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Abstract - It is well-known that the non-linear systems 
transformed into chained form can not be stabilized by a 
time-invariant static state feedback control. That is why many 
approaches have been proposed to avoid this problem. One of 
them makes it possible to design a nonlinear control law based 
on the linear control theory by using time-state control form. 
We proposed a periodic switching control law and showed the 
necessary and sufficient conditions for stabilization.  
  In this paper, the conditions for stabilization with arbitrary 
switching intervals are derived by focusing the switching time. 
These conditions are closely related to the results for 
stochastic jumped system. The relatively simple and 
convenient conditions are expressed by using the norm of 
transition matrix of linear system. The conditions derived in 
this paper are rather tight as compared with the case of 
periodic switching law. However, the chained system can be 
stabilized if the two linear feedback controllers are switched 
with arbitrary intervals greater than the lower limit derived 
in this paper. 
Keywords - chained system, switching control, stability, hybrid 
system. 

I. Introduction  
 
  The chained form is one of the canonical forms that 
describe nonlinear systems such as car systems or space 
robots. However, it is well known that there is no 
continuous time-invariant state feedback stabilizing 
controller for chained systems [1]. Therefore, many 
stabilizing controllers have been proposed by using 
discontinuous feedback controllers or time-variant inputs 
[2-8]. In one of them, the control method based on 
time-state controlled form was proposed [2-4]. By using 
this method, a nonlinear system is transformed into a 
combination of controllable canonical formed linear system 
and first-order linear system. Then, it is possible to design a 
stabilizing controller easily by applying the linear control 
theory. Since one of the states is regarded as time in this 
method, the input switches are required in order to settle 
this state to 0. Therefore, this controlled system is one of 
the hybrid systems and the input switching law and its 
condition have not been discussed well. 
  In this paper, the conditions for stabilizing this switching 
controlled chained system are discussed. We proposed a 

periodic switching law and showed the necessary and 
sufficient conditions for stabilization [12][13]. This paper 
shows the conditions for stabilization by using the 
switching controller with arbitrary switching intervals. The 
conditions are closely related to stochastic jumped system 
[14]. For chained system based on time-state control form, 
the sufficient conditions for arbitrary switching control law 
to stabilize the system were described in [15]; they have 
been derived based on Lyapunov equation of continuous 
time system [18][19]. However, these conditions are very 
tight, and it sounds to be conservative compared with the 
case of periodic switching. The conditions derived in this 
paper are relatively relaxed by setting the mean of 
switching intervals or the lower limit of switching intervals. 
  In section 2, the chained system with switching 
controller based on time-state control form is expressed as a 
hybrid system. The influence of the switching control on 
the transition of the states is clarified as a certain matrix.  
  The stability of the chained system is discussed in two 
stages in section 3. Firstly, we discuss the convergence of 
states of the hybrid system. The conditions for stabilizing 
this system are shown in cases of arbitrary switching and 
periodic switching, respectively. In case of arbitrary 
switching whose intervals have a lower limit, the conditions 
are comparatively tight as compared with periodic 
switching law. However, the existence of a stabilizing 
controller is guaranteed. These conditions are expressed by 
using the norm of transition matrix. On the other hand, in 
case of periodic switching, the conditions are expressed as 
eigenvalues of transition matrix. These conditions are 
derived by method of analyzing sampled-data systems 
focusing on the switching time. Secondly, we show 
switching laws for settling a remaining state to zero; it plays 
the role of time in this switching control method.  
  In section 4, proposed switching control methods are 
applied to a simple car system that is an example of chained 
system. The relations between the convergence speed of 
states and the switching intervals are examined.  

II. Time-state Control Form  

A. Time-state control form and Hybrid system 

  Consider a chained system given by the following 
differential equation [9], 
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where x0, x1, ...,and xn are states, u1 and u2 are control 
inputs.  
  Consider an input transformation given as 

11 µ=u , 212 µµ=u . (2) 

It is possible to handle a state x0(t) as time if x0(t) is an 
increasing function of time t, i.e., input µ1 has the positive 
sign. The time-state control formed system[2] is obtained as  

01
0 >= µ

dt
dx

 (3a) 
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  The system (3b) is a linear system expressed by the 
controllable canonical form. Therefore, it is easy to obtain a 
control input µ2 for stabilizing the state x = [xn, ..., x2,x1 ]T 
by using the linear control theory. Consequently, the 
system(3b) can be stabilized by a state feedback controller 
with appropriate kj > 0,  

xk−=2µ , ],,,[ 11 kkk nn L−=k . (4) 

  However, if the input µ1 is positive, then evidently the 
state x0(t) keeps increasing. For settling the state x0 to zero, 
the sign of input µ1 has to become negative at appropriate 
time.  
  If the input µ1 is negative and x0(t) decreases, we have to 
consider x0’= -x0 as time axis instead of state x0. Then the 
time-state control formed system for µ1<0 is obtained by 
the same way as that system(3) is derived [12]. 
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where En∈Rn is a diagonal matrix such that  
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  This matrix satisfies that En
2k+1=En and En

2k=In (Identity 

matrix). 
  It is also possible to stabilize the system(5b) by a linear 
feedback input. When the sign of the input µ1 is negative, 
we choose input µ2,  

xk′−=2µ , 
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  By substituting this input(7) to (5b), the system matrix of 
closed loop system is obtained as, 
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  By switching the feedback input(4) and input(7) 
according to the sign of µ1, the closed loop systems are 
expressed as the following hybrid system. 
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where dt∫= || 1µτ , µ1(τ +) denotes the successor value of 
µ1(τ), i.e., it is the right-hand limit[18]. By replacing matrix 
En with identity matrix In, this equation expresses a linear 
system with no input switching. Therefore, it can be said 
that the matrix En represents the characteristic of input 
switching. 
  In the following section, first, we discuss the conditions 
for stabilizing this hybrid system(9) asymptotically. Note 
that x=[xn,...x2,x1] in (9), although the states of the chained 
system are x and x0. Therefore, secondly, a method of 
settling x0 to zero is discussed in order to stabilize the 
chained system(1). 
  Our goal in this paper is to stabilize the chained system 
in the sense of the following definition. 
Definition  The chained system is stable if there exists a 
finite time T such that  

 |x0(t)|+||x(t)||<ε  (10) 

for ∀ε > 0, ∀t > T and arbitrary initial states x0(0) and x(0).   
 

B. Transition of the State by Input Switches 
 
  Let ti be the i-th switching time when the sign of µ1 
changes, i.e., µ1(ti

+)≠µ1(ti). Now, we define switching 
intervals as  

∫
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  By using ∆Xi, the state x after the m-th switch of the sign 
of µ1 is described as  
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 Especially, at input switching time tm, the following 
relation is obtained. 
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Hence, by noting the state z(ti) at input switching time ti, 
the system is regarded as a discrete time system. The state 
of this discrete time system is redefined as z(i)=z(ti).Then,  
(13) is rewritten as 

)()1( )( ieEi iXA
n zz bk ∆−=+ . (14) 

III. Switching Control Laws 

A. Arbitrary Switching Control Law 

  From the above formulation(14), we can derive the 
following theorem for stabilization of (9) on the basis of the 
discrete version of Lyapunov inequality. 
Theorem 1 Consider switching the inputs arbitrarily with 
intervals ∆Xi. The system(9) is asymptotically stable if 
there is a positive definite matrix P such that  
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for all ∆Xi, i=0,1,2,... 
Proof: Assume that (15) is held. Then, V(i)= z(i)TPz(i) 
decreases by input switching with ∆Xi, i.e., the state z(ti) 
converges to 0 as ti→∞. From (9c) and  

1
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+
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, 

x(t)→0 if z(ti) →0.   
Remark  Because of the matrix En, the condition(15) can 
not be straightly simplified such as the condition that A-bk 
is stable. This difficulty is closely concerned with the tight 
condition in [15]. Their conditions require that the 
continuous version of Lyapunov equation has a positive 
definite matrix such that P=EnPEn.  
 
  However, it is sure that there exists a switching control 
law for stabilizing the system(9) if A-bk is stable. We show 
sufficient but convenient conditions of switching intervals 
∆Xi and feedback gain k. 
Lemma 1 The system(9) is asymptotically stable if  
switching intervals ∆Xi satisfy that 

||Ene(A-bk) ∆Xi || <1,  for ∀∆Xi>∆Xmin . (16) 

where ||⋅|| denotes a certain appropriate matrix norm. 
Proof: The transition matrix Φ(tm) at switching time is 
obtained from (13).  
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  The arbitrary norm of this transition matrix is bounded 
such as  
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  Therefore, if (16) is held, Φ(ti)→0 and the state z(ti) 
converges to 0 as ti→∞. 
 
  If we choose a norm such that ||En||=1, (16) is rewritten 
as ||e(A-bk) ∆Xi|| <1. Euclidean norm is an example of such 
norm. In this case, the left side of inequality(16) is the 
maximum singular value of transition matrix. This 
condition is the same as (15) in case of P=In.  
 
  When the condition of Lemma 1 is satisfied, the norm of 
state z(ti) decreases monotonously for every switching time. 
However, it is not necessary that (16) is satisfied every 
intervals. It is sufficient to be satisfied on the average. 
Therefore, consider the mean value of switching intervals.  
Lemma 2 There is the mean value of switching intervals 

X∆ such that the system(9) is asymptotically stable.  
Proof: If matrix A-bk is stable, there exists a constant α > 0, 
λ > 0 for ∀τ > 0 such that  

λττ α −− ≤ ee A )( bk . (19) 

where ||⋅|| denotes an arbitrary matrix norm [10].  
  By applying (19) into (18), the norm of this matrix is 
bounded such as  
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  Consequently, the asymptotic stability of controlled 
system is guaranteed if the mean of the switching intervals 
satisfies 

 1<∆− Xae λ .  (21) 

  From lemma2, even if the inputs are switched with such 
short intervals that the condition(16) is broken, x(t) 
converges to 0 if one sufficient long interval exists. 
 
  Next corollaries show that there exist feedback gains and 
switching intervals for satisfying these conditions. 
Corollary 1 Consider the feedback gain k such that matrix 
A-bk is stable. Then, there exist finite values ∆Xmin and 

X∆ which satisfy lemma 1 and 2, respectively. 
Proof: In (19), there exists a constant a > 0, λ > 0 for ∀τ > 
0 because matrix A-bk is stable. If a certain ∆Xmin satisfies 
ae-λ∆Xmin < 1, then x(t) →0 when all ∆Xi> ∆Xmin .  
 
Corollary 2 Assume a certain value ∆Xmin or X∆ >0. There 



 

exist feedback gains k for satisfying lemma 1.  
Proof: Consider the feedback gain k that assigns 
eigenvalues of A-bk into λ1, λ2, ．．．λn (λi≠λj). We introduce 
a nonsingular matrix T such that 
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This matrix T is Vandermonde matrix of which the 
elements are the (n-1)-th order monomial of λi at the most 
[11][14]. So the elements of T -1 are rational functions of λi. 
Therefore, by taking note of the fact that λkeλ∆X →0 as λ →
-∞,  

0=∆−

−∞→

XAe
i

)(lim bk

λ
 (23) 

is verified. This proves existences of stabilizing feedback 
gains which satisfy (16) and (21) respectively.  
 
  Concerning the convergence of x(t), we can choose any 
combination of switching intervals as long as the 
condition(16) or (21) is satisfied. Therefore, it is easy to 
settle the last state x0 to zero. We propose a switching 
method for stabilizing the chained systems(1). 
Switching method 1:  

step1 Switch the sign of µ1 with an appropriate 
switching period ∆Xi satisfying lemma1 or 2.  

step2 If ||x(T)||<ε’, 1)( ||)||max(' −−< τ

τ
εε bkAe  is satisfied, 

let µ1<0 if x0>0 and let µ1>0 if x0< 0.  
step3 If |x0(t)|+ ||x(t)||<ε then let µ1≡0.  

  If the input µ1 is 0, then the time x0 is fixed. Therefore, 
the value of the state x is also fixed. 
Theorem 2 Consider switching the sign of µ1 according to 
the proposed switching method 1. The chained system(1) is 
stable if and only if the system(9) is asymptotically stable.  
Proof: If and only if the system(9) is asymptotically stable, 
then there exists a finite time T’ such that ||x(T’)||<ε’, ε’≤ε ( 
max

τ
||e(A-bk)τ|| )-1. In step 2, |x0|→0 and ||x(t)||is bounded such 

as,      
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From step2, x0 becomes 0 at ∃T > T’. Therefore, (10) is 
satisfied at ∃t > T’.  
 

B. Periodic Switching Control Law 
 
  As a special case of former results, we consider 
switching the input periodically. The switching intervals 
∆Xi are taken to be constant, i.e., 

∆Xi =∆X  (=const.) , ∀i > 0. (24) 

and ∆X is called as a switching period. By applying (24) to 
(15), it becomes a time-invariant discrete version of 
Lyapunov Inequality. Therefore, the following theorem is 

obtained [12]. 
Theorem 3 Consider switching the sign of µ1 alternately 
with period ∆X. The system(9) is asymptotically stable if 
and only if |λi (Ene(A-bk) ∆X)|<1 is satisfied for i=1,2,...n, 
where λi(M) is the eigenvalue of matrix M.  
Proof: It is evident from (14) and the proof of theorem 1.  
 
  Generally, |λi(Ene(A-bk) ∆X)|<1 is not always satisfied, even 
if matrix A-bk is a stable matrix; we can find such counter 
examples easily[12]. However, existence of feedback gain 
and switching period for stabilizing the system can be 
verified. The following relation between eigenvalues and 
matrix norms is generally satisfied [10].  

τττλ )()()( )(max bkbkbk −−− ≤≤ AA
n

A
nii

eeEeE  (25) 

Therefore, the condition of theorem3 for periodic switching 
control is satisfied if eq.(16) concerned with arbitrary 
switching is held. That is, from corollaries 1 and 2, there 
exist feedback gain k and switching period ∆X satisfying 
theorem 3. 
  The matrix A is a controllable canonical form. By 
utilizing this property, it is confirmed in case of n=2 that 
|λi(E2e(A-bk)∆X)|<1 is satisfied if and only if matrix (A-bk) is 
stable [12].  
 
  Now, consider the following switching control law on 
the basis of periodic switches in order to settle x0 into zero. 
Switching method 2:  

step1 Until x0 satisfies 

x0(t0’) < 0 < x0(t0’)+∆X, (26) 

let µ1<0 if x0>0 and let µ1>0 if x0<-∆X.  
step2 Switch the sign of µ1 periodically with an 

appropriate switching period ∆X . Because of step 
1, the state x0 crosses 0 in each switching period. 

step3 If | x0(t)|+|| x(t)|| <ε is satisfied, then let µ1≡0.  
  By using this switching method, the chained system is 
stabilized.  
Theorem 4  Consider switching the sign of µ1 according 
to the proposed switching method 2. The chained system(1) 
is stable if and only if the system(9) is asymptotically stable.  
Proof: It is similar to the proof of theorem 2.  
Remark  The absolute value of input µ1 is independent of 
convergence condition of x. For example, we can set 
µ1=-kx0 in the last period for asymptotic convergence of x0; 
it is similar to some conventional controllers, e.g., in 
[16][17]. 

IV. Simulations 
 
  Consider the four-wheeled car described in Fig.1. The 
state equation of this nonlinear system is 
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where (x, y) and θ are positions and direction of the car, 
and φ is an angle of the steering. Control inputs are forward 
velocity of the car u1 and angular velocity u2. Parameter 
l=1.0 is the length between the front and rear wheel shaft. It 
is known that this system can be transformed into a chained 
form by using coordinate and input transformations [7]. 
  The input transformations, 

θµ cos11 u= ,
θφ

θφ
µ

42
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lu
uu l+

=
 

(28) 

and coordinate transformations, 

yxx
l

xxx ==== 32310 ,tan,
cos
tan, θ

θ
φ  (29) 

are applied to (27). Then, the system is expressed by 
time-state control form under the condition of |θ |<90[deg]. 

1
0 µ=

dt
dx  (30a) 
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We set the parameters k = [1,3,3], |µ1| =1.0 and ε=0.01. 
The change of the eigenvalues of E3e(A-bk) ∆X in changing the 
switching period ∆X is shown as a solid-line in Fig. 2. The 
eigenvalues are 1 and -1 when ∆X = 0. As the switching 
period ∆X is longer, all eigenvalues are closer to 0. In this 
case, all absolute values |λi(E3e(A-bk) ∆X)| are smaller than 1 
for all ∆X > 0. These eigenvalues of E3e(A-bk) ∆X are not the 
same as the eigenvalue of e(A-bk) ∆X; they are described as a 
dashed-line in Fig.2 with multiplicity 3. In this example, 
max|λ(E3e(A-bk) ∆X)| is larger than |λ(e(A-bk) ∆X)| for all ∆X > 0. 
This difference expresses the difficulty of guaranteeing the 
stability of the switching controlled system. 
  The trajectories of the car in x-y plane are shown in Fig.3. 
The simulations start with x(0) = 0.0, y(0) = 3.0, φ (0) =0 
and θ (0) = 1.0[rad]. The trajectories with ∆X = 6.0, 4.0, 
and 2.0 are plotted in Fig.3. Maximum eigenvalues of 
E3e(A-bk) ∆X are 0.1546, 0.4862 and 0.9299, respectively. At 
the second switching time with ∆X =6.0, state y is quite 
close to 0. On the other hand, the controller with ∆X=4.0 
requires to switch the sign of µ1 more than ten times until y 
becomes as small as the former. In case of ∆X=2.0, the 
input switches 200 times until |x0(t)|+||(x1, x2, x3)T||<0.01 is 
satisfied. The behavior of the state x0 is more oscillatory 
because one of eigenvalues of E3e(A-bk) ∆X is close to 1.  
  Fig. 4 shows the changes of singular values of e(A-bk) ∆X. 
The condition(16) is held if ∆Xi>2.493, and for example, 
||e(A-bk) ∆X||2<2.15 e-0.3∆Xi. In Fig.5, a solid line shows a 
trajectory of the car when switching intervals change at 
random in 5>∆Xi >2.5 and 75.3=∆X . The sum of squares 
xTx, is plotted in Fig.6. Dashed lines in Figs.5 and 6 show 
the results in case of 5>∆Xi>0.2 and 51.2=∆X . In Fig.6, 
white diamonds indicate xTx at the switching time. In case 
of ∆Xi>2.5, xTx decreases for every switching. In case of 
∆Xi>0.2, xTx increases at 2nd switching time and so on. 
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Fig.1 Four-wheeled car 
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Fig.2 Eigenvalues of E3eA∆X(solid line) and 
eA∆X(dashed line) 
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Fig.3 Trajectories of the four-wheeled car with the 
periodic switching control laws, ∆X=2.0, 4.0, 6.0 
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Fig.4 Singular values of eA∆X; these singular values 

are smaller than 2.15e-0.3∆X 



 

However, the system is stable in this case because 
2.15e-0.3*2.51 <1. It takes t=44.2 and 49.6 for satisfying the 
convergence conditions respectively. Short interval causes 
many switches and late convergence.   
  For example, consider that the inputs are switched with 
∆Xi ≥1.0. If all poles of A-bk are chosen as -2 then 
||e(A-bk)1.0||≤0.998 and the condition(16) is satisfied. On the 
other hand, concerning a periodic switching law with ∆Xi 
=1.0, we can choose the feedback gain such that the poles 
are -1. In this case, maximum absolute value of eigenvalue 
of Ene(A-bk)1.0is 0.997<1 and the stability of the system is 
guaranteed. The former condition requires large feedback 
gains, but it admits relaxed switching intervals of the input. 
  Thin lines in Figs.5 and 6 show the results in case of 
2.4>∆Xi>0.2. These intervals is not guaranteed theoretically, 
but the condition of convergence(10) is satisfied at t=63.0 
in simulation. That is why the conditions are sufficient 
conditions. 

V. Conclusion 
 
  In this paper, we discussed the stability of the chained 
systems controlled with switching controllers based on the 
time-state control form. 
  The conditions for stabilization with arbitrary switching 
intervals were derived by focusing the states at switching 
time. The relatively simple and convenient conditions are 
expressed by using matrix norms of transition matrix of 
linear system. The conditions are rather tight as compared 
with the case of periodic switching law. However, the 
chained system can be stabilized if the two linear feedback 
controllers are switched with arbitrary intervals greater than 
the lower limit derived in this paper. That is, it admits 
shifting the timing of switches. 
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Fig.5 The transition of state xi, with arbitrary 

switching intervals 
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Fig.6 Sum of squares of states xTx. The transition of state xi, 

with ∆X=4.0 and l=1.0 
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