
 

A POLYNOMIAL CONTROL SYSTEMS 
PACKAGE 

Neil Munro, Fellow, IEEE 

The Linear Models manipulation facilities implemented 
provide the various transformations needed to automatically 
manipulate linear system models between any of the following 
standard forms; state space, transfer-function (matrix), left or 
right matrix-fraction form, and Rosenbrock's [4,5] system 
matrix in state-space or polynomial form.  The data structure 
for state space objects is the form used by the H∞ robust 
control system design method.  Using the transformations to 
left or right matrix-fraction forms, now widely used in the H∞ 
design method, the resulting system models can also be 
readily reduced to least-order, or coprime, form. 

   
Abstract--A new integrated software package called Polynomial 
Control Systems, which is fully compatible with Mathematica’s 
Control System Professional, is described.  The package, which 
provides several additional model manipulation facilities and 
system analysis tools, and two frequency-domain multivariable 
system design methodologies, is also fully compatible with a 
related package dealing with descriptor systems.. 
 
Index terms--CAD, polynomial systems, model manipulation, 
system analysis, frequency-domain design. 
 

 
Using the facilities currently available in Mathematica’s CSP, 
a user can enter a system description either as a 
TransferFunction, StateSpace, or ZeroPoleGain object, as 
shown below: 

I. INTRODUCTION 
 
Mathematica [1], like other similar computing environments, 
in addition to its kernel system, is enhanced by various 
domain-specific packages, such as the “Control System 
Professional” [2].  This latter package provides the classical 
single-input single-output control system analysis and design 
tools, the established Kalman tests for controllability and 
observability, the controllability and observability Gramians, 
minimal realisation algorithms, pole assignment, optimal 
control system design, system interconnection facilities, 
system simulation, and many other tools.  

 
    tf = TransferFunction[s, {{1/(s+1), 2/(s+3)}}] 
    ss = StateSpace[{{0, 1},{-3, -4}},{{0},{1}},{{3, 1},{2, 2}}] 
 
These can then be manipulated into the alternative model 
forms provided in CSP by simply applying the appropriate 
wrapper around the form concerned; e.g. 
  
               ss = StateSpace[tf]        

         tf =TransferFunction[s, ss] In recent years, the author has been developing a new 
polynomial control systems package using Mathematica to 
provide CAD tools to support the teaching of multivariable 
control systems theory, and also for use in research and in 
solving real industrial control problems.  In the following, the 
facilities implemented for linear system model manipulation, 
linear system analysis, and linear multivariable system design 
in the frequency domain will be presented.  All of the facilities 
to be considered are fully compatible with Mathematica’s 
Control System Professional (CSP), and are also fully 
compatible with a related package dealing with descriptor 
systems [3]. 

         zpg = ZeroPoleGain[tf] 
 
The resulting model data held in these objects can then be 
inspected by using the CSP command //ReviewForm.  
However, these model formats have now been improved so 
that entering the state space object ss or transfer function 
object tf automatically results in the more compact and 
pleasing output formats, shown below 
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II.  MODEL MANIPULATION 
  
These new model formats, which are fully interactively 
editable, have been supplemented by Rosenbrock’s system 
matrix description for systems in state space or polynomial 
form, and matrix-fraction descriptions; e.g. 
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rmf = RightMatrixFraction[tf]  
 

results in  
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This, or any other of the now extended model forms, can 
equally be transformed to a left matrix-fraction object by 
applying the appropriate wrapper to the current object form; 
e.g. 

lmf = LeftMatrixFraction[rmf] 
 
which results in  
 
                                                           (3) L|

2
1

3s0
01s 1














 +

+
−

 
Any of the model objects considered above can equally be 
manipulated into a system matrix object, by using the 
command 
 

SystemMatrix[tf, TargetForm→RightFraction] 
 
which results in  
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Here, the option TargetForm can be used to force the 
resulting system matrix object to be created from a right 
matrix-fraction form as in (2), or from a left matrix-fraction 
form as in (3), by setting TargetForm→LeftFraction. 
 
 

III.  SYSTEM ANALYSIS 
 
The linear System Analysis facilities implemented provide a 
range of well-established analysis tools.  In addition to the 
established state-space model controllability and observability 
tests, provided in the CSP facility, the user can now also 
request the controllability or observability of a system 
described by a polynomial system matrix model, by simply 
entering Controllable[ps] or Observable[ps], where ps is the 
name of the SystemMatrix object concerned; e.g. entering the 
command 
  

Controllable[ps] 
 
generates the response True, where ps is the system matrix 
object defined by (4) above. 
The functions SmithForm and McMillanForm have been 
provided to determine the Smith form of a polynomial matrix 
and the McMillan form of a rational polynomial matrix.    The 
algorithm used for the Smith form is that proposed by Kailath 

[6].  For example, the McMillan form of the TransferFunction 
object corresponding to the two-input two-output StateSpace 
object  
 
ss =  

    
S
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is determined as  
 

McMillanForm[TransferFunction[s, ss] ] 
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Several related functions are also provided; namely, 
InvariantZeros, which uses the Smith form to calculate the 
invariant zeros of a system, McMillanDegree, which uses the 
McMillan form to determine the finite poles of a multivariable 
system, and can be used to determine the order of any minimal 
state space realisation of the transfer function matrix 
concerned, and TransmissionZeros which can be used to 
determine the existence of any right-half plane “transmission 
zeros”.  The position of any rhp-zeros in the diagonal terms of 
the McMillan form indicates the point in any loop-closure 
procedure at which the non-minimum phase effect will 
manifest itself.   A further minimal realisation algorithm (Patel 
and Munro, [5]), based on Rosenbrock’s decoupling zeros 
theory, has been implemented that carries out a minimum of 
numerical operations, compared with most other algorithms, 
in determining the desired minimal-order state space model. 
 
The functions LeftCoprime and RightCoprime are provided 
to determine whether two polynomial matrices are coprime, or 
not, and return True or False.  An algorithm to determine a 
coprime factorisation of a given transfer function matrix 
model has also been implemented.  This can be used with any 
initial Left or RightMatrixFraction object that may not be in 
least-order form to detect and remove any Left or Right 
Matrix Common Factor in the resulting numerator and 
denominator matrices.  Suppose that a system description has 
been entered as a SystemMatrix object in polynomial form; 
e.g. 
 
   ps = SystemMatrix[s,  t,  u,  v,  w] 
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  (13) Then, by invoking LeftGCDDecomposition[t, u, s], the user 
can determine the Matrix Left Greatest Common Divisor, 
L(s), of the matrices T(s) and U(s), if any, yielding here 
 

    L(s) =               (8)               
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then applying the command  
 

OutputDecouplingZeros[ps] 
  
 to the system matrix ps defined by (13) would yield  



















−−
+−+++

−+−−++

=

1000
0111
0)2s(s2s3s)2s(s
0)1ss(1ss)1s(s

)s(T
2

23232

r

       (9)  
                                     {-2}                 (14) 
 
as expected.  The function LeastOrderSystem uses these 
latter functions to determine a least-order, or lowest-order, 
form of a system described by a system matrix in polynomial 
form; e.g. 

 
where Ur(s) and Tr(s) are the coprime forms of U(s) and T(s), 
respectively.   
 LeastOrderSystem[ps] 
Of course, the Smith form of the system matrix ps, defined in 
(7), can be obtained using the command 

 
where ps is the system matrix defined earlier by (7) yields 

  
SmithForm[ps] 
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yielding 
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 IV.  MULTIVARIABLE SYSTEM DESIGN 
which would equally have revealed that the system was not 
least order, and had either, or both, input decoupling zeros and 
output decoupling zeros. 

 
Here, two well-established frequency domain design 
techniques for multivariable systems have been provided.  The 
functions Direct and InverseNyquistArrayPlot implement 
Rosenbrock’s Direct and Inverse Nyquist Array design 
methods [4,5]. 

 
The functions InputDecouplingZeros and 
OutputDecouplingZeros are provided to detect the presence 
of such input or output decoupling zeros in a system matrix 
model, in polynomial or state-space form, and 
RemoveInputDecouplingZeros, and 

 
In addition, various other recent interaction measures, such as 
functions to determine Bristol’s Relative Gain Array [7] RGA 
and the RGANumberPlot, and functions to plot the 
behaviour of the Perron-Frobenius eigenvalue and the 
elements of the Perron-Frobenius eigenvector of the system 
with frequency, for scaling of the system inputs [8], are 
provided. 

RemoveOutputDecouplingZeros can be used to remove 
these.  For example, using the system matrix defined by (7) 
above, 
 

InputDecouplingZeros[ps] 
  
would yield                  {-1, 0, 0}  (11) For example, applying the relative gain array function 

RGA[tf] to the transfer function object tf defined as  
and     OutputDecouplingZeros[ps]  
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However, if the input decoupling zeros were first removed 
from ps, yielding the reduced-order system  
  



for column j.  The dominance ratios achieved with the 3rd-
order scaling compensator are shown in Figure 5.  With the 
perfect Perron-Frobenius scaling compensator, the same 
dominance ratios would be achieved in each row of the direct 
Nyquist array at the same frequency.  However, here you can 
see that the dominance ratios are the same at low and 
intermediate frequencies, but deviate at the higher frequencies. 

yields  
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which clearly shows that the current input-output pairing is 
appropriate for further design considerations. 

  
The Characteristic Locus based design method [10] has also 
been implemented with functions CharacteristicValuesPlot 
to display the behaviour of the characteristic loci, and 
CharacteristicVectorsPlot to display the misalignment 
between the system’s characteristic vectors and the Euclidean 
basis set with frequency, where the latter is used as a measure 
of interaction in a system.  The Align algorithm [11] is 
provided to determine a high frequency constant compensator 
used with this method to improve this alignment, and also the 
wholly real matrices L and R of a commutative controller  

The direct Nyquist array for the transfer function object tf 
defined by (16), with Gershgorin disks for row diagonal 
dominance superimposed on the diagonal elements, can be 
generated over a range of frequencies ω going from 0 to 20 
rad/sec, by the function 
 
DirectNyquistArrayPlot[tf, {0, 20},  
                                           GershgorinDisks→Row] 
 
The resulting graphical output is shown in Figure 1, which 
shows that the system is not row diagonal dominant.   The 
option GershgorinDisks can equally be set to the value 
Column, if the column diagonal dominance of the system is to 
be assessed. 

 
                            K(s) = L.diag{ki(s)}.R         (20) 

 
 that can be used to shape the mid-frequency behaviour of the 
characteristic loci.  
 Applying the function PFEigenvaluePlot[tf] produces the 

output shown in Figure 2.  As the PF eigenvalue is less than 2 
over the bandwidth of interest, this indicates that a dynamic 
diagonal input scaling compensator exists that will make the 
system row diagonal dominant over this bandwidth.  This 
compensator must be a good approximation to the magnitude 
behaviour of the elements of the PF right eigenvector over this 
bandwidth.   The function PFScalingCompensator, has been 
implemented to determine the constant or dynamic forms of 
an appropriate Perron-Frobenius based diagonal scaling 
compensator.  A suitable scaling compensator is determined 
using this function, as shown below 

To illustrate these tools, consider the 4-input 4-output transfer 
function model of a reheat furnace [12], given by 
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The four characteristic loci for this system, shown in Figure 
6, are badly out of balance, and the characteristic locus 
design method attempts to equalise these magnitude 
characteristics.  The corresponding direct Nyquist plot of 
element G1,1(jω) is shown in Figure 7, with Gershgorin 
row-dominance circles.  Since all four diagonal elements of 
G(s) are identical, and the transfer-function matrix has 
quasi-symmetry, the resulting dominance characteristics are 
similar for each of the other three diagonal elements, which 
are clearly not open-loop diagonal dominant. 

 
and the goodness of the resulting approximation is shown in 
Figure 3.  The resulting Direct Nyquist Array, with row 2 
scaled up by a factor of 6, as shown in Figure 4, is clearly row 
diagonal dominant over the frequency range of interest. 
 
Hawkins’s PseudoDiagonalisation method [9] for 
determining a wholly real compensator that achieves good 
diagonal dominance in a system at a given frequency is also 
implemented.  A graphical function DominanceRatiosPlot, 
that can be used to determine the row, or column, dominance 
ratios of a given system, has also been implemented.  These 
ratios are defined for a m × m matrix in terms of column 
dominance, as 

Using the Align function, a high-frequency compensator  
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determined at 2 radians/second, yields the more balanced 
characteristic loci shown in Figure 8 for Q(s) = G(s)Kh, and 
the corresponding direct Nyquist plot for Q1,1(s), with 
superimposed Gershgorin row dominance circles shown in 
Figure 9, and similarly for the other diagonal terms.  Since 
Q(s) is now diagonal dominant with minimal transient 
interaction, and is open-loop stable, the resulting closed-
loop system will be stable with large forward-path gains, or 
proportional-plus-integral action controllers, which can be 
implemented to reduce the remaining steady-state 
interaction and achieve good steady-state performance.   0.5 1 1.5 2
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Figure 1: Direct Nyquist Array 
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Figure 4: Direct Nyquist Array of scaled system 
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Figure 7: Nyquist plot of G11 for the Reheat Furnace. 
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Figure 8: Characteristic loci for G(s)Kh. 

 
  
 Figure 5: Dominance ratios for scaled system. 
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 Figure 9: Nyqist plot of Q11(s). 

Figure 6: Characteristic Loci for the Reheat Furnace.  
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