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Abstract— This paper extends the stochastic context of Kalman filter-
ing to the presence of additive noise on input observations. This extended
filter is then used to solve the problem of optimal (minimal variance) esti-
mation of noise–corrupted input and output sequences (errors–in–variables
filtering). A Monte Carlo simulation shows that the performance of this ex-
tended filtering technique leads to the expected minimal variance estimates.

Keywords—Optimal filtering, errors–in–variables filtering, recursive fil-
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I. INTRODUCTION

Kalman filtering can be considered as the standard approach
for recovering information from data generated by known pro-
cesses and corrupted by noise with known statistical properties.
Among the reasons of its wide application it is worth mention-
ing the applicability to time-varying processes, the robustness
in presence of modelling errors and the possibility of monitor-
ing its performance and deducing, from the observation of its
innovation, a–priori unknown properties of the noise [1]–[4].

One of the limits of Kalman filtering is the asymmetry of its
description of disturbances because it assumes, as in most iden-
tification environments, an exact knowledge of the process input
since the noise acts only on the state and output. This environ-
ment is realistic in all control applications where the input is
generated by a known control law but can be restrictive in other
applications.

A symmetrical environment is, on the contrary, described by
Errors-in-Variables (EIV) models that consider all system at-
tributes as affected by unknown additive and correlated distur-
bances. EIV models, in fact, do not require any system orienta-
tion, i.e. any partition of their attributes into inputs and outputs.

As discussed in [5], Kalman filtering cannot be directly applied
to EIV contexts by simply assuming as input of the system its
noisy observation and by balancing the noise introduced in this
way with an opposite amount on the state, at least not for the
purpose of obtaining an optimal reconstruction of the process
input and output.

The solution of the optimal (minimal variance) EIV interpola-
tion and filtering problems has been recently described in [5] and
[6] in both behavioural and state–space contexts. A robust and
high–efficiency reformulation of the original algorithm, based
on the properties of Cholesky factorization, has then been de-
scribed in [7]; this version outperforms all other formulations,
including the state space one.

In a deterministic context, optimal EIV filtering could also be
approached as an optimization problem along the lines followed
by Roorda and Heij [8], as described in [5]. An approach of this
kind has been recently followed in [9].
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It is also possible to define a new extended filtering problem
that includes as subcases both EIV filtering (optimal estimate
of inputs and outputs from noisy observations) and traditional
Kalman filtering (optimal estimate of output and state in pres-
ence of state and output noise). This new problem is solved in
this paper by extending Kalman filtering to this more general
case.

The paper is organized as follows. Section 2 contains a defi-
nition of the considered filtering problem while Section 3 de-
velops the modified Kalman filter used for its solution. The
expected performance of the filter is investigated in section 4.
The Monte Carlo simulation reported in Section 5 shows the ex-
cellent agreement between expected and observed performance.
Short concluding remarks are finally given in Section 6.

II. STATEMENT OF THE PROBLEM

The models considered in this paper are described by the state–
space relations

x(t + 1) = Ax(t) + B û(t) + w(t) x(0) = x0 (1)

ŷ(t) = C x(t) + D û(t) (2)

y(t) = ŷ(t) + ỹ(t) (3)

u(t) = û(t) + ũ(t) (4)

where x(t) ∈ Rn is the state of the process and ŷ(t) ∈ Rm,
û(t) ∈ Rr denote the unknown noiseless components of the
observations; w(t) is the state noise while ỹ(t) and ũ(t) are the
additive noise on ŷ(t) and û(t).

Assumptions – We will assume, in the sequel, that w(t), ỹ(t)
and ũ(t) are mutually uncorrelated zero mean white processes,
uncorrelated with û(t) and with covariances

E
[
w(t)wT (t − τ)

]
= Σw δ(τ) (5)

E
[
ỹ(t) ỹT (t − τ)

]
= Σ̃y δ(τ) (6)

E
[
ũ(t) ũT (t − τ)

]
= Σ̃u δ(τ), (7)

where δ(τ) is the Kronecker delta function. The initial state
x0 is a random vector with mean x̄0 and covariance matrix P0,
uncorrelated with w(t), ỹ(t) and ũ(t), ∀t.

The problem under investigation can be defined as follows.

Problem 1 (Optimal filtering) – Given the model (1)–(4), the co-
variance matrices (5)–(7) and an increasing sequence of input–
ouput observations {u(0), y(0), . . . , u(t), y(t)}, determine the
optimal (minimal variance) estimate of û(t), ŷ(t).

Relations (3) and (4) allow to write model (1)–(2) in the form

x(t + 1) = Ax(t) + B u(t) − B ũ(t) + w(t) (8)

y(t) = C x(t) + D u(t) − D ũ(t) + ỹ(t). (9)



By introducing the auxiliary processes

nx(t) = w(t) − B ũ(t) (10)

ny(t) = ỹ(t) − D ũ(t) (11)

z(t) = y(t) − D u(t), (12)

it is possible to rewrite model (8)–(9) in the classical Kalman
filter form

x(t + 1) = Ax(t) + B u(t) + nx(t) (13)

z(t) = C x(t) + ny(t), (14)

that will be used in the sequel for solving the filtering problem.

III. OPTIMAL FILTERING

The optimal estimate x(t|t) of the state x(t) is given by the
conditional expectation

x(t|t) = E [x(t)|z(t), z(t − 1), . . . , z(0)], (15)

which leads, as well–known, to the relations

x(t + 1|t) =
(
A − S R−1 C

)
x(t|t) + B u(t) + S R−1 z(t)

x(0| − 1) = x̄0 (16)

x(t|t) = x(t|t − 1) + K(t)
(
z(t) − C x(t|t − 1)

)
(17)

K(t) = P (t|t − 1)CT
(
CP (t|t − 1)CT + R

)−1
(18)

P (t|t) =
(
In − K(t)C

)
P (t|t − 1) (19)

P (t + 1|t) =
(
A − S R−1 C

)
P (t|t)(A − S R−1 C

)T
(20)

+ Q − S R−1 ST , P (0| − 1) = P0

where

Q = E
[
nx(t)nT

x (t)
]

= Σw + B Σ̃u BT (21)

R = E
[
ny(t)nT

y (t)
]

= Σ̃y + D Σ̃u DT (22)

S = E
[
nx(t)nT

y (t)
]

= B Σ̃u DT , (23)

under the assumption of nonsingularity for R.

Remark 1 – If w(t), ỹ(t), ũ(t) and x0 are gaussian, x(t|t) is the
estimate that minimizes the mean square error

E
[(

x(t) − x(t|t))T (
x(t) − x(t|t))], (24)

otherwise x(t|t) constitutes the best linear estimate (in the mean
square error sense) that can be obtained from the observations.

Now, we focus our attention on the problem of obtaining opti-
mal estimates ŷ(t|t), û(t|t) of ŷ(t) and û(t) starting from the
knowledge of x(t|t). Since

û(t|t) = u(t) − ũ(t|t) (25)

ŷ(t|t) = y(t) − ỹ(t|t), (26)

these estimates can be obtained from the optimal estimates of
the input and output noise.

From equation (8) it follows that

x(t + 1|t) = Ax(t|t) + B u(t) − B ũ(t|t) + w(t|t). (27)

Since

w(t|t) = E [w(t)|z(t), z(t − 1), . . . , z(0)] = 0, (28)

by comparing (27) with (16) we obtain

−S R−1 C x(t|t) + S R−1 z(t) = −B ũ(t|t), (29)

i.e, thanks to (23),

ũ(t|t) = Σ̃u DT R−1
(
C x(t|t) − z(t)

)
. (30)

Similarly, equation (9) leads to

z(t) = C x(t|t) + ỹ(t|t) − D ũ(t|t), (31)

and by substituting ũ(t|t) with expression (30) it is immediate
to obtain

ỹ(t|t) =
(
Im − D Σ̃u DT R−1

) (
z(t) − C x(t|t)). (32)

Finally, by using (25) and (26), the minimal variance estimates
of ŷ(t), û(t) can be written in the form

ŷ(t|t) = y(t) − (
Im − D Σ̃u DT R−1

) (
z(t) − C x(t|t))

(33)

û(t|t) = u(t) − Σ̃u DT R−1
(
C x(t|t) − z(t)

)
. (34)

Remark 2 – When D = 0, the optimal estimate of the noise–free
output ŷ(t) is given by C x(t|t), as in standard Kalman filtering,
while the optimal estimate of the noise–free input û(t) coincides
with its observation u(t).

IV. EVALUATION OF THE EXPECTED PERFORMANCE

The purpose of this section is to develop an expression for the
expected performance of the filter (33)–(34), i.e. for the covari-
ance matrices of the estimate errors

ey(t) = ŷ(t) − ŷ(t|t) (35)

= −ỹ(t) +
(
Im − D Σ̃u DT R−1

) (
z(t) − C x(t|t))

eu(t) = û(t) − û(t|t) (36)

= −ũ(t) + Σ̃u DT R−1
(
C x(t|t) − z(t)

)
.

Since
z(t) − C x(t|t) = ny(t) + C ex(t), (37)

where
ex(t) = x(t) − x(t|t), (38)

ey(t) and eu(t) can be expressed in the more convenient form

ey(t) = −ỹ(t) +
(
Im − D Σ̃u DT R−1

) (
ny(t) + C ex(t)

)
(39)

eu(t) = −ũ(t) − Σ̃u DT R−1
(
ny(t) + C ex(t)

)
. (40)

The terms

Py(t) = E
[
ey(t) eT

y (t)
]

(41)

Pu(t) = E
[
eu(t) eT

u (t)
]
, (42)



will be now computed.

Since ỹ(t), ũ(t) and ny(t) are white processes, it is possible to
show, thanks to (17) and (38), that

E
[
ỹ(t) eT

x (t)
]

= −E
[
ỹ(t) zT (t)

]
KT (t) (43)

= −Σ̃y KT (t)

E
[
ũ(t) eT

x (t)
]

= −E
[
ũ(t) zT (t)

]
KT (t) (44)

= Σ̃u DT KT (t),

and hence

E
[
ỹ(t)

(
ny(t) + C ex(t)

)T ]
= Σ̃y

(
Im − KT (t)CT

)
(45)

E
[
ũ(t)

(
ny(t) + C ex(t)

)T ]
=

−Σ̃u DT
(
Im − KT (t)CT

)
(46)

E
[(

ñy(t) + C ex(t)
) (

ñy(t) + C ex(t)
)T ]

= (47)

R − C K(t)R − R KT (t)CT + C P (t|t)CT

From (45)–(47) we obtain

Py(t) = (48)

Σ̃y − Σ̃y HT − H Σ̃y +
(
Σ̃y − H R

)
KT (t)CT HT

+HCK(t)
(
Σ̃y − R HT

)
+H

(
R + C P (t|t)CT

)
HT ,

where
H =

(
Im − D Σ̃u DT R−1

)
. (49)

By recalling expression (22) of R, it is immediate to verify that
HR = Σ̃y , so that

Py(t) = Σ̃y − Σ̃y HT − H Σ̃y (50)

+ H
(
R + C P (t|t)CT

)
HT .

Similar considerations lead to the expression of the covariance
matrix of eu(t)

Pu(t) = Σ̃u (51)

− Σ̃uDT R−1
(
Im − C P (t|t)CT R−1

)
DΣ̃u.

Remark 3 – When the pair (A − SR−1C, C) is detectable
and the pair (A − SR−1C, Q̄) is stabilizable, with Q̄ Q̄T =
Q − SR−1ST , P (t + 1|t) converges, for t → ∞, to the unique
solution P̄ of the algebraic Riccati equation

P =
(
A − S R−1 C

)[
P − P CT

(
C P CT + R

)−1
C P

]

× (
A − S R−1 C

)T + Q − S R−1 ST . (52)

Moreover, the filter (16),(17) is asymptotically stable for t → ∞
[1]. In this case

lim
t→∞Py(t) = P̄y (53)

lim
t→∞Pu(t) = P̄u. (54)

V. NUMERICAL RESULTS

The results obtained in previous sections have been numerically
verified by means of a 100 runs Monte Carlo simulation per-
formed on a one–input two–outputs model described by the ma-
trices

A =


 0 1 0
−0.3 0.4 −0.2
−0.1 0.2 0.4


 B =


 0.8

0.17
1.09




C =
[

1 0 0
0 0 1

]
D =

[
1.7
0.51

]
.

The number of samples is 500. The input sequence û(·) has unit
variance and is described in Fig. 1 (continuous line). In every
run, the state, output and input noise sequences are characterized
by the following covariance matrices

Σw =


 0.14 0.09 0.16

0.09 0.08 0.11
0.16 0.11 0.2




Σ̃y =
[

0.94 1.27
1.27 1.82

]

Σ̃u = 0.25.

The percent amounts of noise, defined as one hundred times the
ratios between the standard deviation of the noise and those of
the noise–free signals, are equal to 50% for the input and to
about 41% and 70% for the outputs. In every run, the initial
state x0 is a random vector and equations (16) and (20) have
been initialized with x(0| − 1) = 0 and P (0| − 1) = In.

Figures 1–3 report the noiseless input and outputs (continuous
line) and the associated noisy observations (dotted line) in a typ-
ical case of the Monte Carlo simulation (last 200 samples).
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Fig. 1. Comparison between the noiseless input and its observation.
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Fig. 2. Comparison between the first noiseless output and its observation.
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Fig. 3. Comparison between the second noiseless output and its observation.

The effectiveness of the filter can be observed, in the same typ-
ical case, in Figures 4–6, where the noiseless input and outputs
(continuous line) are compared with the corresponding filtered
quantities (dotted line).
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Fig. 4. Comparison between the noiseless input and its optimal estimate.
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Fig. 5. Comparison between the first noiseless output and its optimal estimate.
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Fig. 6. Comparison between the second noiseless output and its optimal esti-
mate.

The covariance matrices of the estimate errors, obtained by
means of relations (50) and (51) for t → ∞, are

P̄y =
[

0.1941 0.1923
0.1923 0.2524

]

P̄u = 0.0562,

while the mean of the actual values obtained in the Monte Carlo

simulation are

P̄MC
y =

[
0.1952± 0.0098 0.1935± 0.0117
0.1935± 0.0117 0.2536± 0.0145

]

P̄ MC
u = 0.0565± 0.0030.

The results of the numerical simulation are thus in excellent
agreement with the theoretical values.

VI. CONCLUSIONS

A new extended environment for Kalman filtering considering
also the presence of additive noise on input observations has
been defined. This environment includes as particular cases,
both traditional Kalman filtering and EIV filtering. A Monte
Carlo simulation has shown the effectiveness of this extended
filter and the excellent agreement between its expected perfor-
mance and the observed one.
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