient
for proper collision-free trajectory planning. Namely,
these parameters do not describe all points on the robot
surface which may collide with the environment.

While determination of kinematic parameters for
an arbitrary point on the real robot surface is
practically non-accomplishable goal, in the virtual
environment this may be resolved in an elegant way by
using a kinematics model of the robot derived from the
virtual 3D model of the robot. For this purpose, a
method for generation of a kinematics model from the
virtual 3D model is described and illustrated for the
industrial robot Kuka Kr150.

 By using so obtained kinematic parameters, a
new kinematic chain is generated with the collision
point serving as the end of the chain. Thus any point of
the robot including all points on the robot surface can
be controlled and its trajectory can be planned.

A collision detection method used in this paper
belongs to the multiple interference detection category,

Figure 5 . Collision with a static object - a kinematic chain is generated with the collision point serving as the end of the chain.

which reduces a general collision detection problem to
multiple calls to static interference tests focused on
detecting intersections between simple geometrical
entities, triangles and oriented bounding boxes (OBB).

The more precise the 3D model is, the better
collision detection and collision avoidance will be.
But, for real time applications, fuzzy logic based
collision avoidance strategy may successfully resolve
the ambiguity of space-time relations at the minimal
cost of the collision avoidance precision.

Future work will focus on getting experimental
results in the laboratory. Object movements and
positions will be observed by the stereovision while
on-line implementation of the developed algorithm
will be used for real-time collision avoidance.

6. Acknowledgements

The work described in this paper was performed within the
framework of the 036044 research project entitled "Control
of robotized plants" which was supported by a grant from the
Ministry of Science and Technology of the Republic of
Croatia.

7. Literature

[1] P. Jimenez, F. Thomas, and C. Torras, "3D collision

detection: A survey", Computer & Graphics, 2001, vol.
25, pp. 269--285.

[2] J. Denavit, R.S. Hartenberg; A Kinematic Notation for
Lower Pair Mechanisms Based on Matrices, J. Appl.
Mech. ASME, June 1955, pp. 215-221.

[3] M. Lin and S. Gottschalk ;Collision Detection between
Geometric Models: A Survey, Proceedings of IMA
Conference on Mathematics of Surfaces 1998.

[4] Real-Time Rendering; Tomas Möler and Eric Haines. A
K Peters Ltd 1999

[5] OBB-Tree: A Hierarchical Structure for Rapid
Interference Detection; S. Gottschalk, M. Lin, and D.
Manocha. Proc. ACM SIGGRAPH, 1996.

[6] G. Vanecek, Jr. Back-face culling applied to collision
detection of polyhedra. Journal of Visualization and
Computer Animation, 5(1), 1994.

[7] S. Redon, A. Kheddar and S. Coquillart. Hierarchical
Back-Face Culling for Collision Detection. Proceedings
of IEEE/RSJ International Conference on Intelligent
Robots and Systems. October 2002.

[8] Kovačić Z.;Bogdan S.; Reichenbach T.; Smolić-Ročak
N.; Birgmajer B. FlexMan - A Computer-integrated
Tool for Design and Simulation of Flexible
Manufacturing Systems, CD-ROM Proceedings of the
9th Mediterranean Conference on Control and
Automation Control, TM2-B, Dubrovnik, 2001.

[9] Smolić-Ročak N.; Bogdan S.; Kovačić Z.; Reichenbach
T.; Birgmajer B. Modeling and Simulation of FMS
Dynamics by Using VRML", CD-ROM Proceedings of
the b'02 IFAC World Congress July 21-26, 2002
Barcelona, Spain.

[10] Kovačić Z.; Bogdan S.; Petrinec K.; Reichenbach T.;
Punčec M. LEONARDO - The Off-line Programming
Tool for Robotized Plants, CD-ROM Proceedings of the
9th Mediterranean Conference on Control and
Automation Control, WM2-C, Dubrovnik, 2001.

	Conference Program
	Author Index
	Main Menu

