
A Fuzzy Controller based on Fuzzy Lyapunov Synthesis
for a Single-Link Flexible Manipulator

A. Mannani, H.A. Talebi,
M7823272@cic.aut.ac.ir,  Alit@cic.aut.ac.ir

Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran.

Abstract
In this paper tracking control for a single-link flexible
manipulator is considered. Then the controller is designed
based on the fuzzy Lyapunov synthesis (FLS). The control
strategy assumes no knowledge about the system dynamics,
except for some structural properties of the system model
which are proved first. Thereby, some important problems
regarding the application of the FLS particularly to
nonminimum-phase systems are considered too which have
not been discussed in the literature yet. Finally, the
simulation results compare the application of this
methodology with that of a joint PD controller to prove the
effectiveness of the proposed algorithm.
Keywords: Lyapunov function, stability, tracking, fuzzy
control, internal dynamics, flexible manipulator

1. Introduction

Lightweight manipulators offer many challenges in
comparison with rigid and bulky robot manipulators.
Smaller energy consumption, larger payload-to-arm weight
ratio and faster movements are some advantages. Because
of their characteristics, this class of manipulators are
specially suitable for a number of non-conventional robotic
applications, including space missions as well as
applications in heavy, large-scale and macro-micro
manipulators [1] where it is no longer possible to assume
negligible link deformations. All of these factors make the
study of flexible-link manipulators, interesting.

The control of flexible robot arm suffer from the lack of
an independent control input for each degree of freedom
and the non-collocated nature of sensors and actuators
resulting in the nonminimum phase behavior of the tip.
Practical considerations like joint friction add to these, too.
In the literature, several different kinds of controllers have
been used for a single-link flexible manipulator. The joint
PD controller while ensuring the closed-loop stability, can
not damp the link vibrations [2]. Many controllers such as
LQG, ∞H and input shaping as well as singular
perturbation, feedback linearization, manifolds and output

redefinition techniques have been used [1,2].
All of the model-based classic or modern controllers

suffer from the lack of an exact simple-enough model of the
system and this calls for the use of the intelligent
controllers. Neural network controllers assuming a priori
knowledge of the system have been used as an identifier [3,
4] or an observer [5] or together with a singular perturbation
controller to model and control the unknown dynamics of
the system. In [2], four controllers are suggested for
tracking of a suitable defined output with the first two of
them requiring the linear model of the system and the others
release this need and the results have been tested both
theoretically and experimentally. Fuzzy controllers in the
supervisory form to tune the PID coefficients [6] or
selecting the lower-order controllers [7] have been used too.
In [8], a fuzzy weight is used to combine the output of two
SMC controllers for joint tracking and vibration damping.
In [9], the linguistic model of the system has been used to
derive fuzzy relations suitable for quantitative analysis and
inverse-model control of the system. In [10], a three-stage
method has been suggested to formulate the expert
knowledge for tracking and vibration damping of a single-
link flexible manipulator.

Most of these works however, suffer from the lack of a
systematic design and suitable framework for stability and
performance analysis. Model-based fuzzy controllers are
one of the solutions to this problem [11]. The scheme is
based on Takagi-Sugeno (TS) models, which employ linear
models of the system. Stability and performance indices
form several LMIs to be solved. Practical system modelings
are prone to error and uncertainties always exist in system
models. In that case, model-free control methods are the
best solutions. This however, will complicate the stability
analysis of the closed-loop system. The authors of [12] use
the phase-diagram reasoning to derive the stabilizing fuzzy
rules for the error dynamics together with a fuzzy weight. In
[9], fuzzy relations and their converted matrices are used for
modeling and control of a flexible-link manipulator. In [12],
a rule base was derived using phase portrait of error with an
adjustable parameter to control a flexible-link



manipulator. In [13], a fuzzy controller was designed based
on the sliding mode control with the idea of dividing the
trajectory to several non-isoclinal segments in the phase
plane and regard them as piecewise sliding surfaces. Then,
two fuzzy controllers were designed, one for achieving
hitting motion and the other for preserving the sliding
condition for each region. In [14], a fuzzy hyperbolic state
space model has been suggested and a discussion about the
stability and optimal performance was given. The authors
also introduced a fuzzy Lyapunov synthesis and applied it
to some simple minimum-phase SISO problems. The idea is
to choose a Lyapunov function candidate and derive the
fuzzy rules to make its derivative negative. The only
knowledge about the model was the output relative degree.

This paper inspects this idea more through showing the
applicability of the FLS to the tracking problem of a single-
link flexible manipulator, which is a nonmimimum phase
system. The control strategy assumes no knowledge about
the system dynamics, except for some structural properties
of the system model which are proved first. The control
decision rules are essentially the same as those suggested in
[14] with suitable modifications to improve the performance
and address the problem of internal dynamics.

The outline of the paper is as follows: in Section 2, the
problem formulation is given. Section 3 proves some
structural properties of the model. In Section 4 the FLS is
introduced and applied, and in Section 5, simulation results
are presented. Finally conclusions are given in Section 6.

2. Manipulator model

The dynamics of a macro-micro manipulator with locked
macro joints can be given by [15]:
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where ],,,[ TTTTT qqX &&θθ= , ℜ∈θ  is the joint angle,
mq ℜ∈ is the vector of flexible modes, 1h and 2h are the

coriolis/centripetal forces, 1g and 2g represent gravity
forces, 1f and 2f are the joint friction and structural
damping terms, and M and K are the positive-definite
mass and stiffness matrices, respectively. Define
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The end-effector of the micro can be expressed as:
qy φθ += (3)

where φ is a constant matrix. The goal of the control is that
y tracks a reference trajectory while the closed-loop and

internal dynamics are stable. Then, by successive
differentiation of the output, we have

BuAy +=&&

)( 21
TNNB φ+=

)( 111 gfhBA ++−= ))(( 22232 gqfKqhNN ++++− &φ (4)
Since M is positive definite, N and hence 1N are

positive definite. By continuity, B is positive definite in a
neighborhood of 0=φ and the output relative degree is two.

3. Structural properties of the system model

Most practical systems have complicated nonlinear and
uncertain models. However, the dynamics of such systems
are based on physical laws, which result in some structural
mathematical properties. Although the exact model is
difficult to derive, those properties are known and held in
the presence of uncertainties. Here two properties of the
system model are stated and proved.
Claim 1: The coefficient B in (4) is independent of the joint
angle.
Claim 2: The sign of B in (4) is independent of the
vibration modes.
Proofs: see the appendix.

As a result of claim 2, the sign of B can be seen as for a
rigid link. Moreover, it can be seen that this sign depends on
the vector φ  (i.e. output definition), being positive for hub
angle. Therefor, once the sign of B is determined, it remains
unchanged versus hub angles and link deflections. Expert
knowledge can be used to finding it positive as in case of a
single rigid link like inverted pendulum.

4. The fuzzy lyapunov synthesis (FLS)

The FLS as introduced in [14] is a fuzzy model-free
approach based on first selecting a Lyapunov function
candidate and then make its derivative negative by
designing control rules. In [14], the FLS was applied to
some minimum phase SISO plants where only the output
relative degree and some fuzzy rules defining the linguistic
relation between the input and the output were assumed
known. No direct insight to the system structural dynamic
properties was given there and hence the applicability of the
FLS and the stability analysis were less tractable. Here, the
formulation of [14] is reviewed to show the essentials of the
theory and its control rules are modified to illustrate their
applicability to nonminimum phase systems and improve
the performance.

4.1. The basic idea

Consider the nonlinear affine system
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The control objective is that the error ryye −=  goes to
zero asymptotically where ry  is the reference trajectory. To
this end. one way is to choose a positive-definite function
V  of the error (and its related derivatives/integrals) as a
Lyapunov function candidate and design u  to make its
time-derivative negative along the system trajectory, i.e.

0,0 <> VV & (6)
If the knowledge about (5) is limited to some fuzzy
descriptions of the system, (6) may be used again, but this
time as a linguistic inequality yielding u  in terms of
mamdani or Takagi-Sugeno IF-THEN conditions. This
methodology is called fuzzy Lyapunov synthesis. Like its
classical counterparts, choosing V  except in simple cases is
not an easy task. Other than positive-definiteness, several
other measures like simpler operations and more physical
insight may be important as well. As explained, the control
strategy of FLS is based on designing u  to make the V&

negative, therefor one key point is how u  appears in V&  To
investigate this, let the output relative degree in (5) be r  i.e.

0)(,,)()()( ≠⊂Ω∈∀+= xBRxuxBxAy nr  (7)
where A  and B  are functions of the state vector x  Some
immediate considerations are of main concern.

First, it can be seen that to apply the FLS to this system,
V  should be chosen such that V&  includes u .

Second, A  and B  depend on internal as well as external
dynamics of the system and therefor the stability of the zero
dynamics should be ensured too. Since V  is chosen based
on only the output error and its derivatives/integrals, it does
not include all the system states and as a result 0<V&  does
not guarantee the stability of the zero dynamics. For
minimum phase systems, the zero dynamics is always stable
and there is no problem with this point. In case of
nonminimum phase systems, different approaches like the
output redefinition or adding a state feedback of the
unobservable states to locally stabilize them may be
adopted appropriately.

Third, the condition 0)( ≠xB  is a local controllability
condition which is necessary for all control strategies
including FLS to perform efficiently.

As a result, it is seen that although A  and B  are not
known and this makes the Lyapunov reasoning fuzzy, but

Table 1. The first set of FLS control rules
If e  is 1pos  and e&  is 2pos  then u  is 3neg

If e  is 1pos  and e&  is 2neg  then u  is 3zero

If e  is 1neg  and e&  is 2pos  then u  is 3zero

If e  is 1neg  and e&  is 2neg  then u  is 3pos

certain structural properties of the system can be used to
make the analysis and design of the fuzzy controller into a
systematic rather than try and error procedure.

4.2. The control Law

The Lyapunov function candidate can be chosen based
on several objectives. Some possible approaches are as
follow:
1. Define a Lyapunov function candidate to guarantee the
stability of the internal dynamics and to meet other
performance measures. This is often very complicated.
2. Tune the parameters of the Lyapunov function
candidate according to the other performance measures
and/or internal stability.
3. Add other control terms to the main controller term
such that each term satisfies one of the other performance
measures and/or internal stability.

One has to be careful in selecting the last two approaches
such that the main control term is effective.

In this section two Lyapunov function candidates
suggested in [14], are used to derive the FLS control rules.
Although these two functions, are simple functions of
output error, its derivative and its integrals, they give good
physical insight to the problem from the viewpoint of a PID
controller. These functions and their derived FLS control
rules in [14] are briefly reviewed and modified then to
improve the performance and stabilize the internal
dynamics. The first function and its time derivative are
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In [14] four FLS control rules were derived assuming
ue ∝&&  with e and e& as premise variables as summerized in

Table 1. Using ryye &&&&&& −= and (4), V& can be rewritten as:

)()()()( BuAeeyeyyeeeeV rr ++−=−+= &&&&&&&&&&&  (9)
Now, recalling from section 3 that the sign of B in (4) is
positive, the same rules of Table 1 are used with rye &&− and
e& as premise variables. Note that the term Ae& in (9) was not
considered in [14] and behaves like an uncertainty in this
formulation whose effect should be dominated by the effect
of the FLS control term only if the internal dynamics is
stable. This problem is discussed later. The FLS rules based
on (8), do not generate effective control signals in case of

Table 2. The second set of FLS control rules
Rule No. 1 2 3 4 5 6 7 8

e + + - - + + - -

e& + + + + - - - -

∫ τed + - + - + - + -

u NB NM Z NS PS Z PM PB



small eye r &&& )( − . This can be well understood when tracking
step-like references where despite the large steady state
errors the controller behaves slowly. As a remedy to this
problem, the second Lyapunov function candidate may be
chosen. In [14], this function has been used to track step
references with no reason stated, but it seems quite true to
apply it in this case. This function is
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where the related control rules are given in Table 2 with e ,
e& and ∫ edt as premise variables. Substituting e with rye &&− ,
the same rules are used here.

Another goal is to stabilize the internal dynamics of the
system. To this end, the following approaches can be taken
I. The control signal can be further limited:
If abs (deflection) is high, Then    (LM)i    is    0
If abs (deflection) is small, Then   (LM)i    is    1
(control signal)i =  (LM)i * iu   ni ,...,1= (11)
The cost paid for less vibration is a slower response.
II. Rearranging the terms in (4), we have

))(()( 111212 gfhNNBuqfKqq T +++−=++ φφ &&&

θφ &&& −+−+− )()( 22232 qfKqNhNN  . (12)
Qualitatively speaking, adding a state feedback of the
vibration modes may help the damping of the internal
modes. This is similar to the term used in [17,18] based on a
sensitivity analysis. The new term is added as

)](**)**[( 321 FLSs uabsZqZqZu +−= & (13)
where 1Z  and 2Z  are determined according to the modal
damping considerations and the bounds on positive-definite
matrices 2f and K . )(*3 FLSuabsZ  is added so that the
effect of the FLS control term holds. ]1,0[3 ∈Z can be
determined using some fuzzy rules based on the tip
deflection. Due to damping time constant of the modes, this
term is effective for slow trajectories.
III. Output redefinition techniques may be used to choose a
suitable minimum phase output for the system [2]. This
approach has an indirect view to output error.

5. Simulation results

Tracking of both the sinusoidal and step trajectories were
considered and the results are shown in figures 1 to 3. In
each set of figures, from left to right, top to bottom the
signals of the actuator (Nm), tip deflection (m), hub angle
(rad) and tip pseudo angle (rad) have been shown
respectively without/with the hub viscous friction [2]. For a
planar single-link flexible manipulator with two pseudo-
clamped [16] vibration modes, the system model was
derived [15] using the parameters of Table 3. The output

Table 3. Model parameters
Length ( m ),Width ( mm ),

Heigth ( mm )
0.6, 50, 1

Hub Radius ( mm ),Hub Inertia
( 2Kgm )

40, 0.63

Young Modulus )(PE , Stiffness
Matrix )(NmK

200e+6,
)74.121,604.11(diag

Tip Load and Inertia (kg, 2Kgm ) 1.5, .06

First Frequency , Second
Frequency ( Hz )

0.5476, 1.837

Viscous Friction ( radNms / ),
Coulomb Friction ( Nm )

0.0018,
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was selected to be the tip pseudo angle [2]. The second
approach stated in Section 4.2 was also used for improving
the internal stability. Simulation results for a joint-PD
controller in tracking the sinusoidal trajectory are given in
Figure 1. Figures 2 and 3 show the system responses for
sinusoidal and step trajectories. The membership functions
are of the gaussian type [14]. As seen, the results show
considerable improvements for the fuzzy controllers
comparing to the joint-PD controller.

6. Conclusions

The idea of FLS was investigated and extended through
its application to the tracking control of the nonminimum
phase nonlinear system of a flexible manipulator. Only the
output relative degree and some structural properties of the
model were used. This methodology provides a framework
for stability and performance analysis of the system.
Simulation results show the effectiveness of the FLS despite
the nonlinearity and uncertainties of the model.

References
 

[1] Mannani, A., Fuzzy Control of a Macro-Micro Manipulator
and Its Implementation, M.Sc. thesis, Amirkabir University of
Technology, 2002.
[2] Talebi, H.A., R.V. Patel, and K. Khorasani, Control of
Flexible-Link Manipulators Using Neural Networks, Lecture
Notes. Cont. Inf. Sci. 261, Springer Verlag, 2001.
[3] J.D. Donne, U. Ozguner, “Neural Control of a Flexible-Link
Manipulator”, IEEE ICNN, 1994, pp. 2327-2332.
[4] M.K. Sundareshan, C. Askew, “Neural Network-Based
Payload Adaptive Variable Structure Control of a Flexible
Manipulator System”, IEEE ICNN, 1994, pp. 2616-2621.
[5] W. Cheng, J.T. Wen, “A Neural Controller for the Tracking
Control of Flexible Arms”, IEEE ICNN, 1993, pp. 749-754.



[6] S. Tzafestas, N. Papanikolopoulos, “Incremental Fuzzy Expert
PID Control”, IEEE Trans. Ind. Elec., Vol. 37, 1990, pp. 365-371.
[7] V.G. Moudgal, W.A. Kwong, K.M. Passino, and S. Yurkovich,
“Fuzzy Learning Control for a Flexible Manipulator Control”,
ACC., June 1994, pp. 563-567.
[8] N.M. Kwok, N.M. Lee, “Control of a Flexible Manipulator
Using a Sliding Mode Controller with a Fuzzy-Like Weighting
Factor”, IEEE ISIE, 2001, pp. 52-57.
[9] B. Yoo, S. Jeong, and W. Ham, “Hybrid Control of Flexible
Manipulator Based on Fuzzy Relations”, IEEE ICRA, 1996, pp.
817-823.
[10] J.X. Lee, G. Vukovich, “Fuzzy Logic Control of Flexible-
Link Manipulators: Controller Design and Experimental
Demonstrations”, IEEE IROS, 1998, pp. 2002-2007.
[11] Tanaka, K., H.O. Wang, Fuzzy Control Systems Design and
Analysis, John Wiley and Sons Inc., 2001.
[12] C. Chen, Y. Yin, “Fuzzy Logic Control of a Moving Flexible
Manipulator”, IEEE ICCA, 1999, pp. 315-320.
[13] W.J. Wang, H.R. Lin, “Fuzzy Control Design for the
Trajectory Tracking on Uncertain Nonlinear Systems”, IEEE
Trans. on Fuzzy Sys. , Vol. 7, No. 1, 1999, pp. 53-62.
[14] Margaliot M., G. Langholz, New Approaches in Fuzzy
Modeling and Control, World Scientific Pub. Co., 2000.
[15] W.J. Book, “ Recursive Lagrangian Dynamics of Flexible
Manipulator Arms,” Int. J. Rob. Res., Vol. 3, 1984, pp. 87-101.
[16] F. Bellezza, L. Lanari, and G. Ulivi, “ Exact Modeling of the
Flexible Slewing Link”, IEEE Int. Conf. on Robotics and
Automation, 1990, pp. 734-739.
[17] M. Moallem, R.V. Patel, “ A Vibration Control Strategy for a
Boom-Mounted Manipulator System for High-Speed Positioning”,
IEEE Conf. on Intelligent Robots and Systems, 1999, pp. 299-304.
[18] M. Moallem, K. Khorasani, and R.V. Patel, “ An Inverse
Dynamics Sliding Control Technique for Flexible Multi-Link
Manipulators”, American Cont. Conf., 1997, pp. 1407-1411.

Appendix

It is well known that the M matrix is independent of the
joint angle for a single-link flexible manipulator [2].
Therefore N  and its blocks are independent of θ  too.
Hence the claim 1 is proved. To prove the claim 2, note that
the mass matrix M  can be written as [1,18].
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where )(qg for two modes are as follows:

2112
2
22

2
11 2)( qqqqqg ααα ++=

)(1 11
2
11 LpJJ p ′−+= µα , )(1 12

2
22 LpJJ p ′−+= µα

)()( 11122112 LpLpJJ p ′′−= µµα (16)
By partitioning M we have:
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The inverse of M always exists and is given by:
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Using (17) and handy manipulations, we would have:
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Using (4) and substituting from (18) and (17) we have:
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Defining the hub angle as the output 0=φ and using (4):
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N  and hence 1N are positive definite and as a result:
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since TM 2φ is independent of ξ  we have:
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Thus the sign of B is independent of the vibration modes
and depends on φ statically∴



Figure 1. Tracking of the sin(t) using the joint-PD controller without/with the coulomb friction at the hub  

Figure 2. Tracking of the sin(t) using the first set of FLS control rules without/with the coulomb friction at the hub

Figure 3. Tracking of the step using the second set of FLS control rules without/with the coulomb friction at the hub
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