
Learning through Gradient-Type Reinforcement
for N-person Repeated Constrained Games:

Counter-Coalition Space Approach
Alexander S. Poznyaka, Member, IEEE, Martín Godoy-Alcántarb and Eduardo Gómez-Ramírezc

a CINVESTAV-IPN, Departamento de Control Automático, A.P. 14-740, CP 07000 México D.F., México, e-mail:

apoznyak@ctrl.cinvestav.mx.
b CINVESTAV-IPN, Departamento de Control Automático, A.P. 14-740, CP 07000 México D.F., México, and Instituto Mexicano del

Petróleo, e-mail: mgodoy@ctrl.cinvestav.mx
c Laboratorio de Investigación y Desarrollo de Tecnología Avanzada, Universidad La Salle,

Benjamín Franklin No. 47 Col. Condesa, CP 06140, México, D. F., México, e-mail: egomez@ci.ulsa.mx

Abstract— The paper tackles the design and analysis of a
learning gradient-type strategy for N -person averaged con-
strained game with incomplete information. Each player is
modelled by a stochastic variable-structure learning automa-
ton (a simplest single state Markov Chain). Using the ”joint
payo¤ function”, the considered game problem is formulated
in terms of, so-called, counter-coalition variables. A special
±-regularization is introduced. Such approach does not re-
quire the ”diagonal concavity” conditions to guarantee the
uniqueness of the Nash equilibrium. The asymptotic con-
vergence of the suggested learning procedure is analyzed.

Keywords— Reinforcement learning, Repeated game, Nash
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I. Introduction

Games theory dealing with data of stochastic nature (or,
with imperfect information) has seen a tremendous growth
in the last decades. Two models of players are more fre-
quently considered in the literature: dynamic and static
models. The …rst ones are given by a Markov chain char-
acterized by sets (may be, …nite or in…nite) of states and
actions (several actions are allowed to be applied at each
state) with the corresponding transition (in general, prob-
abilistic) rules. The second ones (static models) represent
the simplest case of a …nite Markov chain with a single
state, that is, there are not any internal dynamic e¤ects
and the only actions selected by the participants are re-
sponsible for the further behavior of each player; last mod-
els are considered within the Learning Automata paradigm
[8], [6], [3] and [4]. In this paper the simplest static player
models will be considered.

A. Motivation

A few papers and rigorous results, dealing with learning
(for static or dynamic players model) in constrained re-
peated stochastic games, are actually known. The funda-
mental paper of Rosen [9] concerns the uniqueness problem
for Nash equilibrium but with no stochastic in the model.
Several games with learning were considered by Lakshmi-
varahan [2] and by Narendra and Thathachar [6], but there
were no studies of constraint game situations. The spread-

ing of the Rosen’s ideas to the class of strictly diagonal
concave games with reinforcement automata learning was
realized by Nazin and Poznyak in [7] (see, also [8]). The
”strict convexity condition” (see also [9]) is also required
that restricts signi…cantly the areas of possible applica-
tions. Recently, the results dealing with learning to such
sort of game have been published by Poznyak and Najim
[5] where the Bush-Mosteller reinforcement technique was
applied. But this paper also requires the restricting ”strict
convexity condition”.
The rigorous description of the class of the repeated games
having non unique equilibrium points as well as the analysis
of the convergence and rate of learning for di¤erent rein-
forcement schemes still practically stay open that serves a
lot for the motivation of this study.

B. Discussion of basic assumptions and restrictions

The most important assumptions (and, as the result, re-
strictions) concerning the considered game are as follows:
² this is the multi-person repeated game where the behav-
ior of each player is the static model given by the sim-
plest single-state Markov Chain, or, a …nite state automa-
ton with ”time-variable structure” (at each stage of the
game the distribution of the selected control actions can
vary according to a reinforcement procedure);
² if some controls are realized by players at a current stage,
then each participant immediately get the information on
the realized values of his payo¤ and constraint functions
which are individual for each player. The necessary in-
formation (realizations of both payo¤s and constraints) is
obtained during the course of the game. These realized pay-
o¤s and constraints (below called ”realizations”) are ran-
dom variables (non obligatory binary) having constant …rst
(conditional) moments which are assumed to be a priori
unknown as well as uniformly bounded second conditional
moment. In other words, the game is one of incomplete
information.
² each player has his own set of constraints (constraint
functions) which may be dependent on the selected con-
trol actions of other participants (the strategic interdepen-



dence);
² all participants accept some sort of agreement to use the
same reinforcement learning procedure (in this case the sto-
chastic pseudo-gradient scheme) and not to change it to
another one during all long-range time of the game. Any
other ”cooperations” during the game are prohibited. Only
the parameters of this procedure can be modi…ed by player
during the game, but not the …xed structure of the rein-
forcement procedure.

C. Main Contribution

Brie‡y, the basic contributions of this paper can be sum-
marized as follows:
² using the ”joint payo¤ function”, the given game prob-
lem is formulated in terms of, so-called, ”counter-coalition
variables” that signi…cantly simpli…es the problem descrip-
tion making it linear with respect to these variables;
² for each player the suggested pseudo-gradient reinforce-
ment procedure, based on Lagrange multipliers and an ap-
propriate regularization, is shown to be oriented to obtain
the optimal response (in average sense) within the given
constraints;
² this learning tactics is proven to lead to the unique Nash
equilibrium point corresponding to the ”extended adjusted
vector” with a minimal norm;
² any ”Strictly Diagonal Conditions”, commonly supposed
in the …nite game theory, do not required;
² based on the stochastic approximation technique (the
Robbins- Siegmund theorem), the convergence (with prob-
ability one and in mean square sense) of the considered
learning procedure to the Nash equilibrium is stated and
the rate of learning is also estimated.

II. N-person Repeated Constraint Game

Let (; F; P ) be a probability space, where  is the sam-
ple space, F a minimal ¾ -algebra of subsets of , and P
a probability measure on (; F ). The symbol ! denotes
the canonical point (event) in . All subsequent random
variables will be de…ned in this space.

A. Player model as Learning Automaton

Each player is modelled by a stochastic variable-structure
learning automaton which consists of a simple Markov
chain containing only one state (memoryless or static sys-
tem) [3] and [4]. A stochastic automaton operating in a
random environment (medium) is an adaptive discrete ma-
chine described by a collection
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B. How game is played

This game is played in the following way. According to
the probability distributions (mixed strategy) pk

n, at each
stage n, simultaneously and independently (we consider a
non-cooperative game in which each player has only its own
payo¤ realization »k
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The k th random component »k
n represents the payo¤ (Borel

function) earned by the kth player, and ´k;lk
n is the random

realization of the lk-th constraint for this player. To obtain
reasonable generality without excessive complexity, the fol-
lowing assumptions will be in force throughout this paper:
(A1) The conditional expectations of »k

n and ´k
n are in-

dependent of the history of the game (the game rules are
assumed to be unchangeable):
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where j¢j stands for the absolute value. For each player the
average payo¤ and constrains form the collection of Mk +1
tensors
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De…nition 1: At stage n, for the kth player of the consid-
ered game, and for any Fn¡1-measurable conditional prob-
ability distribution (p1
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corresponds to the expected constraints.
De…ne also the averaged expected payo¤ and constraints as
follows:
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III. Mixed Strategies and Nash Equilibrium

A. Randomized strategies

The randomized (or mixed) strategy of the kth player is
any sequence Dk of vectors
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where the minimization is done over all the initial proba-
bility distributions ps

1; s = 1; N .

B. Equilibrium within the subclass of stationary mixed
strategies

Consider now the subclass of stationary mixed strategies
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IV. Game as Reinforcement: Problem Setting

Now we are ready to formulate the N -person repeated con-
strained game problem with a priori unknown average pay-
o¤s and constrains: based on current information, generate
randomized (mixed) admissible strategies
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in order to achieve a Nash equilibrium realizable within the
subclass of stationary strategies.
To achieve this objective, …rst emphasize the following
fact. According to Nash theorem [10], the set of ad-
missible stationary distributions
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So, if we construct an asymptotically stationary mixed
strategy
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converging to a stationary distribution¡
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realizing a Nash equilibrium, we will be able
to attain the main aim of the game. But to do it in a rigor-
ous manner, …rst, the questions related to the existence and
the uniqueness of the Nash equilibrium (within stationary
strategies) should be resolved. Talking on the uniqueness



of the …nite matrix games, one can consider the uniqueness
of the optimal policy for each player, and the uniqueness
of the Nash equilibrium point.
As it is shown by Rosen [9], the non-uniqueness of the Nash
equilibrium points cannot be o¤set by a small regulariza-
tion (perturbation) term. The condition for the uniqueness
of equilibria are known as ”strict diagonal concavity”. As it
was shown in [8] and [5], if the given (nonregularized) ma-
trix game is ”diagonal concave”, then the corresponding
regularized game turns out to be strictly diagonal concave
that, by Rosen´s theorem (the theorem 2 in [9]), implies
the uniqueness of the equilibria policy. But in this pa-
per we suggest another approach which does not requires
the ”diagonal concavity condition”, but demands the repre-
sentation of the initial problem in new (counter-coalition)
variables with some additional regularization.

V. Equivalent counter-coalition variables
representation

A. Joint Payo¤ Function and Nash Equilibrium

Following the approach presented in [9], let us introduce
the joint payo¤ function ½ (p; q) de…ned as
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Using Kakutani’s …xed point theorem, Rosen proved the
following important result [9], that any N -person ma-
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B. Criterion of Nash-equilibrium using counter-coalition
variables

De…ne the matrices V
k

given by V
k

=
h
V k

jbk;jk

i
where the

index jk of the actions of player k grows in the columns
and the combination of indexes jbk of the counter coalition

grows in the rows of V
k

and

fW k
³
¯k

´
=

MkX

lk=1

¯k
lk

fW k;lk; fW k;lk = W
k;lk ¡ bk;lk1k;|

The following theorem represents the criterion of a Nash-
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Theorem 1: A necessary and su¢cient condition that
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VI. Learning Algorithm

A. Regularization, Lagrange multipliers and projection
gradient procedure: the complete information case

Using the Lagrange approach de…ne the ±-regularized La-
grangian as:
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In the case when the complete information on the expected
payo¤s and constraints is available, then the gradient-like
technique may be applied to attain the equilibrium point:
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n to the corresponding unique equilibrium strat-
egy pb1 (#) ; :::;p bN (#) having the minimal norm over all pos-
sible equilibrium points.

B. Stochastic approximation approach and the ”measure
keeping problem”: incomplete information case

When we deal with incomplete information case, that is,
the only current realizations of payo¤ »k

n and constraints
´k;lk

n are available, the ”stochastic approximation” version
of the procedure (9) can be applied (see, for example,
[4]) where instead of rpbkLk
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Such procedure is known as the ”reinforcement learning al-
gorithm” and can be realized by di¤erent ways ( with dif-
ferent estimates in the use). Below, we present the concrete
learning procedure which is based on Learning Automata
concept [3], [4].

C. Pseudo-gradient reinforcement with Lagrange multipli-
ers adjustment

The pseudo-gradient reinforcement scheme presented in
will be applied hereafter to design a new learning algo-
rithm for N-person constrained repeated games in terms of
the complemented variables with unknown expected pay-
o¤ and constraints. In fact, we assume that after each
stage, the payo¤ to each player as well as the constraints
are random variables. No information concerning the dis-
tribution of the payo¤ and constraints is a priori available.
The necessary information is obtained during the course of
the game.

Learning control is an iteration process involving an adap-
tation at each stage (time step). We now present the ”four-
step” recursive algorithm.

Step 1. On the basis of the available data
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n ; pbk
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n > 0)
¸k

t;n; ¸k
®;n; ¸k

bp;br;bs;n

built the following functions for k=1;N ; n=1; 2,...
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Step 2. Update the probability distributions pk
n+1 and

the Lagrange multipliers ¸n+1 using the following iterative
schemes:
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where if uk

n=uk (jk) and ubk
n=ubk ¡

jbk
¢

then Ibk;k
³
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n; uk
n

´
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h
±(bik;ik)

i
2 RNbk£Nk with ±(bik;ik) = 1 if bik = jbk and ik = jk

and ± (bik;ik) = 0 otherwise. The operator [y]
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as follows:
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Step 3. According to Pr
©
uk

n+1 = uk (i) j Fn
ª
=pk

n+1 (i)
generate randomly (for each player) new discrete random
variables uk

n+1 as in learning stochastic automata imple-
mentation, and get a new observations (realizations) »k

n+1

and ´k;lk
n+1 that corresponds to the environment vector-

reactions.
Step 4. Return to Step 1.

VII. Convergence Analysis

A. Main theorem on the convergence with probability one

Theorem 2 (convergence with probab one) Suppose that
assumptions A1- A2 hold for the learning reinforcement
procedure (10)-(11) and the given game is diagonal con-
vex. In addition, assume that:

1. there exist the following nonnegative sequences
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Then the mixed strategies of the players ensure the conver-
gence of the game to the equilibrium point with probability
one, that is,
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µ°°°pbk
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n+1; ±n+1
¢°°°
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VIII. Conclusion
This paper was concerned with the development of a new
learning algorithm for N-person constrained repeated game
with unknown expected payo¤ and constraints. Based on
Lyapunov approach and martingale theory, the conver-
gence with probability one has been stated. Simulations
results justifying this approach are available.
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