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In this paper, a two-degree of freedom Internal Model Control 
(IMC) (Rivera et al., 1986; Morari et al., 1989) structure is 
proposed for controlling stable processes with small time 
delays. Since, in the IMC procedure pole-zero cancellations 
are used, a controller designed based on the IMC principles 
results in good set point tracking. However, the disturbance 
rejection of the IMC structure may be sluggish, in some cases, 
again due to pole zero cancellation used in the design 
procedure. To eliminate this shortcoming, in this paper a 
second controller acting on the signal difference between the 
plant output and the model output is introduced so that a better 
disturbance rejection can be achieved. The main controller 
used for set point tracing is designed based on user-specified 
gain and phase margins. For this, the classical single input 
single output (SISO) feedback control system is represented as 
its equivalent IMC. This provides the parameters of PID type 
controllers used in the SISO system to be defined in terms of 
the desired closed-loop time constant, which can be adjusted 
by the operator, and the parameters of the process model. This 
means that only one parameter, namely the desired closed-
loop time constant, is left for tuning, assuming that the model 
parameters have been obtained from a relay autotuning (Kaya, 
1999; Kaya and Atherton, 2001). The details of the 
identification method are not given here and interested readers 
can refer to the cited references. The second controller, which 
is introduced for a better disturbance rejection, is designed 
using the Nyquist stability criteria. The proposed design 
method is compared with some existing ones, which are also 
based on the specified gain and phase margins, and it is shown 
by examples that the proposed design method gives better 
closed loop performances for both the set-point response and 
disturbance rejection.  

Abstract-- In real industrial practice, controller designs are 
usually performed based on an approximate model. 
Furthermore, the parameters of the physical systems can vary 
with operating conditions and time. Therefore, it is essential to 
design a control system which will show a robust performance in 
the case of aforementioned situations. Gain and phase margins 
are well known measures for maintaining the robustness of a 
control system. This paper presents a new two degree-of-freedom 
Internal Model Control (IMC) structure and simple tuning rules 
to tune/design PI controllers for stable processes with a small 
dead time to meet specified gain and phase margins. Simulation 
examples are given to illustrate that the proposed design method 
can give better closed loop system performances than existing 
design methods which is also designed based on user-specified 
gain and phase margins. 
 
Index Terms-- IMC Design, PI controller, Gain margin, 
Phase margin, Time delay 

I. INTRODUCTION 
Proportional-Integral-Derivative (PID) controllers are still 
widely used in industrial systems despite the significant 
developments of recent years in control theory and 
technology. This is because they perform well for a wide class 
of processes. Also, they give robust performance for a wide 
range of operating conditions. Furthermore, they are easy to 
implement using analogue or digital hardware and familiar to 
engineers. 
 
In the practice, the model used to analyze or design control 
systems is only an approximation of the actual plant transfer 
function. The most common models used for stable plant 
transfer functions are a first order plus dead time (FOPDT) or 
second order plus dead time (SOPDT) model. Also, the 
parameters of the physical systems, usually, vary with 
operating conditions and time. Hence, robustness of a control 
system has always been an important issue. Gain and phase 
margins are two well-known measures for maintaining the 
robustness of a control system. Recently, there has been a 
renewed interest in designing a control system to satisfy the 
specified gain and phase margins (Ho et al. 1995; Fung et al. 
1998; Wang et al. 1999; Wang and Shao, 1999).  

 
The paper organised as follows: Since, the tuning rules to 

tune/design the main controller (which is a PI controller) are 
derived based on IMC principles, the next section gives a brief 
review of the IMC design. In section three, the new two 
degree-of-freedom IMC structure is introduced. Tuning rules 
for the main and the second controller are derived in section 
four. Section five gives simulation examples which show that 
with the design method given in the paper better closed loop 
system performances can be obtained when compared to 
existing design methods which are also designed with 
specifications on gain and phase margins. The paper ends with 
conclusions given in section 6. 
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II.  INTERNAL MODEL CONTROL (IMC) 
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in Fig. 1. and  
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respectively, where Gd(s) is introduced for a better disturbance 
rejection. Substituting eqn. (2) into eqns. (4) and (5) and 
assuming perfect modelling and non-minimum phase systems, 
the closed loop and disturbance transfer functions reduce to 

)()()( sGsGsT imcr =        (6) 
Fig.1: IMC Control Strategy and 

 

)()(1
)}(1){()(
sGsG

sFsGsT
d

d +
−

=       (7) This control structure is referred to as Internal Model Control 
(IMC) since the plant model, Ĝ(s), appears in the control 
structure. Here, G(s) and Ĝ(s) are the actual process and 
process model transfer functions, respectively. When 
G(s)=Ĝ(s), that is perfect modelling, and d=0, the system is 
basically open loop. This provides the open loop advantages. 
When G(s)≠Ĝ(s) or d≠0 the system is a closed loop system. 
Thus, the IMC control strategy has the advantages of both the 
open loop and closed loop structures. 

Clearly, the set-point response given by eqn. (6) and 
disturbance response of the improved IMC structure given by 
eqn. (7) are decoupled from each other and can be designed 
independently. Therefore, this structure corresponds to a two 
degree-of-freedom IMC structure. 
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  The first step in the IMC controller design is to factor the 

process model  
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where Ĝ+(s) contains all the time delays and right-half plane 
zeros. 

 
 

  
The second step is to define the IMC controller as  Fig. 2: Two degree-of-freedom IMC structure 
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  Note that if Gd(s)=0, the proposed two degree-of-freedom 
IMC structure reduces to the original IMC structure for non-
minimum phase systems. Therefore, the controller Gd(s) can 
be used for improving the disturbance rejection capability of 
the original IMC structure. 

where F(s) is a low pass filter with a steady state gain of one. 
The filter is introduced for physical realizability of the IMC 
controller, Gimc(s). The simplest filter has the following form 
(Rivera, et al, 1986; Morari et al, 1989) 
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IV. CONTROLLER DESIGN  
The design of the two controllers Gimc(s) and Gd(s) are done 
separately since the closed loop and disturbance transfer 
functions are decoupled from each other. First, the main 
controller Gimc(s), is considered. The closed loop transfer 
function of a classical SISO feedback system and the two 
degree-of-freedom IMC structure, for perfect matching, are 
respectively given by 

III. TWO DEGREE OF FREEDOM IMC STRUCTURE 
Since the IMC design approach is based on pole zero 
cancellations, while the response for the set-point change is 
quite satisfactory, the response to disturbance rejections may 
be sluggish. Therefore, a two degree-of-freedom IMC 
structure (TDF IMC), shown in Fig. 2, is proposed to 
eliminate aforementioned shortcoming of the original IMC 
structure. )()(1
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 and  
The closed loop transfer function and disturbance transfer 
function of the improved IMC structure are now given by 

)()()( sGsGsT imcimc =        (9) 
 
In order to have the same output for the both configurations, it 
is straightforward to illustrate, by comparing eqns. (8) and (9), 



that the IMC controller, Gimc(s), is related to the classic 
controller, Gc(s), through the transformation )( θλ +
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or The only unknown in the last two equations is the filter time 

constant, λ, since it is assumed that the plant transfer function 
model is obtained from the exact relay feedback identification 
method given in (Kaya, 1999; Kaya and Atherton, 2001). 
Thus, if a proper value of λ is obtained, then the design 
procedure for the controller Gc(s) in Fig. 3, will be completed. 
In this paper, gain and phase margin specifications are used to 
find a proper value for λ. 
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Therefore, from eqn. (10) a classical SISO feedback system 
can be put into the two degree-of-freedom IMC structure, 
assuming a perfect modelling, that is, G , as shown 
in Fig. 3. 
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The characteristic equation of a SISO control system is given 
by 1+Gc(s)G(s). Hence, the open loop transfer function of the 
SISO control system, with Gc(s) given by eqn. (15), is 
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Therefore, from the basic definitions of the gain and phase 
margins the following equations can be obtained: 

Fig. 3: Two degree-of-freedom IMC representation of a SISO 
control system 
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   1)()( =ppcm jGjGA ωω    (20) To find the tuning parameters of the controller Gc(s) in Fig. 3, 

a stable first order plus dead time (FOPDT) plant transfer 
function is considered. Note that the FOPDT model is only 
used for simplifying calculations and that the actual process 
may be a higher order process, a process with complex poles, 
etc. In order to obtain the IMC controller, the process model, 

, must be factored as in eqn. (1): )1/()(ˆ += − TsKesG sθ

   1)()( =ggc jGjG ωω   (21) 

   )}()(arg{ ppcm jGjG ωωπφ +=  (22) 
 

where the gain margin is given by eqns. (19) and (20), and the 
phase margin by eqns. (21) and (22). The frequency ωp is 
known as phase crossover frequency, where the Nyquist curve 
has a phase lag of -π, and the frequency ωg is known as the 
gain crossover frequency, where the Nyquist curve has an 
amplitude of 1. 
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Substituting eqn. (18) into eqns. (19)-(22), results in the 
following set of equations: 

 
The IMC controller can be obtained from eqn. (2), assuming a 
filter with n=1, as  
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        (27) pgmA ωω =
Eqn. (15) can be rearranged as an ideal PI controller, which 
has the following controller parameters Multiplying both sides of eqn. (27) with θ and then 

substituting values of ωgθ and ωpθ from eqns. (24) and (26), 
the relation between gain and phase margin can be obtained as 
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The recommended ranges for the gain and phase margins are 
between 2 to 5 and 30o to 60o, respectively (Åström and 
H gglund, 1995). Choosing Am=3, then φm=60o. Therefore, 
the closed loop time constant λ is obtained, by rearranging 
eqns. (23) and (24), as  
 

    θ
π

θλ 91.0)1
2

( =−= mA
 (29) 

 
Hence, the PI controller parameters are given by eqn. (16) and 
(17) with λ given by eqn. (29). So, the settings of controller 
Gc(s), which is a PI controller, have been identified. For a 
satisfactory load disturbance rejection, the tuning parameters 
for disturbance rejection controller Gd(s) have to be found as 
well. For this, the Nyquist stability criteria is applied to the 
characteristic equation of eqn. (7): 
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The controller Gd(s) is assumed to be a gain only controller, 
Gd(s)=Kd. Thus, 
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Choosing Kd to give a gain margin of Gm results in 
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So, the settings of disturbance rejection controller has also 

been determined. Extensive simulation examples illustrate that 
a gain margin of 3, usually, results in a good load disturbance 
rejection. Hence, through out the paper this gain margin value 
is used, unless otherwise has been stated. It should be pointed 
out that, by no means, Gm is the gain margin of the system 
given by Fig. 3. It just appears as a procedure to analyze the 
roots of eqn. (31). 
 
 

V. SIMULATION EXAMPLES 
 
Two examples are considered to illustrate the use of the 

proposed method. The identification method given in (Kaya, 
1999; Kaya and Atherton, 2001) has been used for all transfer 
functions in the examples but since it gives essentially exact 
results on simulation data the estimated plant transfer 
functions are only given for original plants of higher order. In 
all the examples, the main controller of the proposed design 
method is designed for a gain and phase margin of 3 and 60o, 

respectively. The design methods used for comparison are 
also designed for the same gain and phase margins. The 
second controller used for a better disturbance rejection is 
designed for the gain margin of Gm=3. Each example is taken 
from different publications, which also consider controller 
design based on gain and phase margin specifications. 
Designed controllers by the procedure given in this paper are 
compared with controller design methods where they are 
taken from.  

 
Example 1: 
Consider a second order plus dead time plant transfer 

function of , which was used in 
Ho et al. (1995). The identification method given in (Kaya, 
1999; Kaya and Atherton, 2001) was used to find the FOPDT 

model as . Hence, the main PI 
controller parameters were obtained from eqns. (16) and (17), 
in conjunction with eqn. (29), to be Kp=1.145 and Ti=1.741. 
The tuning parameters of the disturbance rejection controller, 
which is a gain only controller, was found to be Kd=0.792, 
from eqn. (32). The controller parameters for the design 
method proposed by Ho et al. (1995) are Kp=1.050, Ti=1.000 
and Td=0.500. The closed loop responses for both design 
methods are given in Fig. 4 for a unity step set-point change 
and load disturbance, introduced at time 20s. The figure 
illustrates that the proposed design method gives superior 
performance for set point tracking when compared to the 
design method of Ho et al. (1995). The disturbance rejection 
of TDF IMC structure is also very satisfactory, if not better 
than that of Ho et al. (1995). 
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 Example 2: 
 A high order oscillating plant transfer function of 

, which was also given in 
(Wang and Shao, 1999), is considered. Again, the parameter 
estimation method given in (Kaya, 1999; Kaya and Atherton, 
2001) was used to obtain the FOPDT model as 

. Therefore, once a proper 
model is found, the main PI controller tuning parameters were 
calculated to be Kp=0.038 and Ti=0.075, using eqns (16) and 
(17) in conjunction with eqn. (29). The disturbance rejection 
controller gain was found to be Kd=1.003. Wang and Shao 
(1999) suggested a PID controller with settings of Kp=1.298, 
Ti=1.034 and Td=1.017. With these calculated controller 
settings, the step response of the closed loop system to a unity 
step set-point change and a disturbance of magnitude of -1 
introduced at time 40s is shown in Fig. 5. Again, the proposed 
design method results in a better performance, especially for 
set point response. 
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Fig. 5: Step responses for example 2 
 

VI. CONCLUSIONS 
A two degree-of-freedom IMC structure for controlling 

stable processes with small time delays based on specified 
gain and phase margin specifications is introduced. The 
original IMC structure can lead to sluggish load disturbance 
rejections as the IMC design approach is based on pole zero 
cancellations. With the introduced two degree-of-freedom 
IMC structure this shortcoming has been eliminated. Since, 
the design method given in the paper is model based, first an 
FOPDT plant transfer function model was obtained from a 
single relay feedback test with exact limit cycle analysis. Once 
the model is found, simple tuning rules provided in the paper 
were used to control the process. Simulation examples have 
shown that the proposed two degree-of-freedom IMC 
structure and design method gives very satisfactory results for 
controlling stable processes with small time delays. 
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