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Abstract— Adaptive fuzzy logic control systemswith Gaussan
membership functions are described. A stabili ty proof isgiven.
A systematic simulation study of ‘dynamic focusing of
awareness in fuzzy logic control systemsisprovided. This
study shows how the final steady-state values of the
membership functions changein responseto varying initial
membership functions, changing desired trajedory, and
varying system nonlinearities. It is shown that the fuzzy logic
control system isfocusing on a different region of the state-
space depending on these varying factors. Conclusionson
higher-level behavior of the fuzzy logic control system are
drawn.

Index Terms— adaptive systems, fuzzy logic, nonlinear
control,

I. INTRODUCTION

Adaptive fuzzy logic (FL) systems are becoming more and
more popular in control systems due to the ability to selea
initial membership functions (MFs) based on experience
and intuition, and the &ility to tune the MFsto lean about
the unkrmown dynamics of the system. By now, proaofs of the
stability and performance of FL systems have been provided
by avariety of researchers ([1], [2], [3], [4], [5], [6]. [7],
[8],19],[10], [11] and athers). However, the cognitive
behavior of FL controllers has yet to be investigated.
Spedficdly, it is not known how the MFs adapt in response
to changinginitial MF seledions, different desired
trajedories, and changing system dynamics. and how FL
control systems emulate the higher human functions of
consciousnessincluding focusing of awarenessand the
filtering out of irrelevant detail s and noise.

In this paper, we provide asystematic simulation study of
"dynamic focusing of awareness' and cognitive feauresin
FL control systems. It appeas that some aogniti ve functions
of human awarenessare refleded in the behavior of FL
control systems. We define here aognitive function of the
FL system asthe aility of the FL system to aaquire
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knowledge of the controlled plant init's entirety, or , in
another words, to establi sh the base functions needed for
system identification over the whol e state spaceinvolved in
the system operation, including the history and the present
states (we conned thiswith the "awareness' of the system),
and the adility of the FL system to focus on the arrent state
trajedories (we conned this with making proper judgment
of which part of the spaceof awarenessisimportant at the
moment). Similar proofs for multi ple input multi ple output
(MIMO) neural network control can be found in the
literature and the work on extending the ideas described
here isthe aurrent reseach topic of the authors.

II. DYNAMIC SYSTEM PRELIMINARIES

In this paper the Frobenius norm ||A||i is denoted by |,

unless otherwise specified.
L et the process have dynamics of the general nonlinear form

X, = Xy; Xoog = X5 s X, = F(X)+u(t)+d(t)

Y =X,

with the state x = [x1 xz....xn]T, u(t) the control input to
the plant, and y(t) the output of interest. Signal d(t)
denotes the unknown disturbance. The system nonlinearities
are given by the smooth function f(x): R" - R™.Givena
desired trajectory and its derivative values

(11-1)

x()=[x, % .. x"], (11-2)
define the tracking error as

&(t) = x,(t) = x(t). (11-3)
Define the filtered tracking error r(t) O R™:

r(t)=[A" 1] Et), (1-4)

where A=[A_, A, - A isanappropriate chosen

vector of constant values so that |s"™* +A_,s"? +--- + A1| is
stable. Thismeansthat g(t) — 0 exponentially as

r(t) - 0. When r(t)issmall, the system performanceis
good. Using equations ( 11-1), (11-2) and ( 11-3) the
dynamics of the performance measure signal (11-4)
r=g(xx,)-u(t)-d(t), (11-5)

where g(x,X, ) isacomplex unknown nonlinear function
of the state and desired trajectory vectors x(t) and x,(t),
respectively.




I1l. BACKGROUND ONFUZZY SYSTEMS

To fully take advantage of the learning abiliti es of FL
systems, in this dion we describe anonlinealy-
parametrized control function. In this FL control function
we tune the output representative values, but also the MF

centroids and spreads. Let 9, (z,a',b') beGaussgan

membership functions defined by

(pAI(Zi,a\ ,u):eELai' <Zrb\‘)2H. (11-1)

The output of the fuzzy logic system can be expresedina
vedor notation as

y=W'®(za,b). (n-2)
Notethat b' arethe MF centroidsand a' determines the
MF spread o width. The ajustable parameters are

W,a/ b sothat this FL system is nonlinea in adjustable
parameters.

IV. FL Locic CONTROL ARCHITECTURE

There aetwo dstinct parts of the proposed FL control
architedure: a propartional-plus-derivative (PD) outer
tradking loop, and a nonlinea adaptive FL loop. Without
the FL adaptive loopthis sheme bails down to PD control
and its performance deteriorates. The FL loopisfed by
plant states and desired tragjedories and in essenceit is used
to approximate the nonlinea function g(x,x, ) in(I-5).
Instead of desired states g4, the @ror vedor can be used as

an input to the FL system sincee = xq— X. ThisFL logic
control architedureis gown in Fig. IV-1.

Fig. IV-1: Fuzzy control system architecture

We now derive an adaptive FL logic controller for nonlinear
systems. According to the goproximation properties of
fuzzy logic systems, the continuous nonlinea function
g(x,x, ) in(11-5) can be represented as

a(x,%, )=W'®(z,a,b)+¢(z), (1V-1)
where zisthe input vedor to the fuzzy system and the
approximation error €(z) is bounded on a compact set by a
known constant &, . The ideal parameters a, b and W that

approximate g(0 are unknown. Vector z may be selected
as[x x[oras[x €.
Let the control input u(t) be given by

U(t):er"’g(X,Xd )1 (lV-Z)
where g(x,X, ) isprovided by the fuzzy system and the
control gain matrix is K, = K] >0. Let the fuzzy

functional estimate for the continuous nonlinear function
g(x,x, ) be

9(x.x,)=W'd(za,b), (1V-3)

where é,B,W are the actual current parameters of the FL

system. Then, the filtered error dynamics ( 11-5) can be

rewritten as

I =-K,r+W'®(za,b)
~Wo(za,b)+d(t)+¢e

Some required mild assumptions are now stated. These

assumptionswill be true in most practical situations and are

standard in the existing literature.

Assumption 1 Theideal FL parameters W, aand b are

bounded by known positive values so that the Frobenius
norms satisfy

W[<W,. lal<au. [o<b..  (1v-5)

Assumption 2 The desired trgjectory is bounded in the
sense, for instance that

Oy G - Oyf|SQy- (1V-6)
Assumption 3: The disturbance and FL approximation error
are bounded in the sense
ldl<by: el <en- (1IV-7)
Now, the following theorem can be formulated.

Theorem
Suppose that assumptions 1, 2 and 3 hold. Let the system be
given by (11-1). Let FBF functions be defined asin ( 111-1

) and fuzzy system output asin ( 111-2). Let control signal
be defined by

u(t) = K,r +9(x,%, ), (1V-8)
Let the tuning laws for the FL system be
W =K, (® - Aa-Bb)r’

(IV-4)

. (1V-9)
=k KW

A=K AW kK 3, (1V-10)

b=K,B"W -k, K, bl , (IVv-11)

where K, Kj, Kp, Ku, Ka, K, Ky are design parameters. Then
the filtered error r and FL parameters W, aand b will be
uniformly ultimately bounded. In addition, the filtered error
can be made as small as desired by increasing gain K, o
The detailed proof is given in the appendix.

V. COGNITIVE BEHAVIOR OF FL CONTROL SYSTEM

Aslinguistic systems, FL systems have along history of
applications involving the emulation of human cognitive
functions. This history has not been tied to adaptive FL
control systems, where the literature has been more
concerned with mathematical proofs of stability of signalsin



the hardware control loops. In this section we propose to
study through computer simulations the effects on the
learned final membership functions of changing initial MF
information stored in the FL approximator portion of the
control signal. We begin by noting that the FL component (
IV-3) inthe control signal (1V-2) has two components.
The short-term memory resides in the values of the control
representative values W, and the long-term memory resides
in the shape (a,b) of the MFs. Indeed, we observed, and
shall discuss, the interesting behavior that the W weights
tune faster and with more activity than the (a,b) weights.
As controlled plant, a Van der Pol oscillator was used. It
has dynamics given by

B(ID_D X, C (V-1)
a=d ) -

%(ZD D—a(xlz_l)xz_xl+u|:

y=X. (V-2)

Simulation studies for the system with adaptive fuzzy
control architecture were performed for sinusoidal
reference x,, = 2Gin(0.5/7t) . All simulations were

performed for 100 s. No disturbance was introduced in the
system. Cases of two different sets of initial membership
functions of the fuzzy system were investigated.

The fuzzy control system parameters were: A=5, K,
=diag{3}, K\, = diag{10.15}, k,, = 0.0985, K, = diag{0.01},
ka= 0.1, K, = diag{0.355}, k, = 0.0282. The fuzzy system
input vector z was defined as z = [xl X, € ez]T .
Membership functions were defined as Gaussians with 3
membership functions per each of state dimensionsx and 3
membership functions per each of errors, which totalsto 81
membership functions with the given fuzzy system
architecture.

A. Detailed Plots for Snusoidal Reference Input

Here are provided detailed plots in order to show the
performance characteristics of the proposed FL control
architecture. Also, the performance of the fuzzy controller is
compared with a nonadaptive PD controller. Detailed plots
are given for asinusoidal reference input x,, = 2&n(0.5/Tt)

and with oscillator having parameter a = 0.1.

A phase-plane plot for the oscillator controlled by FL is
givenin Fig. V-3. It can be seen that the state trajectories
converge to the required ellipse in state space for the given
reference input.

The complete FL controller was compared to a standard PD
controller in order to show the superiority of the FL
controller. Parameters of the PD controller for comparison
were: proportional gain K, = 15 and derivative gain K4=3.
The error plot in Fig. V-4 confirms that the error with FL
control isindeed small. The solid linein Fig. V-4 denotes
error for the system controlled by the FL controller, dashed
line for the system controlled by PD controller.

Spreads and centroids of MFs are shown in Fig. V-5. It can
be seen that the changes are smooth and relatively slow
when compared with reference input. No higher frequency
components can be observed in tuning of spreads and

centroids of MFs. It can be also seen that spreads and
centroids do not exhibit any short-term changes, but are
tuned steadily over the time. An analysisin following
Sections shows that spreads and centroids are indeed tuned
in such way that MFs cover the whole state space in which
state trajectories lay. This behavior exhibits the long-term
memory which maps the space in which the state trajectories
are moving during the operation of the FL controlled
system. In this way an appropriate function space is set for
the linear tuning of the output layer values.

Output layer values of the FL controller are shown in Fig.
V-6. In contrast to the spreads and centroids of MFs one can
observe a significant higher frequency componentsin tuning
output layer weights W. Output layer weights exhibit the
higher frequency component with the same frequency as the
desired trajectory xq. That is, output layer weights exhibit a
short-term memory adapting themselves to fast changes.

membership functions at the start of simulation - & =0, e,=0

A5 s

Fig. V-1: Membership functions at start of simulation for sinusoidal input
with A=2, f=0.25 Hz, a=0.1 assuming error vector e=0

membership functions at the start of simulation - €,=0, &,=0
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Fig. V-2: Membership functions at start of simulation for sinusoidal input
with A=2, f=0.25 Hz, a=0.1 assuming error vector e=0 — contour plot

Membership functions at the end of simulation for
sinusoidal referenceinput in Fig. V-7 have avery different
shape than the initial membership functionsin Fig. V-1.
Also they cover abroader areathan the original MFs, but
with the aea @vered by initial MFs amost completely
included (Fig. V-8). Recdl the phase-plane plot for
sinusoidal input in Fig. V-3. It can be seen that €lli psoid-
like cntour of final MFs covers the region that comprises
state trajedories of the system completely. It can be said
that FL input layer membership functions dynamicaly focus
to cover the aeain which state trajedories are moving over
time.



Phase plane plot fora= 0.1
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Fig. V-3: Phase-plane plot for sinusoidal input with A=2, f=0.25Hz,
a=0.1, system controlled hy fuzzy controller

errors, dashed - pd controller, solid - fuzzy controller
0.6

L T e S S [ S

LA L
oa v s VDU TS T T

el
=)
=

Fig. V-4: Error for sinusoidal input with A=2, f=0.25Hz, a=0.1
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Fig. V-5: Spreads and centroids of membership functions for sinusoidal

inpu with A=2, f=0.25 Hz, a=0.1
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Fig. V-6: Output layer weights for sinusoidal input with A=2, f=0.25 Hz,

a=0.1

membership functions at the end of simulation - & =0, e,=0

Fig. V-7: Membership functions at the end of simulation for sinusoidal
inpu with A=2, f=0.25 Hz, a=0.1 asauming error vector e=0

membership functions at the end of simulation - €,=0, e,=0
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Fig. V-8: Membership functions at the end of simulation for sinusoidal
inpu with A=2, f=0.25 Hz, a=0.1 asauuming error vector e=0 — contour
plot

However, the final MFs cover much broader areathan
needed for final state trgjecories. It seems that MFs do not
focus only exadly on the aeain which the final state
trajedories are lying, but cover the aeathat includes gates
trajedories during the whole smulation. Thisreveds the
presence of the cognitive focusing of awarenessbath of
long-term memory and short-term memory.

It isimportant to note that the sinusoidal referenceis PE for
the given plant.

B. Effect of Shifted Initial Membership Functions on
Final Membership Functions

In this suibsedion is provided a simulation study of the
effed of shifted initial MFs on final values of MFs. This
revedsthe dfed of initial incorred information on the final
information learned by the FL system. A contour plot of
Initial weights for all simulationsin Sedion B, assuming
that errorsare 0, isshown in Fig. V-9. Initial states Xy are
marked with "x" in Fig. V-9. It isimportant to note that the
initial system stateslay outside aea @vered by these initial
FL MFs(i.e. value of MF'sin that areais very small).Final
MFsand phase-plane plots are shown in Fig. V-10 - Fig.
V-12 Results $ow that initial MFs do have significant
effed on final MFs. The FL system does focus on the final
state trajedories area ad dces covers the whole state space
but final MFs arein general different than in Sedion A.
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Fig. V-9: Membership functions with shifted centroids at start of
simulation for sinusoidal input with A=2, f=0.25 Hz, a=0.1 assuming error
vector e=0 — contour plot

membership functions at the end of simulation - & 4=0, &,=0

Fig. V-10: Membership functions with shifted centroids at the end of
simulation for sinusoidal input with A=2, f=0.25 Hz, a=0.1 assuming error
vector e=0

membership functions at the end of simulation - €,=0, &,=0

Fig. V-11: Membership functions with shifted centroids at the end of
simulation for sinusoidal input with A=2, f=0.25 Hz, a=0.1 assuming error
vector e=0 — contour plot

Phase plane plot for a=0.1

Fig. V-12: Phase-plane plot for sinusoidal input with A=2, f=0.25 Hz,
a=0.1—initiadl MFswith shifted centroids

Effed of initial values of MFs can be dealy seen. This
result leads to a conclusion that while FL system will try to
cover the spaceinside which state trajedories are comprised
and in the same time to focus on the final state trajedories
area the final MFswill be dfeded by initial MF's. In
another words, a diff erent "state knowledge" will be
readed depending on the initial MFs while tryingto readt
the same goal. Mathematicdly spe&king, thisill ustrates the
fad that in the cae when no unique solution exists, the final
state of FL logic system will depend very much onit'sinitial
state, convergingto alocd minimum. It can be dso noted
that the aea overed by MFs at the end (Fig. V-9) is shifted
toward the aea @vered by the final MFsin the cae when
theinitial centroids were not shifted (Fig. VV-8). Comparison
with phase-plane plot in Fig. V-12 shows that FL system
tries again to cover the whole spacein which state
trajedories are ommprised and to focus towards the aeain
which final state trjedories lay.

VI. CONCLUSION

A fuzzy logic control architedure is described in the paper.
A detail ed stability proof is given. The proposed FL control
algorithm does not require ay asaumptions on the initial
parameters of FL controller for the system to be stable. The
performance of the FL controller is gudied in detail using
simulation studies. Effeds of changesin initial FL
parameters, plant nonlineaity, and diff erent reference
trajedories on the final FL M Fs were investigated with the
intention of drawing some mnclusions on how the learned
MFs adapt to changing environments. It was observed that
input layer MFs are changing in such away that the whole
state spacein which plant states are contained is covered by
MFs, but also that MFs are trying to put more weight on
approximating plant states at their steady trajedories after
the transient isfinished if the excitation is PE. Simulations
were dso performed for the step referenceinput. It was
noted that in the cae of step reference dthoughthe fuzzy
controll er kept the system stable, the learning was very slow
and it included only long-term memory first layer weights.
Also, the final trajedories (only apoint in this case), was
just barely covered by the final MFs. The onclusion was
that no meaningful learning processoccurred due to ladk of
information in step reference signal. Step signal is not PE
signal for the Vad der Pol oscill ator. The plots are not given
due to space onstraints.

VIl. APPENDIX — PROOF OF THEOREM

.Usingequations (11-1), (11-2) and ( 11-3) can be written
as.

F=9g(xx,)-u(t)=-d(t), (VI-1)
where g(x,X, ) isa mmplex nonlinea function of the state
and desired trgjedory vedors x and x, , respedively. Note
that this function includes the original system unknown



nonlinear function f(x) . The continuous nonlinear
function g(X,X4) in(VII-1) can be represented by ( 1V-1
). Let the control input U(t) be given by (1V-2). Let the

fuzzy functional estimate for g(x,x, ) begivenby (I1V-3).

Then, filtered error dynamics ( V11-1) can be expressed as
in (1V-4) and the functional estimation error is defined as

g(xlxd):g(x’xd)_g(xlxd)'

Define:

W=W-W, ®=0(z3,b),

. e s . (VII-2)
®=¢(z,ab),a=a-a, b=b-h.
Now, Tayl or expans on of ® can be written as
®=0+AT+Bb+H, (VII-3)

where A and B are suitable jacobians and H represents
higher order terms.

As <aco B= <aco
oa a=ab=b ob a=ab=b

Introduce (1V-2)into (11-5):

P ==K, +W @ +W' o+W' @ +d +¢ . (VII-5)

With Taylor expansion ( VI1-3) equation ( VII-5) can be

written as

f=-K,+W (AZ+Bb+H)
+WT(AZ+Bb +H )+W'd+d+e

Define Lyapunov candidate

(VII-4)

(VII1-6)

L=t e Leowrkowy+ 2ark g+ 267K, (ViII-7)
2 2 2 2

where Ky, K,, and K, are design matrices and

K, =Ky >0; K, =K] >0; K, =K/ >0.

L=r"r+tr(-W'K ’1W) ATKa-b" K’lb (VII-8)

Substituting (VI1-6) into ( VI I—8 ) and introducing tuning

laws (I1V-9), (IV- 10)and(|V 11)yie|ds

L==r"K,r +k,[r|dr(wW a'a+k,rfpb"d
+r'W'H +rTWT(Aa+Bb)+r (d+¢).

For Gaussian FBFs there exists the following bound [4]:

FWTH +r W ( Aa+ Bb)H <

Now, with ( VII-10) and with assumptions 1 and 3 holding,

the foIIowi ng inequality can be obtained:

(VI11-9)

W +c.[a] +c.[b

C el -k e, -]
 daie, 11k 45 -5 i)
+|rllp +c, +c2||a||+c3

D=c, +b, +&,
where Kymin 1S the minimum singular value of K,.
Let us define auxiliary variables Dy, D,, Dy and A:

D :kWWM +C1 D :kaaM+CZ
"2k, 20k,

b s (VII-12)
D, == % A=D2+D?+D7+D

2k,

(VI1-10)

Using ( VI1-12) and completing squaresin ( V11-11), it can
beseenthat L <0aslongas:

o5 |rvv||>—w+f
> a{ Bl i

Accordingto a standard Lyapunov theorem extension, that
provesthat r, W, a and b are UUB. SinceW, a and bare

bounded, W, & and b are dso baunded. Thisfad
concludes the stability prodf.

(VI1-13)

(VII-14)
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