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Abstract— Novel computational methods for feedback control A solution obtained this way naturally suffers from dis-
in distributed parameter and matrix second-order systems, mod- cretization error and after all, such a solution is just a finite-
eling a wide range of vibrating structures, are described. dimensional approximation of an infinite dimensional problem.
Unlike in standard engineering practice, the methods allow Unfortunatel tati | thods f Vi ibrati

the computations to be carried out in their own mathematical nrortunatety, Comp_u ationa m_e 0as for solving i r_a lon
formulations. Furthermore, the methods can be numerically im- control problems using even this second-best alternative are
plemented using only finite-dimensional control and numerically not very well established. There are two standard approaches:
viable computational techniques. Thus these are practical meth- splutions via a first-order realization and Independent Modall
ods for control, and stabilization of large vibrating structures. Space Control (IMSC) approach. Both of these approaches
have severe engineering and computational disadvantages (See

. INTRODUCTION [9] and [10). _
If the standard first order transformation of (1.2)

The general model for the vibration of distributed parameter

systems, arising in a wide range of applications, especially in(t) = < Mo—lK MI—l(J > 2(t) + ( ME)lB > u(t),
the design and analysis of vibrating structures, such as bridges, N -
highways, buildings, airplanes, etc., can be written in the form where:(t) = ( z(t) )
(t)
O%v(t, x ov(t,x
M(ﬂf)# + C(x)g +K(z)v(t,z) =0, (1.1) is used, then the matrid/ has to be inverted, and, if it is

2
ot ot ) _ _ill-conditioned, then the state matrix will not be computed
whereM,C = D + G and K are differential operators in accyrately. Furthermore, all the exploitable properties, such
the z-domain (spatial domain) of the displacement functiogs the definiteness, sparsity, bandness, etc. of the coefficient
v(t,z), where for all thef the v(¢, ) belong to some Hilbert atricesis, D, and K, usually offered by a practical problem,

spaceH, that accounts for the boundary conditions of (1.1);ij| e completely destroyed. The use of a nonstandard first-
The operatordVI, K, D and G are, respectively, calletass, grqer transformation. such as

stiffness, damping and gyroscopmiperators. In many practical

applicationsM is self-adjoint and positive definit® is self- ( M 0 >z‘(t) - ( 0 M )z(t) + ( 0 )u(t)

adjoint andG is skew-symmetric. 0 M -K —C B

Thoughi it is desirable to solve a vibration problem in its owgill give rise to adescriptor systenof the form E3(t) =
natural distributed parameter setting, very often in practicg,z(t) +Bu(t), and the eigenvalue and eigenstructure assign-

due to lack of effective numerical methods to handle th@ent methods for the descriptor systems, especially, when the

system (1.1) directly, it is discretized to a finite-dimensionahatrix F is ill-conditioned, are not well developed.

matrix second-order system of the form: Furthermore, with this formulation, though symmetry is
reserved, other exploitable properties, such as positive defi-

Mi(t) + Ca(t) + Ku(t) =0, (1.2) Eiteness, etc., are dl?astroyed.p P P

where M,C = D + G,K € R™*" and i(t), respectively, The independent modal space contrdiIMSC) approach
denote the first and second derivatives of the time depend@l© Suffers from some serious computational difficulties and
vectorz(t). is almost impossible to implement in practicéhe basic idea
A vibration control problem is solved and a control law i€1€r€ iS to decouple the problem into a setroindependent

implemented on the discretized system (1.2) and then applR¥@Plems, solve each of these independent problems sepa-
to a real-life vibrating structure modeled by (1.1). rately, and then piece the individual solutions together to
obtain a solution of the given problem. The implementation of

*This author was partially supported by NSF Grant ECS-0074411 this idea requires knowledge of tlmplete spectrumand



the associated eigenvectors of the peRgi\) = A2 M +\(D+ Consider the controlling forces of the form
G) + K. Unfortunately, numerical methods for the quadratic m

eigenvalue problem are not well developed, especially for Zflk(x), M
large and sparse problems. The state-of-the-art computational k=1 ot

techniques are capable of computing only a few selectgd . .o 1o functions (), ..., by () are thecontrol func-
extremal eigenvalues and eigenvectors [12]). Furthermore, fins and f,,. £ € H k7: 1’ m are thevelocity and
decoupling of the right-hand sides of the associated mo sition feedback functionsespectively. Like in the finite-

equ_ations, some stringen_t commutativity condi;ions need_ ensional case, the spectrum and invariant subspace of the
be imposed (see [9]), which are almost impossible to satisiinite-dimensional operator pendit(\) = A>M + AC + K

in practice. govern the dynamics of (1.1) with these applied control forces.

In the last few years, the author and his collaboratos jnfinite-dimensional setup, eigenvalue-eigenfunction pairs
have developedDirect and Partial Modal” algorithms for A, v) satisfy P(\)v = 0.

solving important feedback control problems in matrix second- ocsyme that: ()M is nonsingular, (i) the open-loop

order and distributed parameter systems [see ([3, 4, 6])]. ThSerator pencilP(\) has discrete spectrum without finite
algorithms are direct, because they solve the problem direcly. ,mulation points and every eigenvalueRf\) is semi-

in its given mathematical formulation; that is, in case th&mple, and (iii) the system of eigenfunctionsBf)\) is two-
model is a discretized second-order model, no transformati@pd complete (see [7, 8]).

to a first-order realization is invoked, and if the model is Let {\1,...,\n} be a finite small set of unwanted (bad)

a DPS, then no discretization to a second-order systeMgjgenyalues gssumed to be available from measurements
necessary. They are partial-modal, because only a part of H?ep(/\) that are to be replaced by a user-chosen set
spectrum and the corresponding eigenvectors (eigenfunctio?ﬁ} 12 Lo}

) AR m S+

of the associated quadratic eigenvalue problem are necessarq partial eigenvalue assignment problem in Distributed

in implementing them. Parameter Systems is defined as follows:
The direct and partial-modal nature of these feedback al-gi,q real feedback functionsyy, . .., fi,, andfor,.

gorithms make them suitable for practical use in stabilizatia,ch that the spectrum of the closed-loop pencil
and control of large vibrating structures, such as Large Space
Structures (LSS), power systems, computer networks, aircrafts Pe(A)¢ = )\21\/7[,¢ +A(Co — 3701, (fi, @)bi) + 2.2)
and others. (Ko — >0, (far, ¢)bi) '

In this paper, we briefly review some of these algorithmsgs the setS = {u1, ..., ttp; Api1, .- -}
Specifically, we present, without proof, our new algorithms we now present our solution of the above problem in
for partial eigenvalue assignment in DPS and partial eigeffgorithmic form. The proof is based on an orthogonality

value and eigenstructure assignments in matrix section-orgefation between the eigenfunctions of the pencil (2.1), proved
systems. The results on numerical experiment with real-lifg [5, 11].

examples are given.

+ (ka ((E), V(tv x))bk ((E),

"af2m

Algorithm 2.1 (Parametric Solution to the Partial Eigen-
II. PARTIAL EIGENVALUE ASSIGNMENT INDPS  value Assignment Problem in Distributed Parameter Sys-

The Partial Eigenvalue Assignment (PEVA) problem in th%em) .
DPS (1.1) is the problem of re-assigning a small part of the  INPUtS:
spectrum, responsible for undesirable dangerous responses, @) The differential operatord1, C, and K of the

such as resonance or instability, of the associated open-loop open-loop pencil (2.1).
operator pencil b) Them control functionsby, ..., b,,.
c) The set of scalar§u., ..., iy}, closed under com-
\2 plex conjugation.

PQ) =AM+ AC+K, (1) d) The self-conjugate subsefh;,...,\,} of the
by a suitable feedback, in such a way that the remaining large open-loop spectrun{As, Ao, ...} and the associ-
part is not affected. ated eigenfunction sdtvy, ..., v,}.

The problem is certainly practical in the sense that in Outputs:
most practical situations dealing with large problems, only a  The feedback functionf, . .., f,, andfy, ..., f;,, such
small part of the spectrum is troublesome, and thus, it makes thatthe spectrum of the closed-loop operator pencil (2.2)
sense to change that part only by feedback without solving a IS the set{y1, ..., ttp; Api1, Apra, ...}
large full-order eigenvalue assignment problem. Furthermore,  Assumptions:
solving a large eigenvalue assignment is unpractical and the a) The control functiond,,...,b,, are linearly in-
existing numerical methods are not suitable for large and dependent.
sparse problems. b) The open-loop quadratic operator pereil\) =

Mathematically, the PEVA in DPS is defined as follows: A2M + AC +K with control functionsby, ..., b,,



Il1. PARTIAL EIGENVALUE AND EIGENSTRUCTURE

is partially controllable with respect to the eigen-
valuesiy, ..., Ap.

c) The sets{\,..., +1,.--}, and

)‘P}! {)‘erla )‘p

{p1, ..., up} are disjoint.
Step 1. Form A; = diag(Ai,...,N\p), V1 =
(Vi,...,vp), @andA.y = diag(pa, ..., fp)-

Step 2. Choose arbitraryn x 1 vectors~,...,7, in
such a way thafr; = ui implies#; = ~, and form

L'=(y1,--4,7)-
Step 3.Solve the following Sylvester equation faf;:

MZy — Z1Aey =
(V17 bl) (V17 bWL)
(Vpa bl) (V;m bm)
If Z, is ill-conditioned, then return to Step 2 and select
different~y,...,vp.

Step 4.Solve®Z; =T for & = ().
Step 5.1f none of theA;,..., )\, is zero, form for all

k=1,....m
p p—
fie = Y ¢,;Mv,, and
Jj=1
p
B = =Y (/MK v;,
j=1
otherwise form for allk = 1,...,m,
p p—
fi, = Z(b Vj7 and
j=1
p p— p—
for, = Zd)kj()‘jM*Vj +Cv;y).

1

.
I

ASSIGNMENT INMATRIX SECOND-ORDER SYSTEMS

If the mathematical model is the finite-element generated?)
discretized second-order system (1.2), then the PEVA problem

is defined as follows:
Given the matricesM,C, and K of the model (1.2), the
control matrix B of ordern x m and the self-conjugate set

{1,
the closed-loop penciP.(\) = A2M + \(C — BFy) +

BF5) has the spectrumy, - - -

, ip +» find real feedback matrices, and F; such that
(K —

y Ups )\erla o '7)\2n}-

In this case, Algorithm 2.1 reduces to the following:

Algorithm 3.1  (Parametric Solution to the Partial
Eigenvalue Assignment Problem in Matrix Second-order
Systems).

Inputs:

a) Then x n matricesM, C, and K.

b) Then x m control matrix B.

c) The set{u,...
jugation.

) The self-conjugate sets of scalafg, ..

d) The self-conjugate subsef\,...,A,} of the
open-loop spectrur{)y,..., A2, } and the asso-
ciated right eigenvector sét/1, ..., yp}.

Outputs:

The feedback matricek, andF, such that the spectrum
of the closed-loop penci.(\) = AX2M +\(C' — BFy)+
(K— BFQ) is {Ml, ooy Mps Ap+1, R Agn}.
Assumptions:

a) M is nonsingular and3 has full rank.

b) The quadratic open-loop pendit(\) = \2M +
AC + K with control matrix B is partially con-
trollable with respect to the eigenvalugs, ...,
Ap-

c) The sets {A1,...., 0}, {Apt1,---, A0}, and
{p,..., up} are disjoint.
Step 1. Form A, = diag()\l, ey Ap), Yi =
(Y1s---,Yp), and Ay = diag(pa, ..., fp)-
Step 2. Choose arbitrarym x 1 vectors~yi,...,v, in

such a way thafr; = uy implies7; = v, and form
D= (v, %)-

Step 3. Find the unique solutiorZ; of the Sylvester
equation

MZy — ZiA, =Y{EBT,

If Z, is ill-conditioned, then return to Step 2 and select
differentyy, ..., v,.
Step 4.Solve®Z; =T for .

Step 5.1f none of the), ..., \, is zero, form

Fy =Y "M andF, = @AYV K,
otherwise form
F =0V M andF, = (A M +YEC).

Partial Eigenstructure Assignment Problem for Matrix
Second-order Systems
Given

Realn x n matricesM = M7* >0, C, K.

The self-conjugate subsé¢h;,...,\,}, p < 2n of the
set of the open-loop eigenvalugs, ..., A2, } of the
pencil P(\) and the corresponding left eigenvector set
(Y1, ey U1

., tp} and the
set of vectorg w1, ..., z¢p }, such thatu; = uk implies

Lej = Tck-

Find

Real control matrixB of ordern x m(m < n) and
real feedback matrice$; and F, of orderm x n
such that the spectrum of the closed-loop pencil
(3) is the setS = {p1, ..., tp; Apt1, -y A2n b With
{Ze1y ooy Tep; Tpy1, . T2n } @S the associated eigen-
vector set, where:, 11, ..., 2, are the eigenvectors
of P(\) corresponding to\,11, ..., A2y

Algorithm 3.2 (An Algorithm for Partial Eigenstructure
, tbp}, closed under complex con-Assignment in Matrix Second-order Systems).
Inputs:



(&) Then x n matricesM, C, and K. (vi) The algorithms are suitable for high-performance
(b) The set of scalar§us, ..., up,} and the set of vectors computing, since they are rich in BLAS-3 (Basic Linear
{Z¢1, ..., T¢ep ), bOth closed under complex conjugation. Algebra Subroutines Level 3) computations.

(c) The self-conjugate subséh, ..., A,} of the open-loop
spectrum{\y, ..., A2n} and the associated right eigen- IV. RESULTS OF NUMERICAL EXPERIMENTS

vector set{y1, ..., Yp}- Some results of our numerical experiments on Algorithms
Outputs: The n x m control matrix B and the feedback 2.1, 3.1, and 3.2 are stated in this Section. The data for
matrices F; and F, such that the spectrum of the closegflgorithm 3.1 and 3.2 comes from a power plant obtained
loop pencil P.(\) = A2M + AC — BF,) + (K — BFj) from the Benchmark Collections [1], and that for Algorithm
iS {11, .. llpi Aps1,. Aan} With the eigenvector matrix 21 corresponds to a traveling string.
Xe = (Te1, o Tep; Tpt1s oo, T2n)- A. Vibrations of a Rotating Turbine Axle

Assumptions: . . -
(@) M ig nonsinaular Here we consider a large and sparse symmetric definite
(b) The sets{\ 9 )\' \ A\ and quadratic matrix pencilP(\) = A\>M + AD + K of order
are dis'()S{{ntl"." pt {Apr1 - Aon R 3 S modeling a rotating axle in a power plant, where
Joint. ) masses are assumed to be symmetric with respect to the axle.
Step 1. Form A, = diaghi, - A). Y1 = This is a dampechon-gyroscopicmodel; that isC = D,
(Y1, Yp), Aer = diag(p, ..., pp), ANAXer = (et s Tep). 7 — .
Step 2.Form the matrix The matrix
Zy = MYTMXa +YTMXaAa + Y7 CXer. M = diag(mi, ma, .. )
- ) yr n
Stop if Z; is singular and conclude that the eigenstructure

assignment with the given sets of eigenvalues and eigenvecfarfos't've definite and the damping and stifiness matrices

is not possible. given by
Step 3.Form the matrixT, such thatT.A., T is a real —; , 1+1=3j
maSttrZ; 4.Form D = (di;), whered;; = '11;]1 ot : i ; j{
B=(MX4A% +CXeAoy + KX 0)TH, 0 , otherwise
F =T.Z7'Y M, and and
Fy = TZ7 (MY M + YHC) i  itl=g
by solving the appropriate linear systems. K = (kij), wherek;; = li:; o i ; J:r{
ritrf:n(:glputational and Engineering Features of the Algo- 0 . otherwise

As seen from Algorithms 2.1, 3.1 and 3.2, our new feedba¥th 7o = 7» = Ko = r, = 0 are both symmetric tridiagonal.
scheme enjoys the following distinguished computational andUsing the data provided in the Benchmark Collection, the
engineering features: eigenvalues of the uncontrolled system are plotted, and it

(i) The computational requirements are minimal and tHg Seen that the decay rate of the vibrations of the axle is
required tasks, namely, solutions of small Sylvester equ%Q‘_’gmed by its most unstable eigenvalug: = —1.3734 -
tions and linear algebraic systems, can be carried out i ,whereas the other eigenvalues haye much better stability
a numerically effective manner using the excellent statBrOPerties, namelhRe \; < —0.016267, j =2,3,...,422.
of-the-art algorithms for small and dense problems [2]. Since the largest contribution to shape of the transient re-

(i) The knowledge of only partial spectrum and associat onse of the vibrating system is gener_ated by the eigenvector
eigenvectors (eigenfunctions) of the matrix (operatoF at corresponds to the most unstable eigenvalue of the system,

pencil is sufficient to implement the scheme. These sm3{f Y5€ Algorithm 3.1 to assighy to 1 = —0.016 and then
number of eigenvalues and eigenvectors can be comp orithm 3.2 to assign the eigenvector corresponding\to

using the state-of-the-art computational techniques or ctaﬂwthe vector

be measured in vibration laboratories. el = ——(1,1,... DT, =211,

(iii) Advantages can be taken of the exploitable structures, vn

such as the sparsity, symmetry, bandness, etc., inEmjenvalue assignment:

computational setting. Algorithm 3.1 was applied with the control matriB =
(iv) No spill-over phenomenon is guaranteed with mathet 1 0 ... 0 0 T . .
matical proofs. 0 0 ... 01 and choosing the matrid’ =

(v) The eigenvalue assignment algorithms are paramet(ic0.51454, —0.85747)7) randomly.
in nature, which can be exploited to design numerically The computed feedback matricé$ and F; are such that
robust feedback schemes. 11 was assigned accurately, and the two norm of the difference



between the other eigenvalues of the corresponding open-lddge eigenvalues oP(\) are: A\, = %wkz’, k=41, £2,...
and closed-loop pencils is abowt7 x 1075, The 2 x 422 and their corresponding left eigenfunctions ase;(z) =
matricesF; andF; are such tha /1 ||» ~ 116 and|| F» || ~ 22. e2™Fi® — ¢—327kiz where( < x < 1. Algorithm 2.1 is used

Furthermore, to assign\; to u; = —1 +4 and \; to 77, choosing the two
1FL 2 I1F| control functionsb;(z) = 1 and ba(xz) = sin(nz), where
il ~ 0.57 and 1K) ~1.5x 1071, 0 < x < 1. The step-wise results of our implementations are
2 2 given in the following:
Eigenstructure Assignment: Algorithm 3.2 produces the
211 x 1 control matrix B with |[Bll ~ 2 and thel X giep 1. A; = diag3mi, —3mi), Vi = (esmie —

211 feedback matrices”s and F> with [|Fi[2 = 7.2 and - Lpiiz ,—3nix — e37iz) and
[|F2||2 ~ 1.4, respectively, such that the prescribed eigenvalue ’

and eigenvector are assigned correctly. Moreover, the relative Ao =diag—-1+14, —1 —1).
changes in damping and stiffness matrices are given by:
1BEl2 o7 ang B2z 4 5. 1012, Step 2. Choose
1C] 2 K12

This shows that control forces required to suppress vibrations T' =

assigning the same eigenvalue are much less than those

required by eigenvalue assignment with a priori given control

matrix B. To achieve this, however, we need more sophistitep 3. Solving the Sylvester equation fdf;,

cated actuators than those needed to implement the simple

control force used in eigenvalue assignment M2y — ZiAy = ( (v1,01)  (v1,02) ) T
The 2-norms of the differences between the remaining (v2,01)  (v2,b2) ) 7

eigenvalues of the open-loop pencil and the correspondifd ,piain

ones of the closed-loop pencil this time is abawt - 10~6

(MATLAB was used to compute the eigenvalues). 7, — ( 188441366230 © —.14535 — 84357
—.14535 + .84357: .188844 — .366231

—.20575 + .83427 —.20575 — .83421
22626 + 458887 22626 + .458881

B. Small Oscillation of a Traveling String

Consider a gyroscopic distributed parameter system modg]- . _ .
ing the small oscillations of a uniform string traveling withglep 4. Solving @7, =T" for &;, we obtain

constant velocityy < ¢ over two fixed supports at = 0 and o — < .82911 — .50588¢ .82911 + .505884 )

x = L. .25486 + .45099¢ .25486 — .450991
117/ ///
Lg Vv Step 5. The velocity feedback functiorfs; andf;, are plotted
- in Fig. 2, and the position feedback functiofas andf,, are
de plotted in Fig. 3.
1y - —
Figure 1. Small Oscillations of Traveling String P T~
e ~
The motion of the moving string is governed by the partial 02 04 06 ~68- - A

differential equation
Vit + 20Vgt + ('72 - CQ)Vacx =0,

where0 < z < L, t > 0, v? < ¢2, with boundary conditions -2 |
given byv(o,t) = v(L,t) = 0. With L =1, v = 1/2, and

¢ =1, the operatorM, G, andK, can be defined as 3l
v 3 0%
vav, C‘}U—%7 K’Ufzw,

wherev(0) = v(1) = 0. With respect to the scalar product

(v,w) = [, v(z)w(z)dz, it can be easily shown that the
operatoraM, G, andK have the following properties:

M*=M,G* = -G andK* = K. Figure 2. The Velocity Feedback Functionsf;; and fis.
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Figure 3. The Position Feedback Functiondy; and fy.

[11]

[12]

The closed-loop operator pend?.(A)(A) has the eigenval-
uesyu; andf,, with eigenfunctions given by

(0.4171 + 0.102874)

(0.23671 + 0.20962i)e 201+
(0.19416 — 0.0777617)e3 10z
(0.0088786 — 0.037267i)e ™"
4-(0.022656 — 0.00827657) ™

Wel =

andw,; (z), respectively. Furthermore, the eigenvaldgsk =
+2 43, ..., of the open-loop penciP(\) = \>M +\G + K
remain unchanged.

[1]

(2]

[6]
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