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Abstract--This only looks like the abstract. Dynamic lift
coefficient is an important parameter in the calculation of lift
in fin stabilizer system, but there exists great error in the
formula. Lift feedback fin stabilizer is a new kind of fin
stabilizer, which is the most effective ship roll reducing
equipment. In this paper the defects of fin angle feedback fin
stabilizer caused by the dynamic coefficient are discussed, the
control principle of lift feedback fin stabilizer is given, and
finally a PID neural network controller isproposed.
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|I. INTRODUCTION

Fin stabilizer has been used for more than seventy years
as one of the most effective ship roll reducing
equipmentg1]. But it still has some defects. There are
many uncertain factors in the conventional formula to
calculate the lift which is gotten by the static
hydrodynamic experiment because there exist errors in
the static hydrodynamic experiment. People then
designed a new kind of fin stabilizer—Iift feedback fin
stabilizer in which the lift of the fin is gotten not by
calculated but measured directly. So the lift can be gotten
more accurately and the fin stabilizer can work more
efficiently.

PID controller is the most popular control strategy in
industrial processes due to its versatility and tuning
capabilities. Most fin stabilizers are controlled by PID
controller now. But the conditions on the ship are
uncertain and often change greatly, and the conventional
PID controller can’'t modulate its parameters according
to the system requirement as the conditions changing.
Neural network can perform adaptive control through
learning process. As the microprocessors providing
powerful computation capabilities, neural networks can
be used for controller. But there are some problems,
which should be solved in practice. The main problems
are the dlow learning process, the long weight
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convergence time and uncertain property. PID neura
network (PIDNN) controller utilizes the advantages of
both PID control and neural structure. It can control the
systems through quick learning process and has perfect
performances. Because of the merits of the neura
networks and the PID controller, the PIDNN controller
can improve the effect of the fin stabilizer greatly.

The lift feedback fin stabilizer controlled by PIDNN
controller shows perfect performance because it is
improved on control structure and control theory based
on the old one.

Il. LiFT FEEDBACK FIN STABILIZER

A. TheRoll Mode of Ship

There are so much uncertain factors when a ship navigates
the sea, so the roll model of ship is nonlinear. But we can
analyze the movement of roll using alinear model when the
angle of roll is small. Asthe Conolly theory the linear roll
model of ship is showed:

(I +Al,)§+2N, g+ Dhp=-(Al a2+ 2N, a2+ Dhey) (1)

Where

|, ——inertiamoment of roll, kg * m*/s
Al ,——added inertia moment, kg * m/s
2N, ——damping coefficient of roll

D ——displacement of ship, kg

h ——metacentric height of ship, m

¢ —angleof roll, rad

a4 =aySNwt 2
o, =0, SNt ©)
Where

a, is the largest significant angle of wave slope
corresponding to angle of wave slope;



a, 1S the largest significant angle of wave sope
corresponding to velocity and acceleration of wave slope;

o, is the encounter frequency of ship.

Al &,@d 2N, o, aremuchsmaller than phg, in equation

(1), because of which we can only consider the effect of
Dhe,- The Eq. (1) becomes:

(I +Al )¢+ 2N, ¢+ Dhg = -Dha, (4

Assuming the initial condition is ¢(0) = ¢(0) = 4(0) =0, the
Laplace transform of Eq. (1) iswritten as:

We(s)= jl((ss)) TTEs? 21Tc§cs+ 1 ©
Where

T, = W (6)
A TOe v

the natural roll period of shipis:

I, +Al,

8
o (8)

T, =27

A ship model is used in the paper, where T =1.4324,
¢, =0.1325. Eq. (5) becomes:

w,(9=20 _ L 9)
ST (9 20518 +0.37965+1

B. The Roll-reducing Principle of Lift Feedback Fin
Stabilizer

The roll reducing principle of lift feedback fin stabilizer
is similar to that of the classical fin stabilizer™. But the
lift is measured by lift sensors in the lift feedback fin
stabilizer system. The ship will roll because of a
disturbing moment when the wave acts on it. Then the
fins will be driven to contrary angles so that they can
produce a hydrodynamic righting moment, which is
produced by the lift L, to reduce the ship roll. See Figure
1
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Figure 1. Lift and righting moment

The linear roll model of ship is expressed by Eq. (1) in
which the right of the Eq. is the wave disturbing moment. If

there existss a control moment K_ produced by the fin
stahilizer, Eq. (1) becomes:

(1, +A1,) ¢+ 2N, $+ Dhyp=-Dheg —K, (10)

If K,=-Dhe,, theright of Eq. (10) becomes zero and the
ship will stop rolling. There exist three moments, which are

the inertia moment (I, +A|X)g, the damping moment

2Nu¢.5 and the restoring moment Dhg. They balance
with the disturbing moment Dhe, and control moment K.

If the control moment counteracts the disturbing moment,
K, should include three moment components of Ag,

Bq'ﬁ and C;z; where A, B, and C are proportionaity
coefficients. Thus the control moment K produced by the
lift fin stabilizer should be:

K, =Ag+Bg+Cg (1)
Eg. (10) becomes:
(I, +Al +C) g+ (2N, +B) g+ (Dh+ A\p=-Dha, (12)

If A, B and C satisfy Eq.(13)

A_B__C ¢ (13)
Dh 2N, | +Al

X X

where F is a constant, Eq.(12) becomes:
(I, +Al)@A+F)g+2N, (L+F)$+ Dh(l+ F)$ = -Dhe, (14)
and Eq(14) can be written as:

(I +Al )$+2N,p+Dhp=-Dho, (1+F) ™ (15)



Eq.(15) shows that the disturbing moment Dhe, is

reduced (1+F) times. The ship roll will be compensated
completely if we choose the proportionality coefficients
correctly.

C. Dynamic Coefficient of Lift Feedback Fin Stabilizer

The excellent roll stable effect of fin stabilizer has been
recognized for many years. Figure 2 illustrates the control
principle of classical fin angle feedback stabilizer.
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Figure.2 Fin angle feedback stabilizer

But the system showed in Figure 2 still has some defects. In
Figure 2 we get the lift by calculating Eq. (16) that is

L:%pVZAFCL (16)
Where

A, : projected area of fins, m*
C, : lift coefficient of fin

p : density of seawater, kg/m®
V : ship speed, m/s

a, - finangle, deg

There existss a great error in Eq. (16). The lift coefficient
C, we usualy use in Eq. (16) is static lift coefficient and

is linearized approximatively. The relationship between
static lift coefficient C, andfinangle «, isexpressedin

Figure 3, whichshows C, and ¢, aredirect ratio.
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Figure.3 Relationship between static lift
coefficient and fin angle

But in fact the lift coefficient C, is dynamic and

nonlinear that is very difficult to obtain. We got it via afin
model experiment in a towing tank!? from which we can
see that there exists great difference between the static lift
coefficient and dynamic lift coefficient. Figure 4 shows a
set of coefficients, which were obtained by us in the towing
tank laboratory.
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In Fig.4 the dynamic coefficients are measured at three
different periods: 5.01s, 3.977s and 2.987s, and the
corresponding period coefficients C,; obtained in Eq(17) are
16.209, 12.867 and 9.664.

Ci=— 1
t =S (17)

Where

V: speed of tow truck, m/s
T: period of fin, s

C: average chord length, m

And the ship speed V is 1.2m/s in the experiment. From
Fig.4 we can see the variation of static lift coefficient is
linear and the slope can be regarded as a constant when the
angle is less than the angle of stall. But the curves of the
dynamic lift coefficients at different periods are three
ellipses approximatively and nonlinear. There existss so
much error between them that the L in Eq.(16) is different
from the value of redl lift.

In Eq.(16) V should be the inflow velocity in theory which
will bring more uncertainties, but we subsgtitute it for the
ship speed in practice.

Usually in the design of the controller we take into account
not all the factors that can produce the lift but only the ship
speed, thus there is an evident hydrodynamic lift error;
there are errors between the lift produced by the fin angle
feedback stabilizer and what the ship needs to counterwork
the seafactually.



All the above-mentioned errors influence the roll-reducing
effect of fin angle feedback stabilizer greatly.

To overcome the errors, lift fin stabilizer is researched in
which the lift of finsis not calculated but measured by lift
sensor directly. The principle of lift fin stabilizer can be
expressed in Figure 5.
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Figure 5. Lift fin stabilizer theory

In the system, because the lift is measured directly and fed
back to produce the righting moment command, the lift
errors produced as we use Eq. (16) can be avoided, and
disturbing moment of roll produced by the wave can also be
counteracted effectively. As the influence of the ship speed,
fin angle and angular velocity on the lift is reflected by the
lift directly, we can get the stability moment more precisely
via ship speed and fin angle. The lift feedback fin stabilizer
can avoid the problem that the fin angle feedback can't
reflect the hydrodynamic lift error and influence on lift
brought by ship pitching, rolling, heaving as well as ship
hull and bilge keel.

I11. PID NEURAL NETWORK CONTROLLER

Figure 6 illustrates the structure of the PID Neural Network
controller™®.
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Figure 6 Structure of PID neural network controller

The input of the transfer implement is r(k) and output y(k);
the output of the transfer implement is states X;, X, and

X5 which are required in neuron learning control.

Where
X, (k) = r (k) — y(k) = e(k)
X, (K) = Ae(k) (18)

x, (K) = e(k) - 2e(k — 1) + e(k - 2)

z(k) = x,(K) =r (k) — y(k) = e(k) is the performance
index. K is the proportion coefficient of the neuron,
K > 0. The control signal is obtained via Eq. (19)

u(k):u(k—1)+Kiwi(k)xi(k) (19)

i=1

Where W, (K) is the weight coefficient of corresponding

toX; (K) . The function of self-learning and self-adaptation

of PID neuron controller is realized by adjusting the weight
coefficient. There are different learning rules to adjust the
weight coefficient. We adopt the
Pe’(k +d) + QAu?(K) as the performance index. The

function of performance index iswritten

Jz:%‘P[r(k+d)—y(k+d)]2+QAu2(k)‘ (20)
Where

y(K + d) —output of processwhen t=k+d;
r(k+d) — — referential input of process when
t=k+d;

d ——total lag of process;
P,Q——weight coefficients of output error and control
increment.

The amendment of weight coefficient W, (K) is towards
the reduction direction of J, that is the direction of
nonpositive gradient of W (K) . Thus the adjustive quantity
of W (K) is

aJ, B
(k)

T K{Ph)e(k+ d)x (k) —QK{Zzlwi (k)x (k)}ﬁ (k)}

2w (k) =W (k+1) —w () =7

(21)

Where
n, (i = P,1,D) ——learning velocity;

b, ——the first value when an indicial response is input
into the process, which can be gotten by experiment.

We use the unstandardized Eg. (19) in the deduction of Eq.



(20). If the output of neuron is standardized and induced,
the learning algorithm becomes:

09 =ulk-3 +K S WK (9

wig= 0
2wy (22)

W (k+D) =w(K)+73 K{Ptbe(k+d)><1(k) -Q iw (k)% (k)}xl(k)}

W (k+1) = V\é(k)+77pK{Pb)e(k+d)Xz(k) -Q iw (K% (k):|xz(k)}

Wy(k+D) = wy(K) +775 K{Pb,e(km)xg(k)Q iw(k)x (k)}xg(k)}

InEq. (22), X (K), X,(k) and X;(K) arethesameas
those in Eq. (18). We replace e(k+d) by e(k)
because it can't be measured.

The controller used in lift fin stabilizer system is designed
by K=006 , n,=80, n =160 , 7, =15,

w,(0) =0.8, w,(0)=0.7,and w,(0)=0.6.

Figures 7-9 illustrate the behavior of the system that is
gotten from simulations. The significant wave height
h = 3.8m and encounter angle g = 90° . The angle of
roll with lift fin stabilizer is smaller than that with the
angle feedback fin stabilizer obviously.

Figure 7. Roll angle of unstabilized ship
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Figure 8. Roll angle of ship with
angle feedback fin stabilizer
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Figure 9. Roll angle of ship with lift
feedback fin sabilizer

The standard deviations of Figures 7-9 are:

o[é(t)] = 7.3150 °, standard deviation of roll angle of
unstabilized ship

o[ (t)] =1.6447 °, standard deviation of roll angle of
ship with angle feedback fin stabilizer

ol[¢(t)] = 0.3991 °, standard deviation of roll angle of
ship with lift fin stabilizer.

IV. CONCLUDING REMARKS

In this paper we analyse defects of angle feedback stabilizer
caused by the dynamic coefficient and show the control
principle and composition of the lift feedback fin stabilizer
system that is controlled by a neura network controller.
Because the lift is measured directly for the lift feedback fin
stabilizer, the error caused by the dynamic coefficient can
be avoided, and the roll reducing effect is much better than
the fin angle feedback stabilizer. The application of PID
neural network controller in fin stabilizer can adapt the
uncertainty of the ship model and assume to get better
performance.
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