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Selection of the initial controllers in design

of the critical control systems
Takahiko Ono, Tadashi Ishihara, Hikaru Inooka

Abstract— This paper proposes a method for selecting an
initial controller required in the critical control system de-
sign. The initial controller is determined so that the re-
sponse of the closed-loop system follows that of the pre-given
target system with appropriate input-output performance
via LMI optimization. The controller, which ensures the
specification, is determined by performing a further param-
eter search from the obtained initial controller. A numer-
ical example is given to show the validity of the proposed
method.

Keywords— Control system design, Critical system, Model
following, Model Matching, Linear matrix inequality, Con-
vex optimization.

I. INTRODUCTION

OST control systems have constraints on the bounds

of the responses. If the violation of these bounds
causes unacceptable or fatal operation, the system is said
to be critical [1]. In the framework of the principle of
matching [2], [3], the methods for designing controllers for
critical systems have been studied. In this framework, the
controller is designed so that the outputs are maintained
within the prespecified bounds for all inputs belonging to
the set, called the possible set. Generally, the problem of
designing such a controller is formulated as the admissibil-
ity problem of solving the inequalities of the form

oi(p) <e; (i=1,2,...,n) (1)

where p is a decision vector comprising parameters of a con-
troller. As inequality solvers to (1), the moving boundaries
process [4], the goal attainment method [5] and the simu-
lated annealing method [6] are available. In design using
these inequality solvers, however, the efficiency of search is
much affected by the initial point of p since ¢;(p) is not a
convex function and the set of admissible solutions to (1) is
not a convex set. Accordingly, a careful choice of an initial
point, that is, an initial controller is required for computa-
tionally efficient design. However, the method for choosing
an initial controller has not been discussed enough.

This article proposes a method for selecting an initial
point which is frequently required in designing controllers
for critical systems. The initial search point is selected so
that one of the inequalities in (1) is ensured. This is realized
by applying the idea of the model following. Especially, in
order to deal with the problem of designing a low-order
controller, the idea of the model matching using coprime
factorization [7] is adopted. The actual controller, which
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ensures the design specification stated by the conjunction
of inequalities, is determined by performing a parameter
search from the obtained initial point. The validity of the
proposed method is examined with a numerical example of
multi-objective critical control system design.

II. PRELIMINARY

A. Notations

This article uses the following notations. Let R and R,
denote the set of all real numbers and the set of all non-
negative real numbers, respectively. The p-norm of the
signal f: Ry — R is defined by

[ i
sup{|f(t)|:t € Ry} for p=oo0.

To express the transfer function of a linear time-invariant
system simply, the following compact notation is used.

{%’%} =D+ C(sI - A)~'B

The set of all proper and real rational stable transfer func-
tions is denoted by RH.,. The set of all strictly proper and
real rational stable transfer functions is denoted by RH.

for p=1
1f1lp =

B. Principle of matching

The principle of matching is the framework for design of
control systems proposed by Zakian [2], [3]. The feature of
the principle is that it considers two sets of inputs. The
first set, denoted by P, is the set of all exogenous inputs
that are actually applied or likely to be applied to a sys-
tem such as reference signals, disturbances or sensor noises.
This set is called the possible set, and it characterizes the
environment in which the system is operated. The second
set, denoted by T, is the set of all inputs that ensure the
design specification. This set is called the tolerable set,
and it characterizes the control system. When P is in-
cluded in 7T, the control system and its environment are
said to be matched. Particularly, if the difference set 7\ P
is small, they are said to be well matched. The primary
aim of the principle of matching is to match the control
system to its environment, that is, to achieve P C 7. A
further aim is to obtain a better match by adjusting P and
T. Adjusting 7 means improving the control performance
by changing the controller parameters, while the adjusting
P means the improving the environment. In this sense,
the principle of matching is the framework for matched
environment-system design.
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Fig. 1. Unity feedback control system.

C. Problem statement

In design of controllers for critical systems, it is indis-

pensable to consider the feature of exogenous inputs since
they are the primary factors which cause the violation of
the tolerable bound of the response. For this reason, the
principle of matching is suitable for controller design for
critical systems. This article considers the following critical
system design in accordance with the principle of match-
ing.
1) Control system — The system to be designed is the unity
feedback system shown in Fig. 1. The plant is a strictly
proper linear time-invariant single-input single-output sys-
tem with the transfer function

It is assumed that (A, B) is stabilizable, (A,C) is de-
tectable and the initial state of G is zero.
2) Possible set — The exogenous input is the reference com-
mand signal 7, which is known only to be extent that it has
a bound D on the rate of change and zero initial condition.
Accordingly, the possible set is modeled as
[ : piecewise smooth 3)
" lflle <D, f(O)=0 |-

3) Tolerable set — Let z;(¢, f) be the ith response to the
input f at time ¢ and let ¢; is the tolerable bound of z;.
The tolerable set is defined by

T=A{fR = R:lz(f)llc €& ((=12,...,n)}, (4)

where one of the outputs is a tracking error: z; = e for a
certain .

4) Matching condition — The controller, denoted by K in
Fig. 1, is given as an mth-order transfer function. It is
assumed that its initial state is zero. The controller is
designed so that the control system is matched to the envi-
ronment characterized by P, that is, P C 7 is ensured. Let
p denote the vector comprising controller parameters and
let z;(t, h, p) denote the unit step response at time ¢ for the
controller characterized by p. It is known that the match-
ing condition, P C T, is equivalent to the conjunction of
the inequalities

P:{f:M — R

Dllzi(h,p)lh <& (E=1,2,...,n). ()

Accordingly, the controller, namely, the parameter vector
p is determined so that (5) is met.
III. SELECTION OF AN INITIAL CONTROLLER

Some inequality solvers need an initial point of the pa-
rameter, p', to obtain the admissible solutions to (5). In

T2
T “

Fig. 2. Initial search point pY. It is determined so that it lies in the
inside of T, where T; is the set of all solutions to D|le(h,p)|]1 < &;.

this article, p® is determined so that it lies in the inside of
the set of p’s that satisfy

Dlle(h,p)h < e (6)

The condition (6) is evaluated by the unit step response.
Therefore, the model following approach is applicable to
the problem of determining p°: prepare the ideal open-loop
system called the target system, T.,, that meets (6), and
then determine p° so that e(t, h,p") follows the unit step
response of the target system e,, (¢, h). Considering the fact
that e(0, h,p) = 1, the target system should be chosen so
that e,,(0,h) = 1. Furthermore, for the left hand of (6) to
be finite, it is necessary that e,,(co,h) = 0. Accordingly,
T,, is chosen from the set

R(S) € RHZ
R(0) =0, RO)=1 Y. (1)
Dllem(R)[l < &

S:=<¢1-R(s):

In this article, the transfer function of 77, is expressed by

A Bm}

7,) = |24 ®

Generally, it is desirable that the structure and the order
of a controller can be determined flexibly. The model fol-
lowing method proposed by [7] can fulfill this requirement.
In this method, with coprime factorization, the error sys-
tem between the closed-loop system and the target system
is expressed in the form of series-interconnection of two
systems. Then, by stabilizing one system using the strictly
positive real lemma and by minimizing the H,-norm of the
other system, the model following is achieved. Especially,
since the problem is solved in the framework of LMI opti-
mization, the controller can be obtained efficiently. How-
ever, if the follow-up performance is not good, a designer
must introduce the weighting function and adjust it by try
and error. In this article, the same coprime factorization is
applied, but the bounded real lemma is used instead of the
strictly positive real lemma and the L;-norm is minimized
instead of Ho.-norm to avoid introducing a weighting func-
tion. Hereby, two new adjustable scalar parameters are in-
troduced and the follow-up performance can be improved
easier by tuning them.

A. Coprime factorization of the error system

Let us review the description of the error system given in
the form of series-interconnection of two systems. Let T¢.(s)
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be the transfer function of the closed-loop system from the
reference command signal to the tracking error and let T'(s)
be the error system: T'(s) := Ty, (s) — T(s). Supposed that
G(s) has Gp(s) and Gy(s), which are left-coprime over
RH_.:

G(s) = Gp(s) 'Gn(s), Gp(s),Gn(s) € RHy. (9)
The state-space models of Gp(s) and G (s) can be given
by

(10)

[Gp(s) Gn(s)]= [ An |H B }

c |1 0

where Ay := A+ HC and H is chosen so that Ay is
stable. On the other hand, supposed that K (s) has Ky(s)
and Kp(s), which are right-coprime over RH:

K(s)=Kn(s)Kp(s)™*, Kp(s), Kn(s) € RHy. (11)
The state-space models of Kn(s) and Kp(s) can be ex-
pressed in the observable canonical form:

Ak | Bkp Bgn

[Kp(s) Kn(s)] = Cx | 1 Dgn

(12)

where Ak is the m-by-m stable matrix and Bxp, Brgn
and Ck are defined by

0O -+ 0 —a
1 0 —as
AK = )
0 1 —Am (13)
Bkp:=[g9192 -~ gm ],
Brn :=[hi ha -+ hy ]},
CKSZ[O"'Ol], DKN::d.
Then the controller is parametrized by
m m—1 ..
K(S) — ds + (amd+hm)5 + + (a1d+h1)' (14)

s™ + (am + gm)s™ 4+ -+ (a1 + g1)

In this case, K (s) is arbitrarily determined only by Bk p,
Bgn and Dk . Essentially it is independent of A . Fur-
thermore, this parametrization has flexibility in determin-
ing the type of a controller. For instance, by taking m =1
and g; = —ay, K(s) can be a PI controller.

Defining the vector of design parameters as

p=[Bkp Bikn Dgn] € R, (15)
the error system can be expressed by
T(s,p) = P(s,p)Q(s,p) ™", (16)

where T'(s, p) means the transfer function determined by p
and

P(s,p) :=Tin(s)Q(s,p) = Gp(s)Kp(s)

N . (17)
Q(s,p) := Gp(s)Kp(s) + GN(s)KN(s).

Substituting (10) and (12) into (17), Q(s,p) can be given

by
_ | 44 | By(p)
Q) = |52, (18)
where A, B,(p) and C, are defined as follows.
[ Ay HCg BCk ]
Ay = [ 0 Ag 0 J
0 0 A
B (19)
By(p) == [ (H + BDkn)" Bicp BiyI'
Cy=[C Cg 0]
On the other hand, P(s,p) is given as
P(s,p) = { =AEA0 ] (20)
Cp
where A,, B,(p) and C,, are of the following form.
0 Ag 0 HCx BCgk
Ay=| 0 0 Ay HCx 0
0 0 0 Ak 0
0 0 0 0 Ay (21)

By(p) :==[B;, (H+BDkn)" H* Bykp By '
C,=[C, C —=C 00]
In particular, when the plant G is stable and Gp(s) is set

to 1, that is, H = 0, the matrices A, Bp(p) and C), can be
given by

Apm BnC B,Ckx 0
L_| 0 A 0  BCk
=]l 0 0 Ax 0

0 0 0 Ax

(22)

Bp(P) :[Bfn (BDKN)t B%{D B}(N ]t
Cp = [Cm Co 0].

Design parameters appear affinely in By(p) and B,(p).
This feature makes it possible to solve the model follow-
ing problem via LMI optimization as shown below.

B. Selection of an initial point via LMI optimization

The initial parameter p° is chosen so that the unit step
response of the error system is nearly 0. The procedure is
as follows: 1) The block diagram of T'(s, p) can be drawn by
Fig. 3. Noting that the stability of @ 1(s,p) is equivalent
to that of its strictly proper part

Aq — By(p)Cy | B, (p)
<, [0 |

QO(S,p) = (23)

make the unit step response of Q~!(s,p) bounded by ap-
plying the bounded real lemma to Qo(s,p). 2) Next, by
minimizing the L;-norm of P(s,p), make the response of
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A B | lj A | By
G| O *Cq‘ 0 T +
P(s,p) Qs

Fig. 3. Block diagram of the error system.

P(s,p) to such a bounded signal nearly 0. Especially, these
steps can be performed in the framework of LMI optimiza-
tion.

Minimizing the maximum amplitude of the output of
a linear time-invariant system is equivalent to minimizing
the Li-norm of its unit impulse response. Accordingly, the
model following problem of our concern can be stated as
follows.

Problem: Let es(t, p) denote the unit impulse response of
P(s,p). For a given positive real number v, determine p so
that ||es(p)||1 is minimized subject to Qo(s,p) € RH and
1Qo(P)lloe < -

According to the bounded real lemma, the sufficient con-
dition for Qo (s,p) € RHo and ||Qo(p)|lce < 7 can be given
as the existential condition of X = X* > 0 such that

1

A4,X + XA XCL-1B,(p)
) Z <0, (24)
CpX — ;B;(p) _;

Meanwhile, minimizing ||es(p)||1 is equivalent to the prob-
lem of minimizing ¢ subject to

lles(@)lly <& (25)

However, this article minimizes £ under the sufficient con-
dition for (25)

les(t,p)| < A exp(—=At), (26)
where ) is the real number which satisfies
0 < A< omin (27)

and oyi, is the minimum absolute value of the real part of
the eigenvalues of P(s,p). It is noted that opyj, is deter-
mined independently of p. It is known that the inequality
in (26) holds if there exists Y = Y* > 0 that satisfies the
following three matrix inequalities [8], [9].

AY +YAL+2)Y <0

[y yer

C,Y A§}>O

(28)

|: P Bp(p)
By(p) X

The matrix inequalities in (24) and (28) are the LMIs to the
variables p, X and Y. Accordingly, the parameter p° that

|0

achieves the model following can be obtained by solving
the LMI optimization problem of minimizing ¢ subject to
(24), (28), X = X! >0and Y =Y* > 0 for given v and \.

Let us discuss the characteristic of the proposed method.
When ||Qo(p)|lec <7, IQ 7 (P)|lo < 1+ 7. Therefore, the
maximum amplitude of the unite step response of Q~!(s, p)
is estimated as 1 + 7. Generally, the maximum amplitude
of the response of a linear time-invariant system to persis-
tent input with bound N is calculated as a product of the
Ly-norm of its unit impulse response and N. From this
fact, it can be seen that the maximum amplitude of the
unite step response of the error system is approximated as
(1 4+ v)&. Hence, the difference of the responses of T, and
T, is estimated as less than (1++v)¢. Although a designer is
required to set v and A in advance, it is comparatively easy
to determine them since they have the clear meanings: the
parameter 7 determines the bound of the input of P(s,p),
while A determines the decay rate of the unit impulse re-
sponse of P(s,p). This is contrast to the method in [7], in
which the weighting function must be adjusted by try and
error.

IV. DESIGN EXAMPLE

Counsider designing the unity feedback control system de-
picted in Fig. 1. The plant P consists of the actual plant
and the actuator. Its transfer function is given by

27697
s(s2 + 14295 + 42653)

P(s) = (29)
In order to operate the system safely, the control input to
P is limited to |u(t)| < 10.0. In this sense, this system is
critical. The reference command signal r is restricted in

the rate of change and known only to the extent that it
belongs to the set F(1.5):

r € F(1.5) (30)
In terms of the principle of matching, this means that the
possible set is not adjustable. The goal of design is to find
the linear time-invariant controller which always maintains
the tracking error within £0.01745 for any reference com-
mand signal in F(1.5) under the restriction |u(t)| < 10.0,
namely, for z := [e u]",

1.5||z1(h)]|1 < 0.01745, 1.5||z2(h)||:1 < 10.0. (31)
Note that P(s) has a pole at the origin, z1 (¢, h) and z2(¢, h)
converge to 0 as t increases if K(s) is a stabilizing con-
troller. Hence, K (s) does not have to have an integrator.
For this reason, the controller is parametrized by a real
vector p :=[p1,...,ps ]t € R as

_ p1S® +p2s+ps3

K(s) =— : 32
&) = F s v (32)

Whole procedure to obtain the admissible controller that

satisfies (31) is as follows:

Step 1: Choose the target system T,(s) from the set S
which is defined by (7).
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Step 2: Give v > 0 and choose A so that (27) holds.

Step 3: Search for Bxp, Bxny and Dk that minimize &
subject to (24), (28), X = X! >0andY =Y >0
by using an LMI solver.

Step 4: Determine the initial controller based on (14).

Step 5: Simulate z(t, h,p°) and 2a(t, h,p°). If they are

not satisfactory, adjust v and A and repeat Step 3

until they are acceptable. If they are satisfactory,

proceed to the next step.

Search for controllers that satisfy (31) from p° by

means of a numerical search.

Step 6:

In this example, the target system is given as

w2

Th(s) =1—- ————
() 52 + 2(ws + w? (33)
where ( = 0.9 and w = 300. Then

1.5]|lem(h)]]1 = 0.00904 < 0.01745. (34)

For v = 1.0 and A = 112.0 (= 0.7 01nin), the initial point
p? was searched for by using the function mincx in MAT-
LAB LMI Control Toolbox. As a result of the search, the
following controller was obtained.

(s + 1748.03)(s + 26.10)

K(s) = 4999.
(5) = 499986 £ 1575.00) (s 1 676.80)

(35)

Note that (35) is expressed in the zero-pole-gain form to
specify the poles, zeros and gain. The unit step response is
illustrated in Fig. 4. The dotted line shows the trajectory
of the unit step response of the target system given in (33).
The dashed line is the trajectory of 2 (¢, h,p%). The con-
troller K°(s) realizes a good follow-up performance. There-
fore it is adopted as an initial controller.
The controller K°(s) yields

1.5||z1(h, p)||s = 0.01148 < 0.01745 (36)
1.5||z2(h, p)||1 = 17.35 > 10.0.

Since the second specification is still not met, the pa-
rameter search is performed until (31) is satisfied. The
function fgoalattainin MATLAB Optimization Toolbox,
which is the package of the goal attainment method [5], is
used. Consequently, some admissible controllers could be
obtained. For instance, one of them is

(s + 1230.32)(s + 37.02)

K(s) = 412501 5 43) (5 + 142.05)° (37)
This controller attains
1.5]le(h, p)||, = 0.01709 < 0.01745
1.5|[u(h. )| = 9.969 < 10.0, (38)
so the specification in (31) is satisfied. In Fig. 4, the

unit step response z1 (¢, h, p) is shown with the solid line.
Figs. 6 and 7 show the simulation results for the reference
command signal shown in Fig. 5. The maximum slope of
the reference signal is 1.5 and it belongs to the set F(1.5).
In Figs. 6 and 7, the dotted lines show the tolerable bounds

N S — T,
—_ K T
g
1]
c
)

0 0.02 0.04 0.06

Time [sec]
Fig. 4. Unit step responses of the target system (dotted line), the

closed-loop systems for K°(s) in
(37) (solid line).

(35) (dashed line) and for K(s) in

15
1
0.5
0
-0.5
-1

Reference signal

Time [sec]

Reference command signal 7(t).

€;=0.01745

0.02f .
0.01 b

-0.01} E

-0.02F E

0 1 2 3 4 5
Time [sec]

Tracking error
o
T
1

Fig. 6. Tracking error e(t).

£,=100

Control input

0 1 2 3 4 5
Time [sec]

Fig. 7. Control input u(t).

of the responses. As these figures indicate, the tracking
error is maintained within the tolerable bounds under the
restriction |u(t)| < 10.0.

In this example, the design parameter, which character-
izes (37), was obtained after thirteen movements from p°.
From this fact, it could be said that, compared to the case
where a designer chooses an initial controller by try and er-
ror, the proposed method can realize computationally more
efficient design of a critical control system.

V. CONCLUSIONS

In this article, by using the idea of the model follow-
ing control, the method for selecting an initial controller,
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which is required in matched environment-system design,
was proposed. The basic idea comes from the model match-
ing originated by [7]. In the proposed method, it is possible
to set the order of the controller arbitrarily. Furthermore,
there is flexibility in specifying the structure of a controller.
Although it is necessary to give the two parameters (y and
A) in advance, it is easy to determine them. To improve the
follow-up performance, a designer has only to adjust these
two parameters. The controller, which ensures the specifi-
cation, can be designed efficiently by performing a search
from the obtained initial parameter. In the numerical ex-
ample, the validity and the applicability of the proposed
method were shown.

This article considered the controller design for critical
systems with the rate-limited exogenous inputs. However,
the proposed method is also applicable to the different de-
sign problems if the design specification can be evaluated
by the deterministic input like a unit impulse or a unit
step.
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