
Empirical Emulators for Process Monitoring
and Optimization

Arthur K. Kordon, Alex N. Kalos, and Bryan Adams

An alternative empirical emulator can be based on
analytic neural networks [3]. A key advantage of analytic
neural networks is that the function to be optimized is a
quadratic function of the error and has one global optimum.
This type of neural network has been successfully
implemented in several industrial applications in The Dow
Chemical Company [8].

Abstract-- A novel methodology for the development of
empirical emulators based on analytic neural networks and
genetic programming is proposed. The capability of the
analytic neural net-based emulator to detect unreliable
predictions with a model disagreement indicator is of critical
importance to process monitoring and optimization. Genetic
programming-based emulators generate explicit functional
models that are more convenient for optimization and on-line
implementation than black-box solutions. The advantages of
the proposed methodology are illustrated with an industrial
application in the chemical industry.

Another approach for building a successful empirical
emulator uses genetic programming [5]. By mimicking
natural evolution and using genetic operators such as
crossover and mutation, genetic programming delivers
empirical models in a form of explicit analytic functions
mapping process inputs to outputs. The main advantage of
this type of emulators is its ease of implementation.

Index Terms-- Empirical emulators, neural networks, genetic
programming, process monitoring and optimization

The development of empirical emulators for process
monitoring and optimization based on analytic neural
networks and genetic programming is described in this
paper. They are used in a real chemical process in The Dow
Chemical Company.

I. INTRODUCTION
Empirical emulators mimic the performance of first
principle models by using various data-driven modeling
techniques. The driving force to develop empirical
emulators is the push for reducing the time and cost for new
product or process development [1]. Empirical emulators are
especially effective when hard real-time optimization of a
variety of complex fundamental models is needed [2]. The
increased robustness of modern data-driven techniques such
as analytic neural networks [3], support vector machines
[4], genetic programming [5], etc. is a reliable basis for
accurate representation of the behavior of fundamental
models. This makes it possible to substitute fundamental
models with their empirical emulators and provides many
opportunities for effective synergy of these two key
modeling approaches.

II. MOTIVATION FOR DEVELOPING EMPIRICAL EMULATORS
The primary motivation for developing an empirical
emulator of a first principle model is to facilitate the on-line
implementation of a model for process monitoring and
control. Often times it may prove difficult or impractical to
incorporate a first principles model directly within an
optimization framework. For example, the complexity of
the model may preclude wrapping an optimization layer
around it. Or, the model may be implemented in a different
software/hardware platform than the Distributed Control
System (DCS) of the process, again preventing its on-line
use. In other occasions, the source code of the model may
not even be available. In such circumstances, an empirical
emulator of the fundamental model can be an attractive
alternative. An additional benefit is that there is a
significant acceleration of the execution of the on-line
model: the computational gain is on the order of 103 – 105

times faster.

Most of the known empirical emulators are
implemented as “classical” neural networks based on a
back-propagation learning algorithm [1], [6]. Their property
of being universal approximators is a key theoretical result
for successful emulation [7]. However, “classical” neural
networks suffer from a number of problems such as: long
computational time for training, convergence to local
minima, sensitivity to weight initialization, too many
tunable parameters, etc. These problems put serious
limitations on the quality of the developed empirical model,
increase development time, and require experienced model
developers.

III. EMPIRICAL EMULATORS STRUCTURES
The most obvious scheme for utilization of empirical
emulators is for complete “replacement” of a fundamental
model. The key feature of this scheme, shown in Figure 1,
is that the emulator represents the fundamental model
entirely and is used as a stand-alone on-line application.
This scheme is appropriate when the fundamental model
does not include too many input variables and a robust and

 All authors are affiliated with The Dow Chemical Company. A. K.
Kordon and A. N. Kalos are located at 2301 N. Brazosport Bvd., Bldg B-
1217, Freeport Texas, 77541. B. Adams is at Louisiana Hwy 1, PO Box
150 Plaquemine, Louisiana, 70765.

parsimonious empirical model can be built from the
available data generated by design of experiments (DOE).

Fundamental
Model

Training &
Test

Data Sets

Emulator
DOE

Empirical
Models
Design

Off-line On-line

Figure 1. Empirical emulator as accelerator of fundamental
models.

In case of higher dimensionality and model
complexity, a hybrid scheme of fundamental model and
emulator integration is recommended (see Fig.2).
Emulators based only on sub-models with high
computational load are developed off-line using different
training data sets. These emulators substitute the related
sub-models in on-line operation and enhance the speed of
execution of the original fundamental model. This scheme
is of particular interest when process dynamics have to be
taken into account in the modeling process.

 Fundamental Model

Sub model 1

Sub model 2

Sub model 3

Emulator 1

Emulator 3

I/O data

I/O data

Figure 2. Hybrid scheme of empirical emulators and
fundamental models.
 Finally, an item of special importance to on-line
optimization is the scheme (shown in Fig.3) where the
empirical emulator is used as an integrator of different
types of fundamental models (steady-state, dynamic, fluid,
kinetic, thermal, etc).

Fluid
Model

Combined
Training &

Test
Data Sets

Emulator
DOE

Empirical
Models
Design

Off-line On-lineKinetic
Model

Thermal
Model

DOE

DOE

Figure 3. Empirical emulator as integrator and accelerator
of fundamental models.

In this structure, data from several fundamental models can
be merged and a single empirical model can be developed

on the combined data. The empirical emulator, as integrator
of different fundamental models, offers two main
advantages for on-line implementation [6]. The first
advantage is that it is simpler to interface only the inputs
and outputs from the models than the models themselves.
More importantly, when constructing the data sets by DOE,
the developer selects only those inputs/outputs that are
significant to the optimization. Hence, the emulator is a
compact empirical representation of only the information
that is pertinent to the optimization.

The second advantage is that one optimizer can address
the whole problem, rather than trying to interface several
separate optimizers. The optimization objectives, costs,
constraints, algorithm, and parameters are more consistent,
allowing the multi-model problem to be solved more
efficiently.

IV. CONTEMPORARY MACHINE LEARNING TECHNIQUES
FOR BUILDING EMPIRICAL EMULATORS

There are different modeling techniques to build empirical
emulators (for current survey, see [9]). The majority of
applications discussed in the literature are based on
“classical” back-propagation neural nets [1], [2], [6].
Regardless of illustrating the validity of the approach, the
delivered solutions have inefficient structures and cannot
extrapolate well outside the training range. The last
problem is of critical importance if scale-up of the emulator
is necessary.

Three contemporary machine learning techniques
permit building empirical models (e.g., emulators) with
robust performance and potential for good generalization
outside the training range. The first technique is the analytic
neural network [3]. Analytic neural nets are based on a
collection of individual, feedforward, single layer neural
networks, where the weights of the input to hidden layer
have been initialized according to a fixed distribution such
that all hidden nodes are active. The weights of the hidden
to output layer can then be calculated directly using least
squares minimization techniques. The advantage of this
method is that it is fast and each neural network has a well-
defined, single, global optimum. Since the global optimum
is guaranteed by design, it is no longer possible to get stuck
in local minima and the learning algorithm is not iterative.
As a result, the data-driven modeling process is
significantly reduced and the developed empirical models
are parsimonious. In addition, the use of a collection of
networks gives more robust models, which includes a
model disagreement indicator, based on the standard
deviation of the output of the stacked neural nets. Such
indicators enable the emulators to be “aware” of their own
performance which is essential for any data-driven model,
especially for on-line, real-time applications.

The second technique for robust emulator building is
symbolic regression performed by genetic programming
(GP). GP-based symbolic regression is the mathematical
analogue of natural selection, where numerous potential
mathematical expressions are evolved, eventually resulting
in a list of “the best and the brightest” analytical forms,
according to a fitness selection objective function. The

following unique features of GP are of special importance
to industry [8]:
1. no a priori modeling assumptions
2. derivative-free optimization
3. “natural” selection of the most important process inputs
4. parsimonious analytical functions as a final result.

The last feature has double benefits. On one hand, a
simple empirical emulator often has better generalization
capability and is more reliable for operation outside the
training range. On the other hand, process engineers and
developers prefer to use non-black box empirical models
and are much more open to take the risk to implement
emulators based on functional relationships. An additional
advantage is the low implementation cost of such type of
emulators, because they can be deployed directly in the
existing DCS avoiding additional specialized software
packages, which is typical for many commercially available
neural network-based models.

The third technique for robust emulator building is
support vector machines (SVM). Some recent results show
that by using a mixture between global (polynomial) and
local (Radial Basis Function) kernels, empirical models
with extremely good generalization capability can be built
[10]. However, SVMs are still an area of active research
and will not be covered in detail in this paper.

V. A METHODOLOGY FOR EMPIRICAL EMULATORS
DEVELOPMENT

The objective of the proposed methodology is to optimize
the advantages of the different technologies in order to
build empirical emulators with high prediction quality with
minimal development effort. The key steps of the
methodology are as follows.

A. Step 1: Define empirical emulator performance
This step specifies the requirements for a successful
empirical emulator such as expected accuracy of prediction
relative to the fundamental model, detection of areas with
unreliable model prediction, optimization constraints, off-
line or on-line model implementation, software
environment, maintenance and support.

B. Step2: Identify critical process variables
Since the purpose of the empirical emulator is to capture the
behavior of a complex fundamental model, only the most
significant process variables have to be taken into account.
However, reducing the complexity must not be at the
expense of reduced accuracy of prediction. The selection of
the critical variables is based on the nature of the problem
and the existing fundamental model. In addition, factors
such as the possibility for wide-range variable changes,
influence on profit, availability of measurements, and
statistical measures (correlation coefficients, R2, or variable
importance in multivariate analysis) are taken into
consideration.

C. Step3: Planned Design Of Experiments (DOE)
One advantage of empirical emulators is that the training
data for building the emulator can be generated using
design of experiments (DOE) strategies. This allows a high
degree of freedom in developing reliable data-driven
models. Even though the “experiments” are performed in a
virtual rather than a physical plant, executing the runs still
demands time, resources and money; so judicious
experiment selection is important. Still, we have the luxury
to do runs in regions where we may never be able to push a
physical plant because of safety or economic constraints.

The type of DOE (two-level, three-level, mixed-level,
or fractional factorial designs [11]) depends on the number
of critical variables and the expected nonlinear behavior of
the response surface. It is also possible that the fundamental
model cannot converge in all edges of the designed space
and a new DOE sequence may need to be defined.

D. Step4: Generate data sets
This step delivers the source of data for empirical emulator
development. In order to improve the quality and
robustness of the designed model, the generation of the
following three data sets is recommended: The “training
data set” is used for training the neural net (classical or
analytic) and for performing symbolic regression with GP.
Usually, this is the data set that is generated by DOE and
covers the maximal range of input variables. The second
data set is the “test data set” which is used to validate the
interpolation quality of the emulator and it is generated by
random selection of input values within the training range.
This data set is also used during the neural net development
for selection of the optimal structure (the number of the
neurons in the hidden layer), and it is used to validate the
performance of the GP-generated analytical functions. The
third data set is the “extreme-range data set” that checks the
extrapolation capability of the emulator. Usually it includes
several data points with critical inputs 10-20% outside the
training range. This data set is necessary to test if the
model disagreement indicator (a type of confidence limit,
discussed in more detail later) is able to detect “uncharted”
territory and to raise alarm flags for invalid predictions
outside the training range. Another purpose of the extreme
data set is to test how the modeling performance degrades,
especially in operational regions where possible future
changes are expected.

E. Step5: Emulator design
The key step of the methodology includes two options:

1) Emulator design based on neural networks
This type of emulator is in the form of a black-box model.
The designed neural network can be based on a variety of
architectures (feedforward, recurrent, analytic, etc.) and
numerous learning/optimization algorithms (back
propagation, Levenberg-Marquadt, Gauss-Newton, etc.)
[3], [7]. The critical design parameter that controls the
prediction quality is the model complexity or the number of
the neurons in the hidden layer. Usually this is determined
empirically by selecting a neural network structure with the
minimal prediction error on the test data set [7]. Due to the

availability of a balanced data set from DOE and the good
interpolation properties of the neural networks, this type of
empirical emulator mimics the fundamental model with
high fitness (R2 ~ 0.95-0.99). The development process is
relatively fast, however, it requires specialized knowledge
of neural networks.

2) Emulator design based on symbolic regression
The second option to mimic the behavior of fundamental
models is by a set of nonlinear analytical functions. In
contrast to the neural-network-based emulator the model is
not a black-box but an explicit analytical function. It is a
result of a simulated evolution based on the genetic
programming algorithm [5]. The convergence of the
algorithm toward high fitness functions can be improved if
the initial set of functions includes transformations that
reflect the chemistry and physics of the process. Since the
source of the emulator is a fundamental model based on
physico-chemical laws, appropriate functional
dependencies (like the Arrhenius law) can be extracted and
used in the symbolic regression generation.
 Due to the random nature of the simulated evolution, it is
necessary to repeat the design several times. The
development process requires significant computational
resources and the manipulation of several design
parameters (population size, number of generations, number
of reproductions per generation, probability for function
selection as next node, etc.) Of special importance is the
parsimony pressure parameter that controls the complexity
of the generated functions.

F. Step6: Off-line emulator validation
The performance of the derived empirical model is tested
off-line in as many scenarios as possible. Usually, at this
stage of development, the emulator is integrated with the
optimization package. It is recommended that a complete
set of test cases is performed, particulary with inputs on the
edges of the training range and with different constraints.

G. Step7: On-line emulator implementation
In many cases the final implementation is an on-line
empirical model. If the emulator is based on neural
networks, specialized software may be required for on-line
deployment (such as Process Insights from Pavilion
Technologies, Inc., or NeurOnline from Gensym
Corporation). This can add additional cost to the emulator
development and maintenance. In contrast, an empirical
emulator based on symbolic regression can be directly
implemented in the control system, precluding the need of
specialized packages.

VI. A CASE STUDY: AN EMPIRICAL EMULATOR FOR
OPTIMIZATION OF AN INDUSTRIAL CHEMICAL PROCESS

A. Problem definition
A significant problem in the chemical industry is the
optimal handling of intermediate products. Of special
interest are cases where intermediate products from one
process can be used as raw materials for another process in

different geographical locations. The case study is based on
a real industrial application of intermediate products
optimization between two plants in the Dow Chemical
Company, one in Freeport, Texas and the other in
Plaquemine, Louisiana. The objective is to maximize the
intermediate product flow from the plant in Texas and to
use it effectively as a feed in the plant in Louisiana. The
experience of using a huge fundamental model for “what-
if” scenarios in planning the production schedule was not
favorable because of the specialized knowledge required
and the slow execution speed (~20-25 min/prediction).
Empirical emulators are a viable alternative to solve this
problem. The objective is to develop an empirical model
which emulates the existing fundamental model with
acceptable accuracy (with R2 ~ 0.9) and which can
significantly speed up the calculation time (< 1 sec).

B. Data preparation
Ten input variables (different product flows) were selected
by the experts from several hundred parameters in the
fundamental model. There are 12 output variables that need
to be predicted and used in process optimization. The
assumption was that the behavior of the process can be
captured with these most significant variables and that a
representative empirical model could be built for each
output. A 32-run Plackett-Burman experimental design with
10 factors at four levels was used as the DOE strategy [11].
The training data set consisted of 320 data points. For 15 of
these the fundamental model did not converge for three of
the outputs. The test data set included 275 data points
where the inputs were randomly generated within the
training range. The extreme-range data set consisted of 181
data points with some of the inputs at 8-10% outside the
training range.

C. Empirical emulator based on analytic neural
networks

Several runs with different numbers of hidden nodes were
done and the results for all 12 emulators are summarized in
Table 1.

Table 1. Performance of all emulators on training and test
data.
Output R2 NN Training R2 NN Test # Hidden nodes
Y1 0.91 0.89 30
Y2 0.994 0.989 20
Y3 0.984 0.979 20
Y4 0.987 0.981 20
Y5 0.991 0.967 30
Y6 0.999 0.999 1
Y7 0.995 0.999 1
Y8 0.995 0.993 10
Y9 0.994 0.992 10
Y10 0.992 0.993 1
Y11 1 1 1
Y12 0.997 0.989 20

The structure of the neural network for each emulator
includes 10 inputs and one output. The same set of inputs
is used for all emulators. Since single hidden-layer analytic
neural networks are based on direct optimization, the only
design parameter to be adjusted is the number of neurons in
the hidden layer. A number of different structures (with
between 1 and 50 hidden nodes) were constructed and each
neural net was optimized based on the training data set.
The optimal number of hidden nodes was then determined
by applying each neural network to the test data set and
selecting the structure with the minimal R2 value. This
procedure was repeated for each emulator.
 One special feature of the analytical neural network is the
method of initializing the random weights between the
input and the hidden layer. In order to minimize the effect
of randomization, it is possible to use a stack of many
neural networks with the same complexity (i.e., with the
same number of hidden nodes) for each emulator. In
principle, combined predictors have better properties than
individual models [12]. An advantage of this approach is
that the final prediction is based on the average of all
models in the ensemble. Of even greater practical
importance is that the standard deviation between the
individual predictors can be used to develop a model
disagreement measure which is a type of a confidence
indicator for the stacked neural net models and also adds
some self-assessment capability to the emulator.
 As it is shown in Table 1, all emulators have acceptable
accuracy on the training and test data. An example of
emulator performance for emulator Y5 is shown in Figure 4
for the training data set and in Figure 5 for the test data set.
In both cases, the stacked ensemble model disagreement is
shown (at the bottom of the figures) on the same scale as
the actual data and thus the range of its magnitude is
relatively small. As expected, it is somewhat larger for the
testing data.

Y5 Training (R2 = 0.991)

0

100

200

300

400

500

600

700

800

900

1000

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

Sample Number

V
al

ue
 o

f Y
5

Actual Y5
Predicted Y5
Model disagreement

Figure 4. Emulator Y5 actual and predicted values and
model disagreement indicator based on training data.

The performance varies between R2 0.89 for Y1 and the
perfect fit for Y11. The neural network complexity also
varies – from an almost linear structure of 1 hidden node
for Y6, Y7, Y10, and Y11 to a structure with 30 hidden

nodes for Y1 and Y5. The prediction quality is good in all
ranges and the model disagreement indicator is low.
 The role of the model disagreement indicator is to detect
areas where the predictions are unacceptable due to the
degradation of neural net performance outside the training
range. This is illustrated in Fig. 6.

Y5 Testing (R2 = 0.967)

0

100

200

300

400

500

600

700

800

900

1000

1 21 41 61 81 101 121 141 161 181 201 221 241 261

Sample Number

V
al

ue
 o

f Y
5

Actual Y5
Predicted Y5
Model disagreement

Figure 5. Emulator Y5 actual and predicted values and
model disagreement indicator based on test data.

Model Disagreement Indicator & Prediction Error

0

50

100

150

200

250

300

350

17 17.5 18 18.5 19 19.5

Key input Value

Va
lu

e
of

 Y
5

MD Indicator
Prediction Error

Extrapolation
Region

Training Range
Upper Threshold

3σ Threshold of
MD Indicator

Figure 6. Model disagreement (MD) indicator and
prediction error on the threshold of training data.

The figure shows the trends of the model disagreement
indicator (based on the standard deviation of 30 stacked
neural networks each with 30 hidden nodes) and the
prediction error around the threshold of the training data
range for one of the key inputs. The upper threshold of the
training range for this key input is 18 while the 3σ
threshold for the model disagreement indicator is 124
(based on the model disagreement on the test data). It is
observed that below the upper threshold of the training
range for this input, the model prediction is relatively low.
The prediction error is still acceptable even up to about 6%
above this limit, where there is a sharp spike in the error.
At the same time, the model disagreement indicator tracks
the prediction error very well (the error spike is above the
3σ threshold for the indicator). Therefore, this shows that
the model disagreement threshold is a good metric of
emulator performance. Furthermore, such an indicator can

be easily implemented on-line, along with the emulator
itself.

D. Empirical emulators based on symbolic regression
Due to the statistical nature of GP, several sets of simulated
evolution runs need to be executed. The symbolic
regression model is derived from a population size of 200
potential functions that evolve during 300 generations with
0.5 probability for random crossover, 0.3 probability for
mutation of functions and terminals, 4 reproductions per
generation, 0.6 probability for selecting a function as the
next node, and correlation coefficient as the optimization
criterion. The initial functional set for the GP includes:
{addition, subtraction, multiplication, division, square,
square root, sign change, natural logarithm, exponential,
and power}. The complexity of the final solution can be
controlled through a parsimony pressure parameter that
penalizes more complex functions with lower goodness of
fit. A value of 0.05 is a good compromise between the
complexity of the derived functions and their fitness. An
example of a GP-based symbolic regression emulator for
Y5 is shown below where, x1 to x10 are the emulator inputs.

(Equation 1):

 The performance on the training data set (shown in
Figure 7, R2 =0.94) and on the test data set are comparable.

Y5 Symbolic Regression Training (R2 = 0.94)

0

100

200

300

400

500

600

700

800

900

1000

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

Sample Number

Va
lu

e
of

 Y
5

Actual Y5
Predicted Y5

Figure 7. Emulator Y5 actual and predicted values from
symbolic regression on training data.
 In summary, the performance of stacked analytic neural
nets is generally better than that of GP-generated emulators
(training R2 0.99 vs. 0.94; test R2 0.97 vs. 0.94). This is
consistent with the theoretical property of neural nets being
universal approximators. Still, the performance of GP-
generated functions is within acceptable accuracy of
prediction. Deciding which method to use depends on the
application: Stacked analytic neural nets offer the potential
for self-assessment of unreliable model predictions and the
model disagreement indicator, which are of critical
importance for on-line process monitoring and
optimization. Although they are faster to develop, they are
somewhat slower in execution due to the fact that an
ensemble of models needs to be calculated. On the other
hand, symbolic regression-based emulators require much
longer development time due to the computationally

intensive GP algorithm and nontrivial model selection.
However, end users are more comfortable optimizing the
process with an analytical function, such as equation (1),
than with black-box models.

VII. CONCLUSIONS
Empirical emulators mimic well the behavior of large
fundamental models and effectively represent them in time-
critical applications in process monitoring and control. A
novel methodology for the development of empirical
emulators based on analytic neural networks and genetic
programming is presented in this paper. The methodology
systematizes the key steps for effective emulator
development such as the identification of critical process
variables, planning the fundamental model-based DOE,
generation of training, test and “extreme” data sets, as well
as issues regarding emulator design, off-line validation, and
on-line implementation. The advantages of empirical
emulators based on the proposed methodology,
demonstrated in a real industrial application for
intermediate product optimization between two chemical
plants in The Dow Chemical Company are:
1. Analytic neural network-based emulators have a black-

box structure derived from a direct optimization with
guaranteed global optimum;

2. The analytic neural network-based emulator
development is very fast in comparison to back-
propagation neural networks;

3. The use of stacked analytical neural networks improves
the prediction quality and gives self-assessment
capability based on a model disagreement indicator;

4. GP-based symbolic regression generates emulators that
represent the fundamental model with explicit
functions which can be directly included in
optimization packages for on-line implementation.

REFERENCES

[1] Wynn H. and R. Bates, Emulator Technology in Engineering
Design, Proc. Instn Mech Engrs, 213 B, pp. 305-309, 1999.

[2] Bates R. et al, Fast Optimization of Mechanical Designs Using
CAD Emulation: A Case Study, Proc. Instn Mech Engrs, 213 B, pp.
27-35, 1999

[3] Smits G., personal communication, 1999.
[4] Vapnik, V. Statistical Learning Theory, Wiley, NY, 1998.
[5] Koza, J. Genetic Programming: On the Programming of

Computers by Means of Natural Selection, MIT Press, Cambridge,
MA, 1992.

[6] Thompson W., G. Martin, and N. Bhat, How Neural Network
Modeling Methods Complement Those of Physical Modeling, NPRA
Computer Conference, Atlanta, GA, 1996.

[7] Haykin, S. Neural Networks: A Comprehensive Foundation,
Prentice Hall, New York, 1998

[8] Kordon A. G.Smits, E. Jordaan and E. Rightor, “Robust Soft
Sensors Based on Integration of Genetic Programming, Analytical
Neural Networks, and Support Vector Machines” In Proceedings of
WCCI 2002, Honolulu, HW: IEEE Press, pp. 896 – 901, 2002.

[9] Berthold M. and D. Hand, Intelligent Data Analysis: An
Introduction, Springer, Berlin, 1999.

[10] Smits G. and E. Jordaan, “Using Mixtures of Polynomial and
RBF Kernels for Support Vector Regression”, In Proceedings of
WCCI’2002, Honolulu, HW: IEEE Press, 2002, pp. 2785 – 2790.

[11] Montgomery D. Design and Analysis of Experiments, John
Wiley&Sons, NY, 2001.

[12] Sharkely A. (Editor), Combining Artificial Neural Nets,
Springer, London, 1999.

	Conference Program
	Author Index
	Main Menu

