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ABSTRACT

In this note, two main results are introduced in
order to deal with asymptotic stabilization of non-
linear delayed systems. The first of them investigates
algebraic conditions in order to ensure asymptotic
stabilizability by using a Lyapunov-Krasovskii
approach, while the second result introduces a
simple way to algebraically design an asymptotic
stabilizing controller for a class of non-linear
delayed system.

Index terms – Non linear systems; delay systems;
asymptotic stabilizability

I. INTRODUCTION

Models with delay are a useful way to deal with a
wide class of physical systems, particularly
circuits and electrical systems (see, for instance,
(Hou et al, 2000; Komishi et al, 2000). Non-
linearities combined with delays are common in
the field, as many recent researchers point it out
(Cao et al, 2002; Chen et al, 1988). Usually,
stabilization is a general problem faced when
dealing with this kind of systems. When studying
such a question, a number of approaches can be
undertaken. These approaches vary from the very
role of the delay in the model to the nature of the
non-linearity. With respect to the delay, some
works consider it as a perturbation (Balachandran
and Daner, 1987; Barmish and Shi, 1989), while
others consider it as an inherent part of the system
(Fu et al, 1989), a fact that constitutes a more
general perspective. Regarding the non-linearities’
nature, in many cases researchers try to create an
ad hoc representation for a particular problem
(Maffucci and Miano, 1998). However,
sometimes a quite general form is adopted for the

non-linearity in order to develop methods for
broader sets of systems.

The stability of delay-differential systems with
state point delays has been studied in different
works (Pandolfi, 1975; Olbrot, 1978; Tadmor,
1988). More specifically, the stabilizability of
such systems (i.e., the study of the conditions
under which such systems become stable, a study
leading to the design of stabilizing devices) has
been addressed in a number of papers. Usually,
the stability and stabilizability criteria belong to
one of two categories: those criteria which are
valid irrespectively of the delay numerical value
(Kamen, 1982), and those other ones that are
dependant of the delay (Jury and Mansour, 1982;
Schoen and Geering, 1993).

This note studies the stabilizability of systems
with state point delay and with a quite general
form of non-linearity. A Lyapunov-Krasovskii
approach is employed, which eventually leads to a
result providing conditions for a direct design of
the stabilizing controller by taking into account
specific parameters of the plant and of the non-
linearity.

II. MAIN RESULTS

In this section, conditions for a control law to
stabilize a class of non-linear delay-differential
systems with a point delay in the state is discussed
by using an associated extended system. Two
main results are introduced.
Let us consider the following state-space
mathematical model for a non-linear closed-loop
delay system
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The next lemma will be useful in the sequel.

Lemma 1 (Krasovskii 1963)
System (1) is global asymptotically stable in open
loop (i.e., u(t) ≡ 0) provided that there exist

nnR ×∈Q,P , positive definite, such that
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where 0  is a nn×  block of zeroes. #

Remark 1
The hypothesis in lemma 1 is the condition for
success of the Lyapunov-Krasovskii method,
when searching for functionals in the class
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Now, based in the above-mentioned lemma, let us
introduce a main stabilizability result.

Theorem 1: delay-independent asymptotic
stabilizability
System (1) is global asymptotically stabilizable by
a control law u(t), being continuous with perhaps
bounded discontinuities on a subset [ ]0,hS −⊂ ,
defined by the delay-differential equation

)ht(uE)t(uE)ht(xD)t(xD)t(u −++−+= 1010&

(4)
and subject to initialization )t()t(u uϕ=  on [-h,

0], provided that there exist n22nR ×∈zz Q,P ,
positive definite, such that
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Proof. The proof follows immediately from
Lemma 1.

Define vectors 
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(6) one gets
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System (7) is called “associated extended system”
of system (1) (Alastruey et al 1995). But system
(7) is - without loss of generality - formally
identical to system (1) in open loop, and then
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Lemma 1 is applicable. Therefore system (7) is
asymptotically stable. #

Theorem 1 provides a way to evaluate the
asymptotic stabilizability of a non-linear delay-
differential system. The evaluation is made on the
context of a set of algebraic relations, which are
very suitable for computer applications. A way of
satisfying Theorem 1 is the synthesis of explicit
stabilizing controllers fulfilling the following
direct corollary.

Corollary 1: controller design
Provided that there exist n22nR ×∈zz Q,P ,
positive definite, and nn×  block diagonal, then
control signal (4) asymptotically stabilizes system
(1) if the following algebraic condition holds

pc RR −< (8)
where














−−
+

−+++

≡

IPN
CKKCCKKCPA

NPCKKCAPCKKCAPPA

R

zTz

zzTzTzzzTzTzzT
p

z

zzzzTzTz
p

zzzzTzTz
p

zzzT
p

z

p

0
011011

1010000

(9)





















−
−

++

≡
I

QPA

APAPQPA

R zzT
c

z
c

zz
c

zzzzT
c

z

c

2
1

1

100

00
0

0

(10)









≡








≡









≡








≡

11
1

00
0

11
1

00
0

00
;

00

;
00

;
00

ED
A

ED
A

BA
A

BA
A

z
c

z
c

z
p

z
p

(11) #

III. PROOF

Note that, provided that n22nR ×∈zz Q,P  are
positive definite and nn×  block diagonal, the
following identity holds

cp RRR ⊕= (12)
where ⊕  stands for the direct matrix sum. Then,
according to the hypothesis, the next chain of
identities holds

pccp RRRRR −<⇒<⊕⇒< 00 (13) #
Remark 2
Note that Corollary 1 provides a way of satisfying
Theorem 1 by way of the synthesis of an explicit
stabilizing controller. A very simple algebraic
relation, i.e., equation (8), can check such a
controller’s existence, a fact that is again very
suitable for computer applications.

IV. CONCLUSIONS
This paper provides sufficient conditions for
testing asymptotic stabilizability of a class of non-
linear delay-differential systems with one
distributed delay in the state.
Conditions are given in terms of algebraic
relations, appropriate for computer applications.
The control is given in terms of a control law
defined by using a dynamic differential equation
which contains a point delay of the same
numerical value than that in the original open-loop
system.
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