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Abstract— We present a feasibility study of a nonlinear
vision-based tracking system to provide estimates of the
position and velocity of an Autonomous Underwater Vehi-
cle (AUV) relative to an Autonomous Surface Craft (ASC).
Non linear estimator designs are implemented using the the-
ory of extended Kalman filtering and second order filtering.
Simulations illustrate the performance of the estimators.
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I. Introduction

IN recent years a project based on the communication be-
tween an Autonomous Underwater Vehicle (AUV) and

an Autonomous Surface Craft (ASC) has been on-going
[1], [2]. The aim is to study the extent of shallow water hy-
drothermalism and to determine the patterns of community
diversity at the vents in the Azores. Sensors carried by the
AUV (such as video camera and sonar) collect scientific
data in a pre-specified survey area.
In order to be able to modify in real time the data stored
by the AUV, a joint cooperative mission is required. Data
exchange between the two vehicles must rely on acoustic
communications due to the strong attenuation experienced
by electromagnetic waves in the water. In order to have
access to higher bandwidth acoustic communications, the
vertical channel must be used. This constraint motivates
to position both the AUV and the ASC at the same vertical
position.
These requirements lead naturally to the need to imple-
ment a tracker on board of the ASC to provide access to
estimates of the relative position and velocity of both plat-
forms. The proposed solution in the following work relies
on the use of two sensors. The first one is a calibrated
video camera on the ASC. This provides the coordinates
of an artificial feature of the AUV (such as a strobe light)
in the image. The camera maps 3D into 2D image coor-
dinates. An additional measurement, AUV depth is also
made. The depth cell carried by the AUV will transmit its
depth through the acoustic communication link.
The object of this study is the development of a vision
based tracker. In [3] a similar goal was achieved using the
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theory of Linear Parametrically Varying (LPV) systems.
We propose here an approach using the theory of extended
Kalman filtering. In section II the modelling of the sys-
tem dynamics is described. In section III a first simulation
allows us to analyze the performance of our tracker under
”normal” plant and sensor noises, and observe the esti-
mates of relative position and relative velocity for both
platforms for different initial state uncertainty. In sec-
tion IV , we study the performance of the tracker under
three different covariance matrices for the plant noise pro-
cesses.

II. Tracker design

A. System Presentation

A.1 Notations

In this study, we usee three reference frames:
{I} denotes an inertial frame located at mean sea level,
{S} denotes the ASC body fixed frame ,
{U} denotes the AUV body fixed frame.

We want to estimate the relative position and velocity in
the inertial reference frame. The following notations will
be used:

p(t) = [x(t); y(t); z(t)]T relative position in the I frame ,
v(t) = [vx(t); vy(t); vz(t)]

T relative velocity in the I frame.

Figure 1 shows the platforms and the references associated
with them.
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A.2 Time varying ACS attitude

We define λ(t) = [ϕ(t); θ(t);ψ(t)]T to be the vector con-
taining the roll, pitch and yaw angles that parameterize
locally the orientation of the frame {S} with respect to
{I}. The ASC is assumed to be equipped with a set of sen-
sor and its own navigation system. At any time therefore,
the values of those angles are available. Thus the rotation
matrix from {S} to {I} is known at all times. It is a time
varying rotation matrix, which is denoted by R(t). Since
it is a rotation matrix, it satisfies the orthogonality condi-
tion: RT (t)R(t) = I (or RT (t) = R−1(t) ). The inverse
rotation matrix R−1(t) is given by

�
−1(t) =

��
cos(θ) cos(ψ) sin(θ) sin(ϕ) cos(ψ) − cos(ϕ) sin(ψ)
sin(ψ) cos(θ) sin(θ) sin(ϕ) sin(ψ) + cos(ϕ) cos(ψ)
− sin(θ) sin(ϕ) cos(θ)

(1)

cos(ϕ) sin(θ) cos(ψ) + sin(ϕ) sin(ψ)
sin(ψ) cos(ϕ) sin(θ) − sin(ϕ) cos(ψ)

cos(ϕ) cos(θ)

��
,

where ϕ, θ and ψ are the roll, pitch and yaw angles, re-
spectively. In order to simulate a realistic system, we will
assume that the waves are a superposition of sinusoids of
amplitude less than one meter and of period from five to
twenty seconds. A longer period, for a wave, usually corre-
sponds to a higher amplitude, and hence to higher roll pitch
and yaw angle. In the sequel, we will use the following angle
variations, as being representative of ASC attitude angles,

ϕ(t) = 4 cos( 2π
5 t) + 10 cos( 2π

15 t+ π
6 ),

θ(t) = 5 cos( 2π
7 t+ π

4 ) + 15 cos( 2π
18 t+

π
7 ),

ψ(t) = 85 + 7 cos( 2π
13 t+

π
14 ).

(2)

A.3 Measurements

• The camera. A video camera is pointing down, and is
able to discriminate some artificial feature of the AUV,
such a strobe light, coincident with the origin of {U} as
depicted in Figure 1. We assume that the camera has the
same orientation as {S}, and is centered in {S}. Let IpU (t)
and IpS(t) denote respectively the position of the AUV and
of the ASC in the {I} frame. Let SpU (t) be the position
of the AUV in the camera frame {S}, the relation between
the position of the AUV in the {I} and {S} frames is as
follows

IpU (t) =I pS(t) + R(t)SpU (t). (3)

The coordinates xc(t), yc(t) and zc(t) of the AUV posi-
tion in the camera frame SpU (t) = [xc(t); yc(t); zc(t)]

T are,
using ( 3),

[xc(t); yc(t); zc(t)]
T = R−1(t)(IpU (t) −I pS(t))

= R−1(t)p(t), (4)

with p(t) the relative position and R−1(t) the inverse ro-
tation matrix. In order to meet our requirements (cam-
era’s sensibility and worst possible error) a focal length of
f = 300mm is used. The camera nonlinear mapping from
R3 to R2 links the 3D coordinates xc(t), yc(t) and zc(t)

to the 2D coordinates uc(t) and vc(t), extracted from the
image, as follows

[

uc(t)

vc(t)

]

=





f xc(t)
zc(t)

f yc(t)
zc(t)



 . (5)

The key relation ( 5) leads to an ambiguity in the coordi-
nate measurements in the image plane. We can solve this
problem by making an additional measurement.
• The depth cell. This sensor will give us the depth of the
AUV. We will assume that the wave amplitude is negligible
compare to the relative depth between the two platforms.
Therefore we can assume that the ASC stays at the mean
sea level and that the depth cell will give us the distance
(relative depth) between the two vehicles zm, in the {I}
reference. The depth, in this mission, is constant zm =
zc = 30m. The magnitude of our optical system, defined
as

M =
zc

f
= 100, (6)

scales the camera’s measurements to the dimension of the
relative position of the AUV.
In the following, the three measurement coordinates xm,
ym and zm are expressed as

[xm; ym; zm] = [uc; vc; zm],

where uc and vc are the 2D coordinates extracted from the
image of the camera and zm is the measurement given by
the depth cell.

B. Discrete-time modelling of system dynamics

B.1 Continuous-time system dynamics

The following notations for the state (relative position
and velocity), and for the measurement vectors in the in-
ertial reference {I} are used

� (t) =

�������
x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)

� ������
=

�������
x(t)
y(t)
z(t)
vx(t)
vy(t)
vz(t)

� ������ �
(t) =

��
z1(t)
z2(t)
z3(t)

��
=

��
xm(t)
ym(t)
zm(t)

��
.

We assume that the speed of the AUV is constant, and
that no applied forces are used. The system dynamics are
as follows

d

dt

�������
x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)

� ������
=

�������
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

� ������
�������
x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)

� ������
+ 	�
 (t). (7)

We want to analyze the influence of the plant (accelera-
tion) noise ξ(t), which we assume to be white noise.

B.2 Discrete-time system dynamics

The measurements are made only at discrete instant of
time, every T seconds. For this reason, we will work with
a discrete time version of the system. T is fixed by the



measurement of the depth cell which is sent by the AUV
every second, T = 1s. The continuous-time dynamics ( 7)
lead to the following discrete-time system dynamics
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+ L ξ(t), (8)

with A and L given by

�
=

�������
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

� ������ 	 =

�������
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

� ������
.

The initial time is taken to be t = 0. We will include
in this model three discrete-time, stationary, zero-mean,
plant white noises ξ1(t), ξ2(t), ξ3(t), to introduce a small
stochastic variability in the plant speed. The statistics of
the plant noises are assumed to be

ξ(t) = [ξ1(t); ξ2(t); ξ3(t)]
T ,

E{ξ1(t)} = 0 E{ξ2(t)} = 0 E{ξ3(t)} = 0.

Assuming that ξ1(t), ξ2(t) and ξ3(t) are uncorrelated and
that each plant noise intensity is constant in time leads
to the following covariance matrix of the plant noise, with
constant intensity matrix Ξ

E{ 
 (t) 
 T (τ)} =

�������
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0.012 0 0
0 0 0 0 0.012 0
0 0 0 0 0 0.012

� ������
= Ξ δtτ .

This means that every second, there is an unpredictable
change in each relative velocity with standard deviation
0.01m/s.

B.3 Measurements

The measured output z(t) is composed by three measure-
ments corrupted by additive Gaussian discrete-time white
noise ω(t) = [ω1(t);ω2(t);ω3(t)]

T . Assuming that ω1(t),
ω2(t) and ω3(t) are stationary and uncorrelated, we have

E{ω1(t)} = 0 E{ω2(t)} = 0 E{ω3(t)} = 0

E{ω(t)ωT (τ)} =





Ω1 0 0
0 Ω2 0
0 0 Ω3



 = Ω δtτ .

where Ω is the constant measurement noise intensity ma-
trix. The measurement vector, z(t), takes the form

z(t) = h(x(t), t) + ω(t), (9)

with h(x(t), t) being the nonlinear relation that generates
the measurements from the states, which given by

�
( � (t), t) =

��
h1( � (t), t)
h2( � (t), t)
h3( � (t), t)

��
(10)

=

��� (R−1
1,1(t)x1(t) +R−1

1,2(t)x2(t) + R−1
1,3(t)x3(t)) f

x3(t)

(R−1
2,1(t)x1(t) +R−1

2,2(t)x2(t) + R−1
2,3(t)x3(t)) f

x3(t)

x3(t)

� ��
.

The first two relations h1(x(t), t) and h2(x(t), t) are ob-
tained from ( 5) i.e. the camera measurements. In ( 12)
R−1

i,j (t) denotes the term of the ith row and jth column

of the inverse rotation matrix R−1(t), given in (1). The
third equation h3(x(t), t) is directly given by the measure-
ment of the depth cell in the presence of white noise. The
camera dynamics contain a nonlinear term 1

x3(t)
. We will,

therefore, need to implement nonlinear filters. In order to
observe the influence of each state on the different outputs,
Figure 2 shows the first row elements of the inverse rotation
matrix as a function of time. Clearly, our measurements
are strongly time-varying and nonlinear.
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R−1
1,1(t)(top), R−1

1,2(t)(middle), R−1
1,3(t) (bottom)

The elements R−1
1,1(t) and R−1

1,3(t) are, in average, less than
|0.2| (see Figure 2 (top and bottom)), whereas the gain of
R−1

1,2(t) is close to |1| (see Figure 2 (middle)). Therefore
the xm coordinate reflects the y relative position accord-
ing to the expression of h1(x, t) in ( 12) (similar figures
were obtained for ym showing that it reflects the x relative
position).
Due to the average angle of 85◦ between inertial referential
and the frame of the ASC (see ( 2)), R−1

1,1(t) is small compar



to R−1
1,2(t). Therefore, a relative position of 1m in the x

(or y) direction will be represented by 1cm in the ym (or
xm) output according to ( 6) and ( 12). The sensor noise
intensities are fixed as follows. A standard deviation of
0.2m on the relative position corresponds to a standard
deviation of 0.002m of the camera noise (see ( 6)). This
noise intensity reflects the perturbations of under water
measurements that are due to the multiple dispersion of sun
light and absorption of the AUV strobe light. The additive
white noise of the depth cell has a standard deviation of
0.5m which take into account the multiple reflection of the
acoustic wave that interferes with the information. The
sensor noise intensities used were as follows

Ω1 = (0.002)2 Ω2 = (0.002)2 Ω3 = (0.5)2.

B.4 Filter design

The system is time varying due to the wave motion. This
will introduce varying roll pitch and yaw angle representing
the movement of our ASC. The camera, fixed to the frame
of the ASC, will rely on the time varying attitude λ(t)
of the frame of the ASC. Hence, the rotation matrix is
computed at each measurement. We assume that there is
no noise on the measurement of the attitude of the ASC,
i.e. on λ(t). Due to the nonlinear term f

x3
in ( 12), we

need to implement a non-linear filter using the theory of the
extended Kalman filtering. We can find in [4] the equations
of the extended Kalman and second-order filters, and we do
not repeat them here. Let Σ(t+1|t+1) denote the updated
state covariance matrix . Because of the nonlinearity in the
sensor dynamics, the updated covariance matrix is based

upon continuously relinearized Jacobian matrix Ĉ(t+1) of
h(x(t), t). Denoting the one-step predicted state estimates

as x̂(t+1|t), the Ĉ(t+1) matrix of dimension 3× 6, based
upon the most recent state estimates, is given by

ˆ�
(t + 1) =

��
� R

−1
1,1

f

x̂3(t+1|t)
R

−1
1,2

f

x̂3(t+1|t)

R
−1
2,1

f

x̂3(t+1|t)
R

−1
2,2

f

x̂3(t+1|t)

0 0

(11)

−(R−1
1,1x̂1(t + 1|t) + R

−1
1,2x̂2(t + 1|t)) f

x̂2
3(t+1|t)

0 0 0

−(R−1
2,1x̂1(t + 1|t) + R

−1
2,2x̂2(t + 1|t)) f

x̂2
3(t+1|t)

0 0 0

1 0 0 0

� ��
� .

Let H(t+1) denote the extended Kalman filter gain matrix
defined by

H(t+ 1) = Σ(t+ 1|t+ 1)Ĉ
T
(t+ 1) Ω

−1. (12)

The extended Kalman filter gain matrix depends on the
sensor noise intensity, on the updated covariance matrix
and on the inverse rotation matrix R−1(t).

III. Simulation 1, influence of the initial state

We present simulation only for the Extended Kalman
Filter (EKF). Very similar results are obtained using the
second-order or Gaussian filter [4] (not shown here).

A. Tracker analysis after a 40 Monte Carlo run

The theory of Kalman filtering is based upon the as-
sumption that the noises are Gaussian. In order to trust

the statistical significance of stochastic simulations, we run
each simulation 40 times. Then we average all the values
over the 40 Monte Carlo run. For this simulation we used
the following statistics. The diagonal matrices where all the
elements but the diagonal ones are equal to zero is denoted
by diag(), the diagonal elements are expressed between the
parenthesis.

Initial true state
x(t = 0) = x0 = [3.5;−1;−30; 0.1; 0.3; 0]T

Mean of the initial state
x̄(t = 0) = x̄0 = [5;−2;−31; 0.5; 0.2; 0]T

Initial state covariance matrix
Σ = diag (22; 22; 22; 0.52; 0.52; 0.52)

Noise intensity matrices
Ω = diag (0.0022; 0.0022; 0.52)
Ξ = diag (0; 0; 0; 0.012; 0.012; 0.012)

Figure ( 3) shows the outcome of 40 Monte Carlo runs
on the average of the z relative position and velocity as a
function of time.
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Average of the relative z position (top )and vz velocity

(bottom)

After a transient period due to the error on the initial true
state, the estimated depth converges toward the true one.
The relative error in between the true states and the es-
timates is relatively small; this confirms the good perfor-
mance of the filter. The increase of relative true and esti-
mated depth is due to the increase of the velocity in the z
direction (see Figure 6). As no initial velocity on this di-
rection is applied, the variation of the vz velocity is due to
the plant noise. The computation of the average z velocity
over the 40 Monte Carlo runs leads to

E{x6} = 0.0098m/s.

Hence we can find the variation of the depth

∆x3 = E{x6}∆t = 0.98m.



This result can be verified in Figure 3(top) (At t = 100s,
z = −29.04m). Though the plant noise is not exactly zero
mean over an average of 40 simulations, the state estimate
on the z position follows closely the true state, and the filter
shows good performance. In figure 4, some of the EKF gain
elements are plotted. Each element (i, j) corresponds to the
correction of the filter on the ith estimated state due to the
jth output. Figure 4 demonstrates the strong time-varying
nature of some gains.
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Elements (1,1)(top), (1,2)(middle) and (1,3)(bottom) of the

EKF gain matrix

Figures 4 shows that the influence of the measurements
z on the x position is mainly due to the y measurement
(as explained for Figure 2). As a result, the gain elements
H(1, 1) is smaller than H(1, 2), and the influence of the
time varying matrix λ(t) can still be seen. The extended
Kalman filter resizes the output. The maximum gain peaks
on the position 100 (which is the coefficient of the optical
magnitude). Hence the influence on x of the third mea-
surement z3 is less obvious. Similar graphs and reasoning
can be obtained for the y position. The EKF gains start
with very low values because the dominant terms of the
inverse rotation matrix starts from zero (see Figures 2).
The peaks, reached during the transient by all the gain el-
ements, are caused by the ratio of the state covariance ma-
trix over the sensor noise covariance matrix as it is shown
in ( 12). Therefore, as the sensor noise intensities are con-
stant, large state covariances lead to high ratio and thus
high gain. The extended Kalman filter gains follow the
state covariance variations. This simulation illustrates the
good performance of our tracker under ”good conditions”,
i.e. small plant and sensor noises as well as small uncer-

tainty on the initial true state. In the next subsection we
will see how the tracker behaves if the uncertainty on the
initial true state is increased.

B. Influence of the initial state uncertainty

We will now consider three different statistics on the ini-
tial true state. The statistics of the plant and sensor noise
are kept similar to the previous simulation. The results
that follow are averages over 40 Monte Carlo runs.

Initial true state
x0 = [3.5;−1;−30; 0.1; 0.3; 0]T

Estimate # 1

x̄0 = [5;−2;−31; 0.5; 0.2; 0]T

Σ = diag (22; 22; 22; 0.52; 0.52; 0.52)

Estimate # 2
x̄0 = [8;−7;−38; 0.5; 0.6; 0]T

Σ = diag (102; ; 102; 102; 0.62; 0.62; 0.62)

Estimate # 3
x̄0 = [10;−9;−45; 0.2; 0.8; 0]T

Σ = diag (202; 202; 202; 0.72; 0.72; 0.72)

Figure 5 shows the position and velocity errors for these
three cases.
We can observe that once the transient is over, all the esti-
mated states converge toward the true states. The perfor-
mance of the tracker is satisfying.

IV. Simulation 2, changing plant noise intensity

In this section we compare the performance of our tracker
with three different intensities of the plant noise. The re-
sults that we obtain are averages over the 40 Monte Carlo
runs. In this simulation only the results of the EKF are pre-
sented (very similar results are obtained using the second-
order or Gaussian filter).

Plant noise intensity # 1
Ξ1 = diag (0; 0; 0; 0.012; 0.012; 0.012)

Plant noise intensity # 2
Ξ2 = diag (0; 0; 0; 0.052; 0.052; 0.022)

Plant noise intensity # 3
Ξ3 = diag (0; 0; 0; 0.12; 0.12; 0.052)

Thus, the standard deviations of the acceleration noise in-
crease for all three variables. Figure 6 shows the updated
errors for all the state estimates.
For small relative velocity updated errors, the tracker pro-
vides us a good estimation of the position. Though for
higher plant noise intensities, the errors on the position in-
crease, the updated errors are acceptable (less than 0.5m
for the relative position, and less than 0.07m/s on the rela-
tive velocity). Therefore even for the largest noise intensity,
the tracker has good performances, in the sense that main-
tains both the AUV and ASC near the vertical, as required
for hight bandwidth underwater communication .
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Relative vx (top) and vz (bottom) velocity error

V. Conclusion

A non-linear vision-based tracking system was simulated
to provide estimates of the position and the velocity of
an Autonomous Underwater Vehicle relative to an Au-
tonomous Surface Craft. The system analysis and the de-
sign were based on the theory of nonlinear Kalman filter-
ing. Simulations illustrate the good performances of the
tracker for different uncertainties on the initial true state
and for several intensities of the plant noise. The tracker
constructed using the theory of the Second Order Filter
(SOF) or Gaussian [4] gives similar results to those ob-
tained with the extended Kalman filter. The additional
computations required by the SOF (computation on-line
of the Hessian matrices) do not lead to significant accu-
racy improvements.
The performance of the extended Kalman filter even for
a high initial state uncertainty or high plant noise inten-
sity leads to good results. The tracking problem of the
platforms is realized in order to minimize the noises on the
measurement , and thus to optimize the relative position of
the two platforms in order to position them in the vicinity
of the vertical position. In this paper we haven’t consid-
ered any deterministic motion in the plant dynamics. But
the goal of this estimator design is to position the two plat-
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Fig. 6

Updated error for the vz velocity

forms one over the other. Therefore a control loop can be
implemented, such as a linear quadratic Gaussian design
(LQG), in order to guide the ASC to follow the AUV.

References

[1] ASIMOV (1998-1999), ”Advanced Sytem Integration for Man-
aging the Coordinated Operation of Robotic Ocean Vehicles” -
ASIMOV. Vol.1-2. Technical Reports. ISR-IST, Lisbon, Portugal.

[2] Balch, T. and R. Arkin, ”Communication in reactive multiagent
robotic systems,” Autonomous Robots 1(1):1-25, 1994.

[3] k P. Oliveira, A. Pascoal, I. Kaminer, “ Navigation System Design
Using Complementary, Time-Varying Filters,” proceeding of 1999
AIAA Guidance, Navigation and Control Conference, Portland
Oregon, August 1999.

[4] A. Gelb (ed), “Applied Optimal Estimation,” MIT Press, Cam-
bridge, Mass., 1974.


	Conference Program
	Author Index
	Main Menu

