

Abstract— In this paper we present the further development of

an online environment to support student projects in robotics and
artificial intelligence. We describe an arena that has been
constructed to offer a realistic challenge for a vision based task
that involves locating and picking up a simple object. A toy
digger, the 'robot', is integrated into the environment and wired
into a computer for online access. A new suite of video software,
MVIDEO, provides better support for remote visualization of the
'digger arena' than provided in the previous version of the online
environment, and for the vision processing required in the student
project. The new environment has been used by a slightly more
advanced set of students, creating a better fit with their
background and leading to more successful projects. New issues
are now arising concerning the overall assessment procedures for
these projects. The paper describes the new arena, the overall
performance of the online robot system in the most recent run of
project. Recommendations are made for changes that should
improve the assessment procedures.

Index Terms— Online Robots, Educational applications, Video
streaming.

I. INTRODUCTION

nline robots have offered a new medium for teaching
topics in robotics and artificial intelligence, and indeed

for inspiring interest in a wide range of science, art and
engineering subjects [1]-[3]. The research reported in this
paper focuses on the tighter integration of these types of online
robot environments, through practical student projects, with
educational courses. Following early work on networking
traditional robotics environments we are now exploring the use
of toys to support online robot educational projects [4], [5].
Realistic and challenging student projects can be created by
placing these toys in an interesting task setting.

In previous papers we have described the origin and
development of an Internet-based student project that involves
the students creating programs that embody a toy digger with
the ability to pick up a simple object [6]. In this paper we
describe the further development of this environment. A new
‘digger arena’ is described that offers better support for remote

G. T. McKee is currently with the Department of Computer Science, The

University of Reading, Reading, Berkshire, RG6 6AY, UK. (e-mail:
gerard.mckee@rdg.ac.uk).

A. J. Gatward is currently a postgraduate research student with the
Department of Computer Science, The University of Reading, Reading,
Berkshire, RG6 6AY, UK. (e-mail: a.j.gatward@rdg.ac.uk).

D. I. Baker is currently a postgraduate research student with the
Department of Computer Science, The University of Reading, Reading,
Berkshire, RG6 6AY, UK. (e-mail: d.i.baker@rdg.ac.uk).

viewing and finer control of the digger. The toy digger is also
better protected against wear and tear. The new arena makes
the project task, namely getting the robot to pick up an object,
more readily solvable while continuing to offer an interesting
challenge to the students. The basis for the improved viewing
support is the incorporation of a custom video delivery system,
MVIDEO, that is more closely tailored to the project
requirements. The project has also been set to students with a
slightly more advanced level and background than before,
resulting in improved performance. The further experience
gained with this new environment has led to new proposals for
both monitoring students during these projects and for
assessing the completed work of students for projects of this
form. The running of the experiment for the second time, for a
body of over 100 students, also provided an opportunity to
extend our study of the performance of the system through the
analysis of the system logs.

The remainder of the paper is organized as follows. The
following section presents the MVIDEO system, including the
motivation behind its development. Section III presents the
Digger II arena, including the integration of the new toy digger
and the characteristics of the computing environment
supporting control of the digger. Section IV describes the
performance of the new environment for a new body of
students. Section V provides an analysis of assessment
procedures for the student work and recommendations for new
procedures to reflect the particular requirements of assessing
online robot projects of this form. Finally, section VI provides
a summary and conclusions.

II. THE MVIDEO SYSTEM

Online robot systems often use video feedback to allow
users to view the mobile robot or manipulator arm that they are
controlling [1]. This video feedback is typically in the form of
within-browser single image snapshots using server push or
applet-based video streaming. The goal of these systems is
remote viewing. They do not, therefore, provide ready access
to the underlying image data, a requirement for online robot
projects that involve the development of vision guided
automated control of the online robot. Further, more advanced
forms of video streaming technology often use data
compression formats that are not readily interrogated by
external programs, and typically do not have server-based
access to single images on request. Finally, video conferencing
systems, a possible alternative to these browser-based and
video streaming systems, are aimed at group communications

An Online Robot Educational Project

Gerard T. McKee, Member, IEEE, Andrew J. Gatward, and Duncan I. Baker

O

and are, therefore, top heavy relative to the requirements of
vision-guided robot control projects. In short, there is
inadequate support across a wide range of video delivery
systems and environments for online robot projects where the
students aim to write programs that provide vision-based
control of a remote robot system.

The essential requirements of these projects are video
streams that support remote viewing, that can be readily
intercepted by student programs, that provide support for a
variety of image formats (including raw images), and offer
support for synchronizing image capture with robot control. In
order to address these limitations, and to allow us to build a
better environment for our students to carry out these types of
projects, we have developed a software environment,
MVIDEO, for delivering these requirements [7]. The
MVIDEO system uses a multi-port model of service delivery,
whereby each service type is provided at a separate port. This
eliminates in many cases the need for the client application to
negotiate with the server for a particular service. The
MVIDEO system provides video streaming via multicast and
unicast connections and includes support for a variety of
connection bandwidths. The MVIDEO system, and software,
builds on experience we have developed over a number of
previous online robot student projects we have undertaken.

Relay
(Server)

Client
Applet(s)

Client
Application(s)

CGI
Client(s)

Multicast
 group

Relay
(Server)

Client(s)

Capture
Demon

Fig. 1. The MVIDEO system concept.

The main components of the MVIDEO system are a capture
demon, a relay server and a number of utilities including a
Java application, JAVA applets, and a CGI script. The basic
system concept is illustrated in Fig. 1. The function of the
capture demon, written in C, is to capture video from the target
device and to forward it to a relay server via a unicast
connection. The relay server, written in Java, is the core of the
MVIDEO system. It transmits video data to clients and
multicast groups. It supports RAW and JPEG image formats
and can convert between video formats. For example, it can
receive a JPEG stream and forward it as a JPEG or a RAW
stream. The relay server delivers the video stream as a
continuous sequence of images. Users do not need to login to
receive the images, they simply connect to the appropriate port
on the server, or the multicast group, and begin receiving
images. A client-pull service is also provided, aimed at
synchronization of control with image delivery. Users no
longer need to explicitly login to the ‘image server’, as they
did with our previous environment [6]. In addition to

supporting transmission of video, the relay server incorporates
functionality to display statistics, via a web browser, on the
usage of the services. This facility provides a means of visually
monitoring the current and recent level of unicast connections
by service type.

Fig. 2. The MVIDEO Java client application.

The MVIDEO utilities are three in number at present: a Java
application, a Java applet, and a CGI script. These provide
basic stand-alone and in-browser viewing functions. The Java
application, shown in Fig. 2, supports multicast and unicast
connections. It is configurable for name server, group address
and port numbers, and allows images to be saved as RAW or
JPEG files. It is a lightweight application that makes use of a
set of libraries that are shared by the relay server and the Java
applet. The Java applet runs in the Java 1.3.1 or later runtime
environment. It is configurable for a splash screen test card to
be shown when not connected to a server. It does not have
multicast support due to the security restrictions placed on
applets. The Java application and the applet together provide a
very powerful set of facilities for students to view the digger’s
environment, and to download and save images for off-line
processing and analysis. The applets, in particular, also
provide a ready mechanism by which supervisors and teachers
can monitor the project arena. Finally, the CGI script is written
in Perl 5. It performs a 1-shot-grab of a still image from a
video stream. It is configurable for unicast connections using
URL parameters. Ongoing work is continuing to improve and
develop the MVIDEO system, including a web-based
configuration environment and a wider range of compression
formats.

III. THE DIGGER ARENA

The student project is to develop a control program that
enables a digger to automatically pick up a ball. The project
comprises elements of localisation (of the ball), traversal and
manipulation. The control is to be based on using image data
to locate the ball and align the digger so that the ball is directly
ahead. The digger can then approach and grasp the ball using
its arm and bucket. The latter is an open loop process, so it is
important for the digger to approach close to the ball. The
project is carried out using an online environment that
comprises the following key elements:

• The physical arena housing the digger.

• The hardware interfaces to the digger and cameras.
• The MVIDEO software system.
• The digger command server.
• A WWW site with instructions, data formats, and

access to the MVIDEO applet and application.
The digger arena, shown in Fig. 3 (left), comprises two main

elements, the arena frame and the digger. The arena frame is
made of wood with a basic box shape and an open framework
roof. The fixed internal surfaces of the arena are painted matt
black to reduce reflections and to provide a good contrast
between the ball and its surrounding surfaces. The lower
surface, the base, supports a simple two-tier step to prevent the
ball getting caught in corners or sides, where it would be
unreachable by the digger. Bases of different designs can be
inserted to support different projects. The upper framework of
the arena provides support for mounting lights and cameras.
For the present project it mounts a miniature CCD color
camera, referred to as the ArenaCam, providing an overhead
view of the digger (Fig. 4, right).

Fig. 3. The Digger Arena and the toy Digger (a Tonka toy).

The digger, shown in profile in Fig. 3 (right), is a Tonka toy
that has been modified in three ways to support the project.
First, a cable has been introduced to provide external access to
control the four motors in the digger’ s base. These motors
control respectively the two wheel tracks, the arm and the
bucket of the digger. A 9-pin connector has been added to
allow both computer control and a pendant-based joystick
control. Second, limit switches were introduced to cut power
to the arm and the bucket when these reach their mechanical
limits. This prevents unnecessary wear and tear due to
crunching of the gearboxes when the arm and bucket are
driven to their mechanical limits. Finally, a miniature CCD
camera, referred to as the DiggerCam, is mounted on the
digger, just to the side of the cab. This camera provides the
sole source of on-board sensor data for the student project.
The DiggerCam view is illustrated in Fig. 4 (left).

Computer control is based on a simple 8-relay card that
provides bi-directional control of each of the motors on the
digger. (left and right tracks, arm and bucket) [6]. The
DiggerCam and the ArenaCam are plugged into Hauppage
WinTV PCI cards. Both cards are mounted on a PC running
the Linux operating system. A tether carries cables for control
of the digger, the power supply for the DiggerCam, and the
return video feed from the latter.

The system has two main software components, namely a
digger command server and a video server. The digger

command server allows students to gain control of the digger.
The students provide a username and password to login to the
server. Their applications must include facilities for this login
sequence. When a user logs into the digger command server
they join a queue. Each user on the queue can have control of
the digger for a fixed period of time. The current duration is
approximately four minutes. When a user gains control, they
can issue one of a set of possible commands, including
clockwise or counterclockwise rotation of the digger, forward
or backward movement, arm up and down motions, and bucket
in and out movements. The commands can be given an
optional parameter, in the range 1 to 4 (default 2), to control
the duration of the motion. One unit in the case of translation
or rotation motions of the digger corresponds to a quarter of a
second, whereas for arm and bucket motions one unit
corresponds to half a second. A single command is represented
by a string of the form “<cmd> <duration>”. For example, “cw
2” would rotate the digger clockwise for 2 time units (i.e. 1
second).

Fig. 4. Example DiggerCam and ArenaCam views.

The video server is the MVIDEO system described in the
previous section. The views provided by the DiggerCam and
the ArenaCam are illustrated in Fig. 4. Finally, the WWW site
provides instructions for the assignment and allows the
students to download the MVIDEO applet and application.
The basic computing environment comprises two Linux
workstations, the first supports this WWW server and the
MVIDEO relay server. The second supports the capture
demons, the interfaces for the two cameras, and the interface to
the toy digger for the digger command server.

IV. PERFORMANCE

The project, using the new arena and the MVIDEO server,
was set in two parts to a body of just over 100 students
attending a taught module on robotics and artificial
intelligence. The majority of the students where studying for a
single or a joint honours degree in Computer Science. All were
on the second year of their courses. The students were given a
short introduction to histogram-based image segmentation
techniques as a suggested method for locating the ball. They
were required to develop a user interface comprising labeled
buttons that initiated each element of the task separately, and
one button that caused the sequence of steps to by executed
automatically [6]. The students were given 6 weeks in which to

complete the first part of the project and 4 week to complete
the second. They took the first part of the project during the
fall term of their second year and the second part during the
immediately following spring term.

This schedule was different to the first run of the project,
when the students took the first part during the summer term of
their first year and the second part during the fall term of their
second year. Hence the current group of students were slightly
more advanced than the previous group. In addition, the
previous group were allowed six weeks in which to complete
the second part, whereas the current students were allowed
only four weeks. A further restriction was also placed on the
students during this second stage: the digger command server
was available during only the final week of the second part of
the project. Despite these limitations, however, the level of
performance and success improved. In addition, the students
were free to select the language for implementing their
programs. Most selected the Delphi programming
environment, since this was the main programming
environment for their course. A few implemented their
programs using C, under Linux.

Fig. 5. A sample student application.

Fig. 5 illustrates one example of a completed student

project. This student adopted the suggested method of locating
the ball using a simple histogram-based technique. The
implementation also incorporated morphological pre-
processing functions, such as erosion, to clean up the image.
These had not been explicitly taught to the student.

In general, the students were impressed with the
visualisation environment provided by MVIDEO, both via the
applets and the downloaded java application. Students working
on the project were regularly seen with both camera views
(DiggerCam and ArenaCam) visible on their monitor using the
applets. The students did not have access to the client-pull
image service for this run of the project. Most, however,
identified the synchronization problem, namely selecting an
image to process on the completion of a control command,

given that the video lagged behind the event completion signal
from the digger command server. The tended to solve the
problem by introducing a time delay into their program before
grabbing the next image from the stream. The duration of the
time delay was determined through trial and error.

One area of the project that caused poor performance on the
part of the students programs was the method that the students
adopted to read an image from the video stream. Many
attempted to do this a byte at a time. Those that used the raw
image stream had even poorer performance, since the image
size was much larger compared with the JPEG stream images.
Further, when grabbing a succession of images, many students
reconnected to the server each time, rather than maintain a
permanent connection. Some students also found it difficult to
cope with reading an image from the JPEG stream and
additionally gaining access to the raw image data. When the
procedure was explained to them, normally by other students,
they were often quick to change over to the JPEG image
stream in order to improve the performance of their program.
These findings reflect the limited experience of these students
with network-based programming and the less used multimedia
features of the Delphi programming environment. The more
skilful programmers among the students were able to find the
better (more efficient) solutions for most problems.

One of the key goals of studying the use of the environment
during the student project was to monitor the pattern of usage
of the environment by the students, and to compare these with
previous results. However, it was also possible to provide
some more detailed analysis of system usage than before. Fig.
6, for example, shows the number of connections and logins
per day over the period when the digger command server was
available to the students during the second part of the project.
The deadline for the assignment is marked by the vertical line
in the figure. A login represents successful completion of the
login procedure to enter the queue for controlling the digger.
Connections, on the other hand, represent a successful
connection to the server, but includes both successful and
unsuccessful logins (including deliberate disconnection by the
student’ s program). The graph shows the pattern we have seen
before, and expected, namely the increasing use of the digger
command server as the deadline approaches. The connections
and logins following the deadline were for periods when the
students were allowed further access in preparation for the
demos of their code for assessment. In all cases the number of
connections is larger than the number of logins, which is to be
expected. The failed connections appear to increase as the
deadline approaches. Further studies are required to determine
the reasons underlying these differences. It cannot simply be
the difficulty of programming the login sequence, since the
students completed this during the first part of the assignment.

Connections and Logins per day

0

200

400

600

800

1000

1200

1400

1600

1800

05 06 07 08 09 10 11 12 13 14 15 16

Day

Connections

Logins

Deadline

Fig. 6. User connections and logins per day

The number of concurrent connections on the digger
command server per day, for the second part of the project, are
shown in Fig. 7. This again follows the pattern seen
previously. The numbers are generally higher, however,
reflecting most probably the limited time when the command
server was accessible. There are also occasions when the
number of connections reaches the maximum of 20 allowed.
On further inspection of the log files these appeared to be due
to a student program making repeated connections to the
server, as if it had entered an infinite loop. The maximum of
20 users acts as a safeguard against this type of situation.
However, these events suggest that a further check should
perhaps also be made to limit the connections from any one
machine. It would also be helpful to the student if there was
some way to inform them that their program was failing in this
way. These will be explored in the further design of the
environment.

Concurrent Connections

0

500

1000

1500

2000

2500

3000

Number of Concurrent Connections

Series1 2394 2839 2453 2087 1794 1533 1283 1072 853 605 419 207 68 29 16 12 9 8 14 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 7. Numbers of concurrent connections

Fig. 8 provides another visualisation of these data, giving a
plot of changes in the level of concurrent connections over the
same period. The time axis is nonlinear in this case, since it
simply records changes in the numbers of connections. Three
situations can be observed when the number of concurrent
connections reaches the maximum. For the majority of the time
the number of concurrent connections remains below 15, and
during periods of intense use remains around 9 or 10. This
confirms from the previous results that the maximum of 20 is
realistic for this number of users.

Concurrent connections

0

5

10

15

20

25

1 1442 2883 4324 5765 7206 8647 10088 11529 12970 14411 15852 17293

Change event

Fig. 8. Changing levels of concurrent connections

As a further level of analysis, Fig. 9 shows a histogram of
the duration of successful login sessions. The figure shows that
there are a large number of logins that are less than one minute
in duration. This seems surprising, but could reflect basic
program testing. A sizeable number of login sessions last for
more than the maximum of five minutes allowed at the top of
the queue. In some cases these longer durations reflect
students waiting extended periods to reappear at the top of the
queue – when a user is removed from the top of the queue they
are automatically re-entered at the bottom of the queue.

Histogram of login durations

0

100

200

300

400

500

600

700

800

900

1 7 13 19 25 31 37 43 49 55

Duration (10 second units)

60 seconds

Fig. 9. Histogram of login session duration

Finally, there were occasions when the digger command
server seemed to grind to a halt. On many of these occasions
the problem arose because the student repeatedly issued a
string command and either did not wait for a ‘command
completed’ response to come from the server and/or
concatenated the new command onto the end of the output
command buffer. This meant that on occasions very long
command sequences were received by the server, filling up the
command buffer. The natural approach to cope with these
events is to have the server intercept them. However, it is also
important on these occasions to inform the student that
something is wrong with the code and where the fault may lie.
Thus it was found very useful to monitor the command
messages received by the server on a per user basis. On a
number of occasions this provided the basis for very helpful
feedback to the students. In general, the most productive
method of monitoring the students, and the environment, was
to have the command server display incoming messages on
one monitor and to have the two video streams (DiggerCam
and ArenaCam) displayed on the same or another monitor.

This aspect of online monitoring is a prime area for further
research and development, and for the creation of a new range
of support tools for online robot projects.

V. ASSESSMENT PROCEDURES

 The work that the students complete for the Digger project
is assessed largely through a laboratory demonstration of the
program code. The students are allowed 5 minutes to demo
their program. The demos are carried out in a PC laboratory on
a first-come first-served basis. Two assessment sessions are
normally held, each lasting typically three hours. Two
assessors are typically present for at least one of these
sessions. The digger command server queue is used to
coordinate between the assessors, where were the only users
allowed to login during the demo sessions. These procedures
are largely based on practice that had been successful before.
However, a number of problems arose during the
demonstrations for this current group of students.

The major problem that arose was coordinating the online
robot environment between the two assessors. This included
situations where the ball was out of view of the DiggerCam
and when the current user lost control of the digger before key
functions could be demonstrated. In general, it was best to
have the ball in the left or right visual half-field of the
DiggerCam. This saved valuable time and allowed the
relatively quick demonstration of orienting functions. If the
ball was not visible, the ArenaCam would need to be used to
quickly locate the ball in the arena. However, the MVIDEO
applet or application needed to have been initialised when the
student demo started, otherwise time was lost starting them up.
This became frustrating, and on occasions it was simpler to
manually reset the digger arena – the lab was just along the
corridor. The second problem, loss of position at the head of
the queue, meant that the assessor would either have to wait to
return to the head of the queue, or ask the second assessor to
relinquish control while the first demo was completed. This
was again frustrating for the supervisors.

The simplest means found of addressing these problems was
for the two assessors to coordinate their actions verbally.
However, with many students milling around the noise levels
often made this difficult. The difficulties created by the
presence of two assessors was highlighted when one of the
assessors left to attend other duties – the remainder of the
session progressed smoothly.

The question now is how these sessions can be improved so
that the do not take excessive amounts of time, yet give the
students the opportunity to demonstrate their work. We assume
in the general case the need for multiple assessors. One option,
of having multiple versions of the online robot system, defeats
the purpose of the online robot concept. Our current proposal
to address these problems is for the students to include a
“ record of experimental results” with the work they submit. In
general, the students should submit the following four items
for assessment:

• An executable, for assessing basic functionality.
• An animated gif or movie of experimental sequences.
• A report presenting key design features.
• The source code, for assessing programming style.
The students are currently required to hand in only the last

two of these. For local assessment the demo sessions can still
be helpful, but can focus on basic functionality. For remote
assessment the student could deposit the deliverables with the
assessor as a zip file, via email or a browser-based upload
facility. The assessor can run the executable to assess basic
functionality of the system, and review the other materials for
overall assessment of the work. We propose to explore these
procedures with a new group of students since fluent and
efficient assessment procedures are an important element of
making online robot systems an integral component of
educational environments.

VI. SUMMARY AND CONCLUSIONS

In this paper we have presented a new online robot
environment for a vision-based student project. The
environment builds on our previous experience with similar
hardware and software environments, and student experience
and feedback from previous projects. The new environment
provides better control of a toy digger and better support for
grabbing images and remote viewing. Student feedback has
been positive, supporting the improvements in the
environment. There is still considerable scope for further
development as new issues arise, including mechanisms for
monitoring and assessing student work. These are forming the
basis for further development of the environment and its
tighter integration with pedagogical goals.

REFERENCES
[1] K. Goldberg, The Robot in the Garden, The MIT Press, 2001.
[2] K. Goldberg and R. Seigwart, Beyond Webcams: An Introduction to

Online Robots, The MIT Press, 2002.
[3] M. R. Stein and K. Sutherland, Project Update: Sharing resources over

the Internet for robotics education, SPIE Proceedings Vol. 3524,
Telemanipulation and Telepresence V, pp. 180-188, 1998.

[4] G. McKee and B. Brooks, “ Interactive Robotics Using the Internet,”
Journal of Computer Science Education, Vol. 7, No. 2, pp. 279-290,
1996.

[5] G. T. McKee and K. Phillips, TORUS: Toys operated remotely for
understanding science, SPIE Proceeding Vol. 4195, Mobile Robots XV
and Telemanipulator and Telepresence Technologies VII, 9pages, Nov.
2000.

[6] G T McKee, The Development of Internet-Based Laboratory
Environments For Teaching Robotics and Artificial Intelligence,
Proceedings of ICRA 2002, Washington, USA, 2002.

[7] G T McKee, Multimedia Technology for Online Robot Projects. IEEE
ICRA Workshop on Educational Applications of Online Robots,
Washington, 2002.

	Conference Program
	Author Index
	Main Menu

