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Abstract: This paper presents a method of deriving a 
kinematics model from a 3D robot model positioned in 
the virtual environment. This method is applicable to 
non-convex hierarchical polygons models constructed 
of triangles and allows determination of kinematic 
parameters for each point (triangle) on the model 
including those on the surface of the model. Real-time 
collision detection algorithm, based on the usage of 
oriented bounding boxes and the triangle/triangle 
intersection is used for determining the exact collision 
point. Using the collision point as a new end of a 
kinematic chain, new kinematic parameters derived 
from colliding triangles are calculated. A collision-free 
robot motion is then enforced by planning collision-
free trajectories for these critical points or regions. 
 
 
1. Introduction 
 

Many techniques used in robotics such as spline-
interpolation, collision detection and representation of 
3D objects in the virtual reality environment have been 
actually adopted from computational geometry.  

Owing to these methods, new approaches to 
design, analysis, control, dynamics simulation and 
visualization of robotic systems and flexible 
manufacturing systems (FMS) have been enabled. 
Instead of building real systems, a designer first builds 
new layouts and configurations in the virtual 
environment and refines them without actual 
production of physical prototypes. In this sense, virtual 
models of robotic systems and FMS can be viewed as 
a set of virtual robots, machine tools, rotary tables, belt 
conveyers and other elements put within the virtual 
environment. One such virtual robotic work cell for 
palletization is shown in Fig. 1.  

Virtual reality 3D models are usually generated 
using programming languages such as Virtual Reality 
Modeling Language (VRML) or by using various 
popular CAD programs (e.g. AutoCAD, Catia or 3D-
Studio). So obtained virtual models differ in format 
and way of creation, but often, they can be converted 

into concurrent formats and vice versa. In this paper 
we have adopted a 3D-Studio format (*.3ds) of all 
considered virtual models. 

 

 
 
Figure 1.  Virtual robotic work cell for palletization 

(Courtesy of Euroimpianti S.p.a, Italy) 
 
One of interesting aspects in analysis of robotic 

systems is detection of possible collisions among 
entities in a virtual world. Good examples are robotic 
systems with two or more robots sharing their 
workspace during task execution. Collisions may also 
occur during pick and place or palletization operations.  

Providing that virtual models are accurate, 
collisions in a virtual environment should occur in the 
same way as in the real world. By using programs 
which contain 3D virtual reality models and 
accompanying dynamic simulators, design, analysis, 
control, dynamic simulation and visualization of 
complex robotic systems becomes a fully feasible task 
(e.g. programs eMPower, Grasp2000, RobotStudio, 
Flexman [8], [9] or Leonardo [10]).  

According to the 3D model taxonomy, 3D models 
used in this paper are polygonal structured, i.e. 
polygons form a closed manifold, hierarchical non-
convex models undergoing a series of rigid-body 
transformations [3]. Polygons are made entirely of 
triangles as hardware accelerated rendering of the 



triangles is commonly available in the graphic 
rendering pipeline. 

There are numerous approaches to a collision 
detection problem which can be mainly grouped into 
space-time volume intersection, swept volume 
interference, multiple interference detection and 
trajectory parameterization [1].  

A collision detection algorithm used in this paper 
belongs to multiple interference detection category, 
which reduces a general collision detection problem to 
multiple calls to static interference tests focused on 
detecting intersections between simple geometrical 
entities, triangles and oriented bounding boxes (OBB) 
belonging to objects being tested. As the algorithm is 
static, i.e. collision detection occurs only at discrete 
times, it is fast enough and effective from the 
computational point of view to provide real-time 
collision detection in very complex (high polygon 
count) virtual environments.  

A next logical step is to use information about a 
location of intersection (i.e. collision) and try to 
prevent collision by changing the path of one or both 
elements in collision. Assuming that at least one of the 
elements tested against collision is a robot, one must 
know kinematic parameters of the robot to be able to 
plan correct collision-free robot trajectories. Usually, 
kinematic parameters of real robots are determined 
according to the Denavit-Hartenberg (D-H) convention 
[2], while their concrete values are obtained by very 
precise measurements. 

When collision of such a robot is considered, then 
regular kinematic parameters associated with positions 
and orientations of all robot joints and end effectors 
are not sufficient for proper collision-free trajectory 
planning. Namely, these parameters do not describe all 
points on the robot surface which could collide with 
the environment.  

While practically, determination of kinematic 
parameters for an arbitrary point on the real robot 
surface is not an accomplishable goal, in the virtual 
environment this may be resolved in an elegant way by 
using a kinematics model of the robot derived from the 
virtual 3D model of the robot. 

This paper is organized in the following way. First 
we describe an algorithm for determination of 
kinematic parameters for the objects in the virtual 
environment that have their own kinematic structures. 
The assumption is made that the geometric structure of 
all objects is known, either generated from the 
stereovision or from a 3D modeling. For geometry 
interpretation triangle meshes are used and all the 
parameters (joint positions, link lengths etc.) are 
extrapolated from a 3D description. Then, based on the 
kinematic parameters obtained for any point (triangle) 
on the robot surface, inverse kinematics solution is 
found. This solution will be further used for planning 

collision-free trajectories referred to the critical point 
(the point or the area that is actually colliding) in 
accordance with a fuzzy logic-based collision 
avoidance strategy. 

 
 

2.  Derivation of kinematic parameters 
from a 3D robot model 

 
Each virtual object is composed of an arbitrary 

number of links that form a parent-child hierarchy. 
There is no limit on the number of child links for a 
parent, so complex kinematic configurations can be 
formed out of serial and/or parallel kinematic chains. 
In this paper we will consider only serial kinematic 
configurations as most of robotic arms can be 
represented with such a configuration. Frames 
(coordinate systems) are assigned to the links 
sequentially and are either static or dynamic. Dynamic 
local frames may undergo rigid-body transformations 
during a simulation in a virtual environment.  

A local k-th coordinate frame is defined with its 
center vector and a rotation around a vector. If 

xkc , 

ykc  and 
zkc  are values at the x, y and z axes of the k-

th coordinate system, the center vector is defined as 

x y zcenter k k kk c c c =   
p . Similarly,  θk  is a rotation 

angle around vector rotation x y zk k k kr r r = p . 

Respective homogenous transformation matrices 
for kcenterp and 

rotationkp  can be given as,   
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Note that 

xkc , 
ykc , 

zkc , 
xkr , 

ykr , 
zkr  and θk  are 

fixed (geometric) parameters that depend only on a 
manipulator geometric 3D structure.  Transformation 
for the i-th joint dynamic frame is defined as: 
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where iα , iβ  and iγ  are roll-pitch-yaw (RPY) angles 
denoting  rotations around the x, y and actual z-axis 
with angles iγ , iβ  and iα , respectively. A vector 

c x y zi i i ic c c=
 
 p  is a translation vector of the origin 

of the i-th joint local frame. 
Finally, transformation from the n-th local frame 

to the global frame can be expressed as follows: 
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where k is index of all local frames. If index i is 
involved with dynamic local frames, matrix 

qkT  is 

defined as 
qiT  (see (3)), otherwise it assumes the form 

of the unity matrix. 
The solution of a direct kinematics problem (D-H 

parameters) may be now derived from (4). 
Parameter b, representing the link length in y-axis 

direction has been added to D-H parameters to 
generalize the solution. Accordingly the order of 
transformations between a link frame i-1 and a link 
frame i is a rotation around axis 1i−z  with angle iθ , 

translation along the 1i−z  with displacement id , 

translation along the 1i i−=x x  with displacement ia , 

translation along the 1i−y  with displacement ib  and 

rotation along 1i−x  with angle iα . 

Because of the ambiguity of the trigonometric 
solutions, to get the DH parameters [ ]θa b d α  
for the i-th link from the joint frame transformation 
matrix 1i

i
− T  a correct solution has to be chosen from a 

set of possible solutions { }1 2 3 1 2 3, , ,θ ,θ ,θS α α α= : 
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If there is no solution from the set S for equations 

(5)-(10), matrix 1i
i

− T  can be decomposed by inserting 
a transformation of an auxiliary frame *iT : 

1 1 *
*

i i i
i i i

− −= ⋅T T T                          (11) 
The auxiliary frame should be chosen so that 

satisfies * (3,1) 0i
i =T . 

The 3D model of the robot Kuka Kr150 has been 
used to illustrate derivation of D-H parameters from 
the model. There are seven local frames - six joint 
frames and a base frame (Fig. 2). A created kinematic 
chain is shown in Fig. 3 and the corresponding D-H 
parameters are displayed in Table 1. 

 

 
  Figure 2.  A 3D model of the robot Kuka Kr150 with highlighted joint coordinate frames 



 
Figure 3. A created kinematic chain for the robot Kuka Kr150  

 
Table 1. D-H parameters of the robot Kuka Kr150  

a b d α ϑ  
0.000    0.000   0.000   0.000 0.000 
0.000    0.000   1.919   0.000 0.000 
2.132    0.050   1.892   1.571 0.000 
-0.057   5.051   0.050   0.000 0.000 
4.592    0.257   0.000   -1.571 0.000 
1.510    0.005   -0.028   0.000 0.000 
0.005    0.964   0.029   1.571 1.571 
 
 
3. Collision detection 
 

Oriented bounding boxes (OBB) are used to 
determine the distance and collision between different 
objects at the first hierarchical stage. As it has been 
proved in [5], overlaps between OBBs are rapidly 
determined by performing 15 simple axis projection 
tests. By descending down the generated OBB tree 
(hierarchy) a search for the collision point becomes 
narrower, which finally allows the exact collision 
point determination with triangle/triangle intersection 
test performed on the final overlapping OBB nodes 
[4]. How descent will go far down the OBB tree or 
when the triangle/triangle test will be used instead of 
OBB overlap check can be specified depending on 
the available computational time and the complexity 
of the 3D model. 

Once the triangle/triangle intersection test has 
given the exact collision point, it  has also given the 
colliding link to which it belongs. For more than one 
link in collision, the preferred one has the highest 

level in the object hierarchy. A new D-H kinematic 
model is generated from equations (1)-(3) with the 
given collision point serving as the origin of the last 
"joint" local frame. Based on this model, inverse 
kinematics for this collision point can be calculated. 

 
 

4. Collision avoidance strategy 
 
Although collision detection is a very important 

part of a space-time analysis of studied robotic systems, 
collision avoidance is even more important goal when 
real-time operating conditions are concerned. In the 
adopted concept, collision avoidance is done in two 
stages, first a collision-free path is calculated with 
respect to the known static objects (it allows the usage 
of an off-line trajectory planner), and then an on-line 
trajectory planner is used to generate a collision-free 
path with respect to the dynamic objects. In such a 
concept unknown static objects are treated as they were 
dynamic objects.  

Regarding the precision of collision checks, an off-
line trajectory planner may operate with a deeper level-
of-detail (LOD) than an on-line trajectory planner, due 
to a different amount of the computational time 
available. During an on-line search for a collision-free 
path, a progressive LOD approach is used. Objects that 
are considered far from each other are tested only in the 
first level of the OBB tree hierarchy. As objects are 
approaching, LOD increases and deeper level OBB in 
the hierarchical tree are checked against collision (see 
Fig. 4). 

Further improvement of the collision-free path 
search    is  made  by  reducing   a  number   of   checks.



 
 

     Figure 4. Second level oriented bounding boxes (OBB) for the robot Kuka Kr150 
 

Normal vectors projection of an object face to a 
relative velocity vector of the object must be positive, 
as proposed in [6], or more recently in [7], otherwise 
the object's face is not checked against collisions. 

With the knowledge how far the objects are and 
how rapidly they move, a time interval when collision 
can possibly take place can be determined. An exact 
amount of a trajectory correction, magnitude and 
direction, is determined by a fuzzy logic based 
collision avoidance strategy using object proximity 
and object velocity as its inputs.  

In the vicinity of a studied robot a fuzzy potential 
field is used to determine possible collisions with the 
environment. Input membership functions for the 
object proximity are "very near", "near", "medium" 
and "far", while "stop", "slow", "medium" and "fast" 
represent the input membership functions for the 
object velocity. While calculating an exact amount of a 
trajectory correction, magnitude and direction, the 
fastest evasion and minimal joint movement criterion 
is favored.  

 Volume sweep checks are made and possible 
collision points are used to get new kinematic 
parameters from the 3D model (Fig. 5). Updated 
trajectory points are processed in the on-line trajectory 
planner and searches for the fastest possible collision-
free path around the object are made. When a 
continuous path planning has been used as an off-line 
trajectory planning method, return to a previous 
position is enforced, if blocking object has moved. In 
case such a movement is not possible or a point-to-
point path planning has been used, then a return to a 

reference trajectory is achieved with a minimum 
motion. 

 
 

5. Conclusions 
 

There are many robotic applications where 
collisions of robots with the environment may occur – 
palletization, pick and place or assembly operations 
are very good examples. 

Regarding collision prevention, regular kinematic 
parameters associated with positions and orientations 
of all robot joints and end effectors are not sufficient 
for proper collision-free trajectory planning. Namely, 
these parameters do not describe all points on the robot 
surface which may collide with the environment. 

While determination of kinematic parameters for 
an arbitrary point on the real robot surface is 
practically non-accomplishable goal, in the virtual 
environment this may be resolved in an elegant way by 
using a kinematics model of the robot derived from the 
virtual 3D model of the robot. For this purpose, a 
method for generation of a kinematics model from the 
virtual 3D model is described and illustrated for the 
industrial robot Kuka Kr150. 

 By using so obtained kinematic parameters, a 
new kinematic chain is generated with the collision 
point serving as the end of the chain. Thus any point of 
the robot including all points on the robot surface can 
be controlled and its trajectory can be planned.  

A collision detection method used in this paper 
belongs to the multiple interference detection category, 

 



 
Figure 5 .  Collision with a static object - a kinematic chain is generated with the collision point serving as the end of the chain. 

which reduces a general collision detection problem to 
multiple calls to static interference tests focused on 
detecting intersections between simple geometrical 
entities, triangles and oriented bounding boxes (OBB). 

The more precise the 3D model is, the better 
collision detection and collision avoidance will be. 
But, for real time applications, fuzzy logic based 
collision avoidance strategy may successfully resolve 
the ambiguity of space-time relations at the minimal 
cost of the collision avoidance precision.  

Future work will focus on getting experimental 
results in the laboratory. Object movements and 
positions will be observed by the stereovision while 
on-line implementation of the developed algorithm 
will be used for real-time collision avoidance.  
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