A Planning for Neural Networks Teaching in Control
Using a Java-Based Toolkit

E.J. Gonzaez, A. Hamilton, L. Moreno, R.M. Aguilar, R.L. Maricha

Abdgract-- Neural networks have been shown as an eficient
tool in optimisation problemsin general, and in control onesin
particular. For this reason, Engineering students should
properly learn this tool in subjects as Optimal Control or
Intdligent Control. In this way, a planning for neural
networks teaching is proposed in this paper, usng a Java-
Based toolkit (Evenet 2000) that allows to design and train
neural networkswith arbitrary architecture.

Index Terms- Neural networks, softwaretools, education

I. INTRODUCTION

Currently, neural networks are widely used as an efficient
method in many subjects such as optimisation problems and
pattern recognition [1][5]. In thisway, students of
Engineering courses should properly learn thistool,
particularly in subjects such as Optimal Control or
Intelligent Control. During theoretical classes students
should learn some teorethical aspects of neural networks
(definition, structure, topologies or learning methods).
Howevwe, after these classes, it would be very pedagogica
for these coursesto use atool (or better, severd tools) to
train different neura networks using severa training
methods. With thistool, students can visuaise the neura
networks power in a practica way.

For thisaim, there are severd toolsfor neura networks
training such asMATLAB Neura Networks Toolbox,
NNSY SID, NNCTRL [6] or SNNS. However, most of them
are not sufficiently general or they are not user-friendly
enough. Frequently, its users cannot visualise the training of
aneural network with arbitrary architecture and/or
implement new training methods in an easy way.
Evenet2000 [3,4], aJava-Based neural network toolkit
developed at University of La Laguna, offersthese
advantages. Thistool is based on an approach introduced by
Wan and Beaufays to derive gradient agorithms for time-
dependent neural networks, by using Signal Flow Graph
theory. This approach consists of a set of simple block
diagram transformation and manipulation rules. However
with Evenet-2000 users do not need to know theserules.
Moreover, the designed structure makes it not limited to
gradient-based agorithms.

Department of Fisica Fundamental y Experimental,
Electrénica y Sstemas. University of La Laguna. Spain.

Theaim of thisarticleisto present a planning for neural
network teaching by using Evenet2000. Because this tool
has interesting aspects for both neural networks teachers and
researchers, it is briefly described in section 2. In section 3,
teaching planning is detailed and conclusions are shown in
section 4.

Il. DESCRIPTION OF THE TOOL

Regarding the gradient algorithmsin neural networks,
severd researchers[2],[7],[8] have shown that thereis a
reciprocal natureto the forward propagation of the states
and the backward propagation of gradient terms. This
reciprocity appearsin al network architectures. Based on
these properties, and using Signal Flow Graph theory, they
have deduced a general method for automatic determination
of thegradient in an arbitrary neural network. In this paper
wewill apply the Wan and Beaufays approach.

Thefirst step involves representing the arbitrary network as
ablock diagram. There arefive basic blocks:

e summing junctions

» branching points

e univariate functions

e multivariate functions
» time-delay operators.

For example, aneuron can be seen as a summing junction
followed by a univariate function such as sigmoid or tanh.

From this block diagram, an adjoint network can bebuilt by
reversing the flow direction in the origina network,
performing a set of transformation rules. This philosophy
suggests object-oriented programming as implementation
method. So, Java, the most popular and powerful object-
oriented language has been chosen for development of the
toolkit.

Evenet-2000 consists of three basic parts: acalculation
library, auser-friendly interface and agraphic neura
network editor.

Evenet-2000 caculdtion library develops theory shown
above. Every basic element is assigned an object that
implements easily the adjoint method.

The basic elements are not sufficient for acompletelibrary.
They must be joined to other types of objects that
implement arbitrary neural network trainings. For this,

Criterion Function_

1
Problem
1 1
1 v 1

Neurd Network

Learning Algorithmq | 1

1-D Algorithm

Fig. 1. Evenet-2000 Calculation Library Diagram

Evenet-2000 caculation library follows the UML diagram
shownin Figure 1.

With this implementation, training and optimization
problems have been uncoupled from the neura network
structure specification. Problem object sets the chosen
neural network structure, the learning agorithm and the
criterion function (problem object is the connection among
these objects). In this structure, the problem object sets the
network inputs, asks the neural network object for the
output vector. Then asks the criterion function to caculate
the error vector, and finaly the neural network caculates
the gradient vector. Once this process has finished, the
problem object sends the gradient vector to the algorithm. It
caculates a new weight vector, by asking the problem
object for cost function value. Unidimensional (1-D)
optimisation could berequired, so 1-D dgorithms have been
included. These steps are repeated until the design
conditions are reached.

This calculation library can be used independently from the
rest of the program. However, dthough the calculation
library is complete and easy to use, people not used to
object-oriented programming could not make the most of it.
Because of this, the tool has been improved with a user-
friendly interface. Thisway, studentsin our planning do
need to learn objet-oriented programming at al.

This interface dlows training directly a multilayer
perceptron (MLP). When this case is selected from program
main menu, aframe like the shown in Figure 2 appears.
From its menu bar, desired learning method, criterion
function, optimisation algorithm and other training
parameters can be selected.

When training pairs have been loaded, the network is ready
to betrained. Initial weight set can befixed aso. When the
training finishes, users can study aframe showing the
training error evolution and the difference between the
desired and obtained outputs (Figure 3). The error and the
iteration number after the training are shown in their
respective text fields, and results can be saved in atext file
that can be analysed later.

Evenet-2000 user-friendly interface allows users to train
MLP or recurrent with no code. But thisinterface has not
taken advantage of the possibility of training a neura
network with an arbitrary architecture. For getting this
purpose, agraphic editor has been included in thetool. This
editor, whose frameis shown in Figure 4, can be selected

&5 Evenet2000: MLP [_TO] %]

Options Learning Algorthm 1-D Optimisation Activation Function Criterion Function
E

MLP

Lavers : 3

Learning Algarithm: Decent Gradient
Activation Function: Sigmoid
Critetion Function: Cuadratic

¥
4 2

Error 0

Step 0

Execute (Random weights) Exenute (fotEl weintis) |

Cancel ™ Graphic

Fig. 2. Evenet-2000 MLP Frame (Fragment)
& variable(1) =1 E3

Zoom

IVaIUr’ inicial:0.05066947 6808705176
1.00

0 1l J' 5 10
Cancelar

Fig. 3: Desired and obtained output

B hew Element Options Weights

‘gaEvenel-Zl]I]l]: Graphic Editor

Meuron
Ingt
SUmIming
Delay
Branch
Wigight

Univariste Function

<j _“‘
< mmm-)

Cutput
Unit Element
Previous net
Gaussian Meuron
Mutiplier

Softmar Block

Fig. 4: Graphic Editor Frame (Fragment)
from the program main menu.

This graphic editor allows creating an arbitrary neural
network. Users only have to select its elements from the
menu and connect them. Its designs can be saved in atext
file and loaded as new elements (modularity), developing
their own neura network library this way. Thistext file can
be modified without the help of the editor and loaded by
other window of the todkit, similar to the MLP training one
described above. Thisway, neurd networks built foll owing
any arbitrary architecture @n be designed and trained with
no code. Thisisagreat advantage for the usersand
particularly for engineering teachers, sincethey are not
forced to make any complicated calculations.Moreover,
students are offered atool they can visudise neura
networks theory with.

I1I. PLANNING

In this ®dion, the proposed planning of neura network
teaching for engineering sudents is presented. After
theoretical classes where studentslearn some neura
networks aspects [5] asits definition, structure, topologies
and severd learning methods, teechers present them several
procedures as practica experiences. They can bedivided
into two blocks: abasic block where students can visualise
the theoretica aspectsthey havelearnt and amore complex
block where neural networks are applied to a control
problem.

First of dl, students are shown the ability of the neural
networks of learning patterns. As example, a4-layers MLP
(1, 3,3, 1 and 1 neuronsin each layer) istaken. From
Evenet2000 menu bar, students selects the training
parameters such asinitia learning rate (for this example,
0.25), limit of steps (1000), limit of error (1E-4) — when one
of these limits are reached, the training is stopped — learning
method (Descent Gradient), 1-D optimisation (none),
activation function (Sigmoid), criterion function (Cuadratic)
andinitial weight set (random). A pattern file which
implements the function y(x) = x isloaded. This pattern file
consists of 11 patterns (O<x<1, step = 0.1). After this

(15855001649850523

Error

0 400 1000

Step

Fig 5: Training error evolution

selection, students train the network. They should dbtain a
graphic similar to the shown in Figure 5.

This way, students can visudi ze how the eror decreases.
Evenet2000 offers the possibility of testing if the network
has been well trained. Students check the outputs for several
inputs, included or not in the original pattern file (last ones
are the most interesting ones), confirming that the network
has learnt the proposed function (Fig. 6)

0.4 ID.#QQEEBEHDE

Fig 6: Training test for
proposed example

Once the test hasfinished, students are suggested to vary
some training parameters as learning rate, network topdogy
or number of patterns. An illustrative aseisobtained when
learning rateis excessively big. As can beseenin Figure 7,
the @ror evolution presents some peaksin graphic error.

‘EI T268609300075054

Error

a 75 50

Step
Fig 7: Training with High Learning Rate

—bgi

Controller

| (i

System >

Neurd Network

Fig 8: Control structure implemented in a ntrol application.

Students are aked for the reason of these peaks, testing
their knowledge.

Next exercises are focused on goodnessof aunidimensional
optimization of thelearning rate. Students slect an
optimization method for anew training and compare its
results with the obtained with no optimization. Asit was
expected, the number of necessary steps decreases.

However more caculations are made in each step, so
comparing the training time instead is a better choice. In this
step, students are asked again for the goodnessof the
different algorithms.

These basic experiences may be complemented with studies
about recurrent networks and/or other topologies. For this
purpose, these topologies can be designed with the graphic
editor of thetool.

With this set of experiences, students have visualized the
aspects that they had learnt in theoretical classes, gettinga
deeper knowledge of neurd networks. Estimated time for
thisfirst block of proceduresisabout 20 hours divided into
4-5 sessions.

On the other hand, with the second set of procedures,
students can learn about appli cations of neural networksin
problems more complex than learning of some patterns. In
the planning proposed in this paper, asimple but interesting
control problem has been chosen. There are two optionsfor
the system to control: ared system (for example the tank
system shown in Figure 9) or asoftware-simulated one.
Procedures with red systems offer agreat advantage.
Engineering students usudly find more interesting to work
inthe “red life” than with simulated systems. However, if
the system is not carefully chosen, its control could become
too dfficult for alaboratory procedure. Soitis
recommended afirst or second order system. On the other
hand, working with simulated systems offers more variety
and are easier to debug.

In bath cases, students sould implement a @ntrol sructure
like the shown in Fig 8. Parameters concerning to
proportional and integra terms of the controller (students
work with discrete equations) are supplied for aneura

network, trained through Evenet2000 modules. Students
should compare this control structure with a controller with
fixed proportiona and integral terms. Thisway, they test the
goodness of neural networks for control systems.

Estimated time for this block of procedures is about 20
hours divided into 4-5 sessions.

Fig 9: Example of red plant for the second
proposed block of procedures

IV. CONCLUSIONS

In this paper, a planning for the teaching of neural networks
in Engineering subjects is proposed. For this, Evenet2000, a
Javarbased neurd network toolkit, is used. This toolkit
alows dudents to design and train neurd networks with
arbitrary architectures. In theoretical classes, students learn
aspects as definition, structure, topologies and severd
learning methods. After these classes, two blocks of
procedures are proposed to students. In the first block,
students can visualise these theoretical aspects. The second
block is more complex and students apply neura networks
to a @ntrol problem. This block is proposed to students
more familiarised with dbject-oriented programming and
control systems.

[

[2

(3

4

(8l

REFERENCES

Acogal ., Marichd G.N., MorenoL., Rodrigo J.J., HamiltonA.,
Méndez J.A. (1999). Robotic system based on reura network
controllers Artificial inteligencein Engineering, 13, number 4, pp
393-398.

Campoalucc P., Marchegiani A., Uncini A., PiazaF. (1997).
Signal-Flow-Graph Derivation d On-line Gradient Learning
Algarithms 1EEE International Conference on Neural Networks,
Hougon (USA).

Gonzédlez E.J., Moreno L., Hamilton A., Pifieiro J.D., Marichd R.,
Marichd, G.N. (2000). Evenet2000: A New Java-Based Neural
Network Toolkit. Proceedings of the Second ICSC Symposium on
Engineering of Intelligent Systems, Paidey, June 2000.

Gonzaez E.J., HamiltonA., MorenoL., Sigut J., Marichal R.
(2001) Evenet-2000: Designing and Training Arbitrary Neurd
Networksin Java. Bio-Inspired Applications of Conectionism,
Springer Verlag, LecturesNotesin Computer Science, 2085.

Haykin, S. S. (1998) Neural Networks A Comprehensve
Foundation. Prentice Hall.

Nergaard M., Ravn O., Pousen NL.K., Hansen L. K. (2000) Neura
Networksfor Modelling and Control of Dynamic Systems. Springer-
Verlag, London.

Osowski S, Herault J. (1995) Signal Flow Graphsasan Efficient
Tod for Gradient and Exadt Hessan Determination. Complex
Systems, 9, 1995.

WanE. A. and BeaufaysF. (1994) Relating redl-time
backpropagation and badkpropagetion through time. An applicaion
of flow grgphinterredprocity. Neural computation, 6, number 2, pp.
296-306.

	Conference Program
	Author Index
	Main Menu

