
 1

Blocking Phenomena Analysis for Discrete
Event Systems with Failures or Preventive

Maintenance Schedules*

Jose Mireles Jr1, Member IEEE, and Frank L. Lewis2, Fellow IEEE.

1Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez,
Ave. del Charro 450 Nte., Cd. Juárez, Chih. MÉXICO.

2Automation & Robotics Research Institute, of The University of Texas at Arlington (UTA)
7300 Jack Newell Blvd. S., Fort Worth, TX 76118-7115, USA.

E-mails: jmireles@arri.uta.edu, flewis@controls.uta.edu

* Research supported by ARO Grants DAAD19-00-1-0037 and NSF-CONACyT DMI-0219195.

Abstract. We present an analysis of possible blocking
phenomena, deadlock, in Discrete Event Systems (DES) having
corrective and/or Preventive Maintenance Schedules (PMS).
Although deadlock avoidance analysis for several classes of DES
systems has been widely published, and although different
approaches for PMS exist, it is not obvious how to mix deadlock
avoidance and maintenance theories to improve throughput. In
this paper we show that for some DES structures having reentrant
flow lines, it is not necessary to stop activities in the DES, for the
case one or more machines in production lines are in PMS.
However, PMS may cause deadlock to occur if activities continue
in some machines. We propose deadlock-free dispatching rules
derived by performing circular wait analysis for possible deadlock
situations in systems with PMS. This is accomplished by
integrating the PMS structure and failure dynamics into a
separate DES system that acts as a disturbance in the primary
Reentrant Flow-line DES system. We propose a matrix
formulation and a Finite State Machine to synchronize both
subsystems.

Keywords: Deadlock Avoidance, Petri nets, Discrete Event
Systems, Reentrant flow lines, Maintenance.

1 Introduction
In this paper we address the problem of avoiding possible

deadlock situations on Flexible Manufacturing Systems or
Discrete Event Systems (DES) having shared resources in
Reentrant Flow-lines [Kumar 93], with scheduled
maintenance jobs. It is no doubt Preventive Maintenance
(PM) is a vital activity for improving machines availability in
DES. This improving of availability is due to the decreased
number of corrective maintenance jobs in machines, which
lead to a much more costly production times. PM methods,
like the Reliability-Centered Maintenance method has been
used for years, and is still a recommended approach [Smith
1992]. Recent studies have proven advantages of using PM
techniques. For example, [Hicks 1990] has shown
improvements in cost-reduction in different Army sites in the
state of Texas. In Hicks’ work, recommendations are given to
keep improving PM schedules. One important
recommendation is the search for automated expert systems
for optimal use of machines in systems with PM schedules.

In this paper, we present one expert system with PM
schedules based on matrices that avoids blocking
phenomena in reentrant flow-lines. If DES contain Multipart
Reentrant flow-lines (MRF), i.e. shared resources perform
more than one job for same product, in a system producing
several products, and if it is possible not to stop processes,
even if one or more machines are in PM, then blocking
phenomena can occur if jobs are not correctly sequenced in
the remaining non-in-maintenance resources. This blocking
phenomena is known as system deadlock [Banaszak et al.
90, Hsieh et al. 94, Ezpeleta et al. 95, Fanti et al. 97, Lewis
et al. 98]. Therefore, it is very important that the Discrete
Event (DE) controller, after knowing which resources are in
PM or corrective maintenance, properly sequences jobs and
assigns available resources.

In this paper we restrict our analysis to systems lacking
key resources [Gurel et al. 00]. These key resources are
critical structured resources that might lead to possible
Second Level Deadlock (SLD) [Fanti et al. 00]. Systems
lacking SLD are called regular. In [Mireles et al. 02], we
provide a matrix tests for system regularity. Based on the
decision-making matrix formulation introduced in [Lewis
92-93], this paper presents the development of a deadlock-
free augmented discrete event controller for regular MRF
systems with failures and PMS. This augmented controller
contains a framework capable of handling failures and
maintenance-capabilities in the DES structure. We describe
the DE controller (DEC) formulation, and show how to
analyze and compute in matrix notation the structures
needed for deadlock-free dispatching algorithms. Based on
these matrix constructions, we integrate PM systems’
information for deadlock-free dispatching rules in our
augmented DEC matrix formulation by limiting the work-
in-progress (WIP) in some critical subsystems, which we
define later. This is accomplished by integrating a Finite
State Automata system composed of the primary Reentrant
Flow-line DES system, and the disturbance-acting PMS
structure containing failure dynamics.

T4-008
The 11th Mediterranean Conference on Control and Automation, MED’03. Rhodes, Greece. June 18-20, 2003.

 2

2 Matrix-Based Discrete Event Controller
A novel Discrete Event Controller (DEC) for

manufacturing workcells was described in [Lewis et al. 93,
Mireles et al. 01a-b]. This DEC is based on matrices, and it
was shown to have important advantages in design, flexibility
and computer simulation. The definition of the variables of
the Discrete Event Controller is as follows. Let v be the set of
tasks or jobs used in the system, r the set of resources that
implement/perform the tasks, u the set of inputs or parts
entering the DES. The DEC Model State Equation is
described as

 Cucurv uFuFrFvFx ⊗⊕⊗⊕⊗⊕⊗= (1)

where: x is the task or state logical vector, vF is the job

sequencing matrix, rF is the resource requirements matrix,

uF is the input matrix, ucF is the conflict resolution matrix,
and uc is a conflict resolution vector.

This DEC equation is performed in the AND/OR algebra.
That is, multiplication ⊗ represents logical “AND,”
addition ⊕ represents logical “OR,” and the over-bar means
logical negation. From the model state equation, the
following four interpretations are obtained. The job
sequencing matrix Fv reflects the states to be launched based
on the current finished jobs. It is the matrix used by [Steward
81] and others and can be written down from the
manufacturing Bill of Materials. The resource requirement
matrix Fr represents the set of resources needed to fire
possible job states this is the matrix used by [Kusiak et al.
92]. The input matrix Fu determines initial states fired from
the input parts. The conflict resolution matrix Fuc prioritizes
states launched from the external dispatching input Cu ,
which has to be derived via some decision making algorithm
[Graves 81]. The importance of this equation is that it
incorporates matrices Fv and Fr, previously used in heuristic
manufacturing systems analysis, into a rigorous mathematical
framework for DE system computation.

For a complete DEC formulation, one must introduce
additional matrices, Sr and Sv, as described next. The state
logic obtained from the state equation is used to calculate the
jobs to be fired (or task commands), to release resources, and
to inform about the final products produced by the system.
These three important features are obtained by using the three
equations:

Start Equation (task commands) xSv VS ⊗= (2)
Resource Release Equation xSr rS ⊗= (3)
Product Output Equation xSy y ⊗= (4)

3 Matrix Analysis of MRF systems
In these sections we present a technique for deadlock-free

dispatching for MRF systems with maintenance schedules,
and show how to implement some notions from other papers
using matrices. First, we integrate PM systems in MRF
structures using our matrix approach, then, we determine the
deadlock constructions needed for free dispatching. This
yields computationally efficient algorithms for analyzing the
structure of MRF and deadlock-free dispatching.

Consider the following definition of Multiple Reentrant
Flow-lines, which basically define the sort of discrete-part
manufacturing systems that can be described by a Petri net.
The characteristics of MRF systems are:

• No preemption. A resource cannot be removed from
a job until this job is completed.

• Mutual exclusion. A single resource can be used for
only one job at a time.

• Hold while waiting. A process holds the resources
already allocated to it until it has all resources required to
perform a job.

For the DE systems we consider in our analysis, the
following are their particularities:

• Each job uses only one resource.
• After each resource executes one job, it is released

immediately for its availability.
• In this paper we also consider handling scheduled

preventive maintenance, as well as machine failures.
An example of a class of MRF system is given next.

Consider the Multipart Reentrant Flow-line problem shown
in Figure 1. This system uses two types of machining
resources and three types of robotic resources, machine
types A and B, and robots type 1, 2 and 3. Any of the (two)
robotic resources type 1 move incoming parts P1 and P2 to
conveyors C1 and C2 respectively. Any of the (two) robotic
resources type 2 can accomplish two jobs, jobs R2a and
R2b. Job type R2a moves part type P2 from conveyor C2 to
buffer of (any of the two) machines type B. Job type R2b
moves machined part type P2 from (any of the two)
machines type B to conveyor C3. Any of the (two) robotic
resources type 3 can accomplish three jobs, jobs R3a, R3b,
and R3c. Job type R3a moves part type P1 from conveyor
C1 to buffer of (any of the two) machines type A. Job type
R3b moves machined part type P1 from (any of the two)
machines type A to parts out P1. Job type R3c moves
machined part type P2 from conveyor C3 to parts out P2.

In this example, for simplicity, we are assuming buffer
sizes on conveyors and machines equal to one. This
assumption will help us emphasize possible deadlock
situations when resources are been in failure or scheduled
for maintenance. Also, if we consider larger buffers, we will
reach a practical point where the buffer might be full and so
our same deadlock situation will appear.

3.1 Failure/Maintenance DES structure.
In this section we present an extension of the matrix
framework presented in section 2 to incorporate DES
systems with Failure and/or PMS. When human operators
proceed to fix failures in machines/resources or proceed to
perform a preventive maintenance, their jobs can be seen as
specific jobs holding such machines/resources. The problem
is that holding such resources being in Failure or PMS can
lead to system deadlock. Therefore, in order to be able to
control a DES with failures and/or maintenance schedules,
one has to consider that each of such machine/robotic
resources is in one of three possible states: In-Service state,
Failure state, or in PM state. Then, for each resource in a PN
representation, has to illustrate the Failure and PM states, as
in the PN addition system in Figure 2. We call this PN

T4-008
The 11th Mediterranean Conference on Control and Automation, MED’03. Rhodes, Greece. June 18-20, 2003.

 3

system the Failure-Maintenance (FM) system. In this figure,
the places and transitions highlighted as “Ins Service Status”
belong to the FMR system, where tx and ty represent
transitions •Jobij and Jobij•, for the j number of jobs from
resource Ri. Notice that transition tfij fires when a failure
occurs in resource Ri (for i=1,2…n=number of resources)
while performing operation Jobij, after finishing this repair
job, tfrij should be fired (in the PN from figure 2, this can be
easily ensured by adding a virtual place between each tfij and
tfrij transition pairs). Transition tmi will fire when a preventive
maintenance Mpi for resource Ri is requested. When a
transition tfij fires, a failure repair job, Frepi, is requested for
execution. Maintenance times for jobs type Mpi are
deterministic times. However, repair time jobs, type Frepi, are
stochastic and not deterministic, and usually Frepi job times
are larger than Mpi job times. Note that in order to improve
throughput, transitions tfij have preference over all others.
However, transition tmi is not always an ‘urgent’ transition to
fire due to a scheduled PM, by presence of a new token in
place Manti. This is, the supervisor can decide whether it is
more important to finish pending jobs, or proceed to
maintenance of corresponding resource Ri.

The definition of the Failure-Maintenance system
structure follows. Since the structure discussed in section 2 is
now augmented by the addition of corrective and PMS, the
FM structures, we need to re-define the formulation from
section 2. For this, we need to include jobs type Frepi and
Mprevi (the repair and the maintenance jobs, respectively), and
the control transitions that activate these jobs for every type
of resources Ri. We include these sets in our now augmented
matrix form. We integrate these FM structures by
incorporating in matrices F and S the transitions and places
shown in figure 3. This figure shows black and gray dots,
representing ones and zeros in the rows & columns shown.
To properly maintain FM structures, we supervise the
maintenance integrated system, and keep track of job
markings that belongs to this system. That is, the number of
tokens in the FM addition system for each resource plus the
number of tokens in the job set of same resource is always
constant and equal to the initial marking in that resource
(assuming no maintenance is in schedule at the time the
initial marking is calculated.)

Resource places are the only places shared between PM
structures and the original PN (with no PMs). Notice also that
for any of these two options, the ‘travel’ of tokens between
one system to the other is through resource places R. Unless,
of course, if a failure happens at the moment a machine is
performing a job, a token passes from that job to failure
status job place Frepi (by firing corresponding tfij). For this
case, we consider the part was not finished, and stays in
standby as a damaged part or for to be re-machined. Then,
when failure happens, tfij is fired with high priority and start
maintenance failure job type Frepi.

This separation of systems MRF and FM is practical for
the following reasons:
1) Since FM system does not have resource loops and

does not generate extra resource loops if exist any in the
general existing system, this facilitates deadlock

analysis on the MRF system without worrying about
dynamics on FM systems.

2) It is possible to maintain and control an independent
FM subsystem with its appropriate PMS, and the
existing general system by properly handling the
marking vectors from both systems. It is clear that at
any given time, the total number of tokens in a job set
from a specific resource set, plus the available set of
resources from that set is maintained equal to the
initial marking of that resource set. This total number
of tokens is diminished by one, for every job been in
maintenance, i.e. been in its corresponding FM
system’s job set. Then, by maintaining for each
resource this number of tokens equal always to the
sum of tokens from both systems, it is possible to
maintain control of the MRF and FM systems.

Figure 2 shows the FM Petri net system structure that
has to be added for each resource in the FMR system to
supervise preventive and corrective jobs. Figure 3 shows the
matrix representation section representing only the FM
system of resource R1. For the class of MRF systems we are
considering including FM, deadlock can occur only if there
is a circular wait relation among resources [Deitel 84,
Gurel et.al 00]. Circular wait relations are ubiquitous in
reentrant flow-lines and in themselves do not present a
problem. However, if a circular wait relation develops into
circular blocking, then one has deadlock. But, as long as
dispatching is carefully performed, the existence of circular
wait relations presents no problem for regular systems
[Gurel et.al 00]. In this paper we restrict our analysis to
regular systems. This systems lack key resources. These key
resources are critical structured resources that might lead to
possible Second Level Deadlock (SLD) [Fanti et al. 00]
situations in MRF systems. In [Mireles et al. 02a-b], we
provide a matrix tests for system regularity.

3.2 Circular Waits: Simple Circular Waits and
their Unions.

In this section we present a matrix procedure to identify all
circular waits (CW) in MRF systems. CWs are special wait
relationships among resources described as follows. Given a
set of resources R, for any two resources ri, rj ⊂R, ri is said
to wait for rj, denoted ri→rj, if the availability of ri is an
immediate requirement to release rj, or equivalently, if there
exists at least one transition x∈•ri∩ri•. Circular waits
among resources are a set of resources ra, rb,…rw, which
wait relationships among them are ra→ rb→…→rw, and
rw→ ra. The simple Circular Waits (sCW), are primitive
CWs which do not contain other CWs. If sCW are present in
the PN system structure, these are identified by constructing
a digraph of resources. [Hyenbo 95] demonstrated a
technique to identify such sCW. We used his approach to
contruct digraphs in matrix form. The entire set of CWs are
the sCW plus the circular waits composed of unions of non-
disjoint sCW (unions through shared resources among
sCW.)

In [Mireles et al. 01], we obtained two matrices, Cout
and G, using digraph theory and string algegra. Cout provides

T4-008
The 11th Mediterranean Conference on Control and Automation, MED’03. Rhodes, Greece. June 18-20, 2003.

 4

the set of resources which compose every CW (in rows), that
is, an entry of ‘one’ on every (i,j) position means that
resource j is included in the ith CW. G provides the set of
composed CWs (rows) from unions of sCW (columns), that
is, an entry of ‘one’ on every (i,j) position means that jth sCW
is included in the ith composed CW.

3.3 Deadlock Analysis: Identifying Critical
Siphons and Critical Subsystems.
Three important sets associated with the CWs C are the

siphon-job sets Js(C), the critical siphons, Sc(C), and critical
subsystems, Jo(C). The critical siphon of a CW is the smallest
siphon containing the CW. Note that if the critical siphon
ever becomes empty, the CW can never again receive any
tokens. This is, the CW has become a circular blocking. The
siphon-job set, Js(C), is the set of jobs which, when added to
the set of resources contained in CW C, yields the critical
siphon. The critical siphons of that CW C are the conjunction
of sets Js(C) and C. The critical subsystems of the CW C, are
the job sets J(C) from that C not contained in the siphon-job
set Js(C) of C. That is Jo(C)= J(C)\ Js(C). The job sets of CW
C are defined by J(C) = ∪r∈C J(r), for J(r)=r••∩J, where J is
the set of all jobs.

In order to implement efficient real-time control of the
DES, we need to compute these sets in matrix form. We need
intermediate quantities •• CC and , input and output
transitions from C, and which in matrix form for each CW
are denoted dC and Cd respectively, computed as,

dC = Cout Sr, and (5)
Cd = Cout Fr

T . (6)
In terms of these constructions, matrix form sets are

described next, indicating ‘one’ on every entry (i,j) for places
that belong to that set existing in every ith CW. The job sets
described earlier for each CW C, J(C), in matrix form (for all
CWs arranged in rows) are described by

JC = dC Fv = Cd
T

vS . (7)
The siphon-job sets are defined for each ith CW Ci as Js(Ci):=
J(Ci)∩(•• CC \). In matrix notation, we can obtain them for
all CWs by

Js = JC ∧)(d vFC . (8)
The critical subsystems, Jo(Ci) = J(Ci)\ Js(Ci), in

matrix form for all CWs Ci are obtained by
Jo = JC ∧)(d FvC . (9)

4 Deadlock Avoidance
In terms of the constructions just given, we now present

a minimally restrictive resource dispatching policy that
guaranties absence of deadlock for multi-part reentrant flow
lines. To efficiently implement in real time a DE controller
with this dispatching policy we use matrices for all
computations. We consider the case where the system is
regular, that is, it cannot contain the Critical Resources (CR)
(so-called structured bottleneck resources or ‘key resources’
[Gurel et al. 00] existing in Second Level Deadlock (SLD)
structures [Fanti et al. 97, 00].) For this case, we described
in [Mireles et al. 02], a mathematical test to verify that MRF

systems are regular. If that is not the case, we can still use
this matrix formulation, but with a different dispatching
policy designed for systems containing second level
deadlock structures. We will present such dispatching policy
for FMRF systems having CR in a forthcoming work.

4.1 Dispatching Policy
In this section we consider dispatching for regular

systems. In [Lewis et al. 98] was given a minimally
restrictive dispatching policy for regular systems that avoids
deadlock for the class of MRF systems considered in this
paper, but without the failures or PMS. To understand this
policy, note that, for this class of systems, a deadlock is
equivalent to a circular blocking (CB). There is a CB if and
only if there is an empty circular wait (CW). However, CB
is possible (for regular systems) iff the corresponding
critical siphon from any CW is empty. This is, there is a
deadlock iff all tokens of the CW are in the Critical
Subsystem.

Therefore, the key to deadlock avoidance is to ensure
that the WIP in the Critical Subsystems is limited to one less
job than the total number of initial tokens in the CW (i.e. the
total number of resources available in the CW). Preliminary
off-line computations using matrices are used to compute
the Critical Systems. A supervisor is assigned to each
Critical Subsystem (CS) who is responsible for dynamic
dispatching by counting the jobs in that CS and ensuring
that they do not violate the following condition, for each
CW Ci, m(Jo(Ci)) < mo(Ci). (10)
That is, the number of enabled places contained in the CS
for each Ci must not reach the total number of resources
contained in that Ci. In (10), mo(Ci), is the initial marking of
Ci,. However, having failures and PM jobs, the total number
of available resources will be diminished. So that mo(Ci)
does not represent anymore the actual available resources
contained for that Ci. To be able to keep track of such
available resources, we need to define the total number of
job places from systems FM corresponding to resources
contained in a CW Ci, by JMF(Ci). Then, if we diminish
mo(Ci) by jobs currently in failure and/or PM in JMF(Ci), our
CB supervision test (10), we will be able to ensure actual
available resources which will ensure deadlock-free
dispatching. This is, our new CB supervision test is

m(Jo(Ci)) < {mo(Ci) - JMF(Ci)} (11)
A graphical example of using (11) is pictured in Figure

4. This system has two circular waits, C1={M1, R3}, and
C2={M2, R2}. This system contains five FM systems split
as separate subsystems. Notice that initial mo(Ci)=4 for
i=1,2. The current status shown in Figure 4, is that CW C1
has two jobs pending in m(Jo(C1))=2, jobs R3a and m1.
Then, since JMF(C1)=0 (no jobs in places Fm1, Mmp1, Fr3,
and Mp3), and mo(C1)=4, we are able to fire transition t3 to
have a total of three tokens allowed by (11). However, since
a new attempt to start a PM job at place Mpm1 is in place,
and if we fire transition tmm1, JMF(C1) will become one, then
we should not fire t3 since C1 would be in deadlock, due to
(11). For CW C2, the allowable number of resources should
be <{mo(C2) - JMF(C2)}. This is, should be smaller that 3.
Then, we can not fire transition t9, since C2 will get into CB

T4-008
The 11th Mediterranean Conference on Control and Automation, MED’03. Rhodes, Greece. June 18-20, 2003.

 5

until failure maintenance Frep2 is finished. Therefore, it is
better not to get into blocking and wait till one of the jobs m2
is finished to diminish m(Jo(C2)) by firing t11.

The appropriate way to keep the markings of resources
equal in both systems is to use Finite State Automata
techniques to supervise both subsystems alternatively. This
is, run one (several) discrete event(s) in any one of these
subsystems, then hold its markings and pass the new marking
of resources R, m(R), before one run event(s) in the other
subsystem. This Finite Element Machine interaction between
subsystems is shown in Figure 5.

For implementation of the DEC, in every DE iteration,
we can use any desired dispatching policy. For example,
FBFS, which maximizes WIP and machine percent
utilization. However, it is known that FBFS often results in
deadlock. Therefore, we combine FBFS with our new
deadlock avoidance test (11). Thus, before we dispatch the
FBFS resolution, we must examine the marking outcome
with our deadlock policy. If this resulting outcome does not
satisfy (11), then the algorithm denies or pre-filters in real
time the firing and we apply again the FBFS conflict
resolution strategy for the next possible allowable firing
sequence. Then, using FBFS while permitted, we will try to
satisfy in most of the current status of the cell the case
m(Jo(Ci)) = {mo(Ci) - JMF(Ci)}-1. The later condition is an
extended policy from that called MAXWIP policy, defined in
[Huang et al. 96].

6. Conclusions.
We show an analysis of blocking phenomena in Discrete

Event Systems (DES) having corrective and/or Preventive
Maintenance Schedules (PMS). We show that for some DES
structures having reentrant flow-lines, it is not necessary to
stop all activities in the DES, for the case one or more
machines are in PMS. We proposed deadlock-free
dispatching rules derived by performing circular wait
analysis for possible deadlock situations. We analyze the so-
called critical siphons, certain critical subsystems and
resources to develop a DE controller that guarantees
deadlock-free dispatching with PMS by limiting the work-in-
progress in the critical subsystems associated with each CW.
This is accomplished by integrating a Finite State Automata
supervision between two subsystems. One system is the
Reentrant Flow-line system structure controlled by the DES
matrix formulation, and an extra DES system contains the
failure and preventive maintenance dynamics, called FM
system structure. Deadlock-free dispatching is possible by
passing the markings of available resources between these
two subsystems. The extra FM DES system acts as a
disturbance in the primary Reentrant Flow-line DES system.

References
[1] Banaszak Z. A. and B. H. Krogh. “Deadlock Avoidance in

Flexible Manufacturing Systems with Concurrently Competing
Process Flows.” IEEE Trans. Robotics and Automation, RA-6,
pp. 724-734 (1990).

[2] Ezpeleta S. D., J. M. Colom and J. Martinez. “A Petri Net Based
Deadlock Prevention Policy for Flexible Manufacturing
Systems.” IEEE Trans. Robotics and Automation, RA-11, pp.
173-184 (1995).

[3] Fanti M.P., B. Maione, S. Mascolo, and B. Turchiano. “Event-
Based Feedback Control for Deadlock Avoidance in Flexible
Production Systems.” IEEE Transactions on Robotics and
Automation, Vol. 13, No. 3, June 1997.

[4] Graves S.C. “A Review of Production Scheduling.” Operations
Research, vol. 29, no. 4 (1981).

[5] Gurel A., S. Bogdan, and F.L. Lewis. “Matrix Approach to
Deadlock-Free Dispatching in Multi-Class Finite Buffer
Flowlines.” IEEE Transactions on Automatic Control. Vol. 45,
no. 11, Nov. 2000, pp. 2086-2090.

[6] Hicks D.K. “Preventive Maintenance Program: Evaluation and
Recommendations for Improvements.” U.S. Army Construction
Engineering Research Laboratory (USACERL). Report OMB
No. 0704-0188. June 1990.

[7] Hsieh F.-S. and S.-C. Chang. “Dispatching-Driven Deadlock
avoidance controller Synthesis for Flexible Manufacturing
Systems.” IEEE Trans. Robotics and Automation, RA-11, pp.
196-209 (1994).

[8] Hyuenbo C., T. K. Kumaran, and R. A. Wysk. “Graph-Theoretic
Deadlock Detection and Resolution for Flexible Manufacturing
Systems.” IEEE Transactions on Robotics and Automation, vol.
11, no. 3, pp. 413-421 (1995).

[9] Kumar, P.R. “Re-entrant lines.” Queueing Systems: Theory and
Applications. vol. 13, pp. 87-110, SW, (1993).

[10] Kusiak A. and J. Ahn. “Intelligent Scheduling of Automated
Machining Systems.” Computer Integrated Manufacturing
Systems, vol.5, no.1, Feb. 1992, pp. 3-14. UK (1992).

[11] Lewis F. L.. “A Control System Design Philosophy for
Discrete Event Manufacturing Systems.” Proc. Int. Symp.
Implicit and Nonlinear Systems, pp. 42-50, TX (1992).

[12] Lewis, F.L., H.-H. Huang and S. Jagannathan. “A systems
approach to discrete event controller design for manufacturing
systems control.” Proceedings of the 1993 American Control
Conference (IEEE Cat. No.93CH3225-0). American Autom.
Control Council. pp.1525-31 vol.2. Evanston, IL, USA (1993).

[13] Lewis F.L., Gurel A, Bogdan S, Docanalp A, Pastravanu OC.
“Analysis of Deadlock and Circular Waits using a Matrix Model
for Flexible Manufacturing Systems.” Automatica, vol.34, no.9,
Sept. 1998, pp.1083-100. Publisher: Elsevier, UK (1998).

[14] Mireles, J. and F.L. Lewis, “On the Development and
Implementation of a Matrix-Based Discrete Event Controller.”
MED01, Proceedings of the 9th Mediterranean Conference on
Control and Automation. Pub. on CD, ref MED01-012. June 27-
29 2001. Dubrovnik, Croatia (2001).

[15] Mireles, J. and F.L. Lewis. “Intelligent Material Handling:
Development and Implementation of a Matrix-Based Discrete
Event Controller.” IEEE Transactions on Industrial
Electronics. Vol. 48, No. 6, December 2001.

[16] Mireles, J. and F.L. Lewis, A. Gurel. “Deadlock Avoidance
for Manufacturing Multipart Reentrant Flow Lines Using a
Matrix-Based Discrete Event Controller.” Int. Journal of
Production Research. 2002.

[17] Smith A.M. “Preventive Impact on Plant Availability.”
Proceedings 1992 Annual Reliability and Maintainability
Symposium. pp. 177-180. 1992.

[18] Steward, D. V. “The Design Structure System: A Method for
Managing the Design of Complex Systems.” IEEE Trans. On
Engineering Management, vol. EM-28, no. 3, pp. 71-74 (1981).

T4-008
The 11th Mediterranean Conference on Control and Automation, MED’03. Rhodes, Greece. June 18-20, 2003.

 6

A.

B.
C.
D.
E.
F.
G.
H.

Figure 3. Fu, Fv, Fr, Sv
T,, Sr

T matrices for resource R1

 C1 tfm1 M1 tfrm1
 tf11 tr11 tf31 tr31 tf32 tr32

 Pin1 t1 R1a t2 c1 t3 R3a t4 t5 R3b t6 Pout1

 m1

 R1 R2 R3

Pin2 t7 R1b t8 c2 t9 R2a t10 m2 t11 R2b t12 c3 t13 R3c t14 Pout2

 tf12 tr12 tf21 tr21 tf22 tr22 tf33 tr33
 C2 tfm2 M2 tfrm2 C3

Figure 4. Complete Petri Net and FM5 system structures.

FM5

structure

Std. PN
structure

 tm1 tf11 tf12
 tmm2 tfm2

Mant1 Mp1 R1 Frep1 Mantm2 Mpm2 M2 Frepm2
 tmm1 tfm1
 tmr1 tr11 tr12 tmrm2 tfrm2

Mantm1 M1 Frepm1
 tm2 tf21 tf22 Mpm1 tm3 tf31 tf32 tf33

 tmm1 tfrm1

Mant2 Mp2 R2 Frep2 Mant3 Mp3 R3 Frep3

 tm2 tf21 tr22 tmr3 tr31 tr32 tr33

Part P1

Part P2

R1a

(2) Robots
type 1

R1b

R3a

R3b
R3c

R2a

R2b

C3

conveyor

Part P1
out

Part P2
out

Conveyor
C1

Conveyor
C2

(2) Machines
Type A

(2) Robots
type 3

(2) Robots
type 2

(2) Machines
Type B

Figure 1. Multipart Reentrant Flow Line Problem.

 other jobs other job
 tmi tx tfij failures j

 Ri Jobij Frepi

Manti Mprevi

 tmri ty trij finish other
 pending jobs j

Maintenance In-Service Failure
 status status status

Figure 2. Corrective, In-Service and Preventive status of FM.

Pass
resource
marking

m(R)

 PN/DES

FM system objectives controller’s objectives

Figure 5. Finite State Automata interactions between the FM
subsystem and DES controller structure.

FM coordinator

Prev. Maint.
Schedules, Failure
Maint., Failure-
maintenance record-
keeping statistics,
Analysis, Report
generation

Automatic dispatching,
deadlock-free dispatch,
job routing, throughput,
analysis, report
generation

DES coordinator

T4-008
The 11th Mediterranean Conference on Control and Automation, MED’03. Rhodes, Greece. June 18-20, 2003.

	Conference Program
	Author Index
	Main Menu

