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Abstract-- Two new robotic platforms, the MegaScout and the 
Commercial Off-the-Shelf Scout (COTS Scout), have been 
developed recently at the University of Minnesota's Center for 
Distributed Robotics.  The two systems were initially unable to 
communicate with each other.  This paper discusses the 
development of a communications system and a novel software 
architecture designed to allow the two systems to work in 
autonomous cooperation.  
 
Index terms—robotic teams, mobile robotics, miniature robots 
 

I. INTRODUCTION 
 
The new additions to the family of Scout [2,3,7] robots 
were designed with different goals.  The low cost, low 
weight and small size of new COTS Scout (Figure 1) make 
it an appealing platform for many kinds of exploration and 
surveillance.  However, its lack of onboard processing 
power and its analog-only communications have limited its 
domain of applications to those where it is operated by a 
human.  The new MegaScout platform has a convenient 
programming environment for onboard processing, high 
ground speed and reliable digital communications, but its 
relatively high cost, weight, and size make it less flexible 
than the COTS Scout for many purposes.  By providing a 
mechanism for digital, computer-based control of the 
COTS Scout, cooperative groups can be composed from 
several COTS Scouts and one MegaScout.  Once this is 
possible, many of the advantages of both systems can be 
combined into a single exploration team.  Previous work 
with heterogeneous teams of robots [1,4,6] has shown 
encouraging results. 
 
The effort to develop such cooperative units proceeded in 
two distinct phases.  First, at the lowest level, it was 
necessary to establish a computer-controllable 
communications link between the two types of robots, 
allowing the MegaScout to transmit commands to the 
COTS Scout.  This communications link was built in such a 
way as to make future development with similar 
components as easy as possible.  Next, access to this 

communications link was made more convenient and more 
standard by means of a wrapper API designed to work with 
libUMNRobot, a novel software model for abstracting 
access to robotic components that was initially developed to 

support the MegaScouts.  This paper will first address each 
development phase and then present the results of testing 
and some possible future work, and conclusions. 

 
Figure 1: A COTS Scout with a commercially available RC 
controller. 
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II. PHASE ONE: ESTABLISHING A COMMUNICATIONS LINK 
 
The COTS Scouts are equipped with two onboard 
communications systems.  First, a video transmission 
system broadcasts an analog video stream from the robot's 
single camera over a fixed FM band.  A receiver attached to 
a teleoperation unit, a mobile or desktop control computer, 
or another more sophisticated robot can make the video 
available for viewing or vision processing.  In the case 
where a MegaScout receives the video transmission, 
existing code makes the individual image frames available 
to software developers writing vision algorithms.  
 
The second communications system on the COTS Scout is 
a RC receiver of the type found in many hobby cars and 
airplanes.  This system receives commands from a 
commercially available, hand-held joystick containing a 
corresponding transmitter like those shown in Figure 2.  
This joystick can be used by a human, in cooperation with a 

 



video display, to operate the robot remotely.  The 
transmitter relays the two-dimensional position of two 
different joysticks to the robot by merging four data 
channels into a single signal.  As summarized in Table 1, 

only three of the channels are currently in use on the COTS 
Scout. 

A. RC Signal Specifications 
 
The signal is a continuously repeating binary waveform, 
one cycle of which is shown in Figure 3.  The input signal 
consists of some number of low periods whose widths 
indicate the values of each of the data channels and which 
are separated by brief high periods of a small, constant 
length, as described in  [3]. The data portion of the signal is 
followed by a relatively long low period used to help the 
receiver identify the beginning and end of each data frame 
and to stay synchronized with the transmitter.  The length 
of each high period is 500µs. The length of each low 
periods plus the preceding high period varies between 
800µs and 2200µs.  The framing gap is 15ms.   
 
Although Figure 1 shows three data channels, any number 
from one to six may be used.  The receiver increments a 
counter each time a data channel is received and resets that 
counter when a framing gap is received.  In this way, it can 
track an arbitrary number of channels. 
 

B. A Signal Generation Application 
 
Development of a digitally controlled device for 
commanding the COTS Scouts was based on several 
requirements.  The system should be reliable and provide 
the fastest possible response time.  It should be as easy to 
use as possible both for COTS Scout communications as 
well as for any future development based on similar 
components.  Support for multiple transmitters in 

simultaneous communication with multiple robots would be 
preferred.  Above all, it must be able to produce a high-
resolution version of the signal described above. 
 
A PIC16F877 microcontroller, shown in Figure 4, with a 
20MHz oscillator was determined to be sufficient for the 
demands of the requirements [5]. The first step was a proof 
of concept task: to generate an input signal to a transmitter 
using hard-coded values and verify that a robot responded 
with correct corresponding action.  The task was 
accomplished by programming the PIC in assembly 
language.  Six one byte file registers store the desired 
output values.  A continuous loop uses the PIC's timers to 
set a digital output pin high or low according to the signal 
specification.  A resolution of approximately one 
microsecond was achieved, which is more than sufficient.  
A visually correct signal was observed on an oscilloscope.  
Attaching a transmitter input to the PIC's digital output 
showed that a robot responded correctly.  By assembling 
the program with different channel values, the robot could 
be made to move at different speeds. 

Once the potential effectiveness of the solution had been 
demonstrated, it was necessary to establish a secondary 
communication link between the PIC and a PC so that 
updated values could be sent to change the behavior of the 
robot in real time.  In a final application, the PC might be 
either a desktop machine or the primary processor of a 
MegaScout.  Because it was desirable to select a common 

 
Figure 2: Two RC transmitters. On the left there is a 
transmitter in its original casing while on the right there is 
the circuit board inside. 
 

Channel Purpose 
1 Speed of servo 1 
2 Speed of servo 2 (reversed) 
3 Video transmission on/off 
4 Not used. 

 
Table 1: Use of each RC data channel by the COTS Scout. 

 

 
 
Figure 3a: Transmitter input signal. 
 
 

 
 
Figure 3b: Transmitter output. 
 



communications standard and because of an existing IIC 
network in the MegaScouts (based on the BrainStem board, 
made by Acroname), it was decided that a simple 
implementation of the IIC protocol would be appropriate.   

 
IIC (often written i2c) stands for Inter-Integrated Circuit.  It 
is a very simple, two-line, serial communications protocol.  
Networks consist of a single bus supporting up to 126 
devices (more in some versions) at clock speeds of 
100KHz, 400KHz, and 1MHz.  Each network has a single 
master device and any number of slave devices.  The 
master is responsible for establishing the regular pulse on 
the clock line and mitigating collisions on the data line.  
Many devices, including many commonly available robotic 
sensors, come equipped for IIC communication. 
 
The protocol provides a simple, byte-oriented packet 
structure.  First, a start signal is sent by a transmitting 
device, indicating that bytes are about to be sent.  The first 
byte of every packet is the seven-bit address of the target 
device and a bit indicating whether this is a request to 
initiate a read operation from the target or whether more 
bytes will follow that should be written to the target.  The 
target machine must send an ACK pulse after each byte.  In 
the case of a write operation (the only portion of the 
standard implemented for this project), one or more data 
bytes follow the address.  Finally, the transmitter sends an 
end pulse to mark the conclusion of the packet. 
 
The PIC provides a convenient, interrupt-driven 
implementation of IIC.  After configuring all appropriate 
settings, a PIC assembly program that is part of a slave 
receiver need only have a single interrupt handling routine 
that will be called each time a byte has been fully received.   
 
The packet structure chosen for this project is illustrated in 
Figure 6.  All correctly formed packets consist of four 

bytes.  First, according to the IIC protocol is the device's 
address.  Next is the ID of a particular transmitter.  Though 
not yet implemented, this will allow two or more 

transmitters to be controlled simultaneously by the same 
PIC, making larger robotic teams more practical.  The third 
byte is the number (between 0 and 5) of the data channel 
being changed.  Finally, the last byte gives the new value to 
be transmitted on that channel.  A value of 0 will cause the 
shortest possible signal (about 0.8ms) and a value of 255 
will cause the longest possible signal (about 2.2ms).  After 
completion, the IIC communications system was tested by 
connecting it to the IIC pins of a BrainStem, and manually 
sending packets from the BrainStem's console application, 
successfully, though awkwardly, controlling a robot.  

 
Figure 5: Final prototyping circuit showing the transmitter, 
PIC, and BrainStem fully connected for IIC 
communications.  

Figure 4: A PIC16F877 prototyping chip with in-circuit 
debugging hardware.  Versions used in the final products 
are much smaller. 

 
The result of the PIC development is a fully functional 
communication link from a PC to a COTS Scout.  The 
system is fast, built on industry standards, cheap to 
assemble, and easy to use.  It can be easily expanded to 
support simultaneous control of multiple robots. 
 

III. PHASE TWO: WRAPPER API 
 

A. The libUMNRobot Framework 
 
The libUMNRobot framework is a novel suite of object-
oriented programming tools written in C++ and designed to 
provide a convenient, uniform interface to a wide variety of 
robotic components.  The library was originally written to 
support the MegaScout platform, but with the additional 
goal that it should support multiple, heterogeneous robotic 
platforms with little or no modification.  Use of the 
framework to support the COTS Scout is the first test of 
this heterogeneous use. The framework provides a 
mechanism for enumerating all the components of a robot 
and all the configuration and calibration properties of each 
component in a single, hierarchical XML document.  This 



makes it very easy to express the subtle differences 
between large numbers of similar robots without having to 
make any modifications to the control code for those 
robots.  
 
A greatly simplified UML diagram of the object model for 

the framework can be seen in Figure 7.  The framework is a 
set of loosely coupled libraries, each with a specific goal.   
 
At the core is the UMNRobot library itself.  This library 
defines a generic interface called Capability that is the root 
interface of all robotic components.  Capabilities can have 
a set of child Capabilities.  Robots are composed of such 
hierarchies of Capability objects.  Sensor and Actuator are 
sub-interfaces of Capability written as templates.  The 
UMNRobot core library also defines a standard for 
instantiating arbitrary robots by means of a RobotFactory.  

An affiliated library, "UMNRobot Xerces Components" 
provides a concrete implementation of RobotFactory that 
instantiates Robots from XML descriptor files. 
 
Another library, "UMNRobot Common Components", 
provides a richer set of generic interfaces that model a wide 
variety of frequently used robotic sensory and actuation 
components.  This library contains interfaces such as 
Motor, Servo, RangeFinder, DigitalSwitch, AxelEncoder,  
PhotoelectricSensor, and VideoSource.  These interfaces 
impose a data type and a set of units on the inputs and 
outputs to their corresponding devices, but they contain no 
specific code for communicating with actual devices. 

[ADDR]   [XMIT ID]   [CHAN ID]   [DATA] 
 
Figure 6: Packet structure expected by PIC consists of four 
bytes: The IIC address of the PIC, the ID of a transmitter, 
the ID of the data channel being modified, and the new 
data value for that channel. 

 
Such communication is accomplished by a lower level suite 
of libraries that provide models for specific hardware.  For 
example, the library "UMNRobot BrainStem Components" 
contains implementations for controlling many sensors and 
actuators through the BrainStem board.  Similarly, 
"UMNRobot V4L Components" contains implementations 
for video inputs that use the Linux video standards. 
 
These libraries are not all intended for use in every robotic 
application.  Instead, each application developer picks the 
set of libraries appropriate to the hardware in use and only 

 
 
Figure 7: Simplified UML diagram of the libUMNRobot object model. 



compile against the relevant implementations.  In this way, 
many robots can use the same generic interfaces for 
different underlying implementations while maintaining 
installation footprints that are as small as possible. 
 
B Incorporating the COTS Scout into the UMNRobot 
framework 
 
Because this framework is the basis for the ongoing 
development of the MegaScout platform and because there 
was interest in validating the idea that the same framework 
could be applied to distinct robotic platforms, it was 
decided that the new computer control system for the 
COTS Scout would be written against libUMNRobot.  
These modifications first required expansion the core 
libraries and then the addition of a new package dedicated 
to the COTS Scout. Each step is discussed below. 
 
The UMNRobot core packages were expanded first to 
contain a generic interface for RC communication, and then 
a specific implementation based on proxying the IIC 
packets discussed earlier through a BrainStem.  Another 
implementation could easily be added that communicated 
with an IIC bus through some other conduit.  
BrainStemComponents::RCMotor derives from Motor and 
RCDevice.  Similarly, RCDigitalSwitch extends 
DigitalSwitch and RCDevice.  These components can be 

instantiated from XML descriptors jut like the previously 
existing components. 
 
The new COTS Scout package relies on the additions to the 
UMNRobot core and provides an API for instantiating a 
COTS Scout::Robot object through a derivative of 
RobotFactory.  An example of an XML descriptor file for a 
COTS Scout can be seen in Figure 8, which illustrates all 
the configurable parameters of each component. 
 

IV. TESTING 
 
As a test for the whole structure that was built in phases 
one and two, a simple interface was built to allow a human 
to drive the robot.  The application was a text-based 
application for a Linux console, and it was run on the 
machine used for prototyping MegaScout software.  The 
program accepts directional input from the user by means 
of keyboard  arrow keys.  The space bar provided an 
immediate stop function.  
 
This application made it possible to drive the robot 
effectively.  It was necessary to calibrate the zero point of 
the servos for the robot so that a command packet of zero 
actually caused the corresponding wheel to stop.  This 
calibration was done empirically and the results were 

<capability type="COTSScout::Robot" name="Robot"> 
 
<capability type="UMNRobot::CommonComponents::Wheel" name="PORT_WHEEL"> 
<parameter name="diameter" type="float" value="8.25" /> 
  <capability type="UMNRobot::BrainStemComponents::RCMotor" name="MOTOR"> 
  <parameter name="range-min" type="int" value="-100" /> 
  <parameter name="range-max" type="int" value="100" /> 
  <parameter name="pic-i2c-address" type="unsigned int" value="100" /> 
  <parameter name="transmitter-id" type="unsigned int" value="0" /> 
  <parameter name="channel-id" type="unsigned int" value="1" /> 
  <parameter name="invert" type="bool" value="t" /> 
  <parameter name="offset" type="int" value="140" /> 
  <parameter name="brainstem-id" type="unsigned int" value="2" /> 
  </capability> 
</capability> 
 
<capability type="UMNRobot::CommonComponents::Wheel" name="STARBOARD_WHEEL"> 
<parameter name="diameter" type="float" value="8.25" /> 
  <capability type="UMNRobot::BrainStemComponents::RCMotor" name="MOTOR"> 
  <parameter name="range-min" type="int" value="-100" /> 
  <parameter name="range-max" type="int" value="100" /> 
  <parameter name="pic-i2c-address" type="unsigned int" value="100" /> 
  <parameter name="transmitter-id" type="unsigned int" value="0" /> 
  <parameter name="channel-id" type="unsigned int" value="0" /> 
  <parameter name="invert" type="bool" value="f" /> 
  <parameter name="offset" type="int" value="120" /> 
  <parameter name="brainstem-id" type="unsigned int" value="2" /> 
  </capability> 
</capability> 
 
<capability type="UMNRobot::CommonComponents::VideoSource" name="CAMERA"> 
 <description>Camera</description> 
 <parameter name="port" type="unsigned int" value="0" /> 
 <parameter name="video-set-name" type="string"  
  value="FRAMEGRABBER" /> 
   <capability type="UMNRobot::BrainStemComponents::RCDigtialSwitch" name="CAMERA_POWER_SWITCH"> 
    <description>Switch that turns the video transmission on and off.</description> 
    <parameter name="pic-i2c-address" type="unsigned int" value="100" /> 
    <parameter name="transmitter-id" type="unsigned int" value="0" /> 
    <parameter name="channel-id" type="unsigned int" value="2" /> 
    <parameter name="invert" type="bool" value="f" /> 
    <parameter name="brainstem-id" type="unsigned int" value="2" /> 
   </capability> 
</capability> 
 
<capability type="UMNRobot::V4LComponents::VideoSet" name="FRAMEGRABBER"> 
<description>Picasso PC104-2SQ Framegrabber</description> 
<parameter name="video-device-number" type="unsigned int" value="0" /> 
</capability> 
 
</capability> 
 

Figure 8: A sample XML descriptor for a COTS Scout object. 



specified to the control architecture in the XML descriptor. 
Due to the nature of the program and the poor precision of 
the robot's components, the robot turned sluggishly at high 
speeds and was difficult to drive exactly straight. With 
more work spent on the algorithm for selecting speeds 
based on input keystrokes a more natural control interface 
could be developed. 
 
This application highlighted one of the known problems 
with the COTS Scout platform: adjustment of wheel trim.  
The servos used in the robot do not provide a constant 
output for the same inputs.  The data value used to stop the 
motors shifts over time, and the exact speeds during motion 
appear to vary slightly as well.  The result is that keeping 
the robot stationary requires constant intervention.  When 
combined with the irregularity and flexibility of the wheels, 
this arbitrary variation in motor output makes controlled, 
straight motion difficult to achieve. 
 

V. FUTURE WORK 
 
In order for a working MegaScout to control a team of 
COTS Scouts, it will first be necessary to produce a 
compact version of the electronics that can be placed in a 
MegaScout sensor bay.  The components are sufficiently 
small to make this possible. 
 
The availability of a programming API for the COTS Scout 
brings a range of new applications into reach.  Ideas for 
such applications and specific plans are discussed below. 
 
A WindowsCE teleoperation unit for the MegaScout was 
recently completed.  This system runs on a Compaq iPaq 
and provides streaming digital video, streaming sensor data 
and the ability to drive the robot.  The interface can now be 
easily adapted to drive the COTS Scout.  Alternatively, the 
interface could be expanded to allow the user to switch at 
runtime between the control of a MegaScout and one more 
COTS Scouts controlled via the MegaScout.  This would 
allow video-based teleoperation of an entire robot team 
from a single hand-held device. 
 
Many possible autonomous applications for a single COTS 
Scout exist.  A hide-in-darkness behavior similar to the one 
implemented on the original scouts is possible.  A visual 
feedback loop that automatically adjusts the wheel trim of 
the robot would be very helpful.  Possible applications for 
teams of robots include recognition of other robots, 
formation driving, and follow-the-leader.  A larger robot 
like a MegaScout may eventually be equipped with a 
marsupial system for carrying a fleet of COTS Scouts into 
an environment.  COTS Scouts would then need to be able 
to explore and return to the base of operations.  
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