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Abstract—The Green-Galerkin method has been shown to 
successfully address the problem of thermal control in 
distributed-parameter heat conduction systems. This article 
investigates the effect of altering the iterative time step on the 
convergence of the solution generated by the aforementioned 
method when applied to multi-dimensional problems. It is 
proved that regardless of the variations in numerical 
processing, the iterative technique is able to solve the inverse 
heat conduction problem encountered in thermal processing of 
solids. Furthermore, it is shown that the method is able to 
generate heat input functions for as many heating locations 
chosen to exist on the surface of a solid body. In all cases 
studied, FEA simulations are conducted to validate the 
analytical solution obtained by the proposed method. 
 
Index Terms—Distributed parameter, thermal control. 
 

I. INTRODUCTION 

ATTAINING optimal product features, such as 
resistance to oxidation, corrosion and wear, is of 

primary importance in the field of thermal manufacturing. 
Such features are defined by the resulting metallurgical 
structure of the materials constituting the manufactured 
part. In turn, the temperature field that needs to be achieved 
during the process in order to obtain the desired 
metallurgical structure is dictated by material 
transformation diagrams. Hence, modeling and control of 
the temperature fields achieved in thermal processes of 
manufacturing interest has been greatly emphasized in 
current research and development efforts, both in the 
engineering academia and manufacturing industry. 
However, despite the many advances in the field of thermal 
controls, distributed parameter systems theory has not yet 
resolved the fundamental question of controllability of the 
internal temperature field generated within a three-
dimensional solid body, when heating exists strictly on its 
accessible two-dimensional surface. Consequently the need 
for a method that can provide solutions to the inverse heat 

conduction problem in infinite-dimensional dynamic 
systems is of great value in thermal processing of materials 
[6]. 
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In previous work, an open-loop control strategy was 
developed to address the thermal controllability problem. 
The method was based on Galerkin optimization of an 
energy index employing Green’s functions. The numerical 
algorithm developed from the deconvolution of the spatial 
and temporal components of the optimization technique, 
was employed in previous work to solve both the one- and 
two- dimensional inverse heat conduction problem and was 
proved effective for various temperature profiles of 
increasing complexity [1,3]. Furthermore, an optimization 
case study was performed, to investigate the convergence 
of the solution generated by the iterative technique when 
the time step and duration of processing time in the one-
dimensional scenario are varied [2]. In all situations, the 
results prove the method to be successful in generating the 
required surface heating function(s) (one/two-dimensional 
problem) necessary to achieve the desired temperature field 
during the process. However, the method’s stability in the 
multi-dimensional problem when the iterative time step 
employed in the numerical technique is altered remains 
undetermined. This article, therefore, addresses the 
aforementioned issue, and furthermore, investigates the 
ability of the method to generate heat input functions for 
any number of locations chosen on the surface of the solid. 
 

II. MATHEMATICAL MODEL DEVELOPMENT: A CONTROL-
VOLUME APPROACH 

 
A desired temperature distribution can be achieved 

within the volume of a solid by directly applying heat 
inputs at internal parts. Such a process, provided by 
technological means (microwave, chemical/nuclear 
methods), is expressed by multi-dimensional heat transfer 
as 
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Fig. 1.  The control volume. 

 
where  is the material density, c the specific heat, K the 
thermal conductivity, h the convection coefficient, and  
the ambient temperature of the surroundings. The 
convective heat transfer mechanism is constrained to exist 
at points along the surface, labeled R in figure 1, while 
radiative heat transfer is ignored. Furthermore, Q

ρ

∞T

V (P;t) 
denotes the heat inputs occurring in time at  inner points of 
the control volume, labeled P in the figure. Finally, Td 

(P/R;t) represents the desired temperature field as a 
function of space and time. 

Hence, thermal control is enabled and could exist at all 
instances of time when volume heating is employed. 
However, when implementing strictly surface heating, 
inputs exist along points on the surface, R, but not at inner 
points P.  

On a closer look at the problem now, three questions 
arise, namely: 

• Does such a distribution QS (R;t), which can create 
a thermal field at the proper instant in time such that 

exist?(Controllability Question) );();( tPTtPT d≈

• Assuming its existence, how can this surface heat 
input function QS (R;t) be obtained? (Open-Loop 
Control) 

• What desired distributions Td (P;t) can be obtained 
exactly by all feasible heat input distributions QS 
(R;t)? (Controllable Subspace) 

 

III. A GREEN-GALERKIN CONTROLLABILITY METHOD 
 

The Galerkin optimization method, which is in wide use 

in finite element analysis, aids in answering the 
controllability question. This method deals with obtaining 
approximate solutions to problems that are highly complex 
to solve for exact solutions. This is achieved by assuming a 
solution composed of functions that satisfy all the specified 
boundary conditions. The assumed solution varies along the 
surface and within the volume via interpolation functions. 
However, since this solution is just an approximation, it 
will not satisfy exactly the governing equations. As a result, 
there exists an error, labeled the residual. Hence, the 
method optimizes the volume and surface residuals, by 
making them minimal at all points of the solution domain. 
This can be stated as 
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where IV and IS denote the interpolation function within the 
volume and along the surface respectively, RV the volume 
residual, and RS , the residual along the surface.  

This concept is employed to solve for the surface heating 
function necessary to obtain the temperature distribution 
closest to the desired one. This is performed by setting the 
volume residual to be the fictitious heat input required in 
time within the volume, to generate the exact desired 
temperature profile inside the solid at the desired time, 
namely 
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and for Neumann boundary conditions, the boundary 
residual is expressed as the difference between the heat flux 
conducted from the surface point where heating is said to 
exist, and the heat flow that is actually applied, that is 
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where  represents the inward normal from the boundary. 
Employing the Galerkin methodology, namely equation (2), 
to minimize the residuals as defined, it can then be stated 
that for every surface point R' and time τ , 
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where G(P/R,R',τ -t) is the Green’s function describing the 
conduction of heat inside/on the surface of a body of 
chosen geometry and boundary conditions. This G signifies 
the temperature developed at point P / R and time τ , due 
to an impulsive unit heat input (1J) at location R' and time t. 
At the same time, this denotes the interpolation function 
necessary for the Galerkin optimization.  

Upon direct substitution of the residuals into equation 
(5), the resulting form that is obtained is 
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and the term C (R';t) will be used to refer to the known, 
right-hand side of equation (6). Therefore, the required heat 
flux QS on the surface can be determined by deconvolution 
from equation (6). If Q  occurs in stepwise 
increments of duration  within the range of time 

, a simple technique for deconvolving equation 
(6) backwards in time can be proposed and implemented. 
The technique creates an iterative process, starting from the 
time of application of the final input distribution, t = T, 
moving backwards in steps of value , up until the time 
of the first input, namely t = 0. The iterative technique 
originating from the above-developed mathematical model 
is as follows: 
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• t = T- : t∆
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where the variables x' and y' represent the 
location/coordinates along the x and y-axes where each heat 
input occurs. Also, α , is the diffusivity of the material in 
(m2/s), defined as α = . )/( cK ρ

 
The unknown term to be determined in equation (8) is 

. The iterative technique proceeds in the 
same manner backwards in time, adding the previously 
calculated terms to the known parameters, successively up 
to time t = 0, thus solving for the distributed, time varying, 
surface heat input function for all selected surface locations 
R'. 
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IV. THE TWO-DIMENSIONAL PROBLEM 
 

The first step to mathematically model a heat conduction 
problem is to determine the appropriate Green’s function. 
This is dependent on the part geometry and boundary 
conditions. In the particular case, a square geometry of 
length  represents the two-dimensional plate under 
study. The same heat input function exists along all four 
sides of the square. In addition, on each side, the thermal 
loading is symmetric with respect to the midpoint of the 
side. This is explained in figure 2 below. 

L2

Applying the thermal loads as shown in figure 2 allows 
the use of symmetry, which results in the schematic of 
figure 3. In this figure (fig. 3) the inputs are symmetric with 
respect to the dotted diagonal line. It is possible to study 
one of the two triangular shapes that result from figure 3, 
however, the figure as a whole makes it easier to create the 
surface plots shown in the simulations below. 

 
TABLE I 

PROPERTIES OF CHOSEN STEEL MATERIAL. 
Length of Quadrant (L) 0.05 meters 

Density ( ) ρ 7830 kg/m3 

Thermal Conductivity (K) 64 W/(m K) 
Specific Heat (c) 434 J/(kg K) 

 
The Green’s function for the derived model (figure 3) is 

obtained by the method of images [4,5] and is found to be: 
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In order to express the temperature evolution on the 
entire surface of figure 3 as a result of thermal applications 
on the boundary, the superposition of the Green’s functions  
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Arbitrary Heat Input Profile 

 
Fig. 2.  Description of symmetric thermal loading. 

 



 

 

 

Fig. 3.  Model resulting from the symmetry of the loading. 

 
originating both from the horizontal and vertical loading is 
required. Of note, the model uses the assumption of 
homogeneous, isotropic, time invariant properties and no 
phase transformations. 

The temperature profile investigated involves having the 
boundaries of the square plate seen in figure 2 to be at a 
temperature value of 200 degrees and falling linearly to 
zero as approaching the midpoint. In all simulations 
conducted a zero initial temperature is assumed. Due to the 
symmetry of the thermal loading on figure 2, the quadrant 
of figure 3 is employed. 

In the first simulation conducted with the Green-Galerkin 
method, the increment of time, or step , is chosen to be 
two seconds. The instant of time to achieve the desired 
distribution is found to be t = 18 seconds. Five input 
functions along the  horizontal length of figure 3 and five 
equal and symmetrical input functions on the vertical length 
are used. Each of the five input functions uses 9 input 
values of variable intensity and duration of two seconds 
each. Snapshots of the resulting temperature profile, 
obtained from the application of the algorithm generated 
heat input functions, are seen in figure 4.    

t∆

To verify the analytical temperature profile of figure 4.c 
an FEA simulation is conducted where the numerical result 
of the heat input functions generated by the algorithm is 
studied. 

In the next simulation the effect of the time step 
employed in the iterative process on the convergence of the 
solution generated by the Green-Galerkin method is 
investigated. The same temperature profile is once again 
studied, this time however,  second while the 
duration of thermal processing remains at 18 seconds. Once 
again, five input functions along the horizontal length of 
figure 3 and five equal and symmetrical input functions on 
the vertical length are used. Each of the five input functions 
uses 18 input values of   variable intensity and duration of 
one second each. The thermal field that results from the 
application of the algorithm generated heat input functions 
is seen in figure 6. In addition, figure 7 shows the result of 

the FEA simulation.  

1=∆t

 

( 0,0 ) ( L,0 ) 

*
( L,L ) ( 0,L ) 

Fig. 4.a. Time t = 2 sec. 

    Fig. 4.b. Time t = 12 sec. 

Fig. 4.c. Time t = 18 sec. 
 

Fig. 4. Simulated temperature profiles. 

 
 
 



 
 
 

 
Fig. 5.  FEA temperature profile. 

 
It is worth noting that the colors seen in figures 5 and 7 

represent approximately the same temperature ranges, thus 
allowing for a direct comparison of the two temperature 
profiles achieved by a different value of  in the iterative 
technique. 

t∆

Comparing the results of the two simulations conducted, 
it appears that the algorithm is able to generate heat input 
functions that will achieve the desired temperature profile 
despite the variations in the iterative time step used in the 
numerical processing. 

 

 
Fig. 6.  Simulated temperature profile. 

 
 
 
 
 
 

 
 
 

 
Fig. 7.  FEA temperature profile. 

 
Finally, the ability of the method to generate heat input 

functions for as many locations chosen on the boundary of 
the two-dimensional plate is investigated. A simulation is 
conducted for the same temperature profile studied above, 
using nine heat input functions along the horizontal 
boundary of figure 3 and nine equal and symmetric heat 
input functions on the vertical boundary. Each input 
function uses 9 input values of variable intensity and 
duration of two seconds (step ∆  used in the iterative 
process) each. The thermal field that results from the 
application of the algorithm generated heat input functions 
is seen in figure 8. In addition, figure 9 shows the result of 
the FEA simulation. It is again noted that the colors seen in 
this FEA figure represent approximately the same 
temperature ranges as the above two, thus allowing for a 
direct comparison of the temperature profiles achieved in 
each case studied. 

t

Fig. 8.  Simulated temperature profile. 
 



 
 
 

 
Fig. 9.  FEA temperature profile. 

 
Comparing the simulation results presented in the figures 

above, shows that the Green-Galerkin method is able to 
generate heat input functions for the number of locations 
chosen to exist on the boundary so as to achieve the desired 
temperature profile.   

 

V. CONCLUSION 
 
In summary, this article investigated the convergence of 

the multi-dimensional solution of the Green-Galerkin 
method when a different time step in the iterative process of 
the numerical technique is selected. In addition, the 
method’s ability to generate heat input functions for any 
number of heating locations chosen to exist on the surface 
of a solid body was addressed. The results indicate that the 
proposed method is able to generate the surface heat input 
functions required to achieve the desired temperature 
profile, irrespective of the time step and number of heating 
locations chosen.   
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