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A dominance-based approach to robustness analysis
Amin Nobakhti, Neil Munro

Abstract—In this paper simple symmetric interval bounds on

the singular values of a matrix based on its Gershgorin disks

are proposed. This allows the Gershgorin theorem to be used not

only to provide information about the location of the eigenvalues

of a matrix but also its singular values. This is utilised for

the proposition of the first design technique for singular value

loop shaping based on the diagonal dominance methodology for

design of linear multivariable plants. A design example is given

demonstrating the effectiveness of this approach.
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I. Introduction

FOR a matrix A = [aij ] ∈ C
m×m, the radius of its

column Gershgorin disks Cj(A) also referred to as
the deleted absolute column sum and row gershgorin disks
Ri(A) also referred to as the deleted absolute row sum are
defined respectively as

Cj(A) =

m
∑

i=1

i6=j

| aij | (1)

Ri(A) =
m
∑

j=1

i6=j

| aij |. (2)

Gershgorin’s theorem [1] states that the eigenvalues of A
lie inside the region defined by these disks centered on the
diagonal entries of A

GR(A) ≡

m
⋃

i=1

{s ∈ C : | s− aii | ≤ Ri(A)} (3)

GC(A) ≡
m
⋃

j=1

{s ∈ C : | s− ajj | ≤ Cj(A)} (4)

Note that both GR(A) and GC(A) must include the eigen-
values, hence their intersection Gµ(A) = GR(A)∩GC(A) is
the only subset the eigenvalues can truly exist in. Gµ(A) is
referred to as a minimal Gershgorin set [2] and other mini-
mal sets may be obtained by considering the intersection of
all the Gershgorin sets corresponding to similar operators
to A (e.g. Ǎ = S−1AS). In this work, however, we are
concerned with the standard Gershgorin sets.

Rosenborck [3] used Gershgorin’s theorem to propose
the first frequency-based linear multivariable controller de-
sign technique based on the concept of Diagonal Domi-
nance. This is a design technique that converts a linear
multivariable design problem into several single-loop de-
sign problems which can then be solved using any number
of available single-loop design techniques. In the case of
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column dominance, for a plant with transfer function ma-
trix G(s) = [gij(s)] ∈ C

m×m, this involves finding a pre-
compensator matrix K = [kij(s)] ∈ C

m×m, such that the
resulting open-loop system with transfer function matrix
Q(s) = G(s)K satisfies the inequality

| qii(s) | ≥≥

m
∑

j=1

j 6=i

| qij(s) | (i = 1, . . . ,m) (5)

where ‘≥≥’ denotes ‘at least equal to, but as much greater
than as possible’. If such a K can be found, Q(s) may be
replaced by Q̃(s) = diag{Q(s)} = [qii(s)] ∈ C

m×m. Next,
a diagonal controller matrix D(s) = [dii(s)] ∈ C

m×m can
be found such that q̃ii(s)dii(s) is as close as possible to
mi(s)(1−mi(s)), whereM(s) = diag{mi(s)} is the desired
transfer function matrix of the closed-loop system, whose
actual overall transfer function matrix is T (s).

Note that, since q̃ij(s)dij(s) = 0 (∀ i 6= j), the de-
sign of D(s) can be broken down into m single-loop design
problems; the transfer function matrix of the correspond-
ing multivariable controller is C(s) = KD(s). If the pre-
compensator matrixK satisfies the inequality (5), then this
inequality is also satisfied for Q(s)D(s) since D(s) post-
multiplies each column of Q(s) by the same gain at each
frequency.

A major handicap with diagonal dominance is that the
controller design only focuses on very few properties of the
system [4] and issues such as robustness, disturbance rejec-
tion, etc... are implied from the process and not inherently
addressed by it. This makes the motivations for this work
very clear. By showing that the Gershgorin disks can be
used to bound the singular values as well, it allows the de-
signer to not only use the Gershgorin disks to asses the
system’s interaction, but also guaranteed bounds on the
whereabouts of its singular values. In turn, the design pro-
cess can be made to cater for cases where, for example,
there are specifications on the H∞ norm of the system or
the behavior of its singular values.

II. A symmetric interval bound

Consider the regular splitting of a matrix A = [aij ] ∈

C
m×m into Ã = [aii] ∈ C

m×m and E = [eij = aij, i6=j ] ∈

C
m×m, such that A = Ã + E, where Ã contains the diag-

onal entries of A and the remainder is contained in E. By
basic manipulation and use of the triangular inequity, the
following can be arrived at

| ‖ Ã ‖ − ‖ A ‖ | ≤ ‖ E ‖, (6)
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where ‖ • ‖ can be any matrix norm including the spectral
norm which is defined as

‖ Γ ‖2 = max
x6=0

‖ Γx ‖2
‖ x ‖2

=
√

ρ(ΓHΓ)

= max
i

σi(Γ) = σ1(Γ) (7)

where Γ represents a generic matrix in C
m×m and ρ(Γ)

denotes the spectral radius of Γ defined as ρ(Γ) =
maxi | λi(Γ) |. Choosing the matrix norm in (6) to be the
spectral norm, and using the fact that ‖ Ã ‖2 = maxi | aii |
allows (6) to be rewritten as

| max
i
| aii | − σ1(A) | ≤ ‖ E ‖2. (8)

Consider again the matrix Γ and its spectral radius ρ(Γ) =
| λmax(Γ) |, where λmax(Γ) is the largest eigenvalue of Γ.
LetW be the matrix whose every column is the eigenvector
corresponding to λmax such that λmaxW = ΓW . Observe
that for any matrix norm

| λ |‖W ‖ = ‖ ΓW ‖

≤ ‖ Γ ‖‖W ‖

∴

ρ(Γ) = | λmax | ≤ ‖ Γ ‖. (9)

Therefore, the spectral radius of a matrix is always
bounded by any of its norms. Hence,

‖ E ‖2 = σ1(E)

= [ρ(EHE)]1/2

≤ ‖ EHE ‖
1/2

β

≤ (‖ EH ‖β‖ E ‖β)
1/2, (10)

where

‖ Γ ‖β =

{

max1≤j≤m

∑m
i=1 | γij | for β = 1

‖ ΓT ‖1 for β =∞

(11)

Note from the Cauchy-Schwarz inequality that ‖ Γ ‖1 ≤
Cm(Γ) + maxj | γjj | and ‖ Γ ‖∞ ≤ Rm(Γ) + maxi | γii |
where Cm(Γ) = maxj Cj(Γ) and Rm(Γ) = maxiRi(Γ).
Further, let mD(Γ) =max{Cm(Γ), Rm(Γ)} and observe
that mD(Γ) equals the radius of the largest Gershgorin
disk of Γ. Consequently

‖ E ‖2 ≤
√

‖ E ‖∞‖ E ‖1

≤
√

(Cm(E) + max
j
| ejj |)(Rm(E) + max

i
| eii |)

≤
√

mD(A)2 = mD(A). (12)

Using (6) and (12), one can finally arrive at

| max
i
| aii | − σ1(A) | ≤ mD(A), (13)

which shows that the largest singular value of A is within
the radius of the largest Gershgorin disk of A relative to
the absolute value of its largest element. To arrive at the
final result, the interlacing theorem for singular values of
a matrix is used. This states that if Γ is a given matrix
and Γ̆ is the matrix obtained by deleting any one column
or row from Γ, then the following holds true

σ1(Γ) ≥ σ1(Γ̆) ≥ σ2(Γ) ≥ · · · ≥ σm(Γ̆) ≥ 0 (14)

Suppose one deletes the row and column from A which
contains maxi | aii | and lets the resulting matrix be Ă,
then from (13) it is evident that

| max
i
| ăii | − σ1(Ă) | ≤ mD(Ă). (15)

However, since 0 ≤ σ1(Ă) ≤ σ1(A) and further because

Cm(•) and Rm(•) are absolute norms, then mD(Ă) ≤
mD(A), and therefore

| max
i
| ăii | − σ2(A) | ≤ mD(A) (16)

Hence, the second singular value of A is also bounded
around the second largest diagonal element ofA bymD(A).
This procedure may be repeated to show that each singular
value of A is bounded by mD(A) around each of its diag-
onal elements. Henceforth, mD(A) will be referred to as
the singular interval and it can be concluded that all the
singular values of A must lie in the region

Υ(A) ≡
m
⋃

i=1

{x ∈ R : | x− | aii | | ≤ mD(A), x ≥ 0} (17)

which will be termed the Gershgorin singular region. In
the next section, a graphical interpreting of this result is
shown.

III. A Graphical interpretation

On each diagonal element of A draw a circle with radius
mD(A). These disks will be referred to as the singular

disks and it should be noted that they are concentric with
the Gershgorin disks. Then rotate each disk with respect
to the origin until it passes and leaves a trace on the real
positive axis. Within each trace left on the real positive

axis, there is at least one singular value of A. Note that
the term at least is used, since if any given two interval are
intersecting, the possibility exists that the singular value
of each interval could lie in the intersection region. This in
effect means that each interval contains two singular values.
For example, consider the matrix

A =





−10 + 10i 0 2
1 −20 0

−1 + i i −3− 12i



 (18)

Figure (1) shows the Gershgorin disks (solid disks) of A on
its diagonal elements. For this matrix,mD(A) = Cm(A) =
C1(A) = 2.41 which is the Gershgorin disk of the first col-
umn of A. This is why the Gershgorin and singular disk
(dashed) centered at −10+ 10i have the same radius. The
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three intervals {9.95 ≤ sv1 ≤ 14.8}, {11.7 ≤ sv2 ≤ 16.6}
and {17.6 ≤ sv3 ≤ 22.4} are traces left on the positive
real axis after the rotation of each singular disk around the
origin, and each will contain at least one singular value
of A. The actual singular values of A in this case are
{20.1, 14.7, 11.9} (rounded). Note that, in this example,
sv1 and sv2 both contain two singular values since the two
singular values {14.7, 11.9} are in the region sv1 ∩ sv2.
Observe that if the matrix is made diagonal dominant
enough (via scaling or compensation), these intervals will
shrink and become disjoint resulting in the bound becom-
ing sharper. This ties in perfectly with the first stage of a
diagonal dominance controller design process, which aims
to pre-compensate the system such that the Gershgorin
disks are minimised. In the second stage, the designer
would then be able to shape each singular band (bands
swept out by the singular disks) to meet some given con-
straints.

Fig. 1. The gershgorin singular value bound

IV. A design study:

The Automotive Gas Turbine

Consider the automotive gas turbine (AGT), as de-
scribed in [5]. The open loop transfer function matrix
model of the AGT is as follows:-

G(S) = (19)
(

0.806s+0.264
s2+1.15s+0.202

−15s−1.42
s3+12.8s2+13.6s+2.36

1.95s2+2.12s+0.49
s3+9.15s2+9.39s+1.62

7.14s2+25.8s+9.35
s4+20.8s3+116.4s2+111.6s+18.8

)

The Nyquist array (NA) of the open loop system is shown
in Figure (2), where it is evident that the system is inter-
acting. Whilst the first loop is dominant up to a point, the
second loop is not dominant at any frequency. More in-
sight may be obtained from Figure (3), which contains the
composite Bode plot (CBP). The composite Bode plot con-
tains the response of the diagonal elements, the Gershgorin
bands for each column, the plot of the singular values of
the system, and also the line of upper bound on the singu-
lar values as obtained from inequality (13). In plotting the
CBP the following convention is adhered to; diagonal ele-
ments (solid line), singular values if plotted (dashed line),

Gershgorin bands (dotted line), and finally the singular
value bounds (dashed-dotted line).

The analysis of the CBP is fairly straightforward. For
a given column, dominance is lost if the Bode response of
the diagonal element of that column falls below the magni-
tude Gershgorin band. This is the Bode domain equivalent
of the zero exclusion theorem in the NA plot and follows
directly from the definition of dominance. Note, however,
one advantage here that is not present with the NA is the
information regarding the exact frequency at which dom-
inance is lost, which can easily be read from the CBP. In
this case study, the singular values of the system are also
plotted to confirm that indeed in each case they are within
the bounds calculated. One of the important things that
one should observe from Figure (3) is the direct link be-
tween the degree of dominance at each frequency and the
values of the upper bound. For example, observe that in
the frequency range 0.2 ≤ ω ≤ 1 the upper bound bulges
even though both diagonals are decreasing in value. The
reason for this is the increase in the interactions in that
frequency range which is indicated directly from the Ger-
shgorin bands.

Suppose at this point one wishes to design a dominance
based controller that can satisfy constraints on the behav-
ior of the singular values of the system. The next stage,
would still be exactly similar to a normal diagonal domi-
nance based design study. Namely, in the next step the aim
would be to find a pre-compensator (preferably dynamic)
that would achieve as high a degree of diagonal dominance
as possible. In this case, a technique proposed in [6] was
used to design the following pre-compensator

K(S) =

(

0.049813 (s+12)
s 0.86524 (s+0.1)

s(s+0.2)

−0.404 (s+0.9)
s 0.038834 s(s+0.45)(s+13)

(s+0.25)

)

. (20)

The NA of Q(s) = G(S)K(S) is shown in Figure (4). The
very high degree of dominance achieved is apparent. It
can further be confirmed from the CBP shown in Figure
(5). Note the following very interesting phenomenon. The
upper singular bound is now much sharper. In fact the
biggest singular value is ‘trapped’ inside a very narrow re-
gion around the magnitude Bode plot of the largest diag-
onal element. Further, from the reasoning made earlier
with regards to the existence of such a symmetric bound
around all other diagonal elements, it is also known that
within the same narrow region around the other Bode plot,
lies the second singular value. At this point, one can treat
the singular value loop shaping problem as two SISO loop
shaping design exercises. Using the diagonal elements of
D(S), the diagonal Bode plots of G(S)K(S) are shaped
‘as if they were its singular values’ such that together with
the singular value bounds they satisfy the given constraints
. Suppose, for example, that the closed-loop design speci-
fications were as follows:-

• Zero steady-state error to a step input in all input direc-
tions
• The H∞ norm to be less than 0.5dB
• 1 rads/second bandwidth
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• Minimum 20dB/decade roll-off for the complementary
sensitivity function past the bandwidth frequency

Then (having the upper bound in mind, as the indicator
of how close the two are), one can shape the diagonal Bode
responses such that together with the bounds, they meet
the constraints on the singular values. For example, in this
case the shaping TFM was found to be simply

D(S) =

(

0.9
2 1+3.2s

(1+1.5s)

)

(21)

Figure (6) shows the CBP of the closed loop system, where
it is clear that all constraints are met. To illustrate this
more clearly, the plot of the singular values of the comple-
mentary sensitivity function is shown separately in Figure
(7). Finally, the step response of the initial open loop and
the final closed loop systems are shown in Figures (8) and
(9).

V. Final Remarks

In this work we proposed, and successfully developed, the
idea of using the Gershgorin disks of a matrix to bound its
singular values. This was illustrated by two examples.

Based on this, a simple approach to the problem of shap-
ing the singular values of a multivariable system was pro-
posed. This approach is unique in that unlike other pro-
posed techniques, it constitutes a design rather than a syn-

thesis technique. The advantages of a design technique ver-
sus a synthesis technique are well known and will not be
rehearsed here. However, in this case, it provides a critical
advantage to the designer; namely, that the complexity of
the resulting controllers is purely a matter for the designer
to choose and is not in any way dictated by the technique.
Further, whereas a synthesis technique would fail if the
problem formulation is deemed to be unfeasible, a design
process would instead produce a result as close as possible
to the unfeasible requirements.

Finally, it is acknowledged that this idea is very much
in its infancy and much further research is needed to fully
develop and further extend the technique.

Acknowledgments

The authors would like to thanks UMIST, EPSRC and
the IEE for supporting this research.

References
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