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Abstract—Water hydraulic servo system is attractive tech-
nology for safety environment. This paper deals with water
hydraulic servomotor system. To overcome the highly non-
linearity of flow equation, we linearize and parametrize it.
Considering the effect of parameter perturbation, e.g. load
fluctuation and friction parameters, a method of Lyapunov-
based recursive design is applied to construct a robust rota-
tional velocity controller. The effectiveness of the proposed
controller is examined numerically.
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I. Nomenclature

ce : coefficient of viscous friction
cf : coefficient of Coulomb friction
cs : coefficient of motor leacage
cd : coefficient of discharge
I : moment of inertia
D : motor displacement
ω : angular velocity
x : valve spool displacement
µ : viscosity of water
ρ : density of water
w : valve port width
V0 : average volume of piping between valve and motor
K : bulk modulus of water
PS : supply pressure
Kv : valve input voltage gain
τ : valve time constant

II. Introduction

IN A last decade, water hydraulic applications have in-
creased and continues to increase. Water as a pressure

medium gives many benefits compared to mineral oil, in-
cluding easy maintenance, good availability and so forth.
In the early stage of development, many literatures re-
ported the comparison between water and oil on physical
and dynamical properties in use[1]-[5] while these days’ re-
ports give us the results of control techniques of water hy-
draulic devices[6]-[12]. Linjima et.al. studied the position
displacement control of water hydraulic cylinder taking ad-
vantage of the low compressibility of water and low-cost
low-pressure valves[6]-[9]. In [10], the position displace-
ment and velocity control of water hydraulic cylinder are
realized introducing the profile generator which generates
smooth control signal to attenuate a large overshoot. The
rotational angle control and the speed control of water hy-
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draulic servomotor are also tested with conventional PID
controller in [11],[12]. These results are mainly based on
the conventional technique for mineral oil hydraulic sys-
tem and there is a need to be discussed to consider the
properties of water hydraulic devices. These days some
nonlinear robust control methods are applied to hydraulic
devices, however, almost all such papers are on a control of
the mineral oil hydraulic systems. An adaptive controller,
which compensates uncertainties of inertia load and some
physical parameters, is also proposed in [13]. A feedback
linearization method and backstepping design of mineral oil
hydraulic motor are proposed in [14] while the parameter
uncertainty treatment are open question in the paper.

Recently several papers meet these requests with the ap-
plication of modern control theory. In [15], the controller
for water hydraulic pressing machine is constructed by ap-
plying the H∞ mixed-sensitivity problem to compensate
parameter uncertainties for the spool clearance and the co-
efficient of flow rate of servo valve and the bulk modulus
of water.

In this paper, we present a development of a design of
a robust rotational velocity controller of water hydraulic
servomotor for the uncertain parameters and the load fluc-
tuation. And we linearize the flow equation which con-
tains nonlinear state variables to apply a robust control
theory. To be more precise, we use the Lyapunov-based
recursive design method to construct the virtual input
and Lyapunov-like function to ensure stability of each sub-
system compensating the effect of parameter uncertainty.
Generally speaking, we can achieve the exponential sta-
bility for such error system by using the sign function to
design a controller. The resulting controller, however, gen-
erates non-smooth signal, therefore it requires large dis-
continuous control input which may occur undesirable be-
haviour for system. The proposed controller ensures to
drive the state error to the set specified by the designer
a priori which contains the origin without using sign func-
tion. The ultimate set to which error converges can be cho-
sen arbitrary small. This is called the uniformly ultimately
bounded stability (UUBS)[16] of the system. This scheme
can be extended to the rotational angle control system.

In Section 3, first of all, we derive mathematical model
of water hydraulic servomotor by linearizing the nonlinear
flow equation which contains control variable. Then we de-
fine the problem to be solved. In Section 4, we construct a
robust controller for uncertain parameters and load fluctu-
ation with Lyapunov-based recursive design. We show the
simulation results of the proposed controller in Section 5.
Finally we summarize our results.



III. Problem Formulation

The schematic diagram of the water hydraulic servo mo-
tor system is shown in Fig.1. Under the following assump-
tions, the mathematical model of the servo system was de-
rived:

1. There are no external leakage from the servo valve
and the motor.

2. There are no overlap between the valve body and the
spool.

3. Spool displacement is linear to the input voltage ap-
plied to the servo amplifier.

4. The density and the viscosity of the medium are de-
pendent on the temperature, but are assumed to be
constant during the movement of the plant.

5. The supply pressure from the power unit is constant.
6. The motor displacement is constant.

D

x

PS

ω

V0

P1

P2

Q1

Q2
V0

Water Hydraulic Motor

Load

Fig. 1. Diagram of water hydraulic servomotor

Fig. 2. torque loss of water hydraulic motor

In general, the stark differences between mineral oil hy-
draulic system and water hydraulic one are the strong me-
chanical friction (Coulomb friction) and impulsive surge

pressure. The former depends on lower viscosity while the
latter on higher bulk modulus of water. Low viscosity re-
quires strong liquid seal to prevent the leakage and this
leads to the larger starting torque. Fig.2 shows the torque
loss of water hydraulic motor under load torque. We see
from this figure that the Coulomb friction of water hy-
draulic motor is very large comparing to the mineral oil
hydraulic motor.

From Fig.1, the equation of motion of the water hy-
draulic servomotor are expressed as follows.

ω̇ = −ce
Dµ
2πI ω + (1 − cf ) D

2πI PL

ṖL = −DK
πV0

ω − csPL + 2K
V0

QL

(1)

where PL(= P1 − P2) is load pressure. The equations for
load discharge QL and the dynamics of servo valve are given
by

QL = cdwx
√

PS−sgn(x)PL

ρ (2)

ẋ = −1
τ
x +

Kv

τ
u (3)

where u is the input voltage to the servo valve. By lin-
earization of the flow equation (2), we have

QL = kqx − kcPL (4)

where parameters kq, kc are obtained experimentally
around an operation point of the system. We introduce
the scaling factor Sp, Sx because the rotational speed ω,
the load pressure PL and valve spool displacement x are
completely different order：

P̄L = PL

Sp
, x̄ = x

Sx
(5)

With scaling factors and (4), we have linearized system
equation

ω̇ = −ce
Dµ
2πI ω + (1 − cf )DSp

2πI P̄L

˙̄PL = − DK
SpπV0

ω −
(
cs + kc

2K
V0

)
P̄L + 2KkqSx

SpV0
x̄

˙̄x = − x̄
τ + Kv

Sxτ u

(6)

The control objective is to maintain the rotational ve-
locity ω to operation point ωe specified by the designer.
It is shown by straightforward that the equilibrium point
(ωe, P̄Le, x̄e) of system is

ωe : arbitrary specified by designer

P̄Le =
c̄eµ

Sp(1 − c̄f )
ωe

x̄e =
DK

SpπV0
ωe +

(
c̄s + 2Kk̄c

V0

)
P̄Le

2Kk̄qSx

SpV0

(7)

while the control input ue to keep ω to the equilibrium
point ωe is

ue = Sx

Kv
x̄e (8)



where the c̄e, c̄f , c̄s, k̄q, k̄c stand for the nominal values of
these parameters:

ce = c̄e + ∆ce, 0 < c−e ≤ c̄e + ∆ce ≤ c+
e

cf = c̄f + ∆cf , 0 < c−f ≤ c̄f + ∆cf ≤ c+
f

cs = c̄s + ∆cs, 0 < c−s ≤ c̄s + ∆cs ≤ c+
s (9)

kq = k̄q + ∆kq, 0 < k−
q ≤ k̄q + ∆kq ≤ k+

q

kc = k̄c + ∆kc, 0 < k−
c ≤ k̄c + ∆kc ≤ k+

c

I = I0 + ∆I, 0 < l1 ≤ I0 + ∆I ≤ l2

Note that it is not necessary to have an information of load
inertia to get the equilibrium point xe.

With (8), we introduce following state variables

e1 = ω − ωe, e2 = P̄L − P̄Le, e3 = x̄ − x̄e (10)

and nominal control input

u = ue +
Sxτ

Kv
v (11)

where v is the robust control input to be decided, then we
have the error system

ė = A(∆)e + ∆A + bv (12)

where
e = [e1, e2, e3]T , b = [0, 0, 1]T ,

A(∆) =




−ce
Dµ
2πI (1 − cf )DSp

2πI 0
− DK

SpπV0
−(cs + 2Kkc

V0
) 2KkqSx

SpV0

0 0 − 1
τ


 ,

∆A =


 − D

2πI (∆ceµωe + ∆cfSpP̄Le)
−(∆cs + 2K∆kc

V0
)P̄Le + 2K∆kqSx

SpV0
x̄e

0




To clarify the problem to be solved, we introduce follow-
ing definition [16].

Definition III.1 (Uniformly Ultimately Bounded Stable)
Consider the system ẋ = f(x), x(t0) = x0. A solution
x:R+ → Rn, is said to be uniformly ultimately bounded
stable (UUBS) with respect to a set W ∈ Rn con-
taining the origin if there is a nonnegative constant
T = T (x0, W ) < ∞, possibly dependent on x0 and W but
not on t0, such that for all t ≥ t0 + T (x0, W )

‖x(t0)‖ < η =⇒ x(t) ∈ W (13)

Here we put a natural assumption for uncertain parame-
ters.

Assumption III.1: For uncertain parameters in (9), each
upper and lower bound, that is, (.)− and (.)+ are known.

In Section 3, we construct the robust feedback controller
assuring uniformly ultimately bounded stability of the ori-
gin of error system (12) under the Assumption (III.1).

IV. Controller Design

In this section, we construct a robust controller for un-
certainties and load fluctuations with recursive Lyapunov-
based design. To be more specified, we design the virtual
input and Lyapunov-like function to ensure UUB stabil-
ity of each sub-system recursively compensating the effect
of uncertain parameters. Before designing controller, we
set some controller parameters evaluating some bounds of
elements in (12).

ε−0 := (1 − c+
f )

DSp

2πl2
, ε+

0 := (1 − c−f )
DSp

2πl1

ε1 :=
D

2πl1

[
(c+

e − c−e )µωe + (c+
f − c−f )SpP̄Le

]

ε2 :=
DK

SpπV0
, ε3 := c−s +

2Kk−
c

V0

ε−4 :=
2Kk−

q Sx

SpV0
, ε+

4 :=
2Kk+

q Sx

SpV0

ε5 :=
(

c+
s − c−s + (k+

c − k−
c )

2K

SpV0

)
P̄Le

+(k+
q − k−

q )
2KSx

SpV0
x̄e (14)

[Step 1] Defining new state variable ẽ1, ẽ2 and positive
definite function V1

ẽ1 = e1, ẽ2 = e2 − β1(ẽ1), V1 =
1
2
ẽ2
1 (15)

the time derivative of V1 along the trajectories of the sys-
tem (12) satisfies

V̇1 ≤ −ce
Dµ

2πI
V1 + ẽ1

[
(1 − cf )

DSp

2πI
(ẽ2 + β1)

− D

2πI
(∆ceµωe + ∆cfSpP̄Le)

]
(16)

For positive constant ξ1, we choose virtual input β1 for
e1-subsystem as

β1(ẽ1) = − ε1

ε−0

ẽ1

|ẽ1| + ξ1
(17)

This implies

V̇1 ≤ −m1V1 + f1(ẽ1) + (1 − cf)
DSp

2πI
ẽ1ẽ2 (18)

where

m1 = c−e
Dµ

2πl2
, f1(ẽ1) =

ξ1ε1|ẽ1|
|ẽ1| + ξ1

The last term in the right hand side of (18) will be canceled
in Step 2.
[Step 2] We introduce the new variable

ẽ3 = e3 − β2(ẽ1, ẽ2) (19)



then we obtain

˙̃e2 = ė2 − β̇1(ẽ1)

= − DK

SpπV0
ẽ1 − (cs +

2Kkc

V0
)(ẽ2 + β1)

−(∆cs +
2K∆kc

V0
)P̄Le +

2KkqSx

SpV0
(ẽ3 + β2)

+
2K∆kqSx

SpV0
x̄e − β̇1 (20)

We take the positive definite function for whole error sys-
tem

V2 = V1 +
1
2
ẽ2
2 (21)

The time derivative of V2 along the trajectories of the sys-
tem (12) satisfies

V̇2 = V̇1 + ẽ2
˙̃e2

≤ −m2V2 + f1(ẽ1)

+ẽ2

[
− DK

SpπV0
ẽ1 + (1 − cf )

DSp

2πI
ẽ1 +

2KkqSx

SpV0
β2

−(∆cs +
2K∆kc

V0
)P̄Le +

2K∆kqSx

SpV0
x̄e − β̇1

]

+
2KkqSx

SpV0
ẽ2ẽ3 (22)

where m2 = m1 + ε3. Therefore we choose the virtual
control input β2 as

β2(ẽ1, ẽ2) = − 1
ε−4

ẽ2

|ẽ2| + ξ2

[
(ε+

0 + ε2)|ẽ1| + ε5 + |β̇1|
]
(23)

where ξ2 is positive constant design parameter. Then

V̇2 ≤ −m2V2 + f2(ẽ1, ẽ2) +
2KkqSx

SpV0
ẽ2ẽ3 (24)

where

f2(ẽ1, ẽ2) = f1(ẽ1) +
ε2|ẽ2|

|ẽ2| + ξ2

[
(ε+

0 + ε2)|ẽ1| + ε5 + |β̇1|
]

[Final Step] We take the positive definite function for
whole error system

V = V2 +
1
2
ẽ3 (25)

We obtain the time derivative of V along the trajectories
of the system (12) as

V̇ = −V̇2 + ẽ3
˙̃e3

≤ −mV + f2 + ẽ3

[
v − β2

τ
+

2KkqSx

SpV0
ẽ2 − β̇2

]
(26)

where m = m2 + 1
τ > 0. Therefore we choose a robust

control input v as

v =
β2

τ
+ β̇2 − ε+

4 ẽ3

|ẽ3| + ξ3
|ẽ2| (27)

where ξ3 is positive constant design parameter. Finally we
have

V̇ ≤ −mV + f3(ẽ1, ẽ2, ẽ3) (28)

where

f3(ẽ1, ẽ2, ẽ3) = f2(ẽ1, ẽ2) +
ε+
4 ξ3|ẽ3|

|ẽ3| + ξ1
|ẽ2|

Applying LaSalle’s invariant theorem [17] to this result, we
have desired stability property(UUBS). It is easy to show
that the residual set

Ds =
{

(ẽ1, ẽ2, ẽ3)
∣∣∣ ẽ2

1 + ẽ2
2 + ẽ2

3

2
≤ f3(ẽ1, ẽ2, ẽ3)

}
(29)

is a compact set. Moreover by taking the design parameters
ξ1, ξ2 small, the set Ds will be arbitrary small. Then we
have main result.

Theorem IV.1: Consider the system (12) under the as-
sumption III.1. The robust controller (11), (27) ensures
the UUBS of the origin of (12). Moreover the state error
approaches compact set Ds defined in (29).

Remark IV.1: As we see from the equation (12), the co-
efficient of e2 which is input signal to the e1-subsystem has
the uncertainty I, cf . In this case, we construct theoreti-
cally the stabilizing controller by means of sgn(·) function
in general, however, it requires large control input practi-
cally. To avoid the case, we define the virtual input β1 as
smooth function by introducing design parameters ξ1. For
remaining two design steps, we apply same ides. In fact,
we have sgn function as boundary function by taking ξ1, ξ2

and ξ3 as 0.

V. Simulation results

To illustrate the proposed robust controller above, sim-
ulation results are obtained for a system(Table I).

TABLE I

Physical parameters for numeriacl example

parameter value
D 1.6 × 10−5(m3/rev)
µ 0.797 × 10−3(Pa·s) at 30◦C
ρ 995.7(kg/m3)
K 2250 × 106(Pa)
PS 5 × 106(Pa)
V0 1.272 × 10−4(m3)
w 12.5 × 10−3(m)
kv 1 × 10−4(m/V)
τ 0.01(1/s)

It is set that each friction coefficient, leak coefficient and
load inertia vary below as:

1 × 105 = c−e ≤ ce ≤ c+
e = 1 × 107

0.2 = c−f ≤ cf ≤ c+
f = 0.5



0.1 = c−s ≤ cs ≤ c+
s = 0.3 (30)

0.9 = k−
q ≤ kq ≤ k+

q = 1.1

1 × 10−14 = k−
c ≤ kc ≤ k+

c = 2.5 × 10−13

0.124 = l1 ≤ I ≤ l2 = 0.284

which are obtained from estimation. Each uncertain pa-
rameter is all periodically time varying, for example

ce(t) = 1
2 (c+

e − c−e ) + (c−e − c−e ) sin(t)

for the coefficient of viscous friction and the frequen-
cies of varying are distinct. We give the nominal val-
ues of these parameters as its average. The desired ro-
tational velocity is set to ωe = 20(rad/s), then this im-
plies PLe = 0.124(MPa), xe = 0.509(mm), ue = 0.509(V ).
The design parameters are chosen as Sp = 1 × 106, Sx =
1 × 10−5, ξ1 = ξ2 = ξ3 = 0.1 and the initial condition as
ω(0) = 0 (rad/s), PL(0) = 0 (Pa),x(0) = 0 (mm). And we
notice the input saturation of servo valve, ±10(V ).

In this simulation, we consider a conventional PID con-
troller as well as robust controller to compare the results
of these controllers. By try and error, we choose PID con-
troller parameters as

uPID = ue − 0.1
∫ t

0

e1dt − 0.001e1 − 0.001ė1

e1 = ω − ωe

Fig. 3. rotational velocity error e1 = ω − ωe(rad/s)

Fig.3 - Fig.5 are simulation results and show the rota-
tional velocity error e1(= ω − ωe), the load pressure error
e2(= PL − PLe) and the spool position error e3(= x − xe),
respectively. The solid line is for the robust control re-
sults and the dotted for PID control. From Fig.3, it is
observed that the error of the proposed robust controller
is converges to a neighborhood of 0 smooth and attenu-
ates the parameter uncertainties up to a certain level while
the error of PID control has large vibration. This ampli-
tude of error band depends on the design parameters ξi.

In Fig.4 and Fig.5, there remain the pressure and the valve
spool displacement vibration for the uncertain parameters
change. And the state variable PL is very sensitive to the
uncertainty of flow coefficient kq because this parameter is
multiplied to x̄ which is designed to cancel the right hand
side of PL-subsystem so that β2 is required to be large sig-
nal depending on the magnitude of k+

q − k−
q . The precise

estimation of this value is very important for the applica-
tion.

Fig. 4. load pressure error e2 = PL − PLe(MPa)

Fig. 5. valve spool displacement error e3 = x − xe(mm)

In Fig.6, it can be seen that introducing the design pa-
rameters ξi(i = 1, 2, 3) prevent the robust input v from
destabilizing the whole system. In this simulation we give
rougher value kq as it may be estimated and this makes
uniformly ultimate set to which the error converges being
borderer.



Fig. 6. control input u(V)

VI. Conclusions

In this paper, we proposed a method to construct a ro-
bust rotational velocity controller of water hydraulic ser-
vomotor. The parameter uncertainties describing viscous
and Coulomb friction, leakage of the water hydraulic mo-
tor, linearizing error of flow equation and load fluctuation,
are considered in controller design. By using Lyapunov-
based recursive method, the uniformly ultimately stabiliz-
ing problem with input uncertainty is solved. The resulting
controller ensures the convergence of the error to the com-
pact set that can be arbitrary small by design parameter.
The numerical example shows the effectiveness of proposed
robust controller. We examine the controller experimen-
tally in future work.
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