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Abstract— In this work we consider feedback control of
flows in a vertical Bridgman crystal growth system, a pro-
cess used to grow single crystals for a wide array of applica-
tions, ranging from lasers to high-speed microelectronics to
infrared sensors. We study the feasibility of using propor-
tional controllers to attenuate flow oscillations that occur
in some operating regimes of the system. A spatial average
of the flow speed is chosen as the single controlled output.
This variable provides an effective scalar measure of the in-
tensity and temporal variation of the hydrodynamics within
the melt. The flows are controlled via rotation of the cru-
cible containing the molten material. Simulations show that
these simple feedback controllers are effective at stabilizing
the flow.
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I. INTRODUCTION

HE vertical Bridgman process is used to grow single

crystals, for use as substrates in optoelectronic and
sensing devices. To produce devices of suitable quality, it is
necessary to grow low-defect single crystals of homogenous
chemical composition. This task is made difficult by the
complex coupling of heat, mass, and momentum transport
inherent in the process. One processing issue that contin-
ues to challenge the crystal growth community is the occur-
rence of fine scale variations in composition, known as stri-
ations. These composition variations often cause undesir-
able variations in material and electronic properties. Crys-
tal growth experiments by Kim, Witt, and Gatos [1] inves-
tigated the occurrence of striations in a thermally destabi-
lized vertical Bridgman system. This configuration is very
similar to the classical Rayleigh-Bénard problem, used to
study the natural convection arising in a system that is
heated from below and cooled from above. A Rayleigh
number was used to measure the progress of crystal growth,
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where g is the magnitude of gravitational acceleration, S
is the thermal expansivity, L,, is the melt height, ( is the
axial temperature gradient in the melt, v is the kinematic
viscosity, and a,, is the thermal diffusivity. It was found
that above a critical Rayleigh number, the melt exhibited
periodic, time-varying flows. It was then shown conclu-
sively that these time-varying flows were directly related
to the occurrence of striations.

In previous work [2] we used detailed crystal growth
models to numerically simulate the experimental system
of Kim, Witt, Gatos. Our models predict the occurrence
of periodic, time-varying flows at Rayleigh numbers above

a critical value. In the early stages of crystal growth, our
numerical simulations predict the occurrence of large am-
plitude, two-frequency oscillations within the flow. In later
stages of growth, the oscillatory behavior becomes more
ordered with decreasing amplitude until finally the flows
are steady with time. These simulations are in qualitative
agreement with the experimental results of Kim, Witt, and
Gatos. Demonstrating the appearance of periodic, time-
varying flows in our model was an important first step in
our study of crystal striations. The next step, the sub-
ject of this work, is the formulation and implementation of
feedback control algorithms that will beneficially alter the
fluid dynamical behavior within the system.

Flow control is a rapidly emerging field. A detailed dis-
cussion of the current applications, techniques and unre-
solved issues is beyond the scope of this paper. For a gen-
eral review, see [3]. Here, we will only highlight a few of
the more pertinent works. A good deal of work has been
devoted to using feedback control to delay the onset of con-
vection in Rayleigh-Bénard systems. Howle [4] used pro-
portional control to stabilize the quiescent flow state for
supercritical Rayleigh numbers in a 1-D Rayleigh-Bénard
experiment. A network of heaters, installed at the bot-
tom of the container, was used to stabilize the flows. Tang
and Bau investigated the delay of convection in Rayleigh-
Bénard systems in both experimental [5] and numerical [6]
investigations. By using diodes to measure fluid tempera-
ture and micromachined heaters at the bottom of the test
cell, the researchers were able to apply proportional control
to stabilize 3-D flows for supercritical Rayleigh numbers.
Shiomi and Amberg [7] applied proportional control to at-
tenuate oscillations arising in a floating zone crystal growth
system. Two sensor/heater pairs were used for measure-
ment and actuation. They found that complete suppression
of the oscillations could be achieved for weakly nonlinear
flows but was not possible for stronger nonlinear flows.

In this work, we use crucible rotation in conjunction
with proportional controllers to modify flows in the ver-
tical Bridgman system. Open-loop crucible rotation has
been successfully applied to experimental vertical Bridg-
man systems [8] and has been the subject of simulation-
based studies (see [9] and references therein). Generally,
the purpose of crucible rotation in crystal growth systems
is to promote mixing of the melt. Here, we wish to use
crucible rotation to suppress flow oscillations. When imple-
mented in practice, this would be a significant step towards
the removal of striations in crystal growth processes.
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Fig. 1. Vertical Bridgman growth system

II. THE VERTICAL BRIDGMAN PROCESS MODEL

A schematic of the vertical Bridgman process is shown in
Figure 1. Polycrystalline material is loaded into a quartz
crucible (sometimes called an ampoule), inside of a high
temperature furnace. The material is completely melted, at
which time the distribution of temperature in the furnace
is adjusted to vary along its length, such that one zone
is hotter than the material’s melting point and the other
section is cooler. Directional solidification is achieved by
slowly translating the translating the crucible towards the
cold zone of the furnace.

We use equations for conservation of mass, momentum,
and energy, along with appropriate boundary and initial
conditions, to model the vertical Bridgman system. Our
present purposes only require that we study the effect of
control on flow, so we do not include conservation of chemi-
cal species in the model, although doing so would be neces-
sary for the direct prediction of striations. A key assump-
tion used here is that the system is perfectly axisymmetric,
in which case all field variables are independent of the az-
imuthal coordinate.

Under the these assumptions, the time-dependent energy
transport equation is given by

T
Prm%—t+v-VT—V2T = 0 (2)

in the melt, and

Prj%—f—v% =0 (3)

where the index j designates the material, either the crys-
tal, crucible, or graphite support. T is a dimensionless
temperature scaled by the melting temperature, ¢ is a di-
mensionless time scaled by R?/v, and V is the dimension-
less gradient operator, in which the spatial coordinates are
scaled by the crucible radius R. The Prandtl number is
defined as Pr; = v/a;, where v is the kinematic viscosity,
and the thermal diffusivity is defined as a; = k;/piCp i,
where k; is the thermal conductivity, p; is the density, and
Cp,; is the heat capacity.

The velocity field is described by the Navier-Stokes (N-S)
equations for incompressible flow, using the Boussinesq ap-
proximation to account for temperature-dependent density
variation:

V-o=0 (4)
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Here v(r, z) is the dimensionless velocity scaled by a,, /R,
T is the stress tensor, and e, is the unit vector in the axial
direction. The stress tensor is split up into the dynamic
pressure and the strain rate tensor,

T =—Pl—7=—Pl+ (Vv + VuvT) (6)

where P is the dynamic pressure scaled by p,,va.,/R?,
and | is the idemfactor.
A thermal flux condition is defined at the melt-crystal
interface,

—(kVT|m + VT|s) - ngm = StPrs(nem - X) (7

where k is the ratio of melt thermal conductivity to solid,
k = km/ks, Ngm is the unit vector normal to the melt-
crystal interface, pointed towards the melt, St is the Stefan
number, St = AH;/Cp sTrmp, and X is the velocity of the
melt-crystal interface.

The temperature at the melt-crystal interface is assumed
to be equal to the material melting point,

T=1 8)

where T' is the dimensionless temperature. A linear fur-
nace temperature profile used, which is a reasonable ap-
proximation of the furnace used in Kim, Witt, and Gatos’
experiment:

B2,z )

Ty =T.+
where T} is the furnace temperature, T, and T} are the
minimum and maximum furnace temperatures, respec-
tively, and z, is the furnace reference position. Convective
and radiative heat transfer from the furnace to the crucible
are represented by a simple flux condition applied at the
domain boundary:

—VT|a - nas = Biy(T — Ty (2)) + Rd;(T* — T}‘(z)) (10)



where the Biot number, Bi; = hR/k;, is a dimension-
less heat transfer coefficient, the Radiation number, Rd; =
UGiRTnSW/ k;, relates radiative effects to conductive effects,
€ is the crucible emissivity, o is the Stefan-Boltzmann
constant, and nqy is the unit vector normal to the cru-
cible/furnace interface. No-slip boundary conditions are
assumed at the crucible walls and melt-crystal interface,

(11)

where 2 is the crucible rotation rate and ey is the unit
vector in the azimuthal direction. Finally, at the centerline
of the system, symmetry conditions are assumed,

v=Qrey
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The governing equations that comprise the KWG model
are nonlinear, coupled, partial differential equations. The
Galerkin Finite Element Method (GFEM) was employed
to spatially discretize equations for energy transport (Eq.
2), momentum transport (Eq. 5), and mass continuity (Eq.
4). This system of nonlinear DAEs was time integrated us-
ing a second-order implicit trapezoidal method, and the re-
sulting system of nonlinear algebraic equations was solved
using a modified Newton’s method. A dimensionless time
step of At = 0.01 was shown to provide satisfactory nu-
merical convergence as well as sufficient resolution of the
time-varying phenomena within the system. A single fac-
torization of the problem with a discretization of 25592
degrees of freedom required approximately 4.8 seconds on
a mid-priced PC with a processor speed of 2.0 GHz . For
the interested reader, additional details of the model and
numerical scheme can be found in [2], [10].

III. THE CONTROL PROBLEM

Our general research objective is the application of feed-
back controllers to control flows within our detailed model
of the vertical Bridgman process. One particularly impor-
tant application is the stabilization of flow oscillations to
prevent the occurrence of crystal striations. In previous
work [2], our simulations of the Kim, Witt, and Gatos ex-
periment indicated the existence of periodic, time-varying
flows at sufficiently high Rayleigh numbers. The onset of
periodic behavior was shown to correspond to a Hopf super-
critical bifurcation occurring at a critical Rayleigh number,
Ra., = 3.57x10°. The spatial average of speed, referred to
from this point on simply as speed, provides a global mea-
sure of the flow intensity, and can be used to characterize
the time-dependent behavior of the flow:

1
s:\/v/‘/(v£+vg)dv,

where v, and v, are the respective radial and axial compo-
nents of the velocity field and V' is the volume of the melt

(15)

region. Figure 2 shows the spatial average of the speed as
a function of time for Ra = 3.6 x 10°. The figure shows
that the flows exhibit periodic, time-varying behavior, with
oscillations of single period and small amplitude, at this su-
percritical value of Rayleigh number.
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Fig. 2. Open-Loop Response for Ra = 3.6 x 10°

There are many actuation techniques that could per-
ceptibly affect the fluid dynamics, and be feasibly imple-
mented, in this crystal growth system. Some possibilities
include real-time adjustment of the thermal environment,
either by changing the furnace thermal profile or provid-
ing a localized heater, application of vibration, or use of
a magnetic field. This work addresses the use of crucible
rotation (rotation rate, ) as the manipulated input. In in-
dustrial practice, both steady rotation and time-dependent
rotation have been used. Time-dependent rotation is most
often implemented in a manner described as the Acceler-
ated Crucible Rotation Technique (ACRT) [11]. ACRT ro-
tates the crucible according to a pre-determined schedule:
the purpose is to use alternating acceleration and deceler-
ation to drive secondary flows that improve mixing in the
melt.

Open-loop simulations were conducted to better un-
derstand the effect of crucible rotation on flows within
this system. Steady-state calculations were conducted for
Ra = 3.6 x 10°, with steady crucible rotation rate, 2,
varied from zero to 4.4 rpm. The speed computed from
these results is shown in Figure 3. As seen in the figure,
with all other parameters held constant, there is a one-to-
one correspondence between rotation rate and flow speed.
An increase in rotation rate suppresses the radial and ax-
ial components of the velocity field, and consequently the
flow speed, with a limiting behavior of solid-body rotation
at very high rotation rate (although this limit cannot be
achieved in practice, due to onset of three-dimensional flow
instabilities).

These observations motivate the question as to whether
open-loop steady rotation can be successfully used to at-
tenuate flow oscillations. Our simulations show that the
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Fig. 3. Flow Speed vs. Rotation Rate: Steady State Results

opposite is true: steady rotation exacerbates the flow
oscillations. Figure 4 presents results that demonstrate
this conclusion, obtained using transient simulations for
Ra = 3.6x10°. Steady states are denoted as circles, lanked
by triangles that represent the maximum and minimum
amplitudes of the oscillations. It is clear that as the steady
rotation rate is increased, the amplitude of oscillations also
increases. Thus, while steady crucible rotation affects the
flow, it does not attenuate the periodic flow oscillations
that occur at high Rayleigh numbers.
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Fig. 4. Flow Speed vs. Rotation Rate: Transient Results

We now address the feasibility of using feedback control
to suppress flow oscillations. The controlled output is cho-
sen to be the spatial average of the kinetic energy, E, a
scalar quantity that captures the essential dynamics of the
flows within the process. The kinetic energy is simply the
speed (defined in Eq. 15) squared. All states are assumed
to be measurable and are available from the vertical Bridg-

man process model. We apply a proportional controller,

Q) = K(Esp — E(t)) (16)

where K. is the controller gain and FEg, is the kinetic energy
setpoint.

IV. RESULTS AND DISCUSSION

This section presents results from our closed-loop simu-
lations of the vertical Bridgman process. We apply propor-
tional control to our model of the Kim, Witt, and Gatos
experiment for Ra = 3.6 x 10°. The initial condition is a
solution obtained from the open-loop transient simulations
once the flow has fully evolved to its time-periodic state. In
all of the simulations, the setpoint was set to 0.2284 m?/s?,
equivalent to a speed = 0.478 m/s. Since the application
of crucible rotation reduces the kinetic energy of the flow,
the setpoint must be chosen at a kinetic energy value less
than the steady state kinetic energy corresponding to no
rotation 2 = 0. The data in Figure 3 indicate that this
setpoint value is physically reasonable.

Figure 5 shows the speed as a function of time, for
K. = 0.75. It is clear that proportional control is suc-
cessful in attenuating the flow oscillations. As seen in the
figure, the final value of the speed is within one percent of
the setpoint. Figure 6 provides a closer view of the time-
variation of speed. The flow oscillations have a period of
approximately 20 seconds, which is consistent with both
open-loop experiments [1] and open-loop simulations [2].
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Fig. 5. Flow Stabilization: Speed vs. Time, K. = 0.75

Corresponding to the same simulation, the crucible ro-
tation rate is given as a function of time in Figure 7. The
crucible only rotates in one direction, but speeds up and
slows down in response to the inherent oscillations in the
flow. Since the crucible rotation rate is less than 1 rpm,
this control scheme is feasible from a practical engineering
point of view. A close-up of the rotation rate, correspond-
ing to the same time window as Figure 6, is given in Figure
8. As expected, the oscillations in rotation rate follow the
flow oscillations closely.
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Fig. 7. Flow Stabilization: €2 vs. Time, K. = 0.75

Figure 9 shows the effectiveness of proportional control
at attenuating the flow oscillations, as a function of the
controller gain, K.. Controller effectiveness is quantified
by a ratio, 7, which is defined as the closed-loop oscillation
amplitude divided by open-loop oscillation amplitude. For
values of K, ranging between 0.5 and 0.75, proportional
control is effective at stabilization (y &~ 0). At values of K,
below this range, rotation has virtually no effect on the flow
(v =~ 1). At values above this range, rotation appears to
exacerbate the instability, causing oscillations of amplitude
considerably larger than the open-loop case (y > 1).

These simulations demonstrate that feedback control can
be used in conjunction with crucible rotation to effectively
modify the flow in a crystal growth system for directional
solidification. Proportional control is shown to adequately
attenuate flow oscillations that arise naturally due to the
inherent instability of the system. Issues remain with the
practical application of control to the vertical Bridgman
system, however. Due to the use of an enclosed crucible,
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Fig. 8. Flow Stabilization: €2 vs. Time, K. = 0.75

and the need to conduct growth inside a high temperature
furnace, it is extremely difficult to measure the states dur-
ing growth. In practice, flow states could be related to
thermocouple measurements, as done by Kim, Witt, and
Gatos [1], estimated by eddy sensors [12], or estimated by
detailed crystal growth models. Another issue is the speed
with which the oscillations are stabilized. The optimal pro-
portional controller required approximately nine hours (or
2000 oscillation periods) to fully attenuate the oscillations.
In this work, due to the wide disparity between the crys-
tal growth time scale (hours) and the oscillation time scale
(seconds), the furnace was held fixed with respect to time.
In practice, however, a control action that requires hours to
stabilize the flow is undesirable. We anticipate that a non-
linear, model-based controller would provide a considerably
faster response. In addition to improvement of the control
algorithm, other types of actuation could be investigated.
Our results demonstrate the feasibility of controlling flows
at Rayleigh numbers slightly above the critical value, but
it remains uncertain whether boundary actuation can ef-
fectively suppress oscillations in more strongly nonlinear
flows. Other types of actuation that might be feasible for
this application include real-time furnace adjustment, or
application of lasers (pointwise heating), magnetic fields,
or vibration.

V. CONCLUDING REMARKS

We have applied proportional controllers to our detailed
models of the vertical Bridgman crystal growth process.
Control was successful at stabilizing flow oscillations that
occur naturally due to the inherent instability of the sys-
tem. Our results give hope to the idea that feedback pro-
cess control can be used to prevent the occurrence of com-
positional striations, thereby improving the quality of crys-
tals grown by the vertical Bridgman method. Our simu-
lations indicate that there is an optimum range for con-
troller gain, within which oscillations can be completely
suppressed. Controller gains below this range have little
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affect on the oscillations, and controller gains above this
range act to further destabilize the process. Opportunities
for future work include the implementation of control al-
gorithms that will accelerate the closed-loop response, and
the investigation of other actuation techniques.
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