
1

On velocity observers for a planar robot subject to
non-smooth impacts

Sergio Galeani, Laura Menini, Antonio Tornambè

Abstract—The goal of this paper is to compare the perfor-

mances of two different velocity observers, a full order one

and a reduced order one, when used to estimate the velocity

vector of a planar robot subject to impacts with the envi-

ronment, modelled as perfectly rigid. Both the sensitivity of

the observers to quantization errors in the position measure-

ments and their behaviour in closed-loop are investigated.

Keywords— Mechanical systems, non-smooth impacts, ve-

locity observers.

I. Introduction

THE problem of modeling mechanical systems subject
to non-smooth impacts is far from being solved in its

generality, especially when multiple impacts or the effects
of friction have to be taken into account [1]. Nevertheless,
several authors have studied mechanical systems subject
to impacts from the control point of view: typical appli-
cations are free-flying space robots [2], [3] and robotic sys-
tems where the impacts between the robot and the envi-
ronment constitute a significant feature of the robot task
[4], [5]. The problem of modeling and controlling a one-
degree-of-freedom impact between two bodies subject to
elastic/plastic deformations is considered in [6]. In [7], a
new sensor-referenced control method using positive accel-
eration feedback together with a switching control strat-
egy is developed for robot impact control and force regula-
tion. The problem of modeling and controlling the impact
between the end-effectors of two multi-DOF (Degree-Of-
Freedom) cooperating manipulators is considered in [8].

Recently, the control of finite-dimensional mechanical
systems with unilateral constraints has been studied, with
the aim of developing a general theory, in [9] and in [10]. In
this last paper, a Liapunov analysis of PD-like control laws
for mechanical systems subject to impacts can be found.
In particular, when impacts are modelled as non-smooth
the overall mechanical system exhibits a hybrid behaviour,
i.e., its evolution is governed by a continuous time dynam-
ics between each pair of consecutive impact times, whereas
at impact times the state undergoes sudden finite jumps.

The need for velocity observers in the control of me-
chanical systems and, in particular, of robots, is widely
recognized [11]-[14]. As a matter of fact, velocity measure-
ments are often affected by noise, which severely limits the
performance achievable by control laws making use of such
measurements. In [11], non-linear observers have been de-
signed by means of differential-geometry-based techniques
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Fig. 1. Two-DOF planar robot arm

for robots having elastic joints. In [12], an observer is de-
signed for rigid robots, and its use for point to point con-
trol and for trajectory control is illustrated. In [13], both
“smooth” observers and “sliding” observers are used for
tracking control. In [14], observer-based control laws are
derived by means of a passivity approach, achieving a linear
output-feedback controller also used for tracking purposes.

In this paper, two different hybrid velocity observers,
taking into account the presence of the impacts by suitable
switches at the impact times, are considered. The first
is a full order observer, whose continuous-time design is
based on the linearization of the model of the robot around
a given equilibrium point (as in [16], [18]), whereas the
second is a reduced order observer, proposed in [17].

The performances of the two observers are compared,
both in open-loop and in closed-loop (i.e., when a PD con-
trol law making use of their estimates is used to stabilize
a contact configuration for the robot), exploring, in par-
ticular, their robustness versus quantization errors in the
position measurements.

II. Description of the mechanical system

Consider the two-DOF planar robot arm depicted in Fig-
ure 1. The robot arm is constituted by a base body and
two links, which are interconnected by two rotational joints
so to form a planar chain. The robot is moved in a vertical
plane by the action of two torques u1(t) and u2(t) that are
exerted by two motors on the two joints. The two links
have respective length Li and mass Mi, i = 1, 2, whereas
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the two joints have negligible mass and inertia. The joint
angles q1(t) and q2(t) are taken as the generalized coor-
dinates, which uniquely describe the configuration of the
robot arm in the motion plane.

An infinitely rigid and massive surface is perpendicular
to the motion plane at a distance r from the joint con-
necting the base body to the first link of the chain (see
Figure 1). Assume that L1 < r < L1 + L2, so that the
end-effector (which is also assumed to be infinitely rigid)
is the only part of the robot arm that can collide with the
surface, and contact configurations actually exist.

The distance of the robot end-effector from the infinitely
rigid and massive surface is

r − L1 cos(q1(t)) − L2 cos(q1(t) + q2(t)); (1)

then, the mechanical system is subject to the inequal-
ity constraint f(q(t)) ≤ 0, where f(q) := L1 cos(q1) +

L2 cos(q1 + q2)− r and q(t) :=
[

q1(t) q2(t)
]T

is the vector

of the generalized coordinates. Let J(q) :=
∂ f(q)

∂q
be the

gradient row vector of f(q).
The kinetic energy of the robot arm at time t ≥ t0 is

T (q(t), q̇(t)) =
1

2
q̇T (t)B(q(t)) q̇(t), where the components

of the positive definite generalized inertia matrix B(q) are
given by

B1,1(q) =
L2

1M1

3
+

M2

6

(

6L2
1 + 2L2

2 + 6L1L2 cos(q2)
)

,

B1,2(q) = B2,1(q) =
M2

6

(

2L2
2 + 3L1L2 cos(q2)

)

,

B1,2(q) =
L2

2M2

3
.

The potential energy of the robot is given by:

U(q) :=

g

(

L1

(

1

2
M1 + M2

)

sin(q1) +
1

2
L2 M2 sin(q1 + q2)

)

.

By using the well-known Lagrange equations, for t ∈
(ti, ti+1), the equations of motion of the robot are given
by

B(q) q̈(t) + C(q(t), q̇(t)) q̇(t) + h(q(t)) = τ(t), (2)

where h(q) :=
∂ U(q)

∂q
and C(·, ·) takes into account cen-

trifugal and Coriolis terms. For later use, equation (2) can
be rewritten as

q̈(t) = F (q(t), q̇(t)) + B−1(q(t)) τ(t).

Let the coefficient of restitution e characterizing the non-
smooth impacts be equal to 1 (we recall that e = 1 for
elastic non-smooth impacts, i.e., when there is no loss of
kinetic energy due to the non-smooth impacts). For each
impact time ti, in order to compute the post-impact veloc-
ity q̇(t+i ) as a function of the pre-impact velocity q̇(t−i ), we
use the kinetic metric approach [1, Chapter 6]:

q̇(t+i ) = Z(q(ti)) q̇(t−i ), i ∈ N, (3)

where

Z(q) := In −
2

J(q)B−1(q)JT (q)
B−1(q)JT (q)J(q). (4)

Notice that, as could be expected, Z(q) depends on the
system’s generalized position q, on the system’s parame-
ters (via B(q)) and on the constraint (via J(q)). More
detailed explanations about the physical meaning of (4)
can be found in [1].

III. The proposed velocity observers

In this section, we describe the two observers that are
under comparison. The observer in Subsection III-A ap-
peared in [18] as a modification of the one proposed in [16]
for linearly observable systems: its design is based on the
linearization of the continuous-time dynamics of the robot
about a suitable equilibrium point q = qe, q̇ = 0. The
reduced order observer described in Subsection III-B was
proposed in [17].

A. Full order observer

The full order observer is a dynamic system having
[

q̂T (t) v̂T (t)
]T

∈ R
4 as state vector, being q̂(t) and v̂(t)

the estimates of q(t) and v(t), respectively. Its dynamics
are given by:

˙̂q(t) = v̂(t) + G1(q(t) − q̂(t)), t ∈ (ti, ti+1), (5a)
˙̂v(t) = F (q̂(t), v̂(t)) + B−1(q̂(t)) τ(t) + G2(q(t) − q̂(t)),

t ∈ (ti, ti+1), (5b)

q̂(t+i ) = q̂(t−i ), i ∈ N, (5c)

v̂(t+i ) = Z(q̂(ti))v̂(t−i ), i ∈ N, (5d)

where the matrix G =
[

GT
1 GT

2

]T
∈ R

4×2 is chosen so
that, letting

Ae =





02×2 I2

∂ F (q, q̇)

∂q

∂ F (q, q̇)

∂q̇





∣

∣

∣

∣

∣

∣

q=qe,q̇=0

,

Ce =
[

I2 02×2

]

,

all the eigenvalues of Ae −GCe have real part smaller than
zero.

B. Reduced order observer

The state of the reduced order observer is a vector ξ ∈
R

2. The dynamics of the observer are given by:

ξ̇(t) = F (q(t), v̂(t)) + B−1(q(t)) τ(t) − α ξ(t) − α2 q(t),

t ∈ (ti, ti+1), (6a)

v̂(t) = ξ(t) + α q(t), t ∈ (ti, ti+1), (6b)

ξ(t+i ) = Z(q̂(ti))
(

ξ(t−i ) + α q(t)
)

− α q(t), i ∈ N, (6c)

where α is a positive real number (to be chosen suitably
high to guarantee faster convergence of the estimation er-
ror).
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IV. Comparison between the proposed velocity

observers

In this section, the two observers proposed above are
compared through simulations. The parameters of the
robot and the environment have been chosen as follows:
g = 9.808 m/s2, M1 = 0.5 kg, M2 = 0.4 kg, L1 = 0.25 m,
L2 = 0.2 m, and R = 0.29 m. An equilibrium position
has been chosen qe ≈ [1.05 − 0.52]T rad, which corre-
sponds to a constant input τe ≈ [1.13 0.34]T Nm. Such an
equilibrium position is not in the admissible region, since
f(qe) > 0, but it is quite close to the boundary. Then, by
choosing a control law τ(t) = τe + kp (qe − q(t)), with a
suitable value of kp, significant trajectories (i.e., having a
sufficient number of impacts, and remaining in a suitable
neighbourhood of the equilibrium position) are obtained.

A. First set of simulations: observers’ parameters tuning

It is noticed that, for both observers, the convergence
rate of the estimation errors to zero can be tuned. For the
full order observer, this is achieved through the choice of
the eigenvalues of the matrix Ae − GCe, whereas, for the
reduced order observer, it is achieved through the choice of
the constant α. Then, in order to be fair in the compari-
son, some simulations (from different initial conditions in
the admissible region, and with different values of the pro-
portional gain kp) have been carried out in order to choose
such parameters so that, under ideal conditions (i.e., when
no quantization error is present), the two observers give
similar exponential rates of convergence. The values cho-
sen at the end of such a first set of simulations are

σ(Ae − GCe) = {−10, −11, −12, −13}, (7)

and
α = 6. (8)

Such parameters of the two observers will be kept constant
through the rest of the paper. Among the various initial
conditions and values of kp used in this first set of simula-
tions, the values

q(0) =

[

1.15
−0.49

]

rad, q̇(0) =

[

0.5
−0.2

]

rad/s,(9a)

kp = 3 Nm, (9b)

were chosen as particularly representative of the typical
behaviour of the system. For this reason and for the sake
of a clear comparison, they will also be used in the next
subsection IV-B. In order to give an idea of the amplitude
of the considered motions (it is stressed that the full or-
der observer is designed on the basis of the linearization
about an equilibrium position qe), the postures assumed
by the two links during the first six seconds of simulation
are reported in Figure 2 with continuous lines, whereas the
posture corresponding to qe is reported with a dashed line,
and the rigid boundary of the admissible region is reported
with a dotted line. The results of the first six seconds of
simulation of the full order observer with the choices (7)
and (9) are reported in Figures 3-5. As it can be seen
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Fig. 2. Postures assumed by the robot during the simulations of the
first and second set.
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Fig. 3. Time behaviour of the position variables (continuous line) and
of their estimates (dashed line) obtained with the full order observer
in ideal conditions (no quantization). In the lowest plot the time
behaviour of f(q(t)) is reported, together with a dotted line indicating
the limit value of zero, in order to emphasize the impact times.

from Figure 5, where the time behaviour of the compo-
nents of the estimation errors q̃(t) and ṽ(t) are reported,
after one second the estimation errors are negligible. Anal-
ogously, the results of the first six seconds of simulation of
the reduced order observer with the choices (8) and (9) are
reported in Figures 6-7. Notice that the position variables
are not reported for this simulation, since there are not re-
lated estimates and their time behaviour is exactly the one
in Figure 3 (continuous line). As shown in Figure 7, after
one second the estimation errors are negligible in this case
too (compare with Figure 5).

B. Second set of simulations: sensitivity to quantization

In this subsection, it is assumed that the position vari-
ables are measured through a physical device subject to
quantization, e.g., an encoder dividing the 2π angle into N
steps, so that, in both observers (5) and (6), the vector q(t)
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Fig. 4. Time behaviour of the velocity variables (continuous line) and
of their estimates (dashed line) obtained with the full order observer
in ideal conditions (no quantization).
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Fig. 5. Time behaviour of the estimation errors obtained with the
full order observer in ideal conditions (no quantization).

is replaced by its quantized version y(t). The following val-
ues of N have been chosen N ∈ {4096, 2048, 1024, 512},
and tested with both observers. In Figure 8, the time be-
haviour of ‖ṽ(t)‖ =

√

ṽ2
1(t) + ṽ2

2(t) is reported with dashed
lines for the errors deriving from the application of the full
order observer with quantized measurement (notice that,
for the full order observer, ṽ(t) is not the error vector,
which is a four dimensional vector containing also the com-
ponents of q̃(t)) and with a continuous line for the ideal
measurement. In Figure 9, the time behaviour of ‖ṽ(t)‖ is
reported with dashed lines for the errors deriving from the
application of the reduced order observer with quantized
measurement and with a continuous line for the ideal mea-
surement. By comparing Figures 8 and 9, it is possible to
see that the velocity estimates given by the reduced order
observer are more sensitive to quantization errors (but this
fact is not dramatic).
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Fig. 6. Time behaviour of the velocity variables (continuous line)
and of their estimates (dashed line) obtained with the reduced order
observer in ideal conditions (no quantization).
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Fig. 7. Time behaviour of the estimation errors obtained with the
reduced order observer in ideal conditions (no quantization).

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ne

ideal
N=4096
N=2048
N=1024
N=512

Fig. 8. Time behaviour of ‖ṽ(t)‖ in the case of ideal (continuous line)
and quantized (dashed) measurements for the full order observer.
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Fig. 9. Time behaviour of ‖ṽ(t)‖ in the case of ideal (continuous line)
and quantized (dashed) measurements for the reduced order observer.

C. Third set of simulations: closed-loop behaviour

In this subsection, the proposed observers have been used
for control purposes. In particular, an equilibrium position
qL corresponding to a contact configuration with the en-
vironment, i.e., such that f(qL) = 0, has been chosen as
qL ≈ [1.05 − 0.49]T rad, which corresponds to a constant
input τL ≈ [1.13 0.33]T Nm.

A PD control law τ(t) = τL+kp (qL− q̂(t))−kv v̂(t), with

kp = 3 Nm and kv = 0.1
√

(3) N sm, has been used, first
by using the estimates q̂(t) and v̂(t) obtained with the full
order observer, and then by replacing q̂(t) with the mea-
sured q(t) and by using the estimate v̂(t) obtained with
the reduced order observer. The behaviour of the closed-
loop systems obtained (under ideal conditions, i.e., with
no quantization errors in the measurements of the position
variables) by using the full order observer and the reduced
order observer is depicted in Figure 10 and in Figure 11,
respectively. The same simulations have been repeated by
assuming quantized measurements, with N = 1024. The
corresponding results are reported in Figures 12 and 13.
From the lowest plot in both figures, it is possible to see
that the contact condition is satisfactorily reached in both
cases. However, by looking at the time behaviour of q2(t)
(such a variable has just small variations, hence its time
behaviour emphasizes the problems due to quantization),
it is evident that in neither one of the two cases the sta-
bilization of the desired position qL is obtained, and the
undesired oscillations are much more evident when the full
order observer is used. This is probably a consequence of
the fact that the PD control law is using, in the case of
the full order observer, just the estimates of the position
variables given by the observer, and not, as in the case of
the reduced order observer, the quantized measurements
themselves. However, it is worth to notice that the simula-
tion in Figure 12 is practically the worst case between the
many others performed with different initial conditions.
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Fig. 10. Time behaviour of the position variables (continuous line)
and of their estimates (dashed line) obtained by applying a closed-
loop PD control law, making use of the estimates obtained with the
full order observer in ideal conditions (no quantization). In the lowest
plot the time behaviour of f(q(t)) is reported, together with a dotted
line indicating the limit zero value, in order to emphasize the impact
times.
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Fig. 11. Time behaviour of the position variables obtained by ap-
plying a closed-loop PD control law, making use of the velocity es-
timates obtained with the reduced order observer in ideal conditions
(no quantization). In the lowest plot the time behaviour of f(q(t)) is
reported, together with a dotted line indicating the limit zero value,
in order to emphasize the impact times.

V. Concluding remarks

A simulative comparison between two kinds of velocity
observers (already proposed in the literature [17], [18]) for
mechanical systems subject to impacts has shown that both
kinds of observers are quite robust to quantization errors,
also when used for closed-loop control.

While a simple two link robot has been used for the sake
of clarity and to make the analysis more readily under-
standable, the underlying theory in [17], [18] is applicable
to more complex systems, and considerations similar to
those found in this paper can be drawn when the same
observers are used for such more complex systems.
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Fig. 12. Time behaviour of the position variables (continuous line)
and of their estimates (dashed line) obtained by applying a closed-
loop PD control law, making use of the estimates obtained with the
full order observer using quantized measurements. In the lowest plot
the time behaviour of f(q(t)) is reported, together with a dotted
line indicating the limit zero value, in order to emphasize the impact
times.
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Fig. 13. Time behaviour of the position variables obtained by apply-
ing a closed-loop PD control law, making use of the velocity estimates
obtained with the reduced order observer using quantized measure-
ments. In the lowest plot the time behaviour of f(q(t)) is reported,
together with a dotted line indicating the limit zero value, in order
to emphasize the impact times.
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