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Abstract—Given a right copl)rime MFD of a strictly proper  structure. Despite the fact that similar results for Sylvester-type
plant P (s) = Nr(s)Dr(s)”" with Dg(s) column proper a resultants have been presented in [3], the Wolovich resultant
simple numerical algorithm is derived for the computation of of 55 not received the expected attention, except perhaps [1] and
all polynomial solutions [ X, (s), Yz (s)] of the polynomial matrix >l wh Wolovich’ ftant i d ' tool for testing th
Diophantine equation Xy, (s) Dr (s) + Y (s) Nn (s) = D (s) [ ]w ere Wolovich's resultant is used as a tool for testing the
which give rise to the class® (P, D¢) of proper compensators COPrMeENess of polynomial matrices.

C (s) := X1, (s)”' Yz (s) that when employed in a unity feedback ~ The method presented here can be compared to the one in
loop result to closed loop systems (P, C') with a desired denom-  [12] where Wollovich’s resultant is employed as a tool for the

inator D¢ (s) . The parametrization of the proper compensators : ; ; ;
C'(s) € B (P, Dc) is obtained and the number of independent construction of the interpolation matrix. However, our method

parameters in the parametrization is given. requires only knowledge of the coefficients of the polynomial
matrices Dg(s), Ng(s) and provides a parametrization of
I. INTRODUCTION all proper denominator assigning controllers, unifying in this

We consider linear, time invariant, multivariable systemay the "resultant” approach with the approaches in [14],
which are assumed to be free of unstable hidden modes &kal and [9]. The proposed approach can be viewed as a
whose input-output relation is described by a strictly prop&eneralization of the method presented in [11] (theorem 2.13,
transfer function matrix? (s) (the plant). In this note we de- P- 947) where the solution of a degree-specific Diophantine
scribe a numerically efficient algorithm for the computation gfquation is obtained using Wolovich's resultant.
the class of proper compensatérss) which, when employed ~ On the other hand the proposed method can be compared to
in the standard unity feedback loop configuration, gives rise e one in [10] where a Sylvester-type resultant is employed.
a closed loop systerfi (P, C') with a specific closed loop de- This method is more complicated and does not provide any
nominatorD¢ (s) [6], [8]. In particular, given a right coprime insight on the structural properties of the problem because the
MFD of a strictly proper plan® (s) = Ng (s) Dr (5)—1 with  generalized Sylvester resultant does not have the desired shape
Dr, (s) column proper (column reduced) and an appropriatefgr the formulation of the problem in terms of the polynomial
defined polynomial matrixD¢ (s) with desired zeros, we coefficients involved. Furthermore, through the investigation of
extend the Wolovich [1] resultant theorem and a theorem ggye rank of the generalized Wollovich resultant, we establish
Callier and Desoer [14], Callier [15] and Kucera [9] in ordethe lower bound for the (McMillan) degree of an arbitrary
to obtain an algorithm for the computation of all polynomia¢losed loop denominator, a fact which has been used through-
solutions[X ;. (s), Y7 (s)] of the polynomial matrix Diophan- out the constructions in [14], [15], [9], but not justified via
tine equation some theoretic argument.

XL (s)Dg(s)+ YL (s) Ng(s) = D¢ (s) 1) [l. PRELIMINARIES

which give rise to the clas® (P, D¢) of proper compensators In the following R,C,R (s),R[s],R,, (s), Ry, (s) are
C (s) := X1 (s)"' Y (s) that result to closed loop systemgespectively the fields akal numbers, complex numbers, real
S (P,C) with D¢ (s) as their closed-loop denominatdrhe rational functions the rings ofpolynomials proper rational
issues of the parametrization of the proper compensétdes and strictly proper rational functions all with coefficients in
€ ¢ (P, D¢) and the number of independent parameters in tiieand indeterminate. For a setlF, F?*™ denotes the set of
parametrization is also resolved. This is done by investigatipgx m matrices with entries irf. NT is the set of positive
the properties of a generalized version of Wollovich’s resultairtegers. Ifm € Nt then m denotes the sefl,2,...,m}.

to obtain a series of new results regarding its algebrakinally 5y, [.] denotes the McMillan degree of



Let Ngr(s) € R[s|P*™ Dgr(s) € R[s]™™ be a  The following result establishes a relation between the
pair of polynomial matrices withDg(s) invertible for al- McMillan degrees ofP(s) and E(s) (or F(s)).
most everys € C and define the compound matrix Lemma 2:[5] (p. 140) If E(s) has no zeros ifC U {oo}

F(s) := [Dg(s),Ng(s)]T. Respectively letDy(s) € (equiv. Dy (s), Np(s) are coprime inC U {co}) then
R[s]P*P, N (s) € R[s]P*™ (with Dy(s) invertible for a.e.
s € C) and E(s) := [~ Np(s), D1 (s)] such that - OmP(s)=0omE(s) (6)
When E(s) is a minimal polynomial basis of the left kernel
E(s)F(s) =0 (2 of F(s), i.e. E(s) has no zeros irC and is row proper, by

The pair of matricesVr(s), Dr(s) (resp.Ny(s), Dy.(s)) will lemma 1E(s) will have no zeros irC U {oo} and thus from
be called right (resp. left) coprime iff'(s) has full column the last statement of lemma 1

rank (respE(s) has full row rank) for every € C. It is known

that N(s), Dr(s) are right coprime andVy(s), Dy (s) left dmP(s) =0omE(s Zdeg” (7)
coprime, thendeg|Dg(s)|] = deg|Dr(s)|. A polynomial
matrix X (s) € R[s]P*™(m < p) is called column proper
or column reduced iff its highest column coefficient matrnfJ
denotedX "< which is formed by the coefficients of the hlghesE
powers ofs in each column ofX (s), has full column rank. The
column powers ofX (s) are usually denoted byteg,; X (s), O P(s) = 0nmF(s Zdegm (8)
i € m. RespectivelyY'(s) € R[s]P*™ (p < m) is called row

proper or row reduced iff”* (s) is column proper and the row ¢, ;s in such a case we get the well known result [4] that
powers ofY (s) are denoted byleg,, X (s), ¢ € p. Further-

more a square polynomial matriX (s) € R[s]™*™is called

row-column reduced [14] with rov(v )powe[rs]t and column Zdegm‘E (s) = Zdegci F(s) ©)
powersc;, i € m iff the matrix dz’ag{s—“‘}X( )dmg{s cil ' =

Furthermore if alsoDg(s), Ng(s) are right coprime and
(s) is column proper then again from lemma 1 and lemma

is biproper (i.e. it is proper and its inverse exists and it is Ill. GENERALIZED WOLOVICH RESULTANT

proper as well). Let k; = deg,; F(s),i € m be the invariant minimal
Lemma 1:[5] (Corollary 3.100, p. 144) IfX(s) € R[s]"*™  column dynamical indices of (s) and similarly to [1] (page

(m < p) is column proper theX (s) has no zeros at infinity 242) for k> 1 define the(m + p)k x m polynomial matrix
and its (ordered) column powers are the orders of its poles/% ) via

infinity i.e. if
g% — diag{s®,s®, ..., st} Im.—&-P
XO T Opmm X (s) = Sk (s) F (s) = : F(s)  (10)
k—1
is the Smith - McMillan form ofX (s) at infinity, with ¢; > §" " igp

g2 > ... 2 gm > 0, theng; = deg,; X (s), i € m. Furthermore 5n4 notice that¥), (s) can be written
since X (s) (as polynomial matrix) has no finite poles and

due tos? has (possibly) only poles at infinityy, X (s) = 1
Z deg,; X (s) Xy (s) = Mekdiag{ } MeySer (s)  (11)

i= : . tem kitk—1
When (2) is satisfied andE(s) is row proper with S

Dy(s),Np(s) left coprime, E(s) is a minimal polynomial n
basis of the (rational) vector space spanning the left kemghere 1/, < RPN D Rtmk | ice that),, does not
of F(s) and the row powersleg,; E(s) =: ui,i € p of E(s)  coincide with the one in [1] since Wolovich assumes that
are the invariant row minimal (dual) dynamical indices of p, . (s) is column proper andP(s) = Np(s) D5 (s) is proper.
P(s) = NR(s)Dlgl(s) — Dzl(s)NL(s) () Apart of t.hat essentially the two matrices differ only up to row
.  permutations.
In such a case it is known [4] thai(s) has the following ~ one of our goals is to describe the left null space (kernel)

properties of M., which in what follows is denoted
1) If p(s) € R[s]**+™) is a polynomial vector such that
p(s)F(s) = 0 then there exists a polynomial vector KerM% = {x € R>*m+Pk . g0, = 0} (12)
w(s) = [wi(s), wa(s), ..., wp(s)] € R[s|"*P such that . . .
The following theorem determines the dimensioniafr M7 .
p(s) = w(S>E(5) (4)  Theorem l:Let Ng(s) € R[s]P*™ Dg(s) €
2) If p(s) = w(s)E(s) then R[s|™*™ be a pair of polynomial matrices with
rankgs) [Dg(s),Ng(s)]T = m. Let also P(s) =

deg p(s) = max{degwi(s) + pi} ®)  Np(s)Dp'(s) € R(s)™™, w, i € p be the



invariant row minimal dynamical indices ofP(s) and
(m+p)kx % ki+mk
i=1

Mg € R defined in (11). Then
dimker MY, = Z (k — ;) (13)
ik > p
Proof: Let E(s) = [-Ng(s), Dr(s)] be minimal poly-

nomial basis of the left kernel af(s) = [Dﬁ(s),N}g(s)]T,

with row powersy; = deg,,; E(s),i € p. Obviously n; are
the dual dynamical indices d?(s). Following similar lines to
Theorem 1 in [3] fork > 1 we define the set

Vi = {p(s) € R@*™[s] : p(s)F () = 0, deg p(s)
(14)

i.e. Vi, contains polynomial row vectors in the left kernel

of F(s) = [DE(s), N}):(s)]TWith degrees less thai Notice

Corollary 1. Under the assumptions of theorem 1, we have

rankM., = (p +m)k — Z (k — i)

itk>pu;

17

Furthermore ifk is chosen s.tk > u, whereu = max{u;}
1€EP

then
rankM.y, = mk + dpr P(s) (18)
Proof: Equation (17) follows simply from the fact that
rankMer = (p + m)k — dimg ker Mg;C Now for k& > p (17)
becomesankM.y = (p+m)k—>_"(k — u;) or equivalently
=1
rankM,., = mk + 3P, thus (18) follows from the facts
i=1
p
> i =0 E(s) =6y P(s) in lemmata 1 and 2.

=1

that), is not a rational vector space but is a vector space overNotice that in caseDx(s) is column proper and’ (s) :=

R since, as we show in the sequel, it is isomorphi&te- M7, .
k—1

Indeed, every(s) € V, can be written ag(s) = > p;s® with
=0

p; € RIXwtm) i — 01,2 ...k —1. In view of (10) the
relation p(s)F(s) = 0 can be written a5y (s) F(s) = 0
where p = [po,p1,...,Pk—-1] € R1*k(p+m) or equivalently
from (11) pM.xSex (s) = 0 for every s € C, which in turn

Nr(s)Dg'(s) is proper,dy P(s) = {# of poles of P(s) in
C} = deg|Dgr(s)|. Therefore, fork > u the above result
coincides with the result of Lemma 3.2 in [12]. The following
corollary provides a generalization of the corresponding result
in [1] (page 242).

Corollary 2: Let Ng(s) € R[s|P*™, Dg(s) € R[s]™*™ be
a pair of polynomial matrices with'(s) = [D%(s), Ng(s)}T

implies pM,; = 0. Using properties 1, 2 of the minimal column proper with column powerseg,, F'(s) = k;, i € m.

polynomial basis of the left null space &f(s) it is clear that
everyp(s) € Vj can be written as

p(s) = w(s)E(s)

where w(s) = [wi(s),wa(s), ..., wy(s)] € R[s]"*? and
degw;(s) + p; < k,i € p. Obviously any polynomial row
vectorz(s) = w(s)E(s) with degw;(s) < k — p;,i¢ € p will
also belong toV;,, henceV,, can be written as

Vi = {w(s)E(s) : w(s) € R[s|™?, degwi(s) < k—p;,i € p}
(15)
> (k—p4), since each
itk>p;
wl(s) = Wip+W;18 + ... + wivk_l,,i_lSki#iil,i €Ep consists
exactly of (k— ;) independent coefficients,;; € R and E(s)
has full row rank for every € C. Clearly

dimg ker MZf = Z (k — ;)
itk>p;

It is easy to see now thaimg Vi, =

(16)

sinceVy, is isomorphic toker M2 . Notice that the summation
in (13) runs oven;'s whenk > u;. However, foru, = k the

Then Ng(s), Dgr(s) are right coprime inC iff M., has full

column rank fork > u, or equivalently Nz (s), Dg(s) are

right corpime inC iff for k > u, rankM., = mk+ 5y F(s).
Proof: First notice that from (11) the number of columns

in My is > k; +mk. SinceF(s) is column proper it has no

i=1
m

zeros at infinity and from lemma L) k; = d, F(s). Hence

the number of columns i1, is mtk j— v F(s).

(=) Let Ng(s), Dr(s) be right coprime inC. Then from
Corollary 1 fork > u, rankM., = km + dp P(s) and from
lemma 26, P(s) = 00 F(s) becauséVg(s), Dr(s) are right
coprime inC U {co}.

(<) Assume thatNg(s), Dr(s) are not right coprime in
C. Then there exist® # » € R™*! andsy, € C such that
F(So)l‘ = 0. In view of (11) Xk(SO)l‘ = M. Sek (80) x =0,
hencelM,; does not have full column rank. [ |

The following remark establishes the fact tiddt, can have
full column rank only fork > u.

Remark 1l:Let Dg(s) € R[s]™*™ Ng(s) € R[s|™*™

term k — 11; is zero and does not contribute to the sum. Thu/Ch thatDr(s), Nr(s) be right coprime inC and F'(s) =

(13) is equivalent to (16). [ ]

[Dﬁ(s),Ng(s)]T be column reduced with column powers

It is interesting to notice that the dimension of the kernélegeiF'(s) = ki, i € m. Let alsoy;, @ € p be the left minimal

obtained here is identical to the one given in theorem 1

jpdices of F'(s) and definey = Ineax{ui}. Then fork < p
1Ep

[3], despite the fact that the generalized Sylvester resultant

Sy in [3] does not coincide in general with/.;. Notice also
that the above result does not requife;(s), Nr(s) to be

right coprime norDz(s) to be column proper. We give now a

rankMe, < mk + Z k;

i=1

(19)

generalization of the result that appears in [12] (Lemma 3.2)¢. M, cannot have full column rank fat < .

in the sense that we relaR (s) = Ng(s)Dg'(s) from the

Proof: Assumek < p and leta is the number ofu;'s

properness requirement as well as from the assumption teatisfyingu; > k. Inequality (19) follows using the fact that

Dr(s) is column proper.

ka <3 kep, i [ |



The above result has a direct implication on the choice of téth S (s) defined if (11). Comparing the degreessaf both
row degrees oD« (s) in equation (1) which will be discussedsides of (23) it is easily seen thétg.; Do (s) < k;+k—1,i €

in the following section m thus D¢ (s) can be written asDco(s) = DpSer(s), Di
m ki+mk
IV. APPLICATION TO MATRIX DIOPHANTINE EQUATIONS ¢ R Xi; * and (23) becomes
Consider a strictly proper linear multivariable plaft(s) € QM1 Ser(s) = DiSer(s) (24)

R,, (s)P*™ with m inputs andp outputs and determine _
respectively a right and left coprime MFDs #f(s) as in (3) OF equivalently

with Ny (s) € R[s]”*™ and Dy (s) € R[s]™*™ andcolumn QM) = Dy, (25)
proper with C‘ﬂgm” powersdeg D i (ﬁ)xp: ki, i € m, gince (24) must hold for every € C. Thus every solution
Ny (s) € Rls] and Dy, (s) € R[s]"""and row proper o (20) can be determined from a set of numerical equations
with row powersdeg Dyri(s) = pi, i € p. Define u = of the form (25) given the maximum degree 8fs) and
R {ui} (the observability index of (s)). selecting the appropriaté. A similar approach has been

The problem of assigning the denominator of the closegdroposed in [10] but the resultant used there is similar to
loop system using unity feedback and a dynamic precompehe one in [3] which does not have the desired properties
satorC(s) € R(s)™”?, can be reduced to the solution of thehat allow easy degree control of the solution. Using the

polynomial matrix Diophantine equation of the form generalized Wolovich resultant has the advantage of direct
computation of a particular proper compensator as well as an
X1 (s) DR (s)+ YL (s) Ng(s) = D¢ (s) (20) easy parametrization of all such compensators.

X . The following lemma can be found in [9] stated for the dual
yvhereDc({s) €RIs) '° th%9§)§|red closed—logepdgnom-of equation (20), i.e. for a left MFD aP(s). For our purposes
inator matrix andXy (s) € R [s] Yi(s) € R[s]"""is @ e shall state the corresponding assumptions and the result for
left (not necessarily coprime) MFD af'(s), i.e. a right MFD of P(s).
C(s)= XL (s)" YL (s) €R(s)™"P (21) Lemma 3:(9], Lemma 2) Consider equation (20) under the
following assumptions

It is _WeII known that (20)_has a s_olution for arbitra_ry 1) Dg(s) is column proper with column powerk; =
Dc(s) iff DR(,_s), NR(s)_ are right coprime. Furthermore if deg,; Dr(s),i € m
XL_(s),YL(s) is a particular solution of (20) then every 2) Dr(s), Ng(s) are right coprime
Eall' of the fOmeL(S) = XL(S) + T(S)NL(S)7 YL(S) = 3) P(S) _ D;tl(S)NR(S) _ NL(S)Dzl(S) is Strictly
Y 1(s)—T(s)Dr(s) is also a solution of (20) for any arbitrary proper
polynomial matrixZ'(s) € R [s]"7P . _ 4) Ni(s), Dy(s) are left coprime

_However, the question usually posed is under what con-5y p, (s) is row proper with row powersy;
ditions equation (20) can have solutions that give rise 10 & * qeg . D, (s),i € p and defineu = max{y;}
proper compensatoC(s) € R, (s)™*?. For a particular type ) icp _
of closed-loop denominator this problem has been studied® Dc(s) is row-column reduced withieg,; Dc(s) =
and solved by several authors (see [6][7],[14], [8]) and a  4¢8riDc(s) = & + ki, @ € m whereg; are integers
parametrization of all possible proper denominator assigning SL& = p— 1’_" €m. )
compensators has been given (see [9], [15]). According to this'fl X1(s),YL(s) is a solution of (20) andC(s) =
approach the desired denominator is chosen to be row-colufin ()Y (s) € Ry (s) then Xy (s) is row proper with row
reduced with particular row and column powers in order to lROWersdeg,.; X, (s) N §i, 1 € m. o
able to apply degree control on the numerator and denominatoNotice ft}f/\a(t ;f Xp (St)Y(S) Z Rpr (5) ’;/t?e)n<th€e row
of C(s). powers ofY7 (s) cannot exceed;, i.e. deg,, Y1.(s) < &, €

Th(e)contribution of the present paper is to provide a numép [13], [14], thus the maximum degree of th&" row of
ical algorithm which employes Wolovich’s resultant propose@(s) = [ XL(s), Yz (s)] will be &;. Denote the rows of)(s)

in the previous section to obtain a parametrization of all dY w7 (s) € R[s]"*"*") i € m. Write
nominator assigning proper compensators. Kef(s), Y..(s) 17
be a solution of (20) for a particular choice @i~ (s) and wl'(s) = wajsj7 wh e RXMHP) i em (26)
let £ — 1 be the maximum degree of occurring amongst =0
%‘?S]E'fmﬂgs Tor:‘ert]h& sTitar:]ﬂb(g)Wﬁt_ten[ Xu(s)Va(s)] € and define the row vectors! = [wh Wi, W] €
) RlX(P+m)(§i+1),Z‘ € m.
Q(s) = QkSk(s) (22) Now let df'(s),i € m be the rows of D¢ (s) and using

i=1

whereQ;, € R™**+m) and Sy (s) as defined in (10). Then assumption 6 of lemma 3 defiie’ € R =

(20) can be written as m from the relation

— o )
QM Ser(s) = Do(s) (23) dr(s) = d; Segi+1)(s),i €m 27)



m . . . . .
whereS,(, 1) is them (& + 1) + 3 k; x m matrix defined The parametrization of all proper denominator assigning
in (11) i=1 compensators obtained from the solution of the numerical

Theorem 2:Let the assumptions (1-6) of lemma 3 holdfaquatlons in the above theorem, obviously coincides with the

Then every solution paitXy(s),Ys(s) of (20) such that one in [9] or [15]. However, since this parametrization depends

C(s) = Xgl(s)YL(s) € R™¥?(s) can be obtained from the on the dimension of the left kemel of constant mgtnces, we
. Lo : can go a step further and determine the number of independent
solutions of the numerical equations

parameters in the parametrization in terms of the McMillan
) = dT»T, i€ m (28) degree of the plant, the number of inputs and outputs and the
. ) ) ) ) ~ particular choice of;’s.

and vice versa, i.e. every solutiarf of (28) gIves NSes Via - Corollary 3: Let assumptions (1-6) of lemma 3 hold. Then
(26) to aQ(s) = [ XL(s), Y(s)],8:t.C(s) = X" (s)YL(5) €  the number of independent parameters in the parametrization

R (). ) ) of all denominator assigning proper compensators is
Proof. First notice that (28) are always solvable for

arbitrarydT-T since&; + 1 > p and thus from lemma 2 in . < ‘

conjunction with assumptions 1-2 of lemmai3, ., ) has v=m(p—onP(s) +p;§’ (31)

full column rank. Proof: Using the result of theorem 2 the degrees of
If X1(s),YL(s) is a solution of (20) and¥; '(s)Y.(s) is freedom in the choice ab? (s) is essentially equal to the di-

proper according to lemma 3 the row powerstxffs) will be  mension of the left kernel a#Z, ¢, 1. Thus the total number

¢ and thus we can writex] (s) as in (26). It is easy to see m

that the corresponding’ will satisfy (28).

E;Me(

Eit1

of independent parameters will be= >~ dimg ker MeT(g-H)-
i=1 ‘

Conversely, if @F satisfy equations (28) ., . & .
then postmultiplying (28) by S.ei(s) gives Using the fact that; + 1 > p and 6 P(s) = J; L gives
_ —T )
w?Me(Ei+l)Se(£i+1)(s) = di Se(£i+1)(8)72 € m or (31) _ ) n
equivalently from (11) Notice that in case we choogg =& = ... =&, := £ we
don't need to solve (28) independently for each row, but we
wiT(s) { gR(s) } = diT(s),i cm (29) can use one resultant, namely, ¢ to determine all rows
r(s) wl(s). In such a case the number of independent parameters
Obviously Q(s) = [w7 (s),wT (s), _._’w%(s)}T satisfies (20) I the parametrization will b@ =m(p(§ +1) — dp P(s)).
and deg,, 2(s) < &,i € m. Hencedeg,, X(s) < & and Although theorem 2 provides a way to reduce the com-
deg,, Y(s) < &,i € m. putation of proper compensators to the solution of a set of
NTCI)W Iet_Akl(s) = diag{st,s*2, .. skn}, Ae(s) = numerical equations of the form (28), we can go a step further

diag{st, s, ..., s} and pre and post-multiply (20) respec_and propose a method that reduces the problem to a single
tivelv by A1 dA=1(s) t t numerical equation. This can be done by exploiting the shift
y by A" (s) and A, (s) to ge T ; : :
invariant form of the generalized Wolovich resultant and using
A (s)X L (s) Dr (s) Ay (s) + Ay H(s)Y (s) Nr (s) A (s) = Gaussian elimination. Lety, i, ...,i,, be indices such that
30) &, < &, < ..., Letalsoé = ¢, = r%ax{gi}. In
= Agl(s)DC (s) AL (s) order to solve equation (28) far= i, we can apply Gaussian
) ) ) elimination on the columns df/.fe(gilﬂ) to obtain the reduced
Since Dzjgs) is column proper with column powers:, ., mn echelon fornk. ¢, 11)- Due to the shift invariant form
Dg (s) Ay (s) is biproper. Similarly sinceDc (s) is TOW- ¢ the resultant, the columns Ofl,¢, +1) appear in the first

colum_n1 reduced W_itlh row powers; and column POWETS (), 1 )¢, rows of M,(¢,, +1) (together withm zero columns).
ki, A¢ (s)Dc (s) Ay~ (s) is also biproper. Using the factgince as o

, _ . e(¢;,+1) has full column rank, the reduced column
that P(s) is strictly properdeg,; Nr(s) < ki,i € m thus  gcpeion form ofM, ¢, +1y will have the block triangular form
Nr (s) A} '(s) is strictly proper. Finally, sinceleg,; X (s) < 2
& and deg,;Y(s) < &,i € m, A '(s)XL(s) and . [ Reer41y 0
Ag'(s)YL (s) are proper in general. Thus taking limits for e(§ip+1) = { Qi1 Q12 }

s — oo on both sides of (30) we obtain the equation . . o .
Proceeding inductively it is easy to see that,, ) will
hr mhe hre L. i i1+l
X1"Dy = D4 also have a similar block triangular form

where X»" is the highest row degree coefficient matrix of Reg, +1y 0
X1.(s), Dk is the highest column degree coefficient matrix of Re(&ij+1+1) = { Q:‘71 o }
Dr(s) and Dly< is the highest row-column degree coefficient ! !
matrix of D¢ (s). Obviously X ™ is invertible sinceD’e, Dire  for j = 1,2,...,m — 1. Thus reducingl, 1) into column

are invertible. HenceX,(s) is row proper with row powers echelon form, essentially provides a solution to all equations
¢ and sinceleg,; Y(s) < &,i € m, X;'(s)Y,(s) € R, (s) (28) sinceR (1) consists of blocks that give successively
is proper. [ | Re(&jjq)’ j € m.



In the light of the above analysis we provide the followingows as in [10]. We should also notice that the Gaussian
algorithm: elimination method has been chosen here only for simplicity

. Step 1. Obtain a right coprime MFDNg(s) € of presentation. The above algorithm can be applied equally
R[s]”*™ , Dg (s) € R [s]™™ of P (s) with Dg(s) col- well using unitary Householder's transformations to reduce

umn proper with column powerdeg,, Dr(s) = ki, i € Me(e41) to a lower (_block)_triangL!Iar form, which performs
m. better from a numerical point of view.

« Step 2.Determine the observability indgx:= max{; } We demonstrate the above procedure via the following
and choose; > i —1,i € m vem example (The plant and MFD’s appear in the example in [15]
. Step 3. Usinlg_(ll) cénstruc;t the generalized WolovichUt the desired closed loop denominator has been changed in

resultantM, ¢ 1, where¢ = HéaX{fi} order to illustrate the method fflﬁ # &5).
em S

0
« Step 4. Choose Do(s) € R[s/™ ™ to be row- Example 1:Let P (s) = [ sr2) 7 | with
column reduced with column poweks, and row powers s(s=1) -1
& and constructD ) by decomposingDc(s) =
b(§+1)56(5+1)(8) as in (24). . 52 —2s 0 | s+1 0
« Step 5. Construct the compound matri®f 1) = D (s) = 1 s—1 | Nrls)= 11

=T
[Mie 11y Diesn)]”
« Step 6.Reducel, cfe+1) into column echelon form to SO thatk, = 2,k; = 1. It can be easily seen that; =
obtain Re(§+1) — [Re(5+1) A erl)]T 2,10 =1 henceu =2,u—1=1. Let the desired closed loop

. Step 7.Compute the (general) solution for each ra  Polynomial be
for i = 1,2,...,m, using the first(¢; + 1)(p + m) rows
of E@H) and theit” row of A(e41) (discarding the last D (s) = diag{s® + 8s% + 24s + 32, 5% + 155% 4 625 + 48}
(£ —¢&;)m columns on both matrices because they contain

only zeroes). with & = 1, & = 2, ¢ = max{&} = 2. We should

¢ iSteF; 82.Usmg (26) calculate(s) of 2(s) from &} for expect the parametrization of all pr;{)pgr compensators to have

Notice that the above method does not require calculatlon(p OnP(s) +p Z § =2(2-3)+2-3 = 4 independent
of a left coprime MFD ofP(s) for the parametrization of Parameters. Create the generalized Wolovich resultarit for
solutions as in [9] or [15] nor the computation olvaminimal §+1=3
particular solution as in [9]. The only information that affects
the choice of the closed loop denominator is the observability
index u of P (s) which can be easily determined using rank
tests onM,; for successive choices &f = 1,2.3, ..., i.e. i
is equal to the minimun% such thatM.; has full column
rank. This fact justifies the choice of the lower bound for
the row degrees; of the desired closed loop denominator. In
the previous section we show that> pu is necessary and
sufficient condition (provided thabg(s), Nr(s) are coprime
andDg(s) is column proper) in orde#/,, to have full column
rank, imposing this way the lower bound for the choice of
&;’'s that make equations (28) solvable for arbitrary choice of
the right hand side matrix. This lower bound on the choice
of &’s has been used in the past but has not justified via
some theoretic argument. Wity = u — 1,0 € m, the \yrite D, (s) in terms of its coefficients as follows
McMillan degree of the controleC(s) = X L(s)Yy(s)is
genericalyd s C(s) = p(u—1). However, there mlght be cases
when X (s), Y (s) turn out to have a left (hon-unimodular)
common divisor, giving rise to &'(s) with McMillan degree
dmC(s) <p(p—1).

Comparing our method to the one in [10] it is easily seen — 8
that our approach is simpler since it only requires solution of 0
a set of numerical equations where the matrices involved can

3

be directly obtained from the coefficients &fz(s), Nr(s) Now define the compound matrbd,; — [ M, } and apply

|

N
I o
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== =0 O = O
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OO OO oo oo o
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\
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D¢ (s) = D3Ses(s)

and D¢(s). The generalized Wolovich resultant is used 'as D3
is’, without the need to determine the linearly depende@aussian elimination on the columns &f.3 to obtain the



column echelon form which is t1,to,t3,t4 € R are free parameters. Notice that the number

T 1 0 0 0 0 0 0 0 01 of parameters is the expected one, ie.
o 1 0 0 00 0 00 V. CONCLUSIONS
8 8 (1) (1) 8 8 8 8 8 In th.is paper we have invesFigated thg problem of the
0 0 0 O 1.0 0 0 0 determination of a proper deno_mlnator assigning compensator
0 0 0 0 0 1 0 0 0 for the class of strictly proper Ilne_zar multlvanab_le plants. Our
- 0 0 0 0 0 0 1 0 0 e.lp.proach focuses on t_he num_erlcal computa_non of the cogf—
Res = 11 9 1 00 1 00I7 ficients of the polynomial mat_nce; that describe the dynamic
0 0 0 O 0 0 0 1 0 compensatpr and a parameFrlzatlon of all such compensators
0 0 0 O 0 0 0 0 1 correspondlng to the one in [9], [15] and [10] has been
1 0 0 0 1 0 2 00 provided. . . .
0 1 _9 1 0 1 1 0 0 The sugge_sted method ut|I|_zes a generalized version of the
6 0 39 0 1 0 4 0 0 resultar_lt attrlbu.te.d to Wolovich (see [1]). wh.ose structural
63 78 —204 126 0 16 62 0 1 properties surprisingly have not been studied in detail. In the
oy - light of the results presented in section Ill the generalized
— Res Wolovich resultant is proved to be the ideal tool for handling
L As matrix polynomial Diophantine equations when degree control

where R.; € R12X% Ay € R2%%. To determinew? (s) take of the solutiop is required..The entire procedurg is reduce_d to
the first(p +m)(& + 1) = 8 rows of R.5 as well as the first the computation of a solution of a set of numerical equations
row of A, discarding the last two columns on both matrice@nd the determination of the left kernel of the generalized
This corresponds to the reduced echelon form of equation (2plovich resultant. Furthermore, our analysis shows that the

for i = 1 and its general solution is number of in_dependent parameters in the param_etrization of all
. proper solutions can be calculated beforehand in terms of the
w=[6 032010 40]+ row powers of the closed loop denominator and the McMillan
[1 -1 2 =1 0 0 -1 1]t degree of the plant.
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