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Abstract—Many practical control problems are so complex The paper starts by formulating the robust stabilization
that traditional analysis and design methods fail to solve. Con- problem in Section Il. The we provide a brief summary of
sequently, in recent years probabilistic methods that provide Monte Carlo methods and how they are used to solve the
approximate solutions to such ‘difficult’ problems have emerged. . . .

Unfortunately, the uniform random sampling process usuall prpblem at hand in Section 1Il. I_n Section IV, we present.a
used in such techniques unavoidably leads to clustering of fairly extensive exposure of quasi-Monte Carlo methods, with
the sampled points in higher dimensions. In this paper we different methods for generating point sets of low discrepancy,
adopt the quasi-Monte Carlo methods of sampling to generate hence low error bounds. Finally, in Section V, we simulate
deterministic samples adequately dispersed in the sample-space.both random and quasi-random methods and compare them

Such approaches have shown to provide faster solutions than . . - . .
probabilistic methods in fields such as Financial Mathematics. with respect to their ability to retain their level of accuracy as
the number of points increases.

. INTRODUCTION Il. PROBLEM FORMULATION

Many control problems are so complex in nature that Consider the control problem shown in Fig 1:
analytic techniques fail to solve them. Furthermore, evenProblem 1: Given a real rational plant modél(s, p), with

if analytic solutions are available, they generally result inncertain parameter vector = [p1 p2 ... p,] € I,
very high order compensators. It is for these reasons thimtes there exist a controllef'(s,q) that can stabilize the
we accept approximate answers to provide us with certaincertain system, wherg=[g1 ¢2 ... ¢qm] €1} is the

guarantees in such control problems. This is when sampliagmissible controller parameter vector.
methods come into the picture to try and remedy the “cost of

solution” problem by drawing samples from a sample space, ;?__# Clsa) ’u_+ s p) Fy%

and providing an approximate answer. For many years, random
sampling has dominated the afore mentioned arena. Recently
however, deterministic or quasi-Monte Carlo methods have
proven superior to random methods in several applications. Fig. 1. Feedback Structure.
In this paper we are interested in exploiting the quasi- - o . .
Monte Carlo deterministic method of generating point sampl&g Problem 1 abovel” is the uniti-dimensional hypercube in
from a sampling space in robust control problems. Qua@f' Without loss of generality the regions of plant uncertainty

Monte Carlo methods have been extensively used in financid design parameters have been scaleccg to)g}e %nit hypercubes
N ) . . . ) m H _ S,q S,P.

mathematics in recent years, especially in calculating certdin@ndly’, respectively. Lef'(s, p, q) = s .qcis.p) 0€ the
financial derivatives in very high dimensions. The controfg0Sed-loop transfer function. _
community has so far relied heavily on generating random Problem 1 is the robust stab_l_hzatlon problem, qnd_ requires
samples based on Monte Carlo theory for the evaluatididt the controllerC(s, q) stabilizes every plant inside the
of performance objectives for various problems in robusficertainty interval ;). This problem is inherently hard to
control. However, random sample generation, with a unifor@p!Ve in general, since we essentially have to check if all the
underlying distribution, tends to cluster the samples on tiants inside the uncertainty sg} are stabilizable, which is
boundary of the sample space in higher dimensions, unldddually |mpos_5|ble_z in a limited t|_me span, due the continuity
we try to learn the underlying distribution. It is for the lattePf the uncertainty interval. That is why we relax the problem
reason that we are interested in presenting a method tH§p @n approximate one through sampling. The method of
distributes the pointgegularly in the sample space whileSolution is fairly simple using sampling and casting Problem
providing deterministic guarantees. 1 into anempirical mean(or integration) setting.

While Problem 1 requires an exact solution for the robust

1The research of C.T. Abdallah and P.F. Hokayem is partially supporté&abilizatipn _prObIem’ the apprOXi_mate so_lution requires the
by NSF-0233205 use of anindicator function(¥), which provides answers for




discrete points of the plant parameter uncertainty spectrum anehere )\, is an d-dimensional Lebesgue measure dfidis
admissible controller parameter space. transformed into a probability space equipped with a proba-
Definition 1: An indicator function¥ is a decision type bility measuredn = % [1], [3]. As a result, the problem
function that attains crisp values that belong to the discrete sétevaluating the integral has been simply transformed into
A=10,1,2,...,d] depending on the decision criteria used tevaluating the expected value on the probability space, which
evaluate the problem, at specific points of the sample spaggrovides an approximate answer. For an extensive overview
Definition 1 is a general one for indicator functions, but foen Monte Carlo methods in robust control problems see [5],
our purposes we specialize it to fit our context as follows: [14], [17], [18].
i The dimensiond’ could be extremely large in some appli-
(P, Q;) = { L, T(s,p,q) s stable (1) cations, however the probabilistic results obtained using Monte
0, otherwise Carlo methods are dimension-independent. Finally, and con-

whereP; andQ; are sampled vectors from the plant paramet&emi”g the asymptotic behavior of Monte Carlo methods of

space and admissible controller parameter space, respectivijPling, the convergence error in (3) between expeg}gd value
and A = [0, 1]. and the actual value of the integral is of ord8(N—1/2),

where N is the number of samples. The constant by which
the order is multiplied is a function of the variance of the
samples. That is why, different Monte Carlo methods are
usually targeted at decreasing the variance of the samples (see
[3]). See Figure 2 for illustration of uniform random sampling
in the 2-dimensional unit plafelt can be easily spotted that

. 1 & . there are several clusters in the sample set, and huge gaps as
fo-(B) = f(PQ") = + ;‘P(H,Q ) (2 aresult

Having defined the indicator functioi, we can easily cast
Problem 1 into a sampling context as follows:

Problem 2: Consider Problem 1. Find vecto* =
i ¢ ... qy] € I which stabilizes the uncertain plant with
a high level of confidence, that i§* maximizes

where f is called the counting function, and is a large
number.

Problem 2 gets rid of solving the problem over a continu-
ous plant parameter space through sampling that space, and
counting those samples that result @1 = 1, i.e. a stable
combination ofP; and@;. The second step is to pick* = Q;

that produces the largest answer ffig(P), the counting
function. The functionfq (P) can be interpreted as the average
performance of the uncertain system with respect to a certain
controller Q;.

Fig. 2. Uniform random sampling in 2D for 1000 points

IIl. M ONTE CARLO METHOD

In this section we define briefly the Monte Carlo method in N
general, and then specialize it to solve Problem 2.

The Monte Carlo method was first published in 1949 by
Metropolis and Ulam at Los Alamos National laboratory. Fig. 3. Sampling in higher dimensions
Since then it has been used extensively in various areas of
science such as statistical and stochastic physical systems [4],
derivative estimation [2], and integral evaluation [3]. A. Sampling in Higher Dimensions

Loosely definedMonte Carlo is a numerical method based . . .
upon random SamTp“ng of the parameters Spa’ﬁhere are Assume that we are trying to minimize a function over the

many variations of sampling methods but the main idea isit cube (0, 1]¢), and that the minimum (or maximuinpoint
invariant throughout all methods. Given a functigfx), itis s exactly at the center of the hypercube. Also consider a

required to find fy, g(x)dx (the integration region has beeng.q hypercube of sides equallte-¢/2 inside the original
scaled to the unit hypercube for consistency). Usually the. : . . . A
dimension & is high, and numerical solutions are computalhit cube. Now, imposing a uniform probability distribution
tionally expensive. That is when Monte Carlo method comes the unit hypercube, results in the probability of sampling
o e peutc, ot svrtomes e imerscrelie e smale cub (oo Foue 3. = (1
with ad-dimensional Probability density, usuaIIY uniform if Whereq IS the dmenspn qf the hypercube. Consequently, the
no prior knowledge of the distribution is available. The secorffobability of sampling insidd;,,,.., tends to zero ag — oo,

ste? i”s to integrate with respect to the probabilistic distributidfience the clustering effect on the surface is observed as we go
as follows:

z z z 1All the simulations in this paper were done using MATLAB software

_ _ — (1 _
= . g(z)dz = . g(@)dz = Aq(17) . g(mdn=E{g(m} () 2Converting between max and min problems is trivial
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into higher dimensions. This phenomenon is typical in Monte 2) Error in Quasi-Monte Carlo:[1]

Carlo simulations, if no prior knowledge of the distribution The error in quasi-Monte Carlo methods integration over
is known. One way to remedy the problem may be to leathe unit hypercube fo’N samples is defined as follows,

the underlying distribution, which is usually computationally

N
much more demanding. — 1 _
S PSRy RO ©

IV. QUASI-MONTE CARLO METHODS
H)efine the total variation of the functiofion I in the sense

In this section we expose the reader to quasi-Monte Ca O\itali asV@(f) = supp S op |A(f;.J)], where is the
€ AR

methods. The main idea is to replace the random sampg%:% of all partitions ofi?, J is a subinterval o, andA(f, J)
required for Monte Carlo simulation with deterministic sam: : :
. . I . is an alternating sum of values g¢fat the vertices of/. The
ples that possess certain regularity conditions, i.e. they are. .. . .
o . . variation could also be equivalently defined as
regularly spread within the sampling space. This method 1S

also independent of the dimension of the sampling space. V@ = ! 1
It has shown its superiority over Monte Carlo methods in (f) = o Lo

the calculation of certain integrals [11], financial derivatives o i o )
[12] and motion planning in robotics [16]. Recently. quasi\gvhenever the indicated partial derivative is continuousitn

Monte Carlo methods have been used for stability analysigis variation is redefined ofif’ in the sense oHardy and
of high speed networks [15]. Certain variations involvindirauseas

dny...dng — (6)

_ o
3171 .. 877d

randomization of quasi-Monte Carlo methods were presented d . o ,

in [13]. However, in what follows we are going to present basic  V(f) =Y > VO (frin, g, onik)  (7)
ideas in quasi-Monte Carlo methods due to the substantial k=11<41 <ip <+ <ip<d

diversity of the subject. whereV®)(f1iy, iy, ..., i)) is the variation off in the sense

of Vitali rerstricted to a&-dimensional surfacef has bounded

. . _ . variation if V(f) in (7) is finite. Now we are ready to state
We start off by introducing certain mathematical facts thage error formula for quasi-Monte Carlo methods.

will aid us in the evaluation of the error bounds for each of the Thegrem 1:[1] If f has bounded variations in the sense of
different methods of generation of quasi-Monte Carlo poini§ardy and Krause ofi?, then for any point sefX, Y, we
sets. have
1) Discrepancy:The discrepancyis a measure of the ‘reg- le| < V(f)DE(X1,..., XN) (8)

ularity in distribution’ of a set of points in the sample spacgasically, the magnitude of the error depends on the variation
In order to define it mathematically, we need to define thg the function and the star discrepancy of the point set chosen.
following counting function:A(B; P) = >_,_, I5(Xi), where  That is why we are always after low star discrepancy point sets
B C Iis an arbitrary setP = (X1,..., Xy) is a point set, in quasi-Monte Carlo methods. It is also worth mentioning that
N is thg_number of points, anfiz is an indicator fUOCtIOH- the error bound in (8) is conservative, i.e. if the variation of the

' Definition 2 The general formula for the evaluation of thgynction is large, we get a large bound on the error, although
discrepancy is given by the actual error might be small. This error bound is obtained
A(B, P) for multi-dimensional integrals of functions, however another
- Aa(B) (4)  error bound could be obtained for a 1-dimensional integral in

terms of the modulisof continuity.

where \y(B) is the d-dimensional Lebegue measure of the In subsequent sections we are going to present the error
arbitrary setB and 53 is the family of all lebesgue measurablebounds for each of the methods used in generating the low
subsetsB of 9. discrepancy point sets. The values given are for the star
Definition 2 can be specialized into the following two casesdiscrepancy of the sequence, which is then reflected in the

« The star discrepancyD% (X1,..., Xy) is obtained by error bound given in (8).
letting B in (4) be defined as follow* = {VB : B =
Hle[o,ui)} i.e. the set of alldi-dimensional subsets of ) ) . _ .
I that have a vertex at the origin, angds being arbitrary N this section we briefly descnpe hqw to generate quasi-
points in the corresponding 1-dimensional space. Monte Carlo Iowl d|screpanc_y points in and|men5|ongll '

« The extreme discrepancy)y (X1, ..., Xy) is obtained sample space. Slnge the points result from a Qeterm|n|sF|c
by letting B in (4) be defined as follow#3 = {VB : method of generation, they possess a certain regularity

B— H?:l[vivui)} whereuv;’s andu;’s are both arbitrary Property of distributi_on _in the sample space described by
points in the corresponding 1-dimensional space. their discrepancy. This gives the method leverage over Monte

. . Faglo methods in the sense that the guarantees over the error
The star discrepancy and extreme discrepancy are relate

through the following inequalityD%, (P) < Dy(P) < 3)¢| < w(f DY (X1, .., Xn) —
21Dy, (P). SUPy ve(0,1)& u—v| <D} (X1,....Xx) |/ () = f(V)]

A. Preliminaries

Dy(B,P) = su
~(B,P) Bc% N

B. Point Sets Generation



magnitude are deterministic and are given by (8). N
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1) Van Der Corput: [1]

RS

ot o
e
*
3

The van der Corput sequence in basevhereb > 2 € N, u*:*:*:*i:*{:*::*{r,,i:*:*:,;*:;*:;;;;;j:;f:;*:;*:,*
is a one dimensional sequence of points that possesses the °‘:i*;i:i’:ii:}*}::’:iifi::ii:};2:::1:liiigjii:i?;ii}:i:};ii:
property of having a low discrepancy in the unit interfiat MM
[0,1] c R. The main idea is to express every integee N R s
in baseb and then reflect the expansion into the unit interval e
I. This is done as follows:
1) Let R, = {0,1,...,b— 1} be the residue set moduto Fig. 5. Hammersley sequence in 2D for 1000 points

2) Any integern > 0 can be expanded in bageas:n =

50 k
2_=o ar(n)b", Whereay(n) € Ry, Vk. sequences is that, the first can virtually be expanded for

3) Finally, we get the sequenceXn.} asXn = #%(n) = jyfinie N while the second requires an upper bound on

S —j—1
_Zk:‘) ar(n)b™7 ) the number of samples. See Figure 5 for a 2-dimensional
/\E; \A/lll t)(E ESEEEBT1, tf1€5 van (jEEf (:()r[)l]t 55&9(4[]63[](:63 \A/lll t)(E LJE;EE(j }t{%irT]rT]Eersslea)/ E;ee(quear](:eal 1—r]ea t)()l]f](j on tr]ea star (jis;(:rear)eﬁr](:)/

generate higher dimensional vector samples, with the variatignthe Hammersley sequence is given by (9) except that the
of the expansion base Finally, the star discrepancy of theproduct is terminated 4t — 1), because we only havel — 1)

van der Corput sequence is given by (X1,..., Xn) = van der Corput sequences in the construction.
O(N~!log(N)), with a constant depending on the base of 4) (t,s)-Sequences[1], [6], [7]
expansion. One of the most successful low discrepancy sequences are
N (t,s)-sequencéswhich depend on the theory of (t,m,s)-nets.
:gﬁiy"’z“%*wi*é*‘é The construction of such sequences is much more involved
T e e than those introduced earlier. Consequently, our discussion
R e T will be concise and the interested reader is referred to [1],
'{**‘«?ir*ihﬁf}”* [6], [7]. First, we will start with some preliminary definitions.
A Definition 3: Let £ C I° be an s-dimensional subinterval
R S T A defined as followsE = [];_,[a;b=%, (a; + 1)b~%), where
PRty ff;%;‘;‘;f a;,d; € Z such thath > 2, d; > 0 and0 < a; < b¥.
B I e Definition 4: Let E be as in Definition 3, then a (t,m,s)-net
in baseb is a point setP; such thatcard(P) = b™ and each
Fig. 4. Halton sequence in 2D for 1000 points E interval containsV \(E) points, where\,(E) = b'~™ is
the s-dimensional Lebegue measurefbf
%_) Halton Sequencefl] o Basically, Definition 4 guarantees that the samples are dis-
he Halton sequence is a generalization of the van q‘?irbuted evenly inside smaller hypercubds c I°. This

Corput sequence In Section IV-B.1 to span&dimensional , ;
sample space. The main idea is to generatedimensional Pproperty decreases the discrepancy value of the point sequence
sequences and form the correspondifigimensional vec- P, hence the error bound.

tor sample points. Leby, bs,..., by be the corresponding : ] ; ; ; )
expansion bases for each dimension, preferably relativel) Next we define(t, s)-sequences starting with one dimen

prime*. Let ¢y, by, ..., s, be the corresponding reflected® onal sequence and generalizing to ;-dmepsmngl.xL&t

expansions according to the corresponding bases. Theit thé0, 1] C R then the reflected expansion in bdses defined as
dimensional sequencegsY?} are formed as followsX,, = follows:

(b, Poys - - -, P1,) € 1% A figure of a 2-dimensional Halton 0o

sequence is shown in Figure 4. Assume that the bases for the ;. _ Za p=J a; € Ry={0,1,...,b—1} (10)

expansion are relatively prime, then the star discrepancy is 7 ! T

given by (see [1]) J=1

v Given an integern > 0 define the truncated sequence of (10)
Dy (X xv< 4L biml g4 ittt © as,[z)pm =D ajb™d a; € R, = {0,1 b—1}
NAL . AN N NZ-: 210g by og v [Elom = j=14%j ; i b = s Ly ’

1 which is a one-dimensional truncated sequence. Then, we

expand the one-dimensional truncated sequence into an s-
3) Hammersley Sequencgt] dimensional one;[Xpm = ([2M]ym,...,[x®]y.n), and
The Hammersley sequence is generated as Halton sequenges e are ready to state the main definition of (t.5)-
in Section IV-B.2. However, there is slight difference is thastequences.
we formd—1, ¢-sequences and then thedimensional vector  pafinition 5: For b > 2 and ¢t > 0 being integers: a
samples are generated as follows§; = (5, ¢b,, - -, Pby_, )- sequenceXy, X1,... in I* is a (t,s)-sequence in base if
One extra difference between the Halton and Hammersley

5In this section we letd’ be the dimension of the space instead df,
4Choosing the expansion bases relatively prime reduces the discrepaityrder to preserve the nomenclature of the sequence ‘(t,s)’, as given in the
hence the error bound cited references.



[Xn]o.m andkb™ < n < (k+1)b™ form a (t,m,s)-net in base

b, for k > 0 andm > t. er
Note 1: The van der Corput introduced in Section IV-B.1 o9sr
is an example of a (0,1)-sequence in base s0af

Note 2: As might have been suspected, a smaller value of
t in Definition 5 would result in stronger regularity in the
sample space.
The discussion on (t,s)-sequences presented sofar is descriptive
and the actual construction of such sequences is relatively sBsr
complicated with several available methods and variations smar H
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thereof, see [9] for an abridged presentation of available wnol
methods of construction. Finally, there are several available "
bounds on the star discrepancy of this method which we will ’ e o m e
not list here, however the interested reader may consult [1].

5) Lattice Points: The construction of lattice structured rig 7. percentage stabilization with random uniform sampling
points is fairly simple. In [1] the general method is stated

as follows:
« Let 1,a1,a,...,aq be linearly independent rational[0, 1] andp> € [0, 1]. The resulting closed-loop characteristic
numbers. polynomial is
« N is the number of sampled points. p(s) = 2+ (14pi+p2+q)s’ (1)
« Then the lattice point sedt is constructed as follols = + (14p1+p2+q)s
{N(O[17O[2,...,Oéd)}eﬂ 5 Vn:(),l,...,Nfl, and + (025+p2+3p1+3p2+3q+2p1p2+2p1q+2p2q)

{.} denotes the fractional part of the real number. . L d .
Using Maxwell’s criterion for3"“-order polynomials, we ob-

tain the following multivariate-polynomial inequalities (MPIs)
that guarantee the stability of (11),

vi(p1,p2,9) = 1+pi+pa+qg>0 12)
va(p1,p2,q) = 0.25+p°

+  3p1+3p2 + 3q + 2p1p2 + 2p1q + 2p2g > 0
vs(p1,p2,q) = Pi+Pi+q —pr—p2—q+075—p° >0

It is easily seen that the first and second inequalities in
(13) are always positive for the ranges of uncertainties and
design regions given. However, t13&? inequality requires a
Fig. 6. Lattice point set in 2D for 1000 points, = YZtL closer look to establish the stability regions for the closed-loop

system. Through completing the squares, #i& inequality
n?ould be written as

It was reported in [10] that a good choice for lattice poi ) ) .
sets would be those of théorobov type which are a special vs(p1,p2,9) = (p1=0.5)"+(p2—0.5)"+(¢—0.5)"—p" > 0 (13)

case of the choice above wherg = o'~', ie. X, = |t is easily seen that (13) equated to zero results in the
{£(1,0,02,...,0% 1)} €1?, Vn=0,1,...,N—1,where equation of a sphere centered(at5,0.5,0.5) and radiusp.

1 < a < N,a € N. See Figure 6 for illustration in 2- Therefore, our instability region is defined by the intersection
dimensional space. As observed in Figure 6, the lattice pomtthe.ungs&dcl:mensmnal Ihypﬁrcubiland_ the sp?eélcalfrt?lglon
set has the best regularity of distribution of the points in g en in (13). Consequently, the problem is restated as follows

2-dimensional unit plane. The derivation of the bound on the @sat ={q¢ €[0,1]: V pe[0,1],7 €[0,1],p1(p,q,7) >0
error in the case of lattice construction is fairly more involved, A pa(p,q,7) > 0Ap3(p,gq,r) >0} (14)
and depends on periodic functions and Fourier coefficient

: . Ysually solution regions for problems such as the one pre-
and consequently will be omitted here. y 9 b P

sented in (14) are hard to obtain analytically. However, in our
V. ROBUST CONTROL PROBLEM SIMULATION case the solution is fairly simpl€),,; = {[0,0.5—p)U(0.5+
In this section we consider an old problem first inp,1]}. Forp = 0.499 we haveQ,, = {[0,0.001)uU(0.999,1]}.
troduced by Truxal in [8]. The main idea is having a In what follows, we address the same the problem using

hypercube-like parameter spac&)( with a hypersphere- sampling methods, random and quasi-random. The indicator

like region @B"(0,p)) of instability. The problem be- . ; ;
comes challenging when the instability radius becométsInCtlon is the one mentioned in (1), where

close to the boundary of the sampling space. Refer toe I = [p:,r:] is the sample vector from the plant parameter
Figure 1 with the plant transfer functiodi(s,p,r) = space

s”+5+(3+2p1 +2ps) ;. = [g] is the scalar sample from the controller
s3+(1+p1+p2)s2+(1+p1+p2)s+(0.25+p2+3p1+3p2+2p1p2) and the . Qi [Qz] p

simple gain controllerC'(s,q) = ¢, with ¢ € [0,1], p1 € parameter space.
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A. Using Random Samples

Let Np = 1000 be the number of samples taken from the

parameter spaci‘% and Ng = {50,75,...,625,650} be the

number of samples taken from the controller admissible space
I}. In Figure 7, we present the number of samples vs. th
best percentage stabilization achieved. Since the sampling is
random, there are no deterministic guarantees that the plddt

were compared through simulation according to their ability
to solve the problem at hand. Although random methods
might converge to the solution at a lower number of samples,
they might lose convergence at higher number of samples.
However, deterministic quasi-Monte Carlo point generation
retains its ability to find the solution once it converges. Future
work aims at investigating the performance of quasi-Monte
Carlo methods in high dimensional robust control problems
and deriving analytic bounds for the error when dealing with
MPI problems.

(1]
(2]

(4]
[5]

can be stabilized even with a high number of controller

samples. That is the reason why we can achi®gg; stability
with 100 samples, on the other hand we may not redéi¥
stability at 625 samples.

(8]

El

Note 3: When taking/Ng controller parameter samples for

the simulation, we disregard previous samples for smallgr

B. Using Quasi-Random Samples

(10]

In this section we are going to explore the performandél]
of deterministic quasi-Monte Carlo sampling. We follow th?lz]
same presentation as in Section V-A, using the Halton se-
guence presented in Section IV-B.2. The result is seen [113]

Figure 4. The onlyl00% stabilizing controller parameter for

Ng = {625,650} is Q* = 0.00032 € Q0. As suspected [14]
the deterministic sequence retains its ability to stabilize the

uncertain plant once it reaches th@0% stabilization mark.

That is due to the fact that the points are not selected randonpy;
but are instead chosen to fill the sampling space in a regular

fashion.

Note 4: In the simulations of Sections V-A and V-B,

(16]

achieving100% stability is only with respect to the samples
(P;) taken over the plant parameter sp4&g), and therefore [17]
our answer is approximate. There may be intervals between

samples for which the closed-loop system is unstable.

VI. CONCLUSION

(18]

In this paper we have presented the robust stabilization
problem and tackled it from a sampling point of view. A
fairly self-contained presentation of Quasi-Monte Carlo point

generation was presented. Then random and deterministic

point generation were used in order to solve the robust
stabilization problem. Both methods of sample generation
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