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University of West Bohemia

Univerzitnı́ 8, 306 14 Plzeň, Czech Republic
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Abstract— This paper deals with the design of LQG optimal
control system for tracking problem guaranteed tracking robust-
ness. Presented approach is based on alternative control theory
and using non additive optimality criteria. The approach leads
through augmenting given controlled subsystem by a model of
classifier and evaluating its state in optimality criterion. The
definition of correspondent model of classifier is discussed in
the paper. Then the robustness control system is obtained using
standard LQG design method. Presented method allows to design
robust control system for all types of measurement in systematic
way. Shown method is illustrated by example.

I. INTRODUCTION

The tracking problem is one of the most common and
important issues in designing a control system. Therefore the
problem is discussed in literature frequently [1], [2], [3], [4],
[5], for example.

When we study alternative control theory [6], which accepts
each control system as autonomous system composed from gi-
ven controlled subsystem and a controller mutually connected
via information relation only and they are not influenced by
the environment, then the controlled subsystem is considered
as a plant comprising all surroundings relevant to the given
problem.

Those facts together with application of Kalman’s theorems
[7], [8] make possible to represent each controlled subsys-
tem in structure with obviously required parts properties [9].
Then the “observer–based” approach [2] enable to use for
formulated tracking problem LQG optimization. It is known
that optimal LQG controller does not guarantee robustness
of tracking in the case when some states of the controlled
system are available to the controller through by measurement.
Conception of such robust controller design can be found
in [10], for example. Thereat is shown approach using a
subsystem whose state is evaluated in optimality criterion. This
approach is possible to interpret in context of the alternative
control theory as using non additive optimality criteria [11],
[6].

In this paper the idea is generalized and applied to linear
tracking problem. Given controlled system is augmented by a
model of classifier. The model is defined as the controllable
system with dynamic equals the dynamic of set of assumed
exo-disturbance. It is in correspondence of internal model
principle [12], [13].

Here presented method is systematic approach to the pro-
blem and covers all altogether heuristic methods presented in
literature. Further much part of paper deals with discussion
about non additive optimality criteria.

The second section introduces the theory of non additive
optimality criteria with context of standard tools of LQG
optimization. Then the third section show application of it
to the design of robust optimal controller for linear tracking
problem and the fourth section illustrates obtained result by
simple examples.

II. LQG AND NON ADDITIVE OPTIMALITY CRITERIA

Solved optimization problems are obviously focussed to
additive optimality criteria only; for example LQ or LQG op-
timization. Formulation of the problem with additive criterion
has obviously defined

ṡ = f(s, u, t); s(t0) = s0 (1)

J =

te∫
t0

l (s(t), u(t), t) dt (2)

where s is controlled subsystem state, u is its control input and
l(s(t), u(t), t) ∈ R+ is additive lost function. When we leave
field of additive criteria, it is possible to generalize optimality
criterion to the form

J =

te∫
t0

l
(
s[t0,te], u[t0,te], t

)
dt (3)

where s[t0, te] and u[t0, te] are segments of state and cont-
rol trajectory at time control interval 〈t0, te〉. Lost function
l
(
s[t0,te], u[t0,te], t

)
can be assumed as model of classifier of

whole trajectory of control system at time t. Further the lost
function can be depend by time t. This class of optimality
criterion is very few discussed in literature.

Methods of LQG optimization is elaborated in detail and
effective design methods exist. Hence it would be profitable
to extent the theory by non additive optimality criteria. Here
used method follows form papers [11], [6]. It is based on
finding suitable transformation to correspondent problem with
additive optimality criterion.

In the state space the transformation is based by definition
of model of classifier. Then the problem can be formulated in
the form

ṡ = f(s, u, t); s(t0) = s0 (4)

ṡH = fH(sH , s, u, t); sH(t0) = sH0 (5)

JH =

te∫
t0

lH (sH(t), s(t), u(t), t) dt. (6)



where s is state of controlled subsystem, sH is state of
classifier and lH (sH(t), s(t), u(t), t) is additive lost function
evaluated state of classifier, as well.

It can be proofed [11], [6] that if for each s(t0) exists such
sH(t0) for which it holds

te∫
t0

l
(
s[t0,te], u[t0,te], t

)
dt =

te∫
t0

lH (sH(t), s(t), u(t), t) dt (7)

for arbitrary u[t0,te] then, it is possible to call sH as state of
model of classifier and to consider JH as expression of non
additive optimality criterion in state space form.

According to alternative control theory [14] it suitable to
consider model of classifier as a part of controller. Then
the classifier represents given surrounding of given plant and
therefore it is included to the controlled subsystem description.
Thus augment optimization problem can be solved by standard
tools of LQG optimization and obtained feedback controller
produces control action u based on state of controlled sub-
system s and state of model of classifier sH . Controller
with this dynamic compensates exo-disturbances with such
dynamic. This fact allows by appropriate choosing of model
of classifier (5) to design LQG optimal controller guaranteed
robustness of tracking toward set of given disturbance signal
respectively in case of state feedback controller.

Using previous discussion, the problem of design of control
system guaranteed tracking robustness can be reformulated to
the problem of model of classifier definition and then the LQG
optimization is standard problem.

The definition of model of classifier proceeds on internal
model principle [12] and its generalization for multi-input and
multi-output systems [13]. The principles show that the robust-
ness is guaranteed by control action generated by dynamic of
disturbances that have to be compensated. Hence the feedback
controller have to include dynamic of all relevant surrounding
of given controlled subsystem, and that is why the model of
classifier have to copy dynamic of set of relevant disturbance
signals.

In the next section we going to apply this theoretic discus-
sion to the problem of linear tracking.

III. LINEAR TRACKING PROBLEM

We consider linear tracking problem defined for controlled
subsystem given in the form

ṡ = A · s+ B · u+ Γ · ξ (8)

z = G · s (9)

where s is state of controlled subsystem, u is input and ξ
is absolutely randomness process with zero mean value and
known variance function δ(t)Q.

As shown in paper [9], using possible transformation, the

controlled system (8)–(9) can be described in the form

ẋ = A · x+B · u+G · w + Γ · ξ (10)

ẇ = F · w +∆ · ξ (11)

e = C · x+H · w (12)

y = Cm · x+Hm · w (13)

where x ∈ Rn is state of plant, w ∈ Rm is state of
exo-generator, e ∈ Rp is control error and y ∈ Rp is
measured output. Further the representation (10)–(13) has
properly properties as full rank of tuple (A,C) and full rank
of tuple (A,B).

The solution of optimization problem can be obtained using
a plant deviation model defined in [2], [15]. State feedback
controller stabilizing augmented plant (10)–(12) exists if and
only if the augmented plant can be represented in the form

ẋe = A · xe +B · (u− L · w) + ΓE · ξ (14)

ẇ = F · w +∆ · ξ (15)

e = C · xe (16)

where xe = x − Tw and matrices T(n × m) and L(r × m)
exist as the solution of matrix equations system

T · F−A ·T−B · L = G (17)

C ·T = −H. (18)

Then the influence of exo-disturbance w onto control error e
are fully compensated by compensation control

uN = L · w (19)

and plant is stabilized by deviation control

ue = u− uN = −K · xe (20)

where K is optimal state feedback gain minimized optimality
criterion

J = E


∞∫
0

x′e(t) ·Q · xe(t) + u′e(t) ·R · uedt

 (21)

with weighting matrices Q and R.
Feedback controller in case of unmeasuring state of the

controlled subsystem is designed by standard way by using
separation theorem. Appropriate estimation model and condi-
tions of its existence are specified in paper [9].

Now, specification of model of classifier definition will be
discussed. From previous text it is known that robustness
of tracking is guaranteed by one useful rearranging of exo-
generator dynamic exited by control error. Here we use
simplest way of definition of model of classifier, we choose
the model in the form

ṡH,i = FH · sH,i +BK,i · ei; for i = 1, 2, . . . , p, (22)

where sH ∈ Rx is state of model of classifier. Matrix FH

is sorted block of dynamic matrix of exo-generator and mat-
rix BH is chosen so that the tuple (FH ,BH) has full rank.



Now we can add the model of classifier (22) into description
of the augmented plant (10)–(12)

ẋe = A · xe +B · ue + ΓE · ξ (23)

ṡH,i = FH · sH,i +BK,i · ei, i = 1, 2, . . . , p (24)

e = C · xe (25)

and this state (xe, sn) together with deviation control ue are
evaluated by optimality criterion

J = E


∞∫
0

l(sH , xe, ue)dt

 (26)

with quadratic lost function

l(sH , xe, ue) = s′HQHsH + x′e(t)Qxe(t) + u′e(t)Rue (27)

Then using methods of LQG design we obtain optimal
controller which can be described in the form

ṡr = Ar · sr + Br · y (28)

u = Cr · sr +Dr · y. (29)

The controller (28)–(29) contains as a part model of classi-
fier (the model of chosen exo-generator dynamic). It is result
of adding its state into the set of evaluated variables. The
controller guarantees robustness with context of given set of
exo-disturbance according to internal model principle.

Exo-generator dynamic is included into controller by esti-
mator of unmeasured exo-disturbances, as well. Then the dy-
namic is duplicate, but it is not problem, because we can define
the controller using its irreducible representation defined as
part observable through measurement y and control u. Used
techniques based on Kalman’s theorems [7], [8] is discussed
in [9] in detail.

IV. EXAMPLE

In this section we apply previous discussion on simple
examples. We suppose the controlled subsystem with structure
shown on Fig. 1 which is described by equations

ż = −z + d+ u (30)

ḋ = 0 (31)

żref = 0 (32)

e = z − zref , (33)

where z ∈ R is controlled output of plant, d ∈ R is additive
disturbance and zref ∈ R is nominal controlled output.

Given controlled subsystem (30)–(33) can be equivalently
represent in the form

ẋ = −x− w + u (34)

ẇ = 0 (35)

e = x− w (36)

v̇ = −x− w + u (37)

z = −2 · w + v (38)

d = −x− 3 · w + v (39)

zref = −x− w + w (40)

1
s+1

1
s

1
s

d(s)

z(s)

zref(s)

e(s)u(s)

y(s)

Controlled subsystem

Fig. 1. Block diagram of controlled subsystem

by using regular transformation x
w
v

 =
 1 −0.5 −0.5
0 −0.5 0.5
1 −1 1

 ·

 z
d

zref

 (41)

where the (x, w) is the state of augmented plant (34)–(36) and
v is state of information system (37)–(40).

Deviation model of given controlled subsystem exists and
it has form

ẋe = −xe + u− L · w (42)

e = x (43)

where xe = x + w is deviation state and L = −2 is gain of
nominal control input.

For given controlled subsystem we analyze three types
of available measurement; state of controlled subsystem
[z, d, zref ], control error e and output z with its nominal signal
zzef . It is easy to establish that the state of augmented plant is
observable through defined control error in all assumed cases
of measurement.

In the first step we define a model of classifier. According
to discussion in the previous sections, one will be represented
by integrator with control error input due to disturbance
dynamic (35). Therefore we suppose model of classifier in
the form

ṡH = e. (44)

In the next step we add the state of model of classifier to
the set of evaluated variables and the optimality criterion has
the form

J = lim
tF→+∞

1
tF
E


tF∫
0

Q · x2E +QH · sH +R · u2E dt

 .

(45)
Using standard LQG optimization methods and methods

presented in [9] we obtain controller minimized optimality
criterion (45). Description of design process is not presented
here in detail. Here we analyze only results of specified
measurement:

a) y = [z, d, zref ] – State feedback controller

ṡH =
[
1 0 −1

]
· y (46)

u∗ = −kH · sH −K · y; (47)
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(a) Unit step responses of nominal regulated output zref
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(b) Unit step responses of additive disturbance d

Fig. 2. Characteristics of control system with robustness state feedback
controller for differently choosing weighting matrix QH
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(a) Unit step responses of nominal regulated output zref

0 5 10
−0.4

−0.3

−0.2

−0.1

0

Time

O
ut

pu
t

Q
h
 ≈ 0

Q
h
 = 1      

Q
h
 = 10       

Ref. value     

0 5 10

0

0.2

0.4

0.6

0.8

1

Time

C
on

tr
ol

Q
h
 ≈ 0

Q
h
 = 1      

Q
h
 = 10       

(b) Unit step responses of additive disturbance d

Fig. 3. Characteristics of control system with robustness error feedback
controller for differently choosing weighting matrix QH

b) y = e – Error feedback controller

ṡr = Br · y (48)

ṡH = y (49)

0 5 10
0

0.5

1

Time

O
ut

pu
t

Q
h
 ≈ 0

Q
h
 = 1      

Q
h
 = 10       

Ref. value     

0 5 10

1

1.5

2

2.5

3

Time

C
on

tr
ol

Q
h
 ≈ 0

Q
h
 = 1      

Q
h
 = 10       

(a) Unit step responses of nominal regulated output zref
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(b) Unit step responses of additive disturbance d

Fig. 4. Characteristics of control system with robustness 2-DOF feedback
controller for differently choosing weighting matrix QH

u∗ = Cr · sr − kH · sH +Dr · y (50)

c) y = [z, zref ] – 2-DOF controller

ṡr = Br · y (51)

ṡH =
[
1 −1

]
· y (52)

u∗ = Cr · sr − kH · sH +Dr · y, (53)

where matrices kH , K, Br, Cr and Dr are dependent by
choosing of weighting matrices Q, QH and R.

Controller with state feedback contains as a part integration
feedback, which guarantees robustness of tracking for given
set of disturbance (constant signals). Same result we can
found in papers dealing with this problem, but there presented
methods are based on authors knowledge and heuristics. Here
obtained structure of state feedback controller is implicated by
problem formulation and offers right way to generalization.

In the second two cases of measurement, the dynamic of
exo-disturbances (integrator) is included to the controller by
state estimator designing, as well, because state w of exo-
generator is not available through measurement. Then the
including by definition of model of classifier is duplicate. This
redundancy is removed by definition of suitable irreducible
representation of controller which always exists [9].

Obtained result are illustrated on several figures. Fig. 2,
Fig. 3 and Fig. 4 show control system responses on nominal
value step depend choosing weighting matrix of state of
model of classifier for all tree assumed cases of measurement.
Further Fig. 5 represents same responses, but for the control
system with changed parameters in range of system stability.
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(a) State feedback controller
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(b) Error feedback controller
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(c) 2-DOF controller

Fig. 5. Unit step responses of nominal regulated output zref of control
system with changed parameter (eigenvalue of controlled plant λ) in range
of control system stability

They are demonstrated tracking robustness towards to additive
disturbance signal d.

V. CONCLUSIONS

This paper deals with design of LQG optimal controller
for linear tracking problem which guarantees robustness of
tracking towards given set of disturbance signals. In literature,
for example [10], [3], can be found idea of such controller
design by including dynamic of exo-disturbance into the state
feedback controller. Here presented idea is inspired by [10]
and it is generalized for all kind of measurement.

The linear tracking problem formulation is based on alterna-
tive control theory [14] using non additive optimality criterion.
Because this area is not much discussed in literature, the first
part of the paper deals with one. The result is description
of transformation of non additive optimality criteria to the
standard problem of LQG optimization through a model of

classifier definition. Then the second part of the paper studies
the model of classifier in linear tracking problem and tracking
robustness point of view.

In linear tracking problem, the model of classifier is defi-
ned according to internal model principle as subsystem with
dynamic copying exo-disturbance dynamic. Such model of
classifier includes exo-disturbance dynamic to the optimal
controller also in the case of state feedback controller design.
In the case when the dynamic is included by the estimator then
the redundancy of the dynamic is removed by specification of
the controller as its irreducible representation.

Further research in discussed area can be focused to in-
terpretation of weighting matrix of classifier state and to
implication of presented methods to the applications, [16] for
example. Also it is possible to study the problem for other
types (non-quadratic) of optimality criteria.
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[3] J. Štecha and F. Kraus, “Robustness versus control quality in asymptotic
reference tracking,” in Proceedings of the Fifteenth IASTED Internati-
onal Conference on Modeling, Identification and Control, Innsbruck,
Austria, 1996, pp. 292–294.

[4] O. Grasselli, L. Jetto, and S. Longhi, “Ripple-free dead-beat tracking
for multirate sampled-data systems,” Int. Journal of Control, vol. 61,
pp. 1437–1455, 1995.

[5] B. M. Chen, Z. Lin, and L. Kexiu, “Robust and perfect tracking of
discrete-time systems,” Automatica, vol. 38, pp. 293–299, 2002.
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