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Estimation error in adaptive prediction of Hidden
Markov Processes

Lászĺo Gerencśer, Ǵabor Molńar-Śaska.

Abstract—The purpose of this paper is to provide explicit results
on the almost sure asymptotic performance of adaptive encoding
and prediction procedures for finite-state Hidden Markov Models.
In addition, Rissanen’s tail condition [15] will be verified, from
which a lower bound for the mean-performance of universal en-
coding procedures will be derived. An example for binary HMMs
will be given. The results of this paper are based on [11].
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I. I NTRODUCTION

Hidden Markov Models have become a basic tool for mod-
eling stochastic systems with a wide range of applicability. For
a general introduction see [18]. The estimation of the dynam-
ics of a Hidden Markov Model is a basic problem in applica-
tions. A key element in the statistical analysis of HMM-s is
a strong law of large numbers for the log-likelihood function,
see [12], [13], [4]. An alternative tool that has been widely
used in linear system identification is theory ofL-mixing pro-
cesses. The relevance of this theory is established in [11] using
a random-transformation representation for Markov-processes
(see [10]). The advantage of this approach is that, under suit-
able conditions a more precise characterization of the estima-
tion error-process can be obtained, which, in turn, is crucial for
the analysis of the performance of adaptive prediction, see [7].

The purpose of this paper is to provide explicit results on the
almost sure asymptotic performance of adaptive encoding and
prediction procedures for finite-state Hidden Markov Models.
In addition, Rissanen’s tail condition [15] will be verified, from
which a lower bound for the mean-performance of universal
encoding procedures will be derived. To illustrate the results
we consider the simplest case, the binary HMM.

II. H IDDEN MARKOV MODELS

We consider Hidden Markov Models with a general state
spaceX and a general observation or read-out spaceY. Both
are assumed to be Polish spaces, i.e. they are complete, separa-
ble metric spaces.

Definition II.1: The pair(Xn, Yn) is a Hidden Markov pro-
cess if(Xn) is a homogenous Markov chain, with state space
X and the observations(Yn) are conditionally independent and
identically distributed given(Xn).
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If X andY are finite, say|X | = N , |Y| = M , then we have

P (Yn = yn, . . . Y0 = y0|Xn = xn, . . . X0 = x0) =

n∏
i=0

P (Yi = yi|Xi = xi).

In this case we will use the following notations

P (Yk = y|Xk = x) = b∗x(y), B∗(y) = diag(b∗i(y)),

wherei = 1, . . . , N , and∗ indicates that we take the true value
of the corresponding unknown quantity.

Let Q∗ be the transition matrix of the unobserved Markov
process(Xn), i.e.

Q∗
ij = P (Xn+1 = j|Xn = i).

A key quantity in estimation theory is the predictive filter de-
fined by

p∗j
n+1 = P (Xn+1 = j|Yn, . . . , Y0). (1)

Writing p∗n+1 = (p∗1n+1, . . . , p
∗N
n+1)

T , the filter process satisfies
the Baum-equation

p∗n+1 = π(Q∗T B∗(Yn)p∗n), (2)

whereπ is the normalizing operator: forx ≥ 0, x �= 0 set
π(x)i = xi/

∑
j xj , see [1]. Herep∗j

0 = P (X0 = j).
In practice, the transition probability matrixQ∗ and the ini-

tial probability distributionp∗0 of the unobserved Markov chain
(Xn) and the conditional probabilitiesb∗i(y) of the observa-
tion sequence(Yn) are possibly unknown. For this reason we
consider the Baum-equation in a more general sense

pn+1 = π(QT B(Yn)pn), (3)

with initial conditionp0 = q, whereQ is a stochastic matrix,
pn is a probability vector onX , andB(y) = diag(bi(y)) is a
collection of conditional probabilities.

Continuous read-outs will be defined by taking the following
conditional densities:

P (Yn ∈ dy|Xn = x) = b∗x(y)λ(dy),

whereλ is a fixed nonnegative,σ-finite measure. Let

B∗(y) = diag(b∗i(y)),

wherei = 1, . . . , N , then the conditional probability defined
under 1 will satisfy the Baum-equation. In the rest of the section
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we deal with continuous read-out, which includes the finite case
in a natural manner.

We will take an arbitrary probability vectorq as initial con-
dition, and the solution of the Baum equation will be denoted
by pn(q).

A key property of the Baum equation is its exponential sta-
bility with respect to the initial condition. This has been estab-
lished in [12] for continuous read-outs. Here we state the result
for HMM-s with a positive transition probability matrix:

Proposition II.1: Assume thatQ > 0 andbx(y) > 0 for all
x, y. Let q, q′ be any two initializations. Then

‖pn(q) − pn(q′)‖TV ≤ C(1 − δ)n‖q − q′‖TV , (4)

where‖ ‖TV denotes the total variation norm and0 < δ < 1.
If Q is only primitive, i.e.Qr > 0 with some positive integer

r > 1, then (4) holds with a randomC.
Next we are going to introduce the notion of Doeblin-

condition (see [2]):
Definition II.2: If there exists an integerm ≥ 1 such that

Pm(x,A) ≥ δν(A) is valid for all x ∈ X andA ∈ B(X )
with some probability measureν, then we say that the Doeblin-
condition is satisfied.

Now let (Xn, Yn) be a Hidden Markov process and assume
that the state spaceX and the observed spaceY are Polish.

Lemma II.1: Assume that the Doeblin condition holds for
the Markov chain(Xn). Then the Doeblin condition holds for
(Xn, Yn) as well.

III. M ARKOV CHAINS AND L-MIXING PROCESSES

Now we are going to introduce a class of processes called
L-mixing processes which have been used extensively in the
statistical analysis of linear stochastic systems, see [6].

Definition III.1: A stochastic process(Xn) (n ≥ 0) taking
its values in an Euclidean space isM -bounded if for allq ≥ 1

Mq = sup
n≥0

E1/q‖Xn‖q < ∞.

Let (Fn) and (F+
n ) be two sequences of monoton increasing

and monoton decreasingσ-algebras, respectively such thatFn

andF+
n are independent for alln.

Definition III.2: A stochastic process(Xn) taking its values
in a finite-dimensional Euclidean space isL-mixing, if it is M -
bounded and with

γq(τ) = sup
n≥τ

E1/q‖Xn − E(Xn|F+
n−τ )‖q

we have

Γ(q) =
∞∑

τ=0

γq(τ) < ∞.

The following lemma is useful in checking whether a process is
L-mixing or not.

Lemma III.1: Let X be a random variable as above with
E‖X‖q < ∞ for all q, and letG ⊂ F be aσ-algebra andη
is aG measurable random variable. Then we have

E1/q‖X − E(X|G)‖q ≤ 2E1/q‖X − η‖q.
The following proposition shows the importance of theL-
mixing processes.

Proposition III.1: Let (Xn) be a Markov chain with state
spaceX , whereX is a Polish space, and assume that the Doe-
blin condition is valid form = 1. Furthermore letg : X −→ R

be a bounded, measurable function. Theng(Xn) is an L-
mixing process.

IV. ESTIMATION OF HIDDEN MARKOV MODELS

This section gives a brief outline of the maximum likeli-
hood estimation of Hidden Markov Models. Consider a Hidden
Markov Process(Xn, Yn), where the state spaceX is finite and
the observation spaceY is continuous, a measurable subset of
R

d. Assume that the transition probability matrix and the con-
ditional read-out densities are positive, i.e.Q∗ > 0 andb∗i > 0
for all i, y. Then the process(Xn, Yn) satisfies the Doeblin-
condition.

Let the invariant distribution ofX beν and the invariant dis-
tribution ofX × Y beπ. Then

πi(dy) = νib
∗i(y)λ(dy), (5)

whereπi denotes the components ofπ. Furthermore let the
running value of the transition probability matrixQ and the run-
ning value of the conditional read-out densities be also positive,
i.e. Q > 0, bi(y) > 0, respectively.

With the notationpi
n = P (Xn = i|Yn−1, . . . , Y0) we have

pn+1 = π(QT B(Yn)pn) = f(Yn, pn).

We use capital letters for random variables and lower cases for
their realizations, i.e.X is a random variable andx is a realiza-
tion of X. The only exception isp, where the meaning depends
on the context.

The logarithm of the likelihood function is

n−1∑
k=1

log p(yk|yk−1, . . . y0, θ) + log p(y0, θ).

Here thek-th term fork ≥ 1 can be written as

log
∑

i

bi(yk)P (i|yk−1, . . . , y0, θ) = log
∑

i

bi(yk)pi
k.

Now write
g(y, p) = log

∑
i

bi(y)pi, (6)

then we have

log p(yN , . . . , y0, θ) =
N∑

k=1

g(yk, pk) + log p(y0, θ). (7)

It is easy to see that the Doeblin condition is not satisfied for
the process(Xn, Yn, pn), thus Proposition III.1 is not applica-
ble directly. For this reason we look for a different characteri-
zation of(Xn, Yn, pn).

Theorem IV.1: Consider a Hidden Markov Model(Xn, Yn),
where the state spaceX is finite and the observation spaceY
is continuous, a measurable subset ofR

d. Let Q,Q∗ > 0 and
bi(y), b∗i(y) > 0 for all i, y. Let the initialization of the pro-
cess(Xn, Yn) be random, where the Radon-Nikodym derivate
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of the initial distributionπ0 w.r.t the stationary distributionπ is
bounded, i.e.

dπ0

dπ
≤ K. (8)

Assume that for alli, j ∈ X
∫

| log bj(y)|qb∗i(y)λ(dy) < ∞. (9)

Then the processg(Yn, pn) is L-mixing.
Remark IV.1: Since the positivity ofQ implies that the sta-

tionary distribution of(Xn) is strictly positive in every state and
the densities of the read-outs are strictly positive Condition (8)
is not a strong condition. For example for the random initializa-
tion we can take a uniform distribution onX and an arbitrary
set ofλ a.e. positive density functionsbi

0(y).
To analyze the asymptotic properties of the right hand side

of (7) Theorem IV.1 seems to be relevant. Under the conditions
of Theorem IV.1g(y, p) is anL-mixing process and the law of
large numbers is valid for such processes, see [6]. This implies
the existence of the limit of (7).

Consider now afinite state-finite read-out HMM. This case
follows from Theorem IV.1, but the integrability condition (9)
is simplified due to the discrete measure.

Theorem IV.2: Consider the Hidden Markov Model
(Xn, Yn), whereX andY are finite. Assume that the process
(Xn, Yn) satisfies the Doeblin condition. Let the running
value of the transition probability matrixQ be positive and
bi(y) ≥ δ > 0 for all i, y. Then with a random initialization on
X × Y we have thatg(Yn, pn) is anL-mixing process.

Consider a finite state-finite read-out HMM, parameterized
by θ, where |X | = N and |Y| = M and θ containing the
elements of the transition probability matrix and the read-out
probabilities. Thusθ is anN2 + NM − 2N dimensional vec-
tor with coordinates between 0 and 1. Furthermore let the ML
estimate of the true parameterθ∗ be denoted bŷθN . Due to
[12] the gradient process∂pn(θ)/∂θ is also exponentially sta-
ble, thus the process∂g(Yn, pn(θ))/∂θ is anL-mixing process,
see [11]. Similarly it can be shown that∂2g(Yn, pn(θ)/∂θ2 is
also anL-mixing process. The arguments of [7] yield the fol-
lowing result.

Theorem IV.3: Consider the Hidden Markov Model
(Xn, Yn), whereX and Y are finite. LetQ,Q∗ > 0 and
bi(y), b∗i(y) ≥ δ > 0 for all i, y. Let θ̂N be the ML estimate
of θ∗. Thenθ̂N − θ∗ can be written as

−(I(θ∗)−1 1
N

N∑
n=1

∂

∂θ
log p(Yn|Yn−1, . . . , Y0, θ

∗) + rn, (10)

wherern = OM (N−1), i.e Nrn is M -bounded, andI(θ∗) is
the Fisher-information matrix.

A key point here is that the error termrn is OM (N−1). This
ensures that all basic limit theorems, that are known for the
dominant term, which is a martingale, are also valid forθ̂N−θ∗.

The following result is that the tail-condition in Rissanen-
theorem, see in [15], for the error term of the estimationθ̂n is
satisfied.

Theorem IV.4: Under the condition of Theorem IV.3 we have

∞∑
N=1

P (N
1
2 (θ̂N − θ∗) > c log N)) < ∞,

wherec > 0 is an arbitrary constant
The basic idea of the proof is the following: let

Jn =
n∑

i=1

∂

∂θ
log p(Yi|Yi−1, . . . , Y0, θ)|θ=θ∗ .

Then (Jn − Jn−1) is a bounded martingale difference. Then
using the results of Neveu, [14], we get the statement of the
theorem.

V. ENCODING OF FINITE STATEHIDDEN MARKOV

MODELS

The negative logarithm of the conditional probability

− log p(yn|yn−1, . . . , y1, θ)

can be interpreted as a code length, see [16]. An adaptive en-
coding procedure is obtained if we setθ = θ̂n−1. Following [8]
we get the following result:

Theorem V.1: Under the conditions of Theorem IV.3 we have

Eθ∗(sn) =
1
2n

p(1 + o(1)),

wherep = dim θ, andsn is

− log p(yn|yn−1, . . . , y1, θ̂n−1) + log p(yn|yn−1, . . . , y1, θ
∗).

Furthermore

lim
N→∞

1
log N

N∑
n=1

sn =
p

2

with probability 1.
This result can be used for model selection for HMM-s, see

[9], [5]. Due to the validity of Rissanen’s tail condition the
following ”converse theorem” is also true by virtue of the fun-
damental theorem of the theory of stochastic complexity (cf.
[15]):

Theorem V.2: Let gn(y1, . . . , yn) be an arbitrary sequence of
compatible probability distributions and

s′n = − log gn(yn, . . . , y1) + log p(yn, . . . y1, θ).

Then

lim inf
n→∞

1
log n

Eθ(s′n) ≥ p

2

except for a set ofθ’s with Lebesgue-measure 0.

Theorem V.1 can be extended to performance indexes differ-
ent from the conditional entropy, such as adaptive prediction
error. Let(yn) be a binary process taking value 0 or 1. Let e.g.
ŷn be the predictor defined by

ŷn(θ) =
{

1 if qn(θ) = p(yn = 1|yn−1, . . . , y1, θ) > 1
2

0 otherwise.
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Defineq∗n = Pθ∗(Yn = 1|Yn−1, . . . , Y1, θ
∗) and similarlyqn =

Pθ∗(Yn = 1|Yn−1, . . . , Y1, θ). Then the failure probability can
be expressed as

Pθ∗(Ŷn(θ) �= Yn) =

1/2∫
0

(1 − qn)q∗ndϕn(qn(θ))+

1∫
1/2

(1 − q∗n)qndϕn(qn(θ)) = Wn(θ),

wheredϕn(qn(θ)) is the distribution ofqn(θ) underPθ∗ .
Under the condition of Theorem IV.3ϕn(qn(θ)) can be

shown to converge in distribution toϕ(q(θ)) having an invariant
distributionϕ(q, θ). Let

W (θ) = lim
n

Wn(θ).

For finiten the functionWn(θ) is smooth inθ. Assuming that
smoothness is inherited byW (θ) define

S∗ =
∂2

∂θ2
W (θ)|θ=θ∗ .

The adaptive predictor ofyn is defined as

ŷn = ŷn(θ̂n−1).

We have the following result:
Theorem V.3: Under the conditions of Theorem V.1 we have

E(Tn) =
1
2n

(TrS∗I(θ∗)−1 + o(1)),

whereTn = Pθ∗(Ŷn(θ̂n−1) �= Yn) − Pθ∗(Ŷn(θ∗) �= Yn).
Moreover

lim
N→∞

1
log N

N∑
n=1

Tn = TrS∗I(θ∗)−1

with probability 1.
The invariant distribution ofϕ(q(θ)) in exact form even in

the simplest cases is unknown. Thus the theoretical value of
I(θ∗) andS∗ is unknown.

Consider an example for binary HMM, where the state space
X and the read-out spaceY is binary. Let

P (Xi+1 = 0|Xi = 0) = 0.3, P (Xi+1 = 1|Xi = 1) = 0.5

and
b0(0) = 0.99, b1(1) = 0.99

be the true parameters of the model. Consider an adaptive
prediction using ML-method. On figure 1. the simulation
results for Theorem V.3 can be seen. Thex coordinate de-
notes the number of iterations and they coordinate stands for

UN =
N∑

n=1
Tn/logN .

0 100 200 300 400 500 600 700 800
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Figure 1. 

number of iterations 

U
N

 

VI. A CKNOWLEDGEMENT

The authors acknowledge the support of the National Re-
search Foundation of Hungary (OTKA) under Grant no. T
032932.

REFERENCES

[1] L.E. Baum and T. Petrie. Statistical inference for probabilistic functions
of finite state Markov chains.Ann. Math. Stat., 37:1559–1563, 1966.

[2] R. Bhattacharya and E. C. Waymire. An approach to the existence of
unique invariant probabilities for markov processes. 1999.

[3] Xi-Ren Cao and Han-Fu Chen. Perturbation realization, potentials, and
sensitivity analysis of Markov processes.IEEE Trans. Automat. and Con-
trol, 42:1382–1393, 1997.

[4] R. Douc and C. Matias. Asymptotics of the maximum likelihood estima-
tor for general hidden markov models.Bernoulli, 7:381–420, 2001.

[5] L. Finesso, C.C. Liu, and P. Narayan. The optimal error exponent for
Markov order estimation.IEEE Trans. Inform. Theory, 42:1488–1497,
1996.
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editors,Identification and System Parameter Estimation, Selected papers
from the 9th IFAC-IFORS Symposium, Budapest, volume 1, pages 389–
394, Pergamon Press,Oxford, 1991.
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