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A Worst-Case Framework for Perfect
Reconstruction of Discrete Data Transmissions

Petros G. Voulgaris, Christoforos N. Hadjicostis and Rouzbeh Touri

Abstract— In this paper we present a deterministic worst-
case framework for reconstruction of discrete (source) data
transmissions. This framework can be explored based on
robust control ideas and formulations and can be viewed as
a complement to the traditional probabilistic approaches in
the communications area. The particular problems touched
upon are: (i) necessary and sufficient conditions for causal
and noncausal reconstruction under deterministic magnitude
bounded noise for single-input single-output (SISO) and
multi-input multi-output (MIMO) channels, (ii) reconstruction
based on decision feedback equalizer (DFE) structures, and
(iii) performance optimization under channel fading. The �

�

control theory and linear programming emerge as the natural
key player in this framework.

Keywords: Equalization, �� optimality, worst case, discrete
data reconstruction.

I. I NTRODUCTION

The topic of data transmission and reconstruction is
based almost entirely on stochastic formulations of the
various problems involved (e.g., [1], [2]). In these formu-
lations, the main measure of performance of a communi-
cation system is characterized primarily in terms of the
probability of error under various stochastic assumptions
on the noise and channel behavior. Designing a system
that minimizes this probability is a rather hard problem and
proposed algorithms are characterized by high complexity
(e.g., Viterbi’s algorithm [1]).

In this paper we present an alternative, deterministic
worst-case framework for accurate reconstruction of dis-
crete (source) data. This framework, which can be explored
based on robust control ideas and formulations, mainly
addresses the question of when perfect reconstruction of
a discrete sequence of source symbols (e.g.,�� or ��) is
possible if the magnitude of the additive noise is allowed
to be anything as long as it is bounded by ana priori
known bound. In other words, this framework is a comple-
mentary worst-case, deterministic approach that provides
necessary and sufficient conditions for an error to occur.
The main motivation for this worst-case approach comes
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from applications were security to attacks by malicious
agents (e.g., jammers [3]) is of paramount importance and
therefore “hard” guarantees are required.

The framework leads to a set of necessary and sufficient
conditions on the maximum noise level so that perfect
reconstruction is possible by some receiver without specify-
ing any structure to it. We then consider decision feedback
equalizer (DFE) structures and prove that they form an
optimal structure for some (but not all) of the formulated
problems. In doing so, we also furnish a procedure for
designing a perfectly reconstructing DFE based on linear
programming (LP) and��-optimization methods [4]. Al-
though DFE analysis and design has received considerable
attention over the last forty years, there are many issues
of current interest (e.g., [5] and references therein). A
common assumption in the DFE design literature is that of
correct past decisions, something that is arguably a strong
assumption to coexist with the notion of optimality of a
design procedure [6]. In our approach, however, since we
provide the exact conditions for the existence of perfectly
reconstructing DFEs, as well as explicit constructions of
such DFEs (if at all possible), this assumption is unnec-
essary. Of course, if the noise level is higher than the
maximum allowed for perfect reconstruction, errors will
occur and one has to analyze how these errors propagate
in the system. This is not done in this paper, although
we touch some relevant issues in the case of first-order
FIR channels. For a detailed discussion on these matters
we refer to the works in [7], [8], [9]. The paper also
considers linear equalizers as a special case of DFEs and
certain performance characterizations are given in terms of
��-optimization formulations. Finally, closed-form perfor-
mance results are obtained for the case of first-order FIR
channels.

The notation is as follows:��� �� ���� ������ is
the �� norm of a sequence� � ����������; ���� ����

��� ������ is the�� norm of the linear time-invariant (LTI)
system� having unit pulse response����������; 	� ��� ����

��� ������ is the�-transform of� . For a vector valued
signal � � ���� ��� � � � � ���

� , ��� �� 
��� ���� and for
MIMO systems� � �����, ���� �� 
���

�
� ������;

������ �� �������
����
��� is the ��-induced norm of a

possibly time-varying and/or nonlinear system� (note that
������ � ���� if � is LTI).



2

II. PROBLEM DEFINITION AND SOLUTION

The basic problem we are concerned with is depicted
in Figure 1 where	 is a binary signal to be transmitted
with 	��� � ���� �� for all � � � �� � � �; 
 is the
noise with �
���� � �, where � is a known constant;
� � ��� �� � � �� is an LTI system that represents the
channel dynamics which are assumed knowna priori for
now. We want to accurately and causally reconstruct	 via
the receiver structure�, i.e., we would like to find what
are the necessary and sufficient conditions for		��� � 	���
for all times � � � �� � � �, and what should the receiver
structure� be.

+

�

�� ��
� �

Fig. 1. Basic set-up

A. How to construct a perfectly reconstructing �

Our analysis in [10] showed that perfect reconstruction
requires��� � �. In this case, the construction of a receiver
� (refer to Figure 1) can be obtained as the decision
feedback equalizer (DFE) shown in Figure 2, where� ��
� � � and� is the unit step delay operator.

+
-

���
�
�

��

sgn
��

Fig. 2. DFE structure

The above setup and analysis can be generalized to cases
where	��� belongs to a set of equally spaced numbers in
���� ��. For instance, if	��� � ����� � � ����� �
�� � � � � � � � � � ��, i.e., if there are�� �� numbers equally
spaced by intervals of size��� , the condition for perfect
reconstruction becomes��� � ���; the decision structure
is an obvious extension of the structure in Figure 2.

B. Non-causal reconstruction

The case of non-causal reconstruction (smoothing) can
also be considered in the same framework. In this case
we are allowed to estimate	��� by incorporating�
future receptions��� � ��� � � � � ��� � �� as well as
���� ����� � � � � ����. In other words, we allow a delay of
� steps in reconstructing	. The necessary and sufficient
condition for perfect reconstruction is that there are no
sequences	� and	� such that, if they are indistinguishable
at any time�, they remain so for the next� time steps.

Following the same line of argument as in [10], we obtain
that the necessary and sufficient condition is


��
���� �����������������


��������� ������� � � � � ������� � �

(1)
where�
����

���
����

...
����

�
���� ��

�
����

�
� �
...
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	 � � � � � � �

�
����

�
����
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����

...
����

�
���� �

The above test for perfect reconstructability requires
solving a mixed integer linear program [11]. For certain
instances, such as one-step delay, analytical results can be
obtained (see Section V). Also, one can prove the special
case below.

Proposition 2.1: Assume that��� � ��� for all � �
�� �� � � � ��. Then,	 is perfectly reconstructible with delay
� if and only if ��� � ��

The essence of the above proposition is that the use
of non-causal reconstruction (� �� ) in this case does
not offer any improvement (increase) on the maximum
allowable noise bound for perfect reconstruction.

C. MIMO channels

Generalizations are also possible in the case of MIMO
channels. In the case of� transmitters and� receivers
the (equivalent) channel dynamics can be represented by
a � 	 � transfer function� with pulse response� �
���� ��� � � ��, where each�� is a � 	 � matrix. The
motivation for problems of this sort comes from multiple
antenna systems designed to combat fading channels and
the detection of multiuser code division multiple access
(CDMA) signals. The set-up is as before, i.e.,� � �	�
,
where 	 and 
 are vector valued sequences such that
	���� � ���� �� for all components	� of 	 and�
����� � �
for all components
� of 
.

Under this setup, one can prove the following: if� � �
���� � ��, � � �� � � � ��, then the necessary and sufficient
for perfect reconstruction causally in time is


��
����������� � ��� 	

 ��	
 �


�������� ����� � � � � ��
�� � ��

(2)
where �

���
��
��
...
�


�
��� � ��

�
����

��
��
...

��

�
���� �

Checking the above condition is a mixed integer linear
program (MILP) and a closed-form solution is, in general,
hard to obtain. Finally, we would like to note that, as in the
the SISO case, one can look at noncausal reconstruction for
MIMO channels; the problem to solve is again an MILP.
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D. Some remarks

In the case of noncausal reconstruction and/or MIMO
channels the test for perfect reconstructability requires
solving an MILP. In general, the construction of a per-
fectly reconstructing� can be quite complex. This is the
motivation for the specific (DFE and linear) structures of
reconstructors that we consider in the next section.

Finally, we mention that the case when the noise

enters through a “filter”� (sometimes called a coloring
filter), i.e., when� � �	 � �
, is analogous and has
results similar in flavor. For example, in the case of causal
reconstruction in a SISO channel, if� � ���� ��� � � ��,
then the necessary and sufficient condition for perfect
reconstruction is

��� � �

��
���

���� � � ���� � (3)

III. R ECONSTRUCTIONBASED ON DFES

In the previous section, causal perfect reconstruction in
SISO channels led naturally to a DFE structure. Herein we
elaborate more on the optimality of such a structure for
noncausal and MIMO problems.

+
-

+
����

��

�

�
� � �

Fig. 3. General DFE structure for causal reconstruction

The general DFE structure is depicted in Figure 3 where
� is a (stable) linear forward filter� � ���� ��� � � ��;
�� is a feedback filter with� being the one-step delay
operator (i.e.,	���� � �) and � � ���� ��� � � ��; � is a
thresholding operator that produces�� or 1 depending on
which one has the closest distance to�	. In this particular
case,���	���� � sgn ��	����. It should be clear that for this
structure to perfectly reconstruct	��� causally in time for
each time� it is necessary and sufficient that�	��� �  iff
	��� �  for all possible signal sequences	 and all possible
noise sequences
.

Under the perfect reconstruction requirement, the situa-
tion in Figure 3 can also be interpreted as in Figure 4: there
are (stable)� and� and an (arbitrarily small) �  such
that for all time-steps� with 	��� � �

�	��� � ���� � �� �	��
���� �  � 

for all sequences	 and �
� � �. Denoting by! ��
����� � ���� ��� � � ��, we have that the above condition
equivalently means

�	��� �

��
���

����	��� �

��
���

����
��� �  � 

+
-

+
����

��

�

�
� � �

Fig. 4. Equivalent DFE structure under perfect reconstruction

for all times� and for all sequences	 with 	��� � � and
�
� � � (for 	��� � �� same condition can be easily
obtained). Equivalently, we have that

�� �

��
���

����� �

��
���

�����  
� � �� �� � � � (4)

Note that the above is also equivalent to

�� �
��
���

����� �
��
���

����� (5)

Since the�� ’s are (linear) functions of the��’s and the��’s,
the problem of checking the above condition for a given
� �  is a linear programming (LP) feasibility problem with
infinite variables���� �������. We now reduce Condition (5)
to equivalent conditions.

Proposition 3.1: The following are equivalent:

(a) Condition (4) is satisfied for some� and� .
(b) ��" ��� ��� ����� # � for some� and� .
(c) There are� and� so that, for all�, �	���� �	���� #

��  � for some � �  and all	 and
 with �
� � �.
Based on the above proposition we can define the rele-

vant ��-optimization

$ �� ���
��

%��

where

%� � ��" �� ��� � �� ����� �

Then, the problem of perfect reconstruction has a DFE
solution if and only if$ # � � If we denote& �� �� �
�'�� '�� � � ��, it follows from the structure of the�� norm,
that to minimize%�, the optimal� for any � should be
selected as� � �'�� '�� � � �� so that�� cancels all terms
in & except the feed-through term'� � ��� (any other
choice for� will increase%�). Given that, it also follows
that the minimizing� has to be a constant� � ��, where
�� minimizes

$ � 
��
��

��� ����� ����� �

This gives us$ � � if ��� � � and$ � ����� if ��� � �.
The minimizing� is � �  and� � �

��
respectively. As

expected, the DFE structure leads to the same conclusion
for perfect reconstructability as in the previous section.

A point to be made here is that having%� � � does not
necessarily imply that the DFE structure with the particular
� and� does not perfectly reconstruct	, unless # '� �
��� � �. If '� � �, Condition (5) needs to be checked to
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determine whether perfect reconstruction is possible at the
given noise level�.

A. Noncausal reconstruction

To capture�-step noncausal reconstruction we allow the
forward filter to be of the form��	� (i.e., noncausal). It
then follows that the problem of interest is to find

$ � ���
��

%� �

where now

%� � ���
�����������

����" �� ���	�� � ��

��	���

	
	




���� �

Again, it is true that the best� , for any choice of� in the
above optimization, is to cancel the coefficients of& � ��
of order � � � and above, i.e.,� � �'	��� '	��� � � ��.
With this done, it also follows that the minimizing choice
for � is FIR of order�, i.e.,� � ���� ��� � � � � �	 � � � � ��
with the parameters��� � � � � �	 solving the linear program

$ � 
��
���������

��� '	 �� ���	 ��
	���
���

��'��� ������� (6)

Hence the DFE structure will perfectly reconstruct	 with
a delay of� steps if and only if the linear programming
problem in (6) leads to a cost$ # �.

A natural question to answer is how closely the maxi-
mum allowable noise bound� for perfect reconstructability
with DFE structure relates to the absolute bound of Con-
dition (1). For the one-step delay case (� � �) it can be
shown that the bounds are the same.

Proposition 3.2: With one-step delay, perfect recon-
struction is possible with a DFE if and only if

� #

�
��� if ��� � ���� �

��� � ��� if ��� � ���� �

Moreover, the DFE structure is an optimal one for the
problem.

For higher order channels however, these bounds can
differ as the following example illustrates.

Example 3.1: Consider a (possibly IIR) channel� with
the first three coefficients being� � �, � � ���, � �
�����. By solving for Condition (1) for a two-step delay
(� � �), we obtain that� # ��� for perfect reconstruction
(this can be done by hand in this simple case by checking
all the possibilities —essentially nine choices for���� and
����— in the underlying MILP).

On the other hand, if we restrict ourselves to the DFE
structure and check for$ # � in Condition (6) we obtain
the condition� # ��� (this can also be done by hand).

B. MIMO channels

In the case of MIMO channels with a DFE receiver
structure one needs to check whether�	 � � �	�� # � for

all of the � source data	� transmitted. In particular, the
relevant problem to solve is

$ � ���
��

��" �� ��� � �� �(����

where all systems are MIMO and( is a scaling noise
matrix with ( �� ��������, where�� is the noise bound
on channel�. The DFE perfectly reconstructs	 causally in
time iff $ # �.

Using the same arguments as in the previous two sub-
sections, a minimizing� is � � �&�� &�� � � �� where
& � �� , and a minimizing� is � � ��, a constant
matrix that solves the finite-dimensional LP

$ � 
��
��

��" ����� ���(��� � (7)

In general, assuming (for simplicity) that( � �������,
the maximum bound on the noise� for perfect recon-
structability obtained by requiring that$ # � can be
different (smaller) than the absolute bound of Condition (2)
as the following example illustrates.

Example 3.2: Consider a MIMO�	 � channel� with

the feed-through term�� �

	
� �
�� ��



. Condition (2)

leads to� # � for perfect reconstruction (the checking can
be done by hand by checking all possibilities in the the
MILP of Condition (2)).

On the other hand, employing the DFE structure and
checking for$ # � in (7) leads to the existence of�� �	

�� ��
�� ��



satisfying

��� � ���� � ���� � ����� ������� ����� �

��� � ��� � ���� � ������ ������� ����� �

It can be easily checked (again by hand) that, while the
first inequality can be satisfied for any� # �, the second
inequality requires that� # ���. In other words,	� (the first
component of	) is perfectly reconstructible causally with
a DFE for ��� � � # �, while 	� (the second component
of 	) is not.

Note that noncausal reconstruction problems lead to
analogous results as in the scalar case. The relevant problem
to consider for�-step delayed reconstruction is the (finite-
dimensional) LP

$ � 
��
���������

��" �&	 �&	�� � � � (8)

� � � �&� ��	( � � � ���(��� # � �

C. Reconstruction Based on Linear Equalizers

In this case we restrict the structure of� to be� � �
where� � ���� ��� � � �� is a linear time-invariant filter. This
is a special case of the DFE structure when� is set to zero,
thus all of the previous discussion carries over.

IV. ROBUSTNESS TO CHANNEL UNCERTAINTY

In the previous section we investigated DFE structures
under the assumption that the channel� is known. We
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Fig. 5. A fading channel model

now consider the case of uncertain channel dynamics which
we model as in Figure 5. The uncertainty here is given
in terms of an additive weighted block�� , where� is
assumed to be an unknown perturbation, possibly time-
varying and even nonlinear, that has a bounded�� to
�� norm ������ � �. The weight � is a known
stable LTI dynamical system that may reflect magnitude
normalizations and partial information on the magnitude of
the uncertainty over different frequencies (i.e., it “shapes”
the uncertainty block).

As an example, consider the actual channel�� as�� �
� � ) where � � ��� �� � � �� is the nominal LTI
channel and) represents time-varying perturbations on the
parameters of� leading to a response

���	���� �

��
���

���� �  ���	���

with the perturbation �� bounded as� ��� �  � for all � �
� �� �� � � �, but otherwise arbitrary. If

��
���  � �  , then

this amounts to modeling) as) � �� with � �  and
������ � �. Similarly, if the first� channel coefficients
are not changing ( � � � � � �  ��� � ) but there is
uncertainty in the higher order terms, then	� ��� �  �� .

We note that this uncertainty formulation is different
in nature than what is typically assumed in the stochastic
framework (e.g., Chapter 14 in [1]). However, we believe
that it captures a number of relevant fading phenomena
due to time variations and can be used to design reliable
reconstruction algorithms.

Let %� represent the�� induced norm of the map
�
�
�


�

	 � �	, i.e., %� �
��� �

�


� 	� �	

��
���

. This is a function
of the uncertainty�. We assume that when no uncertainty
is present, i.e., when� � , %� # � and hence perfect
reconstruction is achieved for the specific DFE parameters
� and� . Note that in this case%� � % where% represents
the �� norm of the (nominal) map

�
�
�


� 	 � �	, i.e.,

% �
��� �

�


� 	� �	

��
�
. What we would like to ensure is

robust performance (RP) in the presence of all possible
������ � �, i.e., we want to find conditions such that

%� # � � ! �"" ������ � ��

If we denote#� �� "������ and#� �� ���, then
from the definition of the 1-norm we have

% � �#��� � �#��� � ��#� #�����

Let $* be

$* ��

	
 ��� ���

� ���� ��#� #����




�

	
 ����

���� %



�

By redrawing the set up as in Figure 6, it can be shown
[4] that RP is obtained if and only if

+� $*� # � �
% �

�
%� � ���������

�
# � �

where+� $*� is the spectral radius of$* (largest eigen-

�

�

�

�

�

�� ��

�
� �� ��
�� ��� ���

�

Fig. 6. Robustness analysis loop

value.) Equivalently,�������� � % # �� Note that the
left side is equal to

$% �� ��"  �� ������ �� ��������

� ��" �� ������ ��� ����������

Hence, RP optimization is equivalent to minimizing��� �
��


� 	� �	

��
�

� where$
 is bounded as�$
� � ������.
That is, one has to consider the nominal channel with the
“equivalent” noise bound given as������. Based on the
results of the previous section, perfect causal reconstruction
is possible with a DFE iff��� � �� ����.

+
�
��� ���

��� ���

�� �

�

�

Fig. 7. A more general fading model

A more general situation is depicted in Figure 7 where
��� � � and ��� can be general (stable) dynamical
LTI systems that connect the nominal channel with the
sources of dynamical uncertainty lumped in�. For ex-
ample, consider a channel� � ��,��

� , where�� �
������ and,� � ,����� with ,, � being the
nominal “numerator” and “denominator” respectively (i.e.,
� � �,��). Assume that, and� are coprime [4], and
that�� and�� are normalized perturbations with known
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shaping weights�� , ��. Then, putting it in the mold of
Figure 6 the following identification is obtained

��� � � �,����� � ��� � ,��

��� � ��� ����� � ��� � �� � �

	
��

��



�

To analyze robustness, we can redraw the system and use
the same spectral radius condition as before [4]. By letting

$* �

	
������ ����� ���
������� ��#� #����




�

	
������ ������
������� %



�

we conclude that for perfect reconstruction for all possible
perturbations������ � � (i.e., ������� � �,
������� � �), it is necessary and sufficient that there
exist� , � such that+� $*� # � � which equivalently leads
to ������ # � and

$% � ��"  ��

��� � �� ��
������

�� ������
�����

����
�

# ��

For the case of noncausal reconstruction with�-step
delay, the same arguments hold and lead to the following
necessary and sufficient condition for RP:������ # �.

To check whether there exist�� � so that the DFE
perfectly reconstructs	 in the presence of unmodeled
dynamics, the above conditions lead to the following� �-
optimization problem:

$ � ���
��

$% # � �

assuming������ # � holds (which can be easily checked
since��� does not depend on the DFE).

For this problem it is clear that, for any choice of�, filter
� should cancel the coefficients of& � �� of order���
and above, i.e.,� � �'	��� '	��� � � ��. In general, the
optimal� may not be FIR as the LP is infinite-dimensional.
Nonetheless, arbitrarily close to optimal solutions can be
obtained using standard�� methods.

V. FIRST-ORDER FIR CHANNELS

In this section we consider the case of a first-order
FIR channel given by� � ��� �� � � � � ��. This
could represent simple channel dynamics in a wireless-
communications scenario. We provide some analytical re-
sults on perfect reconstructability as well as some analytical
and simulation results on the probability of error.

A. Linear equalization for first-order FIR channels

Herein we provide a closed-form result for perfect linear
reconstruction. Recall that the underlying problem to solve
for �-step delayed reconstruction is

$ � ���
�

���	�" ����� �"�
��
�
� (9)

As indicated earlier; this is a standard��-optimization
problem. We will call�Æ an optimal�� linear reconstructor
if it solves the above optimization.

1) Causal reconstruction: For the case of causal recon-
struction (� � ) we have the following result.

Proposition 5.1: Let � be a first-order channel	���� �

� � �� and let- �� 	��	
	��	

, . �� �
	��	

. Then, the optimal
estimator�Æ and its associated optimal cost$ is

�Æ � ���� $ � �
��� # �� whenever - � . # ��

�Æ � � $ � �� whenever - � . � ��
From the above proposition, we see that the noise level
� should be� # ��� � ��� for perfect reconstruction
as opposed to� # ��� obtained from the unrestricted
nonlinear � or the optimal DFE. The conservatism is
expected due to the restricted structure considered.

When	��� belongs to a set of equally spaced numbers
in ���� �� (for instance, if	��� � ����� � � ����� �
�� � � � � � � � � � � � �� ��), the same approach leads to the
condition � # 	��	�	��	

�� (the thresholding device now
changes to produce the closest��� to �	���). Again, this
is more conservative than the condition� # 	��	

�� in the
unrestricted case.

2) Noncausal reconstruction: Results for one-step de-
layed reconstruction (� � �) can also be obtained.

Proposition 5.2: Let � be a first-order channel	���� �

� � �� with - �� 	��	
	��	

, . �� �
	��	

. Then, the optimal�Æ

and its associated optimal cost$ is

�Æ � ����� $ � �
��� # �� whenever - � . # ��

�Æ � �
��

� $ � ���
�

# �� whenever - � . � �

and- � . � ��
�Æ � � $ � �� otherwise.

Recall that in the case of one-step delayed reconstruction
using a DFE structure, perfect reconstruction is achieved if
and only if � # / where

/ ��

�
��� if ��� � �����

��� � ��� if ��� � �����

Note that both linear and nonlinear reconstruction give
the same bound for��� � ����. In the region # ��� #
����, the linear is clearly outperformed. In fact, for��� �
��� the linear is very sensitive to any nonzero noise.

Finally, we would also like to mention that, in the case
of a first-order channel, any additional delay� does not
improve the bound/.

Proposition 5.3: Let � be a first-order channel	���� �
� � ��. Then,	 is perfectly reconstructible with�-step
delay if and only if it is perfectly reconstructible with one-
step delay. Moreover, if��� � ���� reconstruction can be
performed using a linear structure.

We compare the performance of the above filters using
simulations based on 30000 trials; the results are depicted
in Figure 8. We can see that the DFE structure reconstructs
perfectly in the given bounds and performs better than the
other two structures.

B. Explicit probability of error calculations

As we see from Figure 2, in binary pulse amplitude mod-
ulated (PAM) input signal, our decoder (which obtains		���
from �����) is just a sign function. Without loss of generality
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we can assume that� �  and 		��� � ����������. Note
that “probability of error” is meaningless unless� is larger
than the bound required for perfect reconstruction (so that
errors occur).

Proposition 5.4: In the long run, the probability of get-
ting an error for binary PAM with uniform noise bound
� and first-order FIR channel dynamics using the DFE
structure of Figure 2 is given by

0� �

��
�

� � � ��
�������

���������
� � � �� � � � ��

����
�� � � � � � ���

(10)

Our experimental results verify the validity of Proposition
5.4.

VI. CONCLUDING REMARKS

We have presented a deterministic formulation of various
communication problems. Our approach leads to exact
magnitude bounds on the noise level for which perfect
causal or delayed reconstruction of the transmitted symbols
is possible. It also allows for the synthesis of perfect recon-
structing structures, despite possibly time-varying uncer-
tainty that is present in the channel. The main structure that
was studied was a DFE structure; our framework provides
connections between the limiting performance of DFEs and
��-optimization, a subject that has been thoroughly studied
in the context of robust control. We parenthetically mention
here that the (optimal) linear equalizer given for first-order
FIR channels is, by itself, a contribution to�� model-
matching theory as it is a closed-form solution to a so-called
two-block problem for which, to the best of our knowledge,
no closed-form solutions are available.
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