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Abstract— In this paper, we deal with the problem of the

inversion of nonlinear maps, when the reference trajectory

is not differentiable, thus extending previous works. First,

we give the definition, in a formal framework, of a problem

related to map inversion, which is already present in the

literature, for instance in the robotics area and in observer

theory: the inverse kinematics problem and the inversion of

the nonlinear observability map. Secondly, we give the solu-

tion of such a problem by means of an asymptotic observer,

for which a structure is proposed, for the state estimation of

a time-varying nonlinear system associated with the given

map and reference trajectory.
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I. Introduction

The problem of the “real-time” inversion of non-linear
maps is fundamental in various research fields, e.g., in the
asymptotic tracking of reference trajectories [1], in the ob-
server design for discrete-time nonlinear systems [2], [3],
and in robotics (such a problem in robotics is termed “in-
verse kinematics”: see [4], [5]). The real-time inversion of
nonlinear maps is the counterpart of the analytic compu-
tation of the inverse of a non-linear map, which in some
case could be difficult or impossible to be carried out in
closed-form.

The problem of the asymptotic inversion of non-linear
maps has been considered by the authors [6], [7], [8], under
the assumption that the reference trajectory is differen-
tiable a sufficiently high number of times. Aim of this pa-
per is to extend the previous results when in the reference
velocity there are instantaneous jumps (and, therefore, it
need not to be differentiable).

Such an extension is fundamental in robotics, when the
robot must impact with the external environment [9], e.g.,
for walking robots. As a matter of fact, in such a case the
reference trajectory is non differentiable at each impact
time.

II. The inverse kinematics problem for

non-differentiable trajectories

Let A ⊂ R
n be an open and connected domain of a di-

rect kinematics map h(·) : A → R
n; assume that B := 〈(A)

is an open and connected subset of R
n. Assume that
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map h(·) is of class Cp+1 for a sufficiently high p ≥ 0.
Given an initial time t0 ∈ R and a reference trajec-

tory yr(·) : [t0,+∞) → B, the inverse kinematics prob-
lem consists in finding an inverse reference trajectory

qr(·) : [t0,+∞) → A such that

yr(t) = h(qr(t)), ∀t ∈ [t0,+∞). (1)

In the sequel, let J(q) :=
∂h(q)

∂q
be the Jacobian matrix

of the map h(·); notice that, by the assumption h(·) ∈
Cp+1, p ≥ 0, the entries of J(q) are continuous.

In this paper we make the restrictive assumption that
there exist a countable set of times {ti}i≥1 such that ti+1 >

ti, and

lim
i→+∞

ti = +∞

ẏr(t
−
i ) 6= ẏr(t

+

i ), ∀i ∈ N;

here and in the following we use the shorthand notations
ϕ(t−i ) := lim

t→t
−

i

ϕ(t) and ϕ(t+i ) := lim
t→t

+

i

ϕ(t), when such lim-

its exist.
The times ti, i ∈ N, are called the reference impact

times and correspond to sudden jumps in the reference
velocity and possibly in the higher order time derivatives:
notice that, if (q, q̇) is the state of a mechanical system
driven by a non-impulsive control input, they can be actu-
ally imposed only if at those times there are non-smooth
impacts between the mechanical system and the external
environment or between parts of the mechanical system. A
similar remark applies also to the case of systems of differ-
ent nature.

The purpose of this paper is to construct a dynamic sys-
tem

˙̂qr(t) = f(q̂r(t), yr(t), ẏr(t)),

t ∈ (ti, ti+1), i ∈ Z
+, (2)

q̂r(t
+) = g(q̂r(t

−)), i ∈ N, (3)

for suitable functions f(·, ·) and g(·), such that
lim

t→+∞
q̃r(t) = 0, where q̃r(t) := qr(t) − q̂r(t), for any suffi-

ciently small initial error q̃r(t0), despite the presence of the
reference impact times ti.
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Under the assumption that det(J(qr(t))) 6= 0,∀t ∈
[t0,+∞), from (1) we have

q̇r(t) = J−1(qr(t)) ẏr(t),

∀t ∈ (ti, ti+1), i ∈ Z
+, (4)

qr(t
+

i ) = qr(t
−
i ), i ∈ N. (5)

The dynamic system (2) that we propose is the following

˙̂qr(t) = µ K(q̂r(t)) (yr(t) − h(q̂r(t)))

+J−1(q̂r(t)) ẏr(t),

∀t ∈ (ti, ti+1), i ∈ Z
+, (6)

q̂r(t
+

i ) = q̂r(t
−
i ), i ∈ N, (7)

where K(·) is a matrix function to be suitably chosen and
µ ∈ R, µ > 0; notice that, such a system to be implemented
needs the measure of yr(t) and ẏr(t).

The corresponding error dynamics are

˙̃qr(t) = −µ K(q̂r(t)) (yr(t) − h(q̂r(t))),

∀t ∈ (ti, ti+1), i ∈ Z
+, (8)

q̃r(t
+

i ) = q̃r(t
−
i ), i ∈ N. (9)

The stability properties of the error dynamics (8), (9)
are stated and proven in the following theorem.

Theorem 1: Under the assumption that det(J(qr(t))) >

ε,∀t ∈ [t0,+∞), for some ε > 0, if K(q̂r(t)) = J−1(q̂r(t))
or K(q̂r(t)) = JT (q̂r(t)) then the error dynamics (8), (9)
are locally uniformly asymptotically stable.

Proof: To prove the theorem consider the quadratic

function V (q̃r, t) =
1

2
(yr − h(q̂r))

T (yr − h(q̂r)), which, by

the assumption det(J(qr(t))) 6= 0,∀t ∈ [t0,+∞), is a posi-
tive definite function of q̃r in a neighborhood of q̃r = 0 (see
the Definition 41.1 of positive definite function V (q, t) given
in [10]). As a matter of fact, for each time t ∈ [t0,+∞) and
for each sufficiently small q̃r, there exists pr(t) sufficiently
close to qr(t) such that V (q̃r, t) = q̃T

r JT (pr(t))J(pr(t)) q̃r.
Since by assumption det(J(qr(t))) 6= 0,∀t ∈ [t0,+∞), and
pr(t) is sufficiently close to qr(t), then there exists a pos-

itive constant γ such that V (q̃r, t) ≥ γ ‖q̃r‖2
holds for

all t ≥ t0 and for all q̃r belonging to a sufficiently small
neighborhood of the origin.

Computing the time derivative of V for t ∈ (ti, ti+1), i ∈
Z

+, we have

V̇ = (yr − h(q̂r))
T (ẏr − J(q̂r) ˙̂qr)

= −µ (yr − h(q̂r))
T (J(q̂r) K(q̂r))

(yr − h(q̂r)),

which, always by the assumption det(J(qr(t))) > ε,∀t ∈
[t0,+∞), and the choices made for matrix K(q̂r(t)), is
a negative definite function of q̃r in a neighborhood of
q̃r = 0. Since V̇ (t−i ) = V̇ (t+i ), t = ti is a disconti-
nuity of the first kind which can be removed by taking
V̇ (ti) = V̇ (t−i ) = V̇ (t+i ). Then, since V̇ (t) is bounded for
every t ∈ [t0,+∞), by Theorem 41.1 of [10], function V is
decrescent, according to the Definition 41.4 of [10]. This,
together with the continuity of V (t) at the times ti (which

is implied by (5) and (7)), shows that for any sufficiently
small initial error q̃r(t0), we have lim

t→+∞
V (t) = 0, namely

lim
t→+∞

q̃r(t) = 0, uniformly with respect to the initial time

t0. In addition, since there exists a positive definite decres-
cent function with negative definite derivative, then the
equilibrium q̃r = 0 is locally uniformly asymptotically sta-
ble (the reasoning is as in the proof of Theorem 42.4 of
[10]).

If K(q̂r(t)) = J−1(q̂r(t)), then (6), (7) corresponds to the
Newton algorithm, whereas if K(q̂r(t)) = JT (q̂r(t)), then
(6), (7) corresponds to the gradient algorithm.

The stability properties of the error dynamics are guar-
anteed for all µ ∈ R, µ > 0, but a faster transient can be
obtained by taking greater values of µ.

A similar theorem can be stated and proven by sim-
ply requiring that matrix K(q̂r) is such that J(q̂r)K(q̂r)
is positive definite and that det(J(q̂r(t))K(q̂r(t))) > ε̂,
∀t ∈ [t0,+∞), for some ε̂ > 0.

Example 2: Consider the map h(q) =
1

3
q3; then, J(q) =

q2. Such a simple function has been chosen for some rea-
sons: (1) it has a unique global inverse, (2) it is possible to
compute its inverse in closed form, h−1(y) = 3

√
3y; (3) its

Jacobian is null at q = 0, thus allowing to test the effective-
ness of the proposed technique when the inverse reference
trajectory is close to singularities.

The proposed algorithm (6), (7) with K(qr) = J−1(qr)
(i.e., the Newton algorithm) is

˙̂qr(t) = µ
1

q̂2
r(t)

(yr(t) −
1

3
q̂3
r(t)) +

1

q̂2
r(t)

ẏr(t),

∀t ∈ (ti, ti+1), i ∈ Z
+,

q̂r(t
+

i ) = q̂r(t
−
i ), i ∈ N,

whereas the proposed algorithm (6), (7) with K(qr) =
JT (qr) (i.e., the gradient algorithm) is

˙̂qr(t) = µ q̂2
r(t) (yr(t) −

1

3
q̂3
r(t)) +

1

q̂2
r(t)

ẏr(t),

∀t ∈ (ti, ti+1), i ∈ Z
+,

q̂r(t
+

i ) = q̂r(t
−
i ), i ∈ N.

Consider the following reference trajectory described by

yr(0) = 1,

ẏr(t) =

{

1 if t ∈ (2i, 2i + 1),
−1 if t ∈ (2i + 1, 2(i + 1)).

Such a reference trajectory is not differentiable at all
integer times, whereas it is continuous for all t ∈ R.

The effectiveness of the proposed observer in the case of
the Newton algorithm has been tested in simulation, and
the simulated results are reported in Figure 1, for µ = 1:
the inverse reference trajectory qr(t) (the continuous line)
and its estimate q̂r(t) (the dotted line) are reported in posi-
tion (1,1), whereas the reference trajectory yr(t) (the con-
tinuous line) and its estimate ŷr(t) := h(q̂r(t)) (the dotted
line) are reported in position (1,2).
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Fig. 1. Simulation results: the case of the Newton algorithm.
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Fig. 3. Two-DOF planar robot arm

The fast convergence can be verified by looking at the
estimation errors q̃r(t) := qr(t)− q̂r(t) and ỹr(t) := yr(t)−
ŷr(t), which are respectively reported in position (2,1) and
(2,2).

The effectiveness of the proposed observer in the case of
the gradient algorithm has been tested in simulation, and
the simulated results are reported in Figure 2 (for µ = 1),
using the same notations and conventions adopted in the
case of the Newton algorithm.

III. A two-DOF planar robot arm

Consider the two-DOF planar robot arm depicted in Fig-
ure 3. The robot arm is constituted by a base body and two
links, which are inter-connected by two rotational joints
so to form a planar chain. The two links have respective
length L1 and L2. The joint angles q1(t) and q2(t) are taken
as the generalized coordinates, which uniquely describe the
configuration of the robot arm in the motion plane.

Two infinitely rigid and massive surfaces are perpendic-
ular to the motion plane at a distance r from the joint
connecting the base body at the first link of the chain (see
Figure 3). Assume that L1 < r < L1 + L2, so that the
end-effector (which is also assumed to be infinitely rigid) is

the only part of the robot arm that may collide with the
surfaces.

The distance of the robot end-effector from the infinitely
rigid and massive surface on the right is

r − L1 cos(q1(t)) − L2 cos(q1(t) + q2(t)); (10)

then, the mechanical system is subject to the inequal-
ity constraint fr(q(t)) ≤ 0, where fr(q) := L1 cos(q1) +
L2 cos(q1 + q2) − r. The distance of the robot end-effector
from the infinitely rigid and massive surface on the left is

r + L1 cos(q1(t)) + L2 cos(q1(t) + q2(t)); (11)

then, the mechanical system is subject to the inequality
constraint fl(q(t)) ≤ 0, where fl(q) := −r − L1 cos(q1) −
L2 cos(q1 + q2).

Let q(t) :=
[

q1(t) q2(t)
]T

be the vector of the general-
ized coordinates.

The direct kinematics map is

ξ = L1 cos(q1) + L2 cos(q1 + q2),

η = L1 sin(q1) + L2 sin(q1 + q2),

with y := [ ξ η ]T and with the following Jacobian matrix

J(q) =

[

−L1 sin q1 − L2 sin (q1 + q2)
L1 cos q1 + L2 cos (q1 + q2)

−L2 sin (q1 + q2)
L2 cos (q1 + q2)

]

.

At each impact time ti, the post-impact velocity can be
computed as a linear function of the pre-impact velocity in
the following manner:

q̇(t+i ) = Zr q̇(t−i ),

q̇(t+i ) = Zl q̇(t−i ),
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Fig. 2. Simulation results: the case of the gradient algorithm.

depending on the fact that impact is with the surface on
the left or with the one on the right, where

Z` = I − 1 + e

J`B−1JT
`

B−1JT
` J`,

with B being the generalized inertia matrix of the robot
arm, e the coefficient of restitution and J` the gradient of
f`, ` ∈ {r, l}.

It is possible to show that at each impact time ti, we
have

ξ(q̇(t+i )) = −e ξ(q̇(t−i )),

η(q̇(t+i )) = η(q̇(t−i )).

Assuming that r = 0.5, we have considered the following
reference trajectory described by

ξr(0) = 1,

ξ̇r(t) =

{

0.5 if t ∈ (2i, 2i + 1),
−0.5 if t ∈ (2i + 1, 2(i + 1)).

ηr(t) = 0.7,

which is compatible with the case e = 1, i.e., with the case
of elastic impacts.

This reference trajectory corresponds to asking that the
end effector of the robot arm is moved on a segment of
a straight-line perpendicular to both surfaces, with a con-
stant velocity in modulus, which changes the sign in corre-
spondence with an impact with one of the two surfaces.

The effectiveness of the proposed observer in the case of
the Newton algorithm has been tested in simulation, and
the simulated results are reported in Figure 4, for µ = 10:
the reference trajectory yr(t) := [ ξr(t) ηr(t) ]T (the con-
tinuous lines) and its estimate ŷr(t) := h(q̂r(t)) (the dotted
lines) are reported in position (1,2), whereas the inverse
reference trajectory qr(t) is reported in position (1,1) in
continuous line.

The fast convergence can be verified by looking at the
estimation error ỹr(t) := yr(t)− ŷr(t), which is reported in
position (2,1).

The effectiveness of the proposed observer in the case
of the gradient algorithm has been tested in simulation,
and the simulated results are reported in Figure 5, for µ =
10 and the same notations and conventions used for the
Newton algorithm.

IV. Conclusions and future extensions

In this paper, we have considered the problem of the in-
version of nonlinear maps, when the reference trajectory
is not differentiable, thus extending previous works. It is
shown that the classical algorithm of Newton and of the
gradient, which are special cases of the proposed observer
structure, can be actually applied when the reference tra-
jectory is not differentiable at some times.

Such a problem could be extended by defining the fol-
lowing extended direct kinematics map

yr,e = he(qr,e),

where

yr,e =

[

yr

ẏr

]

, qr,e =

[

qr

q̇r

]

,

he(qr,e) =

[

h(qr)
J(qr) q̇r

]

.

Given yr,e(t), the extended inverse kinematic problem
consists in finding qr,e(t) such that

yr,e(t) = he(qr,e(t)), ∀t ∈ (ti, ti+1), i ∈ Z
+. (12)

As yr(t) is a piecewise-differentiable function of time,
with ti being the times at which it is not differentiable,
the need of avoiding times ti, i ∈ Z

+, in the equality (12)
is that yr,e(t) and qr,e(t) are not defined at times ti. Let
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Fig. 4. Simulation results: the case of the Newton algorithm.
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Je(qr,e) be the Jacobian matrix of he(qr,e), which has the
following form:

Je(qr,e) =

[

J(qr) 0
∗ J(qr)

]

.

Then, if det(J(qr(t))) > ε,∀t ∈ [t0,+∞), for some ε > 0,
then det(Je(qr,e(t))) > ε2,∀t ∈ (ti, ti+1), i ∈ Z

+.
A future extension of the proposed algorithm is the con-

struction of a dynamic system

˙̂qr,e(t) = fe(q̂r,e(t), t), t ∈ (ti, ti+1), i ∈ Z
+,

q̂r,e(t
+) = ge(q̂r,e(t

−), i ∈ N,

for suitable functions fe(·, ·) and ge(·), such that
lim

t→+∞
q̃r,e(t) = 0, where q̃r,e(t) := qr,e(t) − q̂r,e(t), for any

sufficiently small initial error q̃r,e(t0), despite the presence
of the reference impact times ti.

Under the assumption that det(J(qr(t))) 6= 0,∀t ∈
[t0,+∞), we have

q̇r,e(t) = J−1(qr,e(t)) ẏr,e(t),

∀t ∈ (ti, ti+1), i ∈ Z
+. (13)

If

yr(t
+

i ) = yr(t
−
i ), i ∈ N,

ẏr(t
+

i ) = E ẏr(t
−
i ), i ∈ N,

for some constant matrix E, then (for i ∈ N)

qr(t
+

i )=qr(t
−
i ), (14)

q̇r(t
+

i )=J−1(qr(ti))EJ(qr(ti))q̇r(t
−
i ). (15)
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Future work will regard the construction of an asymp-
totic observer for system (13), (14), (15).
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[8] S. Nicosia, A. Tornambè, and P. Valigi, “Robust inversion of
nonlinear maps,” Journal of Mathematical Systems, Estimation,
and Control, vol. 2, no. 1, pp. 45–69, 1992.
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