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     Abstract--Multisensor integration is the synergistic
application of different types of sensors. Robotics is a
popular research discipline on multisensor integration.
Various sensors are employed for robot manipulations,
such as vision, force, temperature, ultrasound, acoustic
wave, and so on. This research addresses the recognition
and modeling of the multisensor integration for the medical
robot application, which is a remarkable step for the actual
robot operation on the human body. Simplified dynamics
models about robotic smart sensor applications are given
based on the essential aspects of mechanical, electrical,
visual and thermal characteristics. The robotic integration
strategy is presented in terms of the robotic multiple sensor
modeling. A model reference control scheme is proposed to
achieve the satisfied robot performance.

     Index Terms--Robot sensing systems, Object recognition,
Modeling, Feedback, Force control

I. INTRODUCTION

Multisensor integration has many applications including
robotic control, automotive control, military surveillance,
space control, pattern recognition, target tracking, alarm
analysis, medicine and finance, and so on. Most work on
object recognition and parameter identification can be
performed together by a variety of sensors in different
environments, such as vision, touch, laser, and so on.
Target tracking used in military and defense seeks to
combine various observed data from multiple sensors.
Multisensor fusion in medicine is to combine multisensor
measurements and deduce more accurate assessment of
the human body conditions so as to diagnose ailments.
Sensor fusion has also been used for alarm analysis by
fusing visible, infrared and millimeter wave radar data.
Robotic operation by the individual visual information
often confronts with difficulties because of occlusions
caused by the actual object, by surrounding objects and
by the manipulator itself. Additional information, such as
touch, force, grasp, vibration can provide complementary
information to aid in optimal operations.

Multisensor integration is classified into multisensor data
fusion, multisensor planing and multisensor architecture.
Multisensor fusion deals with the fusion from sensory
information of multiple sensors into a common format.
Miscellaneous multisensor data fusion has been applied
to many applications. Multisensor planning is about the
acquisition of sensor data such as deciding what data to
acquire and how to acquire it. Multisensor architecture is
used for control design and data flow in a multisensor
system to achieve the maximum benefit by coordination
and the robustness. The benefits for the multisensor data
fusion include accuracy, synergy, reliability, robustness
and efficiency. Registration scheme and fusion scheme
are two essential issues for multisensor data fusion.
Registration is the process of aligning sensor reference
frames. Calibration errors must be considered during
registration process. Once sensors are registered, data
features in one sensor should associate the same aspect
of the environment with the other sensors, which is a
data association problem. Environment model refers to
the explicit or implicit representation of the subject under
observation by various sensors. The important model
selection issues for the multisensor fusion include the
environment model selection, model parameterization
and data selection. Sensor modeling refers to the
utilization and design of sensor and the related sensing
data models.

Data from different sensors ought to be converted into a
common reference frame prior to combinations. Fusion
schemes should be able to handle both homogeneous and
heterogeneous data features from different types of
sensors. Redundant data can be exploited from some
competitive sensors to reduce the uncertainty in fusion
inference. Multiple time scales and time varying data
should be incorporated in the fusion method. The
measurements from different sensors are to some degree
independent. A measurement from certain sensor might
provide others with more information to improve
measurement accuracy. On the other hand, information
from multisensor system is not totally independent since
sensors operate in the close vicinity and are subject to the
same aspect of environment disturbances. Observations
by different sensors are somewhat redundant. Improper
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modeling may result in less informative and sensors tend



to overestimate the importance of some aspects. A data
fusion algorithm ought to minimize the impact of sensor
dependence. Object overlapping is a common problem
encountered in sensory identification and recognition.
Accuracy should be high enough to identify objects and
to locate its position and orientation. An image with
overlapping objects is difficult to analyze since its
contour information requires a careful interpretation.
Multiple sensor fusion can be used for model based
object recognition. A model should be adequate which
follows the sensing mechanisms. Multiple sensor system
can extract both global features (perimeter, area, density)
and local features (segment, line, vertex, edge) within the
entire object boundary. A matching process between the
object model and the feature depends on the completed
feature extraction [1-3].

Feedback control design has a significant impact on the
quality of robot control applications. Robotic feedback
control systems are to improve the operation precision
and dexterity. For example, advanced visual feedback
control design increases the sensing transparency and the
realism of the simulation. Advanced force feedback can
provide feedback information by surface deformations,
contact forces and surface constraints. Visual feedback
provides information over a relatively larger area of the
workspace without environment contact. Force feedback
provides highly localized and precise information upon
contact. The ultimate aim for the combination of force
and vision is to enable the operators to obtain enough
critical information as they operate. To coordinate the
controllers based on multiple sensors, schemes have to
be associated in one common coordinate frame. It is
necessary to coordinate the robot end-effector control
schemes by tactile feedback, visual feedback, touch force
feedback or possible temperature feedback. The control
designs such as hybrid control and adaptive control
systems have been presented by hybrid structure of
sensor based controllers, which can effectively eliminate
the system errors [4-7].

Various identification and control methodologies have
been applied to robotic multisensor integration. Kalman
filter and Bayesian method can be employed for signal
and image processing. Hopfield network is proposed to
communicate between object features and data features.
Gaussian Markov estimation and extended Kalman filter
have been used for feature extraction. Energy minimiza-
tion and least square estimations are solutions for data
fusion estimation. Maximum likelihood method deals
with the statistical data inference. Entropy based
methods are applied for information analysis. Fuzzy
logic and neural network have been applied to solve data
interpretation problems [8-14].

In this research, the sensory information from camera,
ultrasound, force sensor, tactile sensor, acoustic wave
sensor, Raman spectroscopy and infrared spectroscopy is
proposed as the feedback or feedforward information to
improve the robotic enhanced medical operation. The
simplified sensor models are given and model reference
adaptive control scheme is then proposed to coordinate
the integrated system.

II. SYSTEM CONFIGURATION

The medical robot system and its virtual environment are
two major elements in this research. The robot has three
arms and one arm with a stereoscopic camera is to take
3D images. Ultrasound probe can be placed around the
end-effector for enhancing the 3D visual effect. Acoustic
wave sensor or a testable flexiforce sensor attaches the
object surface to measure the touch force. Both the visual
and haptic sensing information will be captured by the
computer controlled system. Operators view the visual
image and sense the actuated tactile forces through the
vibration tactile sensors. Raman spectroscopy or infrared
spectroscopy is to recognize sample tissues by analyzing
the spectrum signature. It can be attached to the end-
effector using a probe. The configuration of the robotic
integrated sensing system is shown in Figure 1.

Figure 1 Configuration of Robotic Sensory Integration

III. SYSTEM RECOGNITION AND MODELING

A. Robot Manipulator Dynamics Model

The well-known dynamics of a serial n-link (n ≤ 6) robot
manipulator is formulated as:
  ( )  + C(q, )  + G(q)                              (1)M q q q q ���� � �



where q (n�1) is the joint displacement vector to the base
coordination system, τ (n�1) is the joint torque vector,
M(q)(n�n) is the symmetric positive definite manipulator
inertial matrix, C(q, q� ) q� (n�1) is the vector representing
both the centrifugal effect and Coriolis effect, G(e) (n�1)
is gravity term vector. Now the state equation of robot
dynamics model can be derived as:
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The robotic control law is to find a satisfied torque u = τ
to achieve the desired motion.

B. Object Coordination Model

The sensor integration requires for a common or a global
frame of reference. An object model in a global reference
frame ought to be mapped into local sensor measurement
frame to express the observed data. The object model is
characterized by the position and orientation parameters.
The object (tissue) has m1 (m1≤6) degrees of freedom
(DOF). Let Z (m1 �1) be the generalized coordinates that
represent the object position. The object motion model
can be formulated as:
   Ż = Jo(p) p�                                                                   (3)
where Jo(m1�m2) is a velocity transformation matrix and
the vector p (m2�1) is the actual position parameter with
respect to the base coordinate system. This simple model
can be easily extended to a larger motion pattern set.

C. Touch Force Sensor & Tactile Sensor Model

The touch force sensor data are regarded as imposing
constraints on object surfaces. Subjects of force control
include the contact force, stress, strain, displacement, and
the surface deformation within a contact area. Excessive
contact force should be avoided.
Assume the object manipulated by a medical robot is the
body tissue with certain mass (m). The elasticity of the
body tissue is analogue to the damping coefficient (b) of
a damper. The thin film touch force or tactile sensor can
be viewed as a spring with stiffness (k). When a normal
stress is impressed on the body tissue and the attached
sensors, it can be simply regarded as the spring-damper
system. The dynamic model is written as:
     mÿ + b y� + k y = FT                                                (4)
where y is the deformation of the object and FT is the
touch force. The state equation of touch force sensor
model is then formulated as:
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The thin film force sensor can measure both static force
and dynamic force between two surfaces and it acts as a
resistor. When multiple touch force sensors are present,
the dynamics model and state equation can be obtained
by substituting the single variable with multiple variable
vector term. The mechanism of tactile sensors is similar.
Tactile sensors can provide high-accuracy robotic wrist,
joint and angle measurements by resistive sensing
technology (bend, flexion or abduction) to transform
robotic motions into real time joint and angle data
accurately. Dynamic model has the similar formulation
in a vector form. The tactile data registration depends
critically on kinematic calibrations of the robot system.
For tactile sensors, relationship between contact points
and object surface is many to one mapping, several
contact points correspond to one object surface.

D. Acoustic Wave Sensor Model

An alternative approach for force measurement is to use
acoustic wave sensors. Its model can be estimated by the
principle of the reverse piezoelectric effect. The acoustic
wave sensor has the merits of high sensitivity, good
linearity and low hysteresis as well as a wide versatility
with numerous applications. Its wave propagation is
entirely a mechanical phenomenon. When an alternating
voltage is applied to the surface of piezoelectric crystal,
the material between the electrode patterns distorts due
to the piezoelectric effect. This periodic deformation
gives rise to the acoustic wave propagation with the
frequency f. Vibrating crystal behaves as a harmonic
oscillator at resonant frequency. The resonant frequency
induces maximum displacement of the crystal surface.
By the reverse piezoelectric effect, the acoustic wave can
be detected at the other end of the substrate. Its
mechanism is analogue to RC circuits with equivalent
resistance and capacitance (R, C). The generated electric
charge is expressed as:
    Q = k FAsin(2�ft) = q1 + q2                                       (6)
where k is a coefficient, FAsin(2�ft) is the force on the
crystal surface. q1 is the part to charge the capacitor and
q2 is the part being converted into thermal energy by the
resistor. Let u be the voltage drop across the crystal.
After taking the time derivative on both sides of this
equation, we have:
     A( )u+ u = (2 fk)cos(2 ft) F                      (7)RC � ��

which is the dynamic model of the acoustic wave sensor.
It is a first order system, which is simpler than a second
order system such as touch force sensor or tactile sensor.

E. Camera Feature Transformation Model

Object images are generated by perspective projections
of the relative position between the camera and the
object. The object registration relies on good calibration



of intrinsic and extrinsic camera parameters. The matrix
transformation is between the frames in the camera
coordinate system and in the image plane. The vision
sensor data are in fact perspective projection constraints
on object vertices. The data relationship between image
vertices and object vertices is one to one mapping. At
most one image vertex corresponds to an object vertex.
Assume the camera is mounted on the robot end-effector,
the kinematic model of the robot is written as:
       fc = f (q)                                                                 (8)
where fc is the camera position vector and it is a function
of joint displacement q. Assume fo (6 � 1) is the object
position vector, the object image representation in the
camera coordinate system can be described as:
       r = Tw

C (fo – fc)                                                      (9)
where Tw

C is a coordinate transformation matrix that
represents the orientation of the camera coordinates with
respect to the world frame. The matrix Tw

C can be
expressed as the product of transformation matrices Tobj,
Trobot and Tcam. Where, Tobj is the transformation matrix
from the real world object to the base coordinate frame
of the robot. Trobot is a rotation matrix from the base robot
coordinate frame to the end-effector of the n-link robot,
which combines several transformation matrices of the
linked arms or joints. Tcam is the transformation matrix
from robot end-effector to the camera coordinate system.
We have:
      C                                            (10)w obj robot camT T T T�

F. Ultrasound Feature Transformation Model

Unlike X-ray, light and radio wave, ultrasound has no
electromagnetic radiation and it acts as a mechanical
disturbance where oscillations travel through soft tissues
and fluids. It can be used in image processing. A higher
ultrasonic frequency gives rise to a better resolution.
Ultrasound sensor is a reflective sensor that responds to
changes in the amount of emitted energy returned to a
detector after interaction with the target object. The echo
returning time is proportional to transmission distances.
The ultrasound transmitter emits a burst of ultrasonic
energy and the ultrasound receiver captures the incoming
signals to determine the object position. The real time 3D
ultrasound feature can be accurately reconstructed by the
ultrasound image system and the graphic user interface.
Assume the coordinate representation of a feature point
in the ultrasound probe frame is a vector V = [xi, yi, zi]T.
The relationship of different coordination systems is:
       V = T (Pf - Pb)                                                      (11)
where the elements of vector Pf (2�1) are the coordinates
of one feature point in the base coordinate frame, the
elements of vector Pb (2�1) are end-effector coordinates
in the base coordinate frame, matrix T (3�2) represents
coordinate transformation from the base frame to the
end-effector frame, similar to Trobot in the camera model.

G. Raman & Infrared Spectra Approximation

Raman spectroscopy is used for species detection by
sending monochromatic light on the sample to analyze
the scattered light. When the light with an electric field
intensity E = E0cos(�t) is incident on molecules of the
sample surface, the scattered light from the surface will
emit at three frequencies: �, �-�0 and �+�0, where �0 is
the natural frequency of the molecule vibrating. The
main part of the scattered light contains the wavelength
with the incident frequency. The interaction of the
incident light with optical photons is called Raman
Scattering and it results in the very low intensity light at
frequency �-�0 and �+�0, named Stokes radiation and
anti-Stokes radiation, respectively. In scattering process,
incidental photons are destroyed and the energy is used
to create scattered photons and to either create or destroy
vibrations. By knowing the frequency of the incident
monochromatic light and measuring the frequency of
Raman scattered light, the natural frequency of sampling
molecule can be determined so as to recognize the body
tissue conditions. The spectrum from the sample consists
of an intrinsic Raman spectrum (R) and a background
spectrum (B). The extract Raman spectrum is obtained
by difference between the background spectrum and the
measured spectrum (S).
Given that each spectrum has n2 measured elements and
the spectrum can be approximated as a polynomial with
its order equivalent to (n1-1). Suppose S = R+B = AC,
where A (n1�n2) is a matrix obtained from the measured
spectrums and C (n1�1) is its coefficient vector. The
fitting polynomial is given by least squares estimation:
     Š = A(ATA)-1ATS = A(ATA)-1AT(R+B)                (12)
The extracted Raman spectrum (Ř) with two frequencies
of �-�0 and �+�0 can be calculated as:
     Ř = S - Š = (R+B) - A(ATA)-1AT(R+B)
         � R - A(ATA)-1ATR                                           (13)
From equation (13), Ř is a function of Raman spectrum
exclusively, which is independent of the environment.
The natural frequency of sampling molecule can then be
distinguished. The assumption is B � A(ATA)-1ATB in a
slow varying process, so that the estimated background
spectrum can represent the actual background spectrum.
Infrared spectroscopy and Raman spectroscopy allow the
measurement of frequencies with the same magnitude
order as infrared light. Both of them adsorb the photons
during the energy transition. For infrared spectroscopy,
there are dipole moment changes instead of polarization
changes of Raman spectroscopy. The measured spectrum
by infrared spectroscopy is also comprised of both the
intrinsic infrared spectrum and the background spectrum
from the environment. Similarly, the extracted infrared
spectrum can be obtained by the least squares estimation
approach. The wave numbers are then determined and
can be used to recognize the body tissue conditions.



IV. MULTISENSOR INTERGRATION

The integration of various sensors in the robotic system
and the complex environment make it difficult to select
model structure and parameters. Different sensors might
capture diverse types of data from the same environment.
So multiple sensor models are necessary. Any observed
data features can be correspondent to the environment
feature through some constraint relations. It is important
to augment the robotic functions with different sensing
devices in order to improve the robot control efficiency.
Individual device generally can only obtain insufficient
information for feature extraction. For example, the
delay and slow sample rate of a CCD camera might be
possible to make the feedback system oscillatory or even
unstable. It is necessary to ensure the stability and the
accuracy. There is still no robotic framework that can
cover all the aspects by multisensor integration within a
feedback control loop. As the major part of multisensor
integration, multisensor data fusion covers two sensor
fusion approaches. The explicit approach is to build an
internal representation or environment model from the
sensing data. The implicit approach transforms sensing
directly to action without an explicit representation.

Figure 2 Flowchart of Robot Integration System

Visual servoing systems incorporate vision sensors in the
feedback loop. The benefit of feedback control loop is
obtained by attaching a camera close to the end-effector.
The robotic object recognition can be either position-
based or feature-based. The position-based approach
estimates the object position and orientation in real time
but it is quite sensitive to image distortion and noises.
Feature-based approach processes the object features
directly to derive a visual output without the position and
orientation computation, which is robust against the
calibration errors and noises. This approach has
difficulties when object features become occluded or
object motion alters the feature beyond recognition. The
contour extraction can provide useful information to the

visual servoing system. The sensing data errors may be
described as uncertainty models with certain probability
distribution.

Robotic touch and vision fusion is for the combination of
the image data with the touch force data to improve the
capability of accurate object recognition by sensation of
interacting with a real physical environment. The fusion
of vision with ultrasound can be explored to facilitate
and enhance the object recognition. Tactile and vision
fusion is used to combine multiple tactile contact sensing
data with visual data features to determine the position
and orientation for guiding the robot manipulation. The
tactile sensors extract touch position and approximate the
surface normal in a kinematic reference frame of the
robot end-effector. The analysis of Raman and infrared
spectrum is also helpful to determine the conditions of
the investigated objects.

Considering the force and visual information, the robot
manipulator dynamics is expressed as:

   T( )  + C(q, )  + G(q) + J (q)F              (14)M q q q q ���� � �

where, Je(q) is the Jacobian matrix relating joint space
velocity to task space velocity. F can be a touch force or
tactile force (FT) and it can also be a piezoelectric force
of acoustic wave sensors (FA). Considering the motion of
end-effector and the equation (5), the relation between
the joint velocity and the manipulator velocity is:
     Ż = Jo(p) p� = Je(q) q�                                               (15)
where Z is the generalized coordinates of the object
position and it is also the output of the robot dynamic
model. Assume the manipulators work in a nonsingular
region. Then we have:
    q� = Je

-1(q) Jo(p) p�                                                    (16)
With the effect of ultrasound visualization, the object
image vector can be described as:
     Robj =Toverall (Po – Pc)                                              (17)
where Pc is the sensor position vector and Po is the object
position vector. Both the camera and ultrasound image
data elements are taken into account within the vectors of
Pc and Po. Toverall is the transformation that represents the
orientation of the visual coordinates with respect to the
world frame. Robj is the object image vector in terms of
both the camera sensing and the ultrasound sensing.

V. MODEL REFERENCE ADAPTIVE CONTROL LAW

The force and position control law:
1

1 2= ( ) ( )[ ( ) ]+C(q, ) +G(q)+ ( )     (18)TM q J q u J q q q q J q u�
�

�
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where u1 is the position and orientation control command
and u2 is the force control command. The torque τ has to
be within certain constraint (τmin ≤ τ ≤ τmax) dependent on
applications. Assume Zm, Vm and Am as the desired



position, velocity and acceleration vectors of the robot
manipulator model. Also assume Fm as the desired force
vector that handles the object.

A simple PID control command can be applied to actual
object position (Z) control and a PI control command can
be applied to the actual force (F) control.
 u1 = Z��+ kp(Żm -Ż) + ki(Zm - Z)                                   (19)

2 ( ) ( )                      (20)m fp m fi mu F k F F k F F dt� � � � ��
where kp,  ki,  kfp,  kfi are the correspondent coefficients.

On a basis of the system reference model from the robot
design, model reference adaptive control can be used to
solve the feedback control problem.

VI. CONCLUSION

The focus of this work is to analyze the feasibility of
multisensor integration application on the improvement
of the robot control. The simplified models for the visual
systems and haptic systems have been presented and the
integrated model for force control and position control is
given. Some additional techniques for measurement and
recognition on sensor integration are also investigated. A
feedback control law is proposed for the robot system
identification and adaptation. The idea is to present some
simple models for a relatively complete description of
robotic smart sensor integration research. The proposed
control scheme consists of both the feedforward part and
the feedback part.

VII. FUTURE WORK

This work is the preliminary research on integration of
the haptic and visual feedback control application on the
robotic smart sensor integration. The hapic interface and
visual interface prototypes are completed in the related
research. The important issues for the next step are the
high resolution sensor fabricating, the redundant multiple
sensor information processing and the real time feedback
control application.
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