
 
 

Approximate Solutions to Root Clustering 
Problem 

 
S. Fatouros*, N. Karcanias* and M. Mitrouli** 

s.fatouros@city.ac.uk, N.Karcanias@city.ac.uk, mmitroul@math.uoa.gr 
 

*Control Engineering Centre, School of Engineering and Mathematical Science, CITY UNIVERSITY 
LONDON, U.K. 
** Faculty of Mathematics, University of Athens, Greece  

 
 

Abstract  Whenever we want to denote the number of 
elements and the maximal degree we shall use the 
notation . The greatest common divisor (gcd) 

of  will be denoted by 

1,h n+P

P ( ) { }gcdsϕ � P . With 

the set P  we may associate the Generalised 
Sylvester Resultant [2]: 

 The algebra of polynomials provides the basis for 
the development of algebraic control approaches 
[5],[6],[7] etc and issues such as computation of Smith 
forms, solvability of Diophantine equations, solution of 
general matrix are essential parts of algorithms, and 
procedures linked to algebraic design.  
 In this paper we investigate the problem of 
defining approximate solutions to the root clustering 
problem, by deploying some resent results on the 
representation of the greatest common divisor (gcd) of 
many polynomials [3] and by using a new definition for 
the notion of the approximate gcd [4]. The results 
provide different order approximations to the root 
clustering problem. The basis of our analysis is an 
algebraic framework which is based on the normal 
factorisation of polynomials [9] and the algebraic 
framework for gcd representation and its approximate 
version are briefly summarised below. 

 
  
Definition (1) [2]: We can define a ( )p n p× +  

matrix associated with ( )sa : 
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and an ( )n n p× +  matrix associated with ( )sbi : Keywords: Approximate GCD of polynomials, Normal 

Factorisation, Sylvester Resultant Matrix 
 
1. Definitions and preliminary results 
  
 Consider a set of polynomials: 
 ( ) ( ) [ ]{ }, ,  ia s b s s i h∈ ∈= \

�
P  (1.1)  





















=

−

−

−−

0.1,1,,

0,1,2,1,,

0,1,2,1,,

00

00
00

iipipi

iiipipi

iipipipi

i

bbbb

bbbbb
bbbbb

S

""
#%#

""
""

   

  (1.2b) 
for each i 1, 2, , h= " . An extended Sylvester 
matrix for the set P  is then defined by: 

which has h  elements and with the two largest 
values of degrees ( . Without loss of generality 

we may assume  monic and represent the 
polynomials with respect to the n  degree as 

1+
)

0

,n p

( )a s
 

 ( ) (

0

1 p hn n p

h

S
S

S

S

)+ × +

 
 
 = ∈
 
 
  

\
#P  (1.2c)    and  ( ) 1

1 1...n n
na s s a s a s a−
−= + + + +

 ( ) , ,1 ,0... ,  1,2,,...,p
i i p i ib s b s b s b i h= + + + = .  

    ■ 
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 The Sylvester matrix is used for the evaluation of 
the GCD of two or more polynomials. This property is 
expressed by the Generalised Resultant Theorem: 
[2],[8]: 
 
Theorem (1): Given a set of polynomials =P  

( ) ( ){ 1
1 0 ,,  n n p

n i i pa s s a s a b s b s b s−
−= + + + = + +… …

( ){
,1i b+ ,0i ,   

} }1 2 ,   max deg ii , , ,h b s p= =…

P

 with a generalised 

resultant S  the following properties hold true: 
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   (1.6a) 
i) Necessary and sufficient condition for a set of 
polynomials to be coprime is that:  

where 

  (1.3) ( )rank S n= +P y y

  
{ }min ,

1
0 1 0

10 0 0

1 1,    , ... ,  , 2, , 1
j k

j i j i
i

y y y j nλ λ
λ λ λ −

=

= = − = − = + −∑ …

 (3.24b) 

p p
 
ii) Let ( )sϕ  be the g.c.d. of P  . Then:  

   (1.4) ( ) (rank degS n p ϕ= + −P

  (1.6b) 
)s  
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  (1.7) 

 
iii) If we reduce , by using elementary row 
operations, to its row echelon form, the last non 
vanishing row defines the coefficients of the g.c.d..      

SP

  ■ 
 
 The Toeplitz block based Generalised Resultant is 
crucial in the representation of the GCD, which is 
defined by the following factorization of resultants 
result [3]: 
 
Theorem (2): Let  ( ) ( ) ( ){ }1 , , ha s b s b s= …

( )a s n= ( )deg ib s p

P  be a 

0-order set, deg , n≤ ≤ , 

 be a polynomial set,  the respective 

Sylvester matrix, 

1, ,i = … h SP

( ) 1 0
k

ks s sϕ λ λ= + + +"
k
λ  be the 

greatest common divisor of the set and let  be its 
degree. Then there exists transformation matrix 

( ) ( ) + ×n p
ϕΦ ∈\ n+ p  such that: 

 
where ( ) ( ) ( )

1 0, , ,k k k
p k p ka a a− − −

 
 …

h,

  ( ) ( ) ( )
, , 1 ,0, , ,k k k

j p k j p k jb b b− − −
 
 …

j ,1…=  are the coefficients of the coprime 
polynomials obtained from the original set after the 
division by the gcd, which define the set  

and 

1,h n k
∗
+ −P

S ∗P
 is called the corresponding Expanded 

Resultant. 

 
 ( )k

kS S Sϕ∗ = Φ = 0PP ∗ P
,              (1.5)       

                   
where ( ) , kS ϕ∗ Φ

P
 are given by: 

  ■ 
 Theorem (2) is important for the characterisation 
of approximate GCD of fixed degree for many 
polynomials. This approach is based on relaxation of 
conditions on Theorem (2). The Optimal GCD is the 
one that corresponds to the minimum perturbation  
that has to be applied on the coefficients of the 
polynomials so that it becomes exact GCD of the 
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perturbed set [4]. This is a new method introduced in 
[10] and the results are summarized in Theorem (4).  ( )

( )

1 1 1
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 The following analysis assumes that the degree of 
the GCD is fixed. In the case of the exact GCD the 
degree is equal to the nullity of the Resultant. The 
generalisation the notion of nullity in the approximate 
case is the Numerical Nullity of a matrix [11]: 

  (1.8b) 
  ■ 
  
 The above analysis assumes that the degree of 
the GCD is fixed. In the case of the exact GCD the 
degree is equal to the nullity of the Resultant. The 
generalisation the notion of nullity in the approximate 
case is the Numerical Nullity of a matrix [11]: 

Definition (2): The numerical ε -rank of a matrix 
 is defined by m nA ×∈\

 ( ) ( ){ }min :  ,  0
B

A B A Bερ ρ ε= − ≤ ε >  

 
and the numerical ε -right nullity   

 ( ) ( ){ } ( )max :  , 0
B

A B A B nε εε ε ρ= − ≤ > =N N A−   
 
   ■ 
 

 The evaluation of the numerical nullity is based 
on the singular values of the matrix: 

2. Root Clustering of Polynomials 
 

 For every polynomial ( ) [ ]b s  there exist 

positive integers ,...,

s∈\

1d dσ  where 

 such that b s  may be 
expressed as [9]: 

1 2 ...d d dσ> > > 1≥ ( )

Lemma (1): [11]: For a matrix  m nA ×∈\

  number of singular values of  that 

are 
( )Aερ = A

ε≤  

  ■  

 ( ) ( ) ( ) ( )1 2

1 2
d db s e s e s e s dσ

σ= "  (2.1) Theorem (3): The Optimal approximate GCD of 
degree  k ( ) 1 0...k

ks s sϕ λ λ= + + + λ 0 0, λ ≠  of a 
set of many polynomials corresponds to the 
minimisation of  ŜQ

 where  

 
where the polynomials  ( ) ( ) ( )1 2, ,...,e s e sσe s  are 
pairwise coprime and the polynomial  
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has distinct roots. This factorisation is known as 
normal factorisation [9]. 





Proposition (1):   Consider a polynomial ( ) [ ]b s , s∈\

( ) 1
1 1...n n

nb s s b s b s b−
− 0= + + + + . We assume that 

( )s τλ+  is an elementary divisor of  ( )b s  over 

. The following properties hold true: C

 

i) The first derivative ( ) ( )1b s  has ( ) 1s τλ −+  as 
elementary devisor. 

ii)  The -th derivative k ( ) ( )kb s , k τ< , has 

(s λ) kτ −+  as elementary divisor.   (1.8a) 
 

iii)  The ( ) ( )b sτ  derivative is the smallest order 

derivative that has no roots at s λ= − .  
where the 0,nz θ− , 0, pz θ−  elements are defined by  
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  ■ where by  we denote the factorial  ,a bF
 

 
( ),

!
!a b

aF
a b

=
−

 ,  a b  (2.4d) 0≥ ≥ The significance of the above result is that 
introduces a framework for factorisation of polynomials 
without root finding. An exact elementary divisor 

( js )λ+

h

 of multiplicity  is also an exact divisor 

of the polynomial set consisted of the initial polynomial 
and its  first derivatives. We denote this set as  

h n≤
 
 An approximate factorisation of the 
polynomial  ( )b s  can be evaluated by combining the 
above results with the algorithm for approximate 
GCD on the set of the derivatives, for all approximate 
divisors of degree 2 or higher. This procedure 
includes three basic phases: 

 
( ) ( ) ( ) ( ){ }1

0 0,1 0,0 0... ,  ,  1,..., ,  ih n
n ib s s b s b b s b s i h h n+ = = + + + = = ≤D  

   
  

The Sylvester matrix  of the D  set will be a SD
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+
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there exists an approximate elementary divisor of 

multiplicity , i.e. (
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) 1

n

1h 1
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factor of ( )b s . To this aim we investigate whether 
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Step 2: Evaluation of best approximate common 
factor ( )1s λ+  for the set D . The combination 

of the nature of the elements of D  with Theorem 
3 implies the form of the optimisation: 
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 (b) Proposition (2): The best approximate factor 
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  (2.3c) 
  
 Note that b s  is the i -th derivative of ( )i ( )b s  
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or    ■ 

, , 0i k k i k k ib F b+ += ,  ,  k n  ,  i (2.4c) 0,1,...,= − i h≤  
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[2] BARNETT, S. (1990): “Matrices Methods and 
Applications”, Clarendon Press, Oxford 

Step 3:  Division of the initial polynomial by the factor 

( )( ) ( 1

1 1
h he s s )λ= +  such that  

 
  (2.6) ( ) ( ) ( ) ( )1

1 1 1
hb s s f s sλ= + ⋅ + ε [3] FATOUROS, S. and KARCANIAS, N. 

(2002): “Resultant properties of GCD of many 
polynomials, GCD representation and its 
computation” City University Control Engineering 
Center, Research report, London 

 
 ( ){ }1 1degn f s n= = 1h−

)

 

where  is the minimum perturbation that is 

required for (
( )1 sε−

s 1

1
hλ+  to become exact factor of 

.  ( )b s

 
[4] FATOUROS, S., KARCANIAS, N., 
MITROYLI,  M. and HALIKIAS G. (2002): 
“Approximate Greatest Common Divisor of many 
polynomials and generalised resultants” ACA’ 2002 
Conference, June 25-28, 2002, Volos, Greece  The polynomial pair ( )( ) ( )1 1,f s ε− s  can be 

found with matrix operations described in [4].  
[5] ROSENBROCK, H.H. (1970): “State Space and 
Multivariable Theory”, Nelson, London  

 
Step 4:  We repeat the procedure from Step 1, for the 
quotient polynomial of the division (2.6). We terminate 

it when N . ( )2 0
knε =D

 
[6] KAILATH, T. (1980): “Linear Systems”, Pentice 
Hall, Englewood Cliffs N.J.  
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 The result of the above algorithm will be a 
sequence of polynomials ( ) ( ) ( )1 ,..., ,k k 1f s f s f + s  

where ( ) ( )j jf s s λ= + , 1,...,j k=  and ( )1kf s+  will 

be the irreducible part. The approximate factorisation of 
 is then given by: ( )b s

 
[7] KUCERA, V. (1984): “Discrete Linear Control: 
The Polynomial Equation Approach”, Willey, 
Chichester. UK 
 
[8] VARDOULAKIS, A.I.G. and STOYLE, P.N.R 
(1978): “Generalised Resultant Theorem”, J. Inst. of 
Maths. and its Appl., 22, 331-335. 
  ( ) ( ) ( ) ( )1 2

1 2 1
kh h h

k kf s f s f s f s+"  (2.7a) 
where 
  (2.7b) 1 2 2kh h h≥ ≥ ≥ ≥"

[9] KARCANIAS, N. and MITROULI, M. (2002): 
“Normal factorisation of polynomials and 
computational issues”, An Inter. Journal of 
Computers and Mathematics with Applications, 
Submitted 2002  and 

 ( ){ }1 2 1... degk kh h h f s n++ + + + =  (2.7c)  
  

[10] FATOUROS, S. and KARCANIAS, N. 
“Optimal Approximate GCD of many polynomials”, 
(2003): City University, Control Engineering Center, 
Research report, London 

 
3. Discussion   
 
 This paper has introduced a theoretic framework 
for approximate factorisation of polynomials based on 
recent matrix algorithms for the evaluation of the exact 
[3] and the approximate GCD [4], [10] of many 
polynomials. The disadvantage of the algorithm is its 
operational complexity, which may be reduced with a 
more appropriate sequence of operations. 

 
[11] FOSTER, L. (1986): “Rank and Null Space 
calculations using matrix using matrix decomposition 
without column interchanges”, Lin. Alg. And its 
Appl., 74, 47-71. 
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