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Abstract— This paper presents a method for developing 

adaptive nonlinear models for time varying continuous digesters, 
which are complex nonlinear reactors used in the pulp and paper 
industry. The models are based on the Radial Basis Function 
neural network architecture and the adaptive fuzzy means 
algorithm is used to adapt both the structure and the connecting 
weights of the network. The proposed approach shows good 
approximation capabilities in the cases where the dynamics of the 
system and the operating region change with time. 
 

Index Terms—Adaptive Modeling, RBF Networks, Training 
algorithms, Continuous Digester. 
 

I. INTRODUCTION 

R ADIAL Basis Function (RBF) networks form a special 
architecture of neural networks that present important 
advantages compared to other neural network types, 

including simpler structure and faster learning algorithms [1-
5]. Due to these advantages, RBF networks have been used 
extensively for modeling a great variety of systems. During 
the last decade, many new training algorithms have been 
proposed for selecting automatically the proper structure of 
RBF networks and improving the network performance. These 
include an algorithm based on orthogonal least squares [6]; 
constructive or pruning methods [7-10]; genetic algorithms 
[11]; and determination of the hidden node locations based on 
a fuzzy partition of the input space [12].  

Unfortunately, all these algorithms deal with time invariant 
systems while there are only few publications concerning the 
issue of RBF model development for time varying systems. 
Among them, a framework of two stages for the recursive 
determination of the network structure and the connecting 
weights has been proposed [13], but as reported in the paper, 
the algorithm is not guaranteed to be stable, since large 
modeling errors may lead to a possible breakdown of the 
weight-updating algorithm. Another publication suggested a 

procedure that combines an online candidate regressor 
selection with the Givens QR recursive parameter estimator 
for adaptive supervised network training [14], but the 
algorithm may need to reinitiate the clustering procedure, in 
case the structure of the system changes. 

In general, modeling time varying systems is a rather 
difficult task for all system identification methodologies, 
including neural networks.  Another disadvantage of the   
neural network methods which is due to their limited ability to 
extrapolate, is that they cannot track successfully changes in 
the operating region.  Obviously, the development of an 
adaptive modeling scheme that can cope with both changes in 
system dynamics and the operating region could be very 
beneficial for modeling and controlling time-varying systems. 

Continuous digesters are complex chemical reactors used in 
the pulp and paper industry [15] and certainly belong to the 
class of time varying systems.  This paper aims to the 
development of an adaptive model for a simulated continuous 
digester, which can compensate for changes in the dynamics 
of the system and the operating region. This is achieved by 
incorporating the RBF neural network architecture and 
utilizing an adaptive training scheme that has the ability to 
modify both the structure and the connecting weights of the 
neural network model. The training methodology is based on a 
fuzzy partition of the input space, so that the algorithm can 
select the hidden node centers among the centers of the 
corresponding multidimensional fuzzy sets. In a second step, 
the connecting weights between the hidden and the output 
layer are adapted using the RLS with exponential forgetting 
algorithm. 
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The rest of the paper is structured as follows: The next 
section describes the RBF network architecture briefly, 
including a general overview of RBF networks, their use for 
modeling dynamical systems, and the training algorithms they 
employ. Section III presents the adaptive fuzzy means 
algorithm for training RBF networks, and is followed by a 
case study, where the methodology is implemented in the 
identification of a continuous digester. Finally section V 
outlines the most important advantages and sets some 
directions for future work. 
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B. Dynamical RBF models 
When RBF networks are used for modeling dynamical 

systems, past values of the system input and output variables 
must be included as inputs to the network. Given a system 
with R inputs and M outputs, the input vector to the RBF 
network at time instant k can be written as follows: 
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where pR is the total number of past values of the system input 
uR and qM is the total number of past values of the system 
output yM. Following this notation, a dynamic RBF network 
can be seen as a nonlinear autoregressive with exogenous 
inputs (NARX) model. 

C. Training of RBF networks 
Typical offline training of an RBF network, usually 

involves splitting the problem into two phases: First the 
centers of the hidden nodes are obtained using the k-means 
clustering algorithm, and in a second phase the weighting 
connections are calculated by simple linear regression. 
Recently, the fuzzy means algorithm has been proposed for 
substituting the time consuming k-means [12]. The fuzzy 
means is based on the concept of fuzzy partition of the input 
space and is faster than the conventional RBF training 
techniques, while at the same time it exhibits better 
approximation capabilities.  

 
Fig. 1. Structure of an RBF network 

II. RADIAL BASIS FUNCTION NEURAL NETWORKS 

A. An overview of RBF Networks 
Radial Basis Function networks form a special neural 

network architecture that consists of three layers (Fig. 1). The 
values of the input variables formulate an input vector, which 
is forwarded from the input layer to the hidden layer. The 
hidden layer is comprised of a number of nonlinear processing 
units (nodes), which are characterized by the center locations 
and the nonlinear radial basis function they employ. Each 
hidden node receives the input vector, calculates the 
Euclidean distance d between the center location and the input 
vector and finally performs a nonlinear transformation of the 
distance, using the radial basis function. The output of each 
hidden node is then multiplied by a particular synaptic weight 
w, while the final output of the network is a simple summation 
of all the weighted hidden node activations.  

 

III. ADAPTIVE FUZZY MEANS ALGORITHM 
The adaptive fuzzy means algorithm is presented as an 

alternative of the standard fuzzy means methodology, for 
modeling systems with changes in operating region or system 
dynamics. In order to deal with both of these cases, the 
algorithm combines two levels of adaptation, in a unified 
scheme: 

 
• Adaptation of the structure of the hidden layer, based 

on the notion of fuzzy partitioning  The most common selections for the radial basis function 
are: • Adaptation of the connection weights between the 

hidden layer and the output layer, based on the RLS 
with exponential forgetting algorithm 

• The Gaussian function:  
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be noted that the algorithm makes use of some operational 
parameters that need to be defined beforehand. These are:  
 where σ is the width of the node 

• The number of consecutive time steps Nd that a center 
is not assigned to an input example before it is 
removed from the hidden layer of the network 

 
• The thin plate spline function:  

 

( )dddf log)( 2=                                                              (2) • The size of the moving time window Ns, which is 
used for storing past input-output examples   

The thin plate spline function, which is used in all the 
simulations throughout this paper, has the advantage that no 
width needs to be specified. 

• The forgetting factor λ  for the RLS method. 
 

The first level of adaptation is based on the concept of
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Fig. 2. Generic overview of the algorithm 

  
The idea of fuzzy partitioning can be extended to the 

entire input space in order to create a number of fuzzy 
subspaces, where each fuzzy subspace is defined as a 
combination of N particular fuzzy sets. The 
multidimensional membership function  of an input 

vector x into a fuzzy subspace A

)(x
Alµ

l, is then defined as: 

fuzzy partition of the input space. This involves partitioning 
the space of each input variable xi,   into cNi ,...,1∈ i 
triangular fuzzy sets: 
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 where each fuzzy set   is fully described by its center 
and width elements: 
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where ( )xlrd  is the Euclidean relative distance [16] 
between Al  and the input data vector . A fuzzy subspace 
that assigns to the input vector the maximum membership 
degree, is the closest subspace to this vector, since it 
corresponds to the smallest Euclidean relative distance.  
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 Having defined the concept of fuzzy subspaces, the 
algorithm works as follows: As soon as the first input data 
point is available from the system, the fuzzy subspace that 
is closer to it is calculated. The center of this subspace 
becomes then the center of the first hidden node. As we 
proceed to each new time step, a new input example is 
available, and the algorithm first checks whether it can be 



 
 

assigned to any of the already selected fuzzy subspaces. If 
this is not possible, a new fuzzy subspace which is the 
closest one to the particular input vector is selected, and the 
center of this subspace becomes the center of a new hidden 
node. In this way, the algorithm adds hidden node centers, 
in order to cover the area of the input space, where data are 
present. In the case that a new center is not needed, then the 
algorithm checks for hidden node centers that have not 
been assigned recently to an input vector. This check is 
based on information about the history of node activations 
which is stored in a vector called Activation History Vector 
– AHV. If such a center exists, then it is removed from the 
hidden layer of the network.  
 The second level of adaptation involves the modification 
of the connecting weights. In the case where no centers 
have been added or deleted from the hidden layer, the 
modification of the weights is performed by using the RLS 
with exponential forgetting algorithm.  

If the structure of the hidden layer has been modified 
either by adding or deleting a node, then the connection 
weights need to be recalculated. This calculation is based 
on a moving time window, where a number of past input-
output data are stored. The new connection weights are 
obtained by regressing the outputs of the hidden layer on 
the real outputs of the system. Before the regression takes 
place, the outputs of the hidden layer and the real outputs of 
the system are weighted in a similar way to the RLS 
algorithm, so that the influence of the oldest data points is 
weakened and more importance is given to the new data 
points.  
 

IV. APPLICATION: ADAPTIVE MODELING OF A CONTINUOUS 
DIGESTER 

The continuous digester is a very important process in a 
pulp and paper plant, since its role is to convert wood chips 
to pulp by removing a wood component called lignin. The 
removal of lignin is achieved through combined chemical 
and thermal treatment, by means of adding a special 
mixture called white liquor to the wood chips inside the 
reactor. The residual amount of lignin in the pulp exciting 
the digester, is the kappa number which is a very important 
quality parameter. 

Modeling the digester with first principle equations is 
very difficult, due to its complexity and nonlinearity. 
Though the use of black box identification techniques is 
more successful there are still some problems imposed by 
the fact that the reactor exhibits frequent changes in its 
dynamic behavior. Moreover, it is very often desirable to 
produce pulp of different quality, which means that the 
operating region of the digester is frequently modified. 

The objective of this case study was to build an RBF 
model using the adaptive fuzzy means algorithm, in order 
to predict the dynamic behavior of the kappa number in the 
simulated digester which is depicted in Fig. 3. It should be 
noted that the reactor was simulated by solving a system of 
ODEs generated by the heat and mass balances along the 

digester [15]. The RBF network uses as inputs the 
temperatures of two of the white liquor flows which enter 
the digester in different locations.  In order to take into 
account the high time lags between the locations of the 
flows, and the bottom part of the digester where the pulp 
discharges, we have used 14 past values for each variable, 
thus summing to a total of 28 input variables.  

The performance of the adaptive fuzzy means was 
evaluated through two different cases: 
 

A. Case I: Change in the dynamics of the digester 
A common situation in the operation of the digester is 

that the type of the wood chips entering the reactor 
changes. This has a profound impact on the dynamics of the 
digester, since it affects the speed of the delignification 
procedure. For the particular case, we have simulated a 
similar situation where the feed to the digester changes 
from softwood to hardwood. First the digester was 
simulated with constant feed of softwood for 100 hours of 
operation, were the inputs were generated by using a 
random sequence of temperatures that produced kappa 
number values between 20 and 30. Input – output data were 
collected with half- hour  frequency  and  split  into a  
training and a   validation 
 

 

 
 
Fig. 3. A typical continuous digester 



 
 

 Fig. 4. Case I: Kappa number predictions for the static network in the 
validation data, before the change from softwood to hardwood occurs subset. The first subset was used to train offline an RBF 

network using the non-adaptive fuzzy means algorithm. 
Using a fuzzy partition of 7 fuzzy sets, the number of 
hidden nodes of the network was found to be 25. The 
performance of the produced network was evaluated on the 
second set. Fig. 4 depicts the predicted versus the real 
values of the kappa number. It can be seen that the network 
predictions are very accurate.  

 
Table 1. Operational 
Parameters for the 
adaptive fuzzy means 
algorithm 

Starting with the network trained offline, we introduced a 
change in the feed of the reactor, from softwood to 
hardwood. The adaptive fuzzy means algorithm, with the 
operating parameters of table 1, was then used to adapt the 
network. The same set of input data was also fed to the 
static offline trained network, in order to compare its 
predictions with the ones produced by the adaptive 
network. The results are shown in Figs. 5a and 5b for the 
online and offline trained network respectively. Though the 
adaptive network initially fails to predict the kappa number, 
its performance improves gradually, as it adapts to the new 
data. On the other hand the static network is unable to give 
correct predictions, since it cannot adapt itself to the 
changes in the dynamics of the digester.  

B. Case II: Change in the operating region of the digester 
Another case where an adaptive model of the digester 

might prove useful is when the operators decide to produce 
pulp with a different kappa number. This implies a change 
in the operating region of the digester, since the range of 
the inputs needs to be shifted as well.  

In order to examine this case, we gave random values to 
the input variables, so that the kappa number ranged 
between 30 and 40. The neural network trained offline in 
the previous case was used to simulate the dynamics of the 
system in two ways: First it was allowed to adapt itself 
using the fuzzy means algorithm with the operational 
parameters of table 1and then for comparison reasons it was 
also used as a static model. The results are shown in Figs 6a 
and 6b respectively. It can be observed that the adaptive 
network still outperforms the static one. This is due to the 
fact that the static network has a limited ability to 
extrapolate to the new operating region even if the 
dynamics 
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Nd 80 
Ns 100 
λ 0.85  

 
 
 
 
 
 

           (a) 
 

1

6

11

16

21

26

31

0 10 20 30 40 50

Time (h)

K
ap

pa
 N

um
be

r

Real Values
Network Predictions

 
           (b) 

 
Fig. 5 Case I: Kappa number predictions, after the change from softwood 
to hardwood occurs, for (a) the adaptive network, (b) the static network 
 
of the digester are not changing with time. On the contrary, 
the adaptive network, rearranges the locations of the hidden 
node centers so as to describe better the new data and at the 
same time it calculates suitable values for the connecting 
weights.  
 

V. CONCLUSION 
This paper presents a methodology for developing 

adaptive RBF network models for time varying continuous 
digesters, which are key elements in the pulp and paper 
industry.  The method is based on the fuzzy means 
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Fig. 6 Case II: Kappa number predictions, after the change of operating 
region occurs, for (a) the adaptive network, (b) the static network 
 
the continuous digesters that exhibit changes in their 
dynamics and/or their operating region. The efficiency of 
the adaptive fuzzy means algorithm is illustrated through a 
number of simulations where it is clearly shown that it 
outperforms the performance of non-adaptive RBF models. 

The authors are currently working on an extension of the 
method, so that it can be incorporated into an adaptive 
Model Predictive Control (MPC) framework. This could 
provide a suitable scheme for controlling nonlinear systems 
with time varying behavior. 
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