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Extending classical pipeline models with Neural

Nets
Gerhard Geiger, Drago Matko, Thomas Werner

Abstract— The paper deals with the comparison of dif-

ferent mathematical models with regard to their usage in

the model-based leak-monitoring scheme. The pipeline is

represented as a two - port system. Four models are com-

pared: a nonlinear distributed parameters model, a lin-

earised model whose transcendent transfer function is ob-

tained by a Laplace transformation and corresponding ini-

tial and boundary conditions, a simplified lumped parame-

ter model and an extended neural net based model. All four

models are tested on a real pipeline data with an artificially

generated leak.

Keywords— Environmental and Safety Systems, Fault and

Uncertainty Modelling in Dynamical systems, Process Su-

pervision, Neural nets

I. Introduction

Many of fluids transported by pipelines are in some sense
dangerous. It is therefore often necessary to install leak-
monitoring systems, especially due to legal regulations.
Such systems can be treated as Technical Fault Diagnosis
Systems [5]. Different methods are available, e.g. volume
balance method, pressure wave method and gradient inter-
section method [3]. This paper is concerned with a model-
based approach – with the use of a mathematical model
description of a pipeline in the form of a pipeline observer.
In the case of a leak, the leak flow and leak position can be
calculated [4].

The aim of this paper is to compare different mathe-
matical models with regard to their usage in the model-
based leak-monitoring scheme. The basic model is a non-
linear distributed parameter model obtained by applying
the principle of mass conservation and Newton’s second
law of motion [11]. Next two models are obtained by lin-
earization and Laplace transformation leading to Multi-
Input Multi-Output (MIMO) models [6], [7]. Last model
is a neural net model which is is an addendum to non-
linear distributed parameter model and is obtained by the
generalization of one of the linear models.

II. Observer Based Leak Monitoring

Observer-based leak monitoring requires a pipeline
model in the form of a pipeline observer to compute the
pipeline states assuming no leak. Further discussion will
be focused on a discrete-time data processing scheme. The
difference between the measured and estimated flow at inlet
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and outlet

x(k) = v(0, k) − v̂(0, k) (1)

y(k) = v(L, k) − v̂(L, k) (2)

where v(0, k) and v̂(0, k) are the measured flow and the flow
of the observer at the inlet of the pipeline, while v(L, k) and
v̂(L, k)) are the measured flow and the flow of the observer
at the outlet of the pipeline, will be referred to as residuals.
The leak flow and position can be estimated by

vleak = x(k) − y(k) (3)

xleak(k) =
−y(k)

x(k) − y(k)
× Lp (4)

where Lp denotes the length of the pipeline [4]. In order to
eliminate flow measurement noise, a filter will be applied
to the residuals leading to

v̂leak = xf (k) − yf (k) (5)

x̂leak(k) =
−yf (k)

xf (k) − yf (k)
× Lp (6)

with

xf (k) =
1

N
×

N
∑

i=1

x(k − i + 1) (7)

and

yf (k) =
1

N
×

N
∑

i=1

y(k − i + 1) (8)

In the above equations N is the depth of a FIFO-buffer
and should be chosen so as to be appropriate for the noise
statistics. In Figure 1 all basic parts of the described ap-
proach to the leak detection and classification can be seen.

III. Models for the observer design

Observer-based leak detection and localization schemes
require a pipeline model to compute the states of a pipeline
without a leak [2], [10]. The basic mathematical model of a
pipeline is a nonlinear distributed parameter model. It de-
scribes the one-dimensional compressible fluid flow through
the pipeline and is represented by a set of nonlinear partial
differential equations [12]. No general closed-form solution
of this equations are known yet. Numerical approaches like
the Method of Characteristics must be used instead [1]. If
the pipeline is operating in the vicinity of a working point,
a linear model can be exploited. The transfer function
of such model is obtained by the Laplace transformation
of the linearized equations and corresponding initial and



MED03 2

 


 


F
 P
 P
 F
Inlet


p(L,k)


Model of the pipeline


Leak classification


p(0,k)


v(0,k)


x(k)
 y(k)


Stage 1


Stage 2


Stage 3


Stage 4


v(L,k)


v(0,k)
 v(L,k)


x_leak
 v_leak


Fig. 1. Observer based leak monitoring

boundary conditions. The resulting transfer function is
transcendent. Simple models of the pipeline in the form of
a lumped parameter system can be obtained by a Taylor
series expansion of transcendent transfer functions. The re-
sulting algorithms are less time-consuming and hence bet-
ter suited for critical real time applications. With neural
net models the gray box approach is used: They are only
an addendum to nonlinear distributed parameter models;
their structure is obtained from linear models, as are the
initial values of the weights. After teaching a nonlinear
model is obtained. All four mathematical models of the
pipeline will be given next. For simplicity reasons outputs
of the models (which are actually outputs of observers) will
be denoted by p and v rather than p̂ and v̂ respectively.

A. Non – linear pipeline model with distributed parameters.

The non-linear pipeline model with distributed param-
eters is obtained by application of the physical principles
of mass conservation and Newton’s second law. Apply-
ing these equations leads under the assumptions that the
fluid is compressible, viscous, isentropic, homogenous and
one-dimensional to the following coupled non-linear set of
partial differential equations [1], [13]:

1

a2ρ̄

∂p

∂t
= −∂v

∂x
(9)

ρ̄
∂v

∂t
+ ρ̄g sin α +

λ(v)ρ̄

2D
v|v| = −∂p

∂x
(10)

where p is the pressure, v is the flow velocity, a the ve-
locity of sound, ρ̄ the constant density of the homogenous

fluid, α the pipeline inclination, λ the dimensionless friction
coefficient and D the diameter of the pipeline. The conti-
nuity and momentum equations (9) and (10) form a pair of
quasilinear hyperbolic partial differential equations in term
of two dependent variables, mass flow velocity v(x, t) and
pressure p(x, t), and two independent variables, distance
along the pipeline x and time t. A general solution is not
available; however, a transformation into four ordinary dif-
ferential equations grouped to two pairs of equations by the
characteristics method is possible [14]. This method was
realized in a special program PIPESIM which was used
for the simulation of the nonlinear distributed parameters
model.

B. Linear pipeline model – distributed parameters.

Nonlinear Eqns.(9, 10) are linearised and written in a
form using notations common in the analysis of electrical
transmission lines. Also, the gravity effect can be included
into the working point so α = 0 is supposed. The corre-
sponding system of linear partial differential equations is

L
∂v

∂t
+ Rv = −∂p

∂x
(11)

C
∂p

∂t
= −∂v

∂x
(12)

where L = ρ̄, R = ρ̄λ|v̄|
D

(v̄ is the flow velocity at the work-
ing point) and C = 1

a2ρ̄
are the inertance (inductivity), re-

sistance and capacitance per unit length, respectively. In-

troducing the characteristic impedance ZK =
√

Ls+R
Cs

and

n =
√

(Ls + R) · Cs the linearised model of the pipeline
can be written in one of the following four forms which
differ from each other with respect to the model inputs
(independent quantities) and outputs (dependent quanti-
ties)
• Hybrid representation: Inputs V0,PL, outputs VL,P0:

[

P0

VL

]

=

[

1
cosh(nLp) ZK tanh(nLp)

− 1
ZK

tanh(nLp)
1

cosh(nLp)

]

[

PL

V0

]

(13)

• Hybrid representation: Inputs VL,P0, outputs V0,PL:

[

PL

V0

]

=

[

1
cosh(nLp) −ZK tanh(nLp)

1
ZK

tanh(nLp)
1

cosh(nLp)

]

[

P0

VL

]

(14)

• Impedance representation: Inputs V0,VL, outputs P0,PL:

[

P0

PL

]

=

[

ZK coth(nLp) ZK
1

sinh(nLp)

−ZK
1

sinh(nLp) −ZK coth(nLp)

]

[

V0

VL

]

(15)

• Admittance representation: Inputs P0,PL, outputs V0,VL:

[

V0

VL

]

=

[

1
ZK

coth(nLp) − 1
ZK

1
sinh(nLp)

1
ZK

1
sinh(nLp) − 1

ZK
coth(nLp)

]

[

P0

PL

]

(16)
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Linear models with distributed parameters were simulated
by the convolution of the input signals and impulse re-
sponses of the corresponding transcendent transfer func-
tions. The impulse responses were obtained by the inverse
Fourier transformation of frequency responses. They were
calculated in the discrete form and numeric problems were
encountered resulting in small oscillations on both sides of
impulses which represent the real impulse response. After
applying the Hamming window to the frequency response
the oscillations were nearly reduced, but the impulse re-
sponse become ”blurred”. The reason for this is that the
multiplication of the frequency response by the Hamming
function 1

2 ∗(1+cos 2∗π∗m
N

) = 1
2 + 1

4 ∗e 2∗π∗m
N )+ 1

4 ∗e− 2∗π∗m
N ),

where m is the frequency index and N is the number of
points, results as the sum of three functions in the time do-
main. According to the theorems of the Fourier transforms,
the first function is the half of the real inverse Fourier trans-
form, the second and the third ones are one fourth of the
real inverse Fourier transforms shifted for one sample to
the right and left respectively. Since the sampling time
was small this distortion has practically no effect on the
calculated impulse responses for the function which has no
immediate response ( 1

ZK

1
sinh(nLp) ). However with functions

with immediate response ( 1
ZK

coth(nLp) the one sample
shift to the left represents the shift to the right for N − 1
samples, i. e. to the end of the periodic signal. This effect
results in an incorrect impulse response. It was eliminated
by setting the first value of the impulse response to the sum
of the first and last value and by setting the last value of
the impulse response to zero.

C. Linear pipeline model – lumped parameters.

Each of the transcendent transfer functions of the
impedance and admittance forms can be presented as a sec-
ond order transfer function by expanding the transcendent
transfer function into a Taylor series. Only admittance
representations, used in the observer based leak monitor-
ing will be given here and are as follows:

1. Admittance representation: 1
ZK

coth(nLp)

• Input admittance at downstrem reservoir: V0

P0

∣

∣

PL=0

• Negative output admittance at upstream reservoir:
−VL

PL

∣

∣

P0=0

1

ZK

coth(nLp) =

√
Cs coth(

√

(Ls + R)CsLp)√
Ls + R

≈

≈ ( 1
2Lp

2LC + 1
24Lp

4R2C2)s2 + 1
2Lp

2RCs + 1
1
3LP

3RLCs2 + (LpL + 1
6Lp

3R2C)s + LpR

(17)

This transfer function describes the change of the flow ve-
locity at one end of the pipeline if the pressure is changing
at the same end while the pressure at the other end remains
constant.
2. Admittance representation: 1

ZK sinh(nLp)

Negative reverse transadmittance at upstream reservoir:
− V0

PL

∣

∣

P0=0

Transadmittance at downstream reservoir: VL

P0

∣

∣

PL=0

1

ZK sinh(nLp)
=

√

Cs
Ls+R

sinh(
√

(Ls + R)CsLp)
≈

≈ 1
1
3LP

3RLCs2 + (LpL + 1
6Lp

3R2C)s + LpR

(18)

This transfer function describes the change of the flow ve-
locity at one end of the pipeline if the pressure is changing
at the other end while the pressure at the same end remains
constant.
Both transfer functions (17) and (18) have a static gain

1
LpR

which corresponds to the static change of the flow due

to changing pressure.

D. Yet another linear model of the pipeline

In this Section a linear model will be derived which en-
ables a simple design of Neural net models. The flow at
the outlet of the pipeline can be expressed from Eq. (16)
as follows:

VL =
2

enLp − e−nLp

P0

ZK

− enLp + e−nLp

enLp − e−nLp

PL

ZK

=
2e−nLp

1 − e−2nLp

P0

ZK

− 1 + e−2nLp

1 − e−2nLp

PL

ZK

(19)

or equivalently

VL − e−2nLpVL = 2e−nLp
P0

ZK

− PL

ZK

− e−2nLp
PL

ZK

(20)

The same flow can be expressed also from Eq. (13):

VL =
2

enLp + e−nLp
V0 −

enLp − e−nLp

enLp + e−nLp

PL

ZK

=
2e−nLp

1 + e−2nLp
V0 −

1 − e−2nLp

1 + e−2nLp

PL

ZK

(21)

or equivalently

VL + e−2nLpVL = 2e−nLpV0 −
PL

ZK

+ e−2nLp
PL

ZK

(22)

Adding Eqns. (20) and (22) and dividing by 2 we get the
equation which describes the outlet flow in dependence of
the inlet flow and both (inlet and outlet) pressures:

VL = e−nLpV0 + e−nLp
P0

ZK

− PL

ZK

(23)

In the same way the inlet flow can be rewritten from
Eq. (16):

V0 = − 2

enLp − e−nLp

PL

ZK

+
enLp + e−nLp

enLp − e−nLp

P0

ZK

= − 2e−nLp

1 − e−2nLp

PL

ZK

+
1 + e−2nLp

1 − e−2nLp

P0

ZK

(24)



MED03 4

or equivalently

V0 − e−2nLpV0 = −2e−nLp
PL

ZK

+
P0

ZK

+ e−2nLp
P0

ZK

(25)

and also from Eq. (14):

V0 =
2

enLp + e−nLp
VL +

enLp − e−nLp

enLp + e−nLp

P0

ZK

=
2e−nLp

1 + e−2nLp
VL +

1 − e−2nLp

1 + e−2nLp

P0

ZK

(26)

or equivalently

V0 + e−2nLpV0 = 2e−nLpVL +
P0

ZK

− e−2nLp
P0

ZK

(27)

Adding Eqns. (25) and (27) and dividing by 2 the equation
which describes the inlet flow in dependence of the outlet
flow and both (inlet and outlet) pressures is obtained:

V0 = e−nLpVL − e−nLp
PL

ZK

+
P0

ZK

(28)

Equations (23) and (28) indicate that the flow on one
side of the pipeline depends on the pressure on the same
side (corresponding transfer function is 1/ZK) and on the
pressure and flow on the other side of the pipeline (corre-
sponding transfer functions are e−nLp/ZK and e−nLp re-
spectively). This fact will be used when designing the neu-
ral net model of the pipeline.

E. Neural Net model of the pipeline

The models derived in sections III-B, III-C and III-D
are linear models. The pipeline is, however a nonlinear
process. Neural nets are capable to model nonlinear phe-
nomena, so it seems to be reasonable to apply them. How-
ever neural nets are essentially lumped parameter systems.
Lumped parameter models in Section III-C were obtained
from distributed parameter models in Section III-B by ex-
panding the transcendent transfer function in Taylor series.
Such models can be easily realized by a neural net - actu-
ally there is only one linear neuron and some delays at
the input and feedback. So one way to construct a neural
net model is to extend a linear lumped parameter model,
i.e. a linear neuron, by one or several layers. A draw-
back of this model is that it does not involved the time
delays, which are inherently involved in a distributed pa-
rameter model. An other way to design a neural net model
of the pipeline is to use models of Section III-D An at-
tempt to approximate the transcendent transfer functions

1/ZK =
√

Cs/
√

Ls + R and e−
√

(Ls+R)·CsLp by rational
ones was made in [8]. Following the same paradigm a neu-
ral net could be designed; but since the square root has
no Taylor series expansion around zero (in the mentioned
paper the expansion was done by Padé approximation and
is not valid for s = 0), the long term stability of such mod-
els is doubtful. Approach used in this paper is similar to
the previous mentioned one, however the neural net is used

for correction only. Actual pipeline neural net model con-
sist of two parts. Basic part is the nonlinear distributed
parameter model (the so-called PIPSIM model). Parallel
to it there is a neural net correction model, with outputs
ṽ(0, k) and ṽ(N, k) which are corrections of the inlet and
outlet velocities respectively. The inputs to the neural net
are determined by equations (23) and (28) which indicate
that the flow at inlet depend on the pressure at inlet (trans-
fer function 1/ZK), on the pressure at the outlet (transfer
function e−nLp/ZK) and on the flow at the outlet (transfer
function e−nLp respectively). Since the transfer function
e−nLp involves a time delay (time needed by waves to travel
along the pipeline is N time steps, where N is the number
of segments in the PIPESIM model), N -steps delayed sig-
nals of p(N) and v(N) are used as input to the neural net.
Additional n input delays are used to enable the neural
net to correct dynamic phenomena which are not involved
in the PIPESIM model. So the inlet and outlet velocity
corrections can be written as

ṽ(0, k) = f(p(0, k), . . . , p(0, k − n), p(N, k − N), . . . ,

p(N, k − N − n), v(N, k − N), . . . , v(N, k − N − n))

(29)

ṽ(N, k) = f(p(0, k − N), . . . , p(0, k − N − n), p(N, k),

. . . , p(N, k − n), v(0, k − N), . . . , v(N, k − N − n))

(30)

Equations 29 and 30 were realized by two neural nets. A
three layers (3+8+1 neuron) neural net, depicted in Fig. 2
has proven itself as suitable trade-off between complexity
and time needed to be taught. A tapped delay line with
delays of 1 to 11 seconds was used at the input which has
made the neural net dynamic.
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Fig. 2. Neural net

IV. Application to a real pipeline

The models were tested using data obtained by a leak ex-
periment on a real pipeline with the following data: Length
of the pipeline Lp = 9854 m, diameter D = 0.2065 m, rela-
tive roughness kc = 0.0602 mm, inclination α = −0.1948 o

and the fluid data: Density ρ = 680 kg/m3, kinematic vis-
cosity v = 7.0 × 10−7 m2/s and velocity of sound a = 951
m/s. The stationary fluid velocity prior to the leak occur-
rence was 2.45 m/s. A 5%-leak rate ( 0.1225 m/s corre-
sponding to 14.77 m3/h) was generated at t = 473 s at
56.4 % of the pipeline length where the outrunning fluid
was filled into a tank lorry.

The parametrization of programs was done by an other
no leak experiment with similar (2.46 m/s) stationary fluid
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Fig. 3. Estimated leak rate (upper) and estimated leak location
(lower) for the PIPESIM (left) and the Linear distributed parameter
model (right) models respectively

velocity. By this experiment a shunt valve at the beginning
of the pipeline was closed leading to a quick drop in pres-
sure and causing fluid transients. For the PIPESIM pro-
gram only the relative roughness was calculated from the
stationary working point. For both linear models addition-
ally the stationary working points (at the inlet and outlet
respectively) of the mentioned experiment were used. Neu-
ral net was taught by the residuals (without leak) of the
PIPESIM results.

In Figures 3 and 4 the estimated leak rate and leak loca-
tion are depicted for the PIPESIM, the Linear distributed
parameter, the Linear lumped parameter and the Neural
net model, respectively. Standard deviations (with respect
to the real mean values) and deviations of the mean values
of the rate and position errors for all models in percent are
depicted in Tables I and II respectively.

The PIPESIM program results are biased in both, the es-
timation of leak rate and position. This is due to the bias
in the fluid velocity sensors and due to the non-modelled
dynamics. All other methods exhibit a small bias (approx-
imately 3%) for the leak rate. This is probably due to ap-
proximate evaluation of the real leak rate, which was done
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Fig. 4. Estimated leak rate (upper) and estimated leak location
(lower) for the Linear lumped parameter (left) and the Neural net
models (right) respectively

manually. Linear models use the working point of a similar
experiment, so the offsets in leak rate (which are actually
the differences of residuals) were eliminated. However bias
in the estimate of the leak position remained due to non-
modelled effects. Some of these effects were incorporated
in the neural net model, which has the smallest bias of the
estimated position.

TABLE I

Standard deviations of the rate and position errors for all

models in percent

% PIPESIM Lin. distr. Lin. lump. NNet
Rate 28.4249 8.7816 8.6543 9.3034

Position 9.4026 10.8520 10.8318 4.2284

TABLE II

Deviation of the mean values of rate and position errors

for all models in percent

% PIPESIM Lin. distr. Lin. lump. NNet
Rate 27.1487 3.0323 3.2328 3.8471

Position 6.3811 9.6956 9.6815 0.5350
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V. Conclusion

Four models of the pipeline: the nonlinear distributed
parameters model, the linear distributed parameters
model, the linear lumped parameters model and the Neu-
ral net model were used for leak detection and localization.
The nonlinear distributed parameters model was simulated
using a special program PIPESIM. In its original form it
serves biased (in leak rate and position) results due to off-
sets in sensors and some non-modelled effects. Linear mod-
els eliminate the sensor offsets by definition, however they
provide useful results only for very small changes of the
signals around a working point. Besides they can not cope
with comprehensive nonlinear effects of the pipeline, so the
leak position estimate is biased. Best results were obtained
with an neural net model as an addendum to the PIPESIM
model. The neural net eliminates the sensor bias and in-
corporates some nonlinear effects which are not modelled
by the PIPESIM program.
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