Convergence of continuous descent methods
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Abstract—We consider continuous descent methods for the minimization ~ Other notions of porosity have been used in the literature [2,

of Lipschitzian functions defined on a general Banach space. We present 16]. We use the rather strong notion which appears in [5, 6, 7
several convergence theorems for those methods which are generated byl R

regular vector fields. Since the complement of the set of regular vector
fields is o-porous, we conclude that our results apply to most vector fields
in the sense of Baire’s categories.

Keywords— Complete metric space, descent method, Lipschitzian func-
tion, porous set, regular vector field.

I. INTRODUCTION

HE study of discrete and continuous descent methods is

important topic in optimization theory and in dynamica
systems. See, for example, [4, 9, 11, 12, 13]. Given a coQ

tinuous convex functiorf on a Banach space, we associate
with f a complete metric space of vector fieMs X — X such
that fO(x,Vx) < 0 for all x € X. Here f%(x, h) is the right-hand
derivative of f atx in the directionh € X. To each such vector
field there correspond two gradient-like iterative processes.
two recent papers [12, 13] it is shown that for most of the vect
fields in this space, both iterative processes generate seque
{*%n}n_, such that the sequencé¢$(x,)}_; tend toinf(f) as
n— oo, In [15] the convergence of the values of the function
to its infimum along the trajectories of an analogous continuo
dynamical system governed by such vector fields was studi

the Palais-Smale condition.

When we say that most of the elements of a complete me@gr
spaceY enjoy a certain property, we mean that the set of poin&I
which have this property containss everywhere dense subseEo

of Y. In other words, this property holds generically. Such

approach, when a certain property is investigated for the whole

spaceY and not just for a single point iW, has already been
successfully applied in many areas of Analysis [5-7, 10, 18].

We now recall the concept of porosity [2, 6, 7, 13, 14, 16, 1gnd le

which enables us to obtain even more refined results.

Let (Y,d) be a complete metric space. We denotéBgyy,r)
the closed ball of centey € Y and radius > 0. We say that
a subseE C Y is porous in(Y,d) if there exista € (0,1) and
ro > 0 such that for each € (0,rp] and eacly € Y, there exists
ze Y for which

Bg(z,ar) C By(y,r) \ E.

A subset of the spac¥ is calledo-porous in(Y,d) if it is a
countable union of porous subsetg¥)d).
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In this paper we consider the situation for Lipschitzian func-
tions which are not necessarily convex. We also discuss contella
uous descent methods for Lipschitzian functions which satisz¥

3, 14].

Since porous sets are nowhere denseggibrous sets are
of the first category. I is a finite-dimensional Euclidean space
R", thena-porous sets are of Lebesgue meagurEhe existence
of a none-porous seP C R", which is of the first Baire category
and of Lebesgue measulewas established in [16]. Itis easy to
see that for ang-porous sef C R", the setAUP C R" also be-
longs to the familyE consisting of all the nom-porous subsets
SR which are of the first Baire category and have Lebesgue
measured. Moreover, ifQ € E is a countable union of sets
i C R, i=1,2,..., then there is a natural numbifor which
the setQ; is nono-porous. Evidently, this se&; also belongs
to £. Thus one sees that the familyis quite large. Also, every
complete metric space without isolated points contains a closed
rlowhere dense set which is r@{porous [17].
?To point out the difference between porous and nowhere
dense sets, note that H C Y is nowhere densey € Y and

r >%, then there is a poirte Y and a numbes > 0 such that
Ba(z,8) C By(y,r) \ E. If, however,E is also porous, then for
small enought we can choose= ar, wherea € (0,1) is a con-
Sfant which depends only @&

i p y

Our paper is organized as follows. In Section 2 we consider
functionf which is Lipschitzian on bounded subsets of a Ba-
ich spac, but not necessarily convex. We introduce a class
vector fields associated with such a function and present a
orosity result for this class. We also discuss briefly the con-
gence of discrete descent methods for the minimization of
ch functions. In Section 3 we present convergence results for
ntinuous descent methods. The last section is devoted to func-
{bns which satisfy a Palais-Smale type condition.

(X,]|-]]) be a Banach spacéX*,|| - ||.) its dual space,
tf : X — R! be a function which is bounded from below
and Lipschitzian on bounded subsets<ofRecall that for each
pair of setsA, B C X*,

L IPSCHITZIAN FUNCTIONS
Let

H (A, B) = max{supinf |[x—y]|., supinf |[x—y]|..}
xcAYEB yeBxeA

is the Hausdorff distance betweArandB. For eachx € X, let

fO(x,h) = limsup [f(y+th)— f(y)]/t, he X, (1)

t—0t, y—x

be Clarke’s generalized directional derivativefcdt the pointx
and let

af(x)={lex*: fo%x,h)>I(h)forallhe X}  (2)
Be clarke’s generalized gradient batx. We also define
=(x) =inf{fO(x,h) : he X and||h|| = 1}. (3)



It is well known that the sedf (x) is nonempty and bounded. In [14] it was shown, under certain assumptionsfothat for
Set most (in the sense of Baire’s categories) vector fidids 4, the

inf(f) =inf{f(x): xe X}. discrete iterative processes defined in Section 2 yield sequences
with the desirable properties. Moreover, it was shown there that
the complement of the set of “good” vector fields is not only of
the first category, but also-porous. In this section we will use
porosity with respect to a pair of metrics, a concept which was

From now on, we denote bf the set of all mappingg : X —
X such thatv is bounded on every bounded subsegfand
for eachx € X, fO(x,Vx) < 0. We denote byZ. the set of all
continuousV € 4 and by 4, the set of allvV € 4 which are ! .
bounded orX. Finally, let 4, = A, N 4;. Next, we endow the introduced in [18].

set4 with two metrics ps andpy. To defineps, we set, for each Recal that wheifY, d) is a metric space we denote By(y.r)
Vi Vo € A4, the closed ball of centere Y, and radiug > 0. Assume that

Y is a nonempty set andi,d, : Y x Y — [0, ) are two metrics
Ps(V1,V2) = sup{|[Vix—VaX|| : x € X} which satisfyd; (x,y) < da(x,y) forallx,y €Y.
A subsetE C Y is called porous with respect to the pair
and (d1,dy) (or just porous if the pair of metrics is fixed) if there
Ps(Va, Vo) = Ps(Va, Vo) (1+ Ps(Va, Vo)) . (4) exista € (0,1) andrg > 0 such that for eache (0,ro] and each

(Here we use the convention thafe = 1.) Clearly,(4,ps) is Y €Y thereisze Y for whichdz(zy) <r and
also a complete metric space. To defmg we set, for each

V1,Vo € 4 and each integér> 1, Ba, (zar)NE =0.

Pi (V1,V2) = sup{|[Vax—Vox|| : x€ X and|[x|| <i}  (5) A subset of the spac¥ is called o-porous with respect to
(d1,dp) (or justo-porous if the pair of metrics is understood) if
and it is a countable union of porous (with respectd, d»)) subsets
® of Y.
Pw(V1, Vo) = Z\T' [Pi(V1, Vo) (1+pi(Vi,V2)) Y. (6)  Note that ifd; = dp, then by Proposition 1.1 of [18] our defi-
i= nitions reduce to those in [5-7, 13]. We use porosity with respect
Clearly, (4, py) is a complete metric space. It is also not diffilo a pair qf metrigs becauge in applications a space is usually en-
cult to see that the collection of the sets dowed with a pair of metrics and one of them is weaker than the
other. Note that porosity of a set with respect to one of these
E(N,&) ={(V1,V2) € Ax 4: ||[Vix—Vox|| <€, xe X, ||X|| <N}, two metrics does not imply its porosity with respect to the other
metric. However, it is shown in [18, Proposition 1.2] that if a
whereN, e > 0, is a base for the uniformity generated by thgubse€ c Y is porous with respect tf;, d,), thenE is porous
metricpy. Itis easy to see that with respect to any metric which is weaker thdgnand stronger
thand;. For each subsé C X, we denote byl (E) the closure
Pw(V1,V2) < ps(V1, Vo) for all Vi,V € 4. of E in the norm topology. The results of [14] were established
The metricpw induces o a topology which is called the weakin any Banach space gnd for those functions which satisfy the
topology andps induces a topology which is called the stronde!lowing two assumptions.
topology Clearly,Z. is a closed subset ot with the weak topol-  B(i) For eacte > 0, there exists < (0,¢) such that
ogy while 4, and 4, are closed subsets of with the strong

topology. We consider the subspacgs 4, and 4, with the c({xeX: =(x) < —g}) C {xe X1 =(x) < -0},
metricsps andpy Which induce the strong and the weak topolo- ) o o
gies, respectively. B(ii) For eachr > 0, the functionf is Lipschitzian on the ball

To minimize a convex functior, one usually looks for a se- (X € X |IX[| <r}. _ _ _
quence{x }*, which tends to a minimum point of (if such We will say that'a mappm.g € A is regular if for any natural
a point exists) or at least such tHah;_., f(x) = inf(f). If f numbern. thgre exists a positive numb@&mn) such that for each
is not necessarily convex, bt s finite-dimensional, then we X € X satisfying||x|| < nand=(x) < —1/n, we havef°(x,Vx) <
expect to construct a sequence which tends to a critical rzointa(”)-
of f, namely a pointz for which 0 € df(2). If f is not neces- We denote byf the set of all regular vector fields € 4.
sarily convex anc is infinite-dimensional, then the problem is The following result was established in [14].
more difficult and less understood because we cannot guaranfheorem 2.1:Assume that both B(i) and B(ii) hold. Then
tee, in general, the existence of a critical point and a convergeht ¥ (respectivelyA:\ 7, A, \ F and Ay \ F) is ac-porous
subsequence. To partially overcome this difficulty, we have igubset of the space (respectively 4., 4, and.Apc) with respect
troduced the functio : X — RL. Evidently, a poinizis a crit- to the pair(pw, ps).
ical point of f if and only if =(z) > 0. Therefore we say that In the sequel we will also make use of the following assump-
is e-critical for a givene > 0 if =(z) > —¢. In [14] we looked tion:
for sequences$x; };7 ; such that eitheliminfi_, =(x) > O or at B(iii) For each integem > 1 there existsd > 0 such that
leastlimsup_,, =(x) > 0. In the first case, givea> 0, all the for eachxy,xz € X satisfying||x1||,||[X2|]| < n, min{=(x) : i =
pointsx;, except possibly a finite number of them, areritical, 1,2} < —1/n, and||x;—Xz|| < 6, the following inequality holds:
while in the second case this holds for a subsequenfm Hf ;. H(df(x1),0f(x2)) <1/n.



I1l. CONTINUOUS DESCENT METHODS FORLIPSCHITZIAN Corollary 3.1: Let B(i) and B(ii) hold, letV € 4 be regular,
FUNCTIONS and suppose that
lim f(x) = co.

[Ix][—e

Throughout this paper we l&tc W1(0,T;X), i.e. (see, e.g.,
[3]),

t Let Ko, € be positive numbers. Then there eXigt > 0 and a
X(t) =Xo +/0 u(sjds t € [0,T], neighborhoodi of V in 2 with the weak topology such that for

eachW € € and each mappinge W! 0,); X) satisfyin
whereT > 0, xg € X andu € LY(0,T;X). Thenx: [0,T] — X is PPINgE Wgg ([0,2):X) ing

absolutely continuous and(t) = u(t) for a.e.t € [0, T]. |1X(0)|| < Ko

Recall that the functiorfi : X — R is Lipschitzian on bounded
subsets oK. Thus the restriction of to the sefx(t): t€ [0, T]} and
is Lipschitzian. Hence the functiofif - x)(t) := f(x(t)), t € X (t) =Wx(t) for a.e.t € [0,»)
[0,T], is absolutely continuous. It follows that for almost ev: L : i
eryt € [0,T], both the derivative'(t) and(f - x)’(t) exist: the following inequality holds:

p{t € [0,00) 1 Z(X(t)) < —€} < No.
This corollary, which is an extension of Theorem 3.1, follows
immediately from Theorem 3.3.

X (t) = lim h=[x(t+h) = ()],

(f-x)/(t) = rI]imohfl[f(x(t +h)) — f(x(1))].
-~ IV. A PALAIS-SMALE TYPE CONDITION
The next proposition was proved in [1].
Proposition 3.1: Assume thatt € [0,T] and that both the
derivatives' (t) and(f - x)’(t) exist. Then

In this sectionf : X — Rl is a locally Lipschitzian function
which is bounded from below. We begin with the following
proposition [1].

(f-x)(t) = Hmohil[f(x(t) +hY (1)) — F(x(1))]. Proposition 4.1: For eacte > 0, there exists, € X such that
Now we are ready to state three convergence theorems which f(x) <inf(f)+eand=(x) > —¢.
have been proved in [1]. In our setting we say that the functidnsatisfies the Palais-

'I(;hleorem 3.1:Let B(i) and B(ii) hold, letv € 4 be regular smale (P-S) condition if each sequer{sg}®_; C X such that
and let

X € W ([0,e0); X). sup{[F(x)|: N=12,...} <oo
Assume that andlimsup, .., =(xn) > 0 has a norm convergent subsequence.
Note that this is a generalization of the classical Palais-Smale
condition to locally Lipschitzian functions.

and that the function(t), t € [0, ), is bounded. Then for each Define

X (t) =V(x(t)) for a.e.t € [0,00)

£>0, Cr(f) ={xeX: =(x) > 0}.
Jim p({t € [T,0) 2 =(x(t)) < —€}) =0. Proposition 4.2: Let {x,}*_; C X be such thalimp_.e X, = X
Theorem 3.2:LetV € 4 be regular, let B(i), B(ii) and B(iii) and
hold, and letx € W= ([0,); X) be a bounded function which liminf =(xn) > 0.
satisfies _
X (t) = V(x(t)) for a.e.t € [0,e0). Then=(x) > 0. _ ,
Propositions 4.1 and 4.2 imply the following fact.
Then Proposition 4.3: Assume that the functiof satisfies the (P-
liminf =(x(t)) > 0. S) condition. Then Qif) 0.
Theorem 3.3:Let B(i) and B(ii) hold, letV € 4 be regular, Proposition 4.4: Assume that the functiori is bounded on
and suppose that bounded subsets of and satisfies the (P-S) condition. Then for
| I\I\m f(X) = . eachr > 0, the set
X||—00
Let Ko ande be positive numbers. Then there exilgt> 0 and a {xeX:||X|<r}nCr(f)

neighborhoodl of V in 4 with the weak topology such that for.

eachT > No, eachW ¢ ¥, and each mappinge W1(0,T;X) '° E%ngg:b:r;t;ea?&g\nctcyoslzgt)y.

satisfying
IXO)] < Ko d(x.A) = inf{|lx—y]| : y€ A}.
and N
X (t) =W(x(t)) for a.e.t € [0,T], Proposition 4.5: Let r,¢ > 0, and let f be_ _bounded on
bounded subsets &fand satisfy the (P-S) condition. Then there
the following inequality holds: is > 0 such that ifx € X satisfies

u{t € [0,T]: =(x(t)) < —&} < No. |Ix|| < r and=(x) > -3,



thend(x,Cr(f)) <e.
The next three theorems have also been proved in [1].
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X (t) =V(x(t)) for a.e.t € [0,).

Then for eactz > 0,

(1]
[2]
[3]
[4]
[5]
[6]
Iirtnsupd(x(t),Cr(f)) =0. (71

Theorem 4.3:Let f satisfy the (P-S) condition, B(i) andl8]
B(ii), and suppose that

TIim H({t € [0,00) : d(x(t),Cr(f)) >€})=0.
Theorem 4.2:Let f satisfy the (P-S) condition, I&t € 4 be
regular, let B(i), B(ii) and B(iii) hold, and let € W12 ([0, 0); X)
be a bounded mapping which satisfies
X (t) =V(x(t)) fora.e.t € [0,).

Then

[9]
lim f(x) = co. [10]
[Ix][—e0
LetV € 4 be regular, and leKy andy be positive numbers. [11]
Then there exishp > 0 and a neighborhood! of V in A with |15
the weak topology such that for ea€h> Ny, eachw € U, and
each mapping € W1(0, T; X) satisfying (13]
[14]
[IX(0)[] < Ko
[15]
and [16]
X (t) = Wxt) for a.e.t € [0, T],
[17]
the following inequality holds: (18]

p({t € [0,T]: d(x(t),Cr(f)) >y} < Np.
Corollary 4.1: Let f satisfy the (P-S) condition, B(i) and
B(ii), and suppose that

lim f(x) = co.

[Ix][—e

LetV € 4 be regular, and leKg andy be positive humbers.
Then there exisiy > 0 and a neighborhood! of V in 4 with
the weak topology such that for eadhe U and each mapping

x € WEL([0,e0); X) satisfying
[1X(0)[| < Ko

and
X (t)

the following inequality holds:

=W(x(t)) for a.e.t € [0,),

p{t € [0,00) : d(x(t),Cr(f)) >y} < No.
This corollary, which is an extension of Theorem 4.1, is a con-
sequence of Theorem 4.3.

author visited Ohio University.

REFERENCES

S. Aizicovici, S. Reich and A. J. Zaslavskionvergence theorems for
continuous descent methodseprint, 2003.

Y. Benyamini and J. Lindenstraus§eometric Nonlinear Functional
Analysis Amer. Math. Soc., Providence, RI, 2000.

H. Brezis,Opérateurs Maximaux Monotones et Semi-Groupes de Contrac-
tions dans les Espaces de Hilbexorth Holland, Amsterdam, 1973.

H.B. Curry, The method of steepest descent for nonlinear minimization
problems Quarterly Appl. Math., vol 2, 258-261, 1944.

F.S. De Blasi and J. MyjalGeneric flows generated by continuous vector
fields in Banach spaceAdv. Math. vol 50, 266-280, 1983.

F.S. De Blasi and J. MyjakSur la porosié des contractions sans point
fixg C. R. Acad. Sci. Paris, vol 308, 51-54, 1989.

F. S. De Blasi, J. Myjak and P. L. PapiRiorous sets in best approximation
theory, J. London Math. Soc. vol 44, 135-142, 1991.

|. Ekeland,On the variational principleJ. Math. Anal. Appl. vol 47, 324-
353, 1974.

J.-B. Hiriart-Urruty and C. Lemé&chal,Convex Analysis and Minimiza-
tion Algorithms Springer, Berlin, 1993.

A.D. loffe and A.J. Zaslavskiyariational principles and well-posedness
in optimization and calculus of variationSIAM J. Control Optim. vol 38,
566-581, 2000.

J.W. NeubergerSobolev Gradients and Differential Equations, Lecture
Notes in Math167Q Springer, Berlin, 1997.

S. Reich and A.J. Zaslavskgeneric convergence of descent methods in
Banach spacedMath. Oper. Research, vol 25, 231-242, 2000.

S. Reich and A.J. ZaslavsKihe set of divergent descent methods in a
Banach space is-porous SIAM J. Optim. vol 11, 1003-1018, 2001.

S. Reich and A.J. Zaslavskprosity of the set of divergent descent meth-
ods Nonlinear Anal. vol 47, 3247-3258, 2001.

S. Reich and A.J. Zaslavskiwo convergence results for continuous de-
scent method<€lectron. J. Diff. Egns. vol 2003, 1-11, 2003.

L. Zajicek, Porosity ando-porosity, Real Anal. Exchange, vol 13, 314-
350, 1987.

L. Zajicek, Small none-porous sets in topologically complete metric
spacesCollog. Math. vol 77, 293-304, 1998.

A.J. Zaslavski,Well-posedness and porosity in optimal control without
convexity assumptiop€alc. Var. vol 13, 265-293, 2001.



	Conference Program
	Author Index
	Main Menu

