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Abstract

A new methodologyof the partial eigen-
structureassignmenby statefeedbackvia
Linear matrix inequality (LMI) is given. It
enablego adoptthe Sylvestermatrix equa-
tion AX + BY = XH andto checksta-
bility usingparametedependentyapunw
functionswhich arederivedfrom LMI con-
ditions. We shaow in this work that it is
possibleto avoid somelimiting assumptions
neededfor the resolutionof the Sylvester
equationby using a reduced-ordesystem
obtainedby the projectionof thetrajectories
of original systemonto a subspaceassoci-
atedwith the undesirableopen-loopeigen-
values. Key-words: Partial eigenstructure
assignmentStatefeedback Sylvesterequa-
tion, LMI technique.

1 Intr oduction

In the pole assignmenproblem,it is often
useful to modify only some of the open-
loop eigervalues,while leaving the remain-
der unchangedthis is the so-calledpar

tial pole assignmentThe problemof eigen-
structureassignmentonsistson the resolu-
tion of differenttypeof linearandnonlinear
algebraicequation. One can cite the work

of [4] wherethe resolutionof the equation
XA+ XBX = HX is presentec@satech-

nigue of partial eigenstructureassignment
leadingto built robust controllers[5]. For
thesamepurposethefollowing generalized
SylvestematrixequationAX +BY = X H
is usedin the literature[8], [10] [9] andthe
referencesherein. In [9], the partial eigen-
structureassignmenproblem,in whichboth
the open-loopandthe closed-loopeigerval-
uesareallowedto possesarbitrarygeomet-
ric andalgebraianultiplicities,is addressed.
Its solution is similar to the one obtained
by [4]. Undernondegenerag assumptions,
the proposedalgorithmis basedon a series
of transformationdeadingto the solution
of a Sylvesterequation. A well known re-
sult[8] stateghata nonsingularsolution X
of the Sylvesterequationis genericallyob-
tainedif the pair (4,Y) is obsenable and
A(A) N A(H) = 0. However, in our knowl-
edgetheredoesnotexistany numericalpro-
cedurewhich systematicallygivesanonsin-
gularsolutionto the generalSylvesterequa-
tion.

The LMI theoryhasbeensuccessfullyused
in mary areasof automaticcontrol[3], [6],

[1], [12],[15],[2]. Thereexistmary efficient
algorithmsto numericallysolve agivenLMI

problem. In this paper we addressthe
eigenstructur@ssignmenproblemby state
feedbackin termsof anLMI problem.This
formulationallows oneto find anonsingular
solutionto the Sylvesterequationwith pos-



sible additionalspecificationsn the eigen-
vectorsof theclosed-loomsystemsandwith-
out restrictve assumptions. Also, a solu-
tion is provided for the partial stabilization
problem thatis find afeedbackf’ whichen-
suregheasymptoticstability of thereduced-
order systemin the closed-loopand keeps
unchangedhe stablemodeof theopen-loop
system.

The rest of the paperis organizedas fol-
lows: Thebackgrounaf theasymptoticsta-
bility by meansof LMI togetherwith the
techniqueof the reducedorder systemare
recalledin the secondsection. Section3
presentghe mainresultof this paperwhich
consistsin a LMI allowing a partial eigen-
structureassignment.An algorithmandan
exampleillustrating this new techniqueare
alsopresentean this section.

2 Preliminary results

Considerthe continuous-timenvariantsys-
tem:
z(t) = Az(t) + Bu(t) (1)

wherez € R*, u € R*, A ¢ R"*" and
B e R™™ withrank(B) =m <n .
We assumehat:

e H1): Thepair (A, B) is controllable.

e H2): Theopen-loopsystemhasr < m
undesirableor unstablesigervalues.

Considetthe following feedbackcontrol:

(@)

Matrix F' is computedsuchthatthe closed-
loop systemis asymptoticallystable;

u(t) = Fz(t); F € R™"

&= (A+ BF)(t) 3)

It is essentiato recallthenecessarandsuf-
ficient condition of asymptoticstability of

system(3) by usingthe LMI’ s.
It is questionof computingmatricesP and
F suchthat:

T
{ (A+ BF)Y"P+ P(A+BF)<0 @)

P=PT>0
By usingthefollowing variables:

P=X1F=YX1'1X=XT>0; (5
X e R Y ¢ R™*"

Inequality(4) becomesanLMI in X andY
whichis rewritten asfollows:

X=XT>0 6)

{ AX +XAT + BY +YTBT <0
Thesolutionof the LMI (6) leadsto aregu-
lator of gain matrix F' suchthat system(3)
is asymptoticallystable.

Let A,: bethesubseformedby the (n — r)
open-loopeigervaluesthat belongto some
desirablestableregion.

A, : bethesubseformedby ther eigerval-
uesthat one wantsto assignin closed-loop
by usingthe statefeedback2).

Theproblemof partialpoleassignmenton-
sistsin computingmatrix F' suchthatA =
MA+ BF)=A,UA,.

In this work, we introducethe linear ma-
trix inequality(LMI) to computeamatrix F’
which assignghe desiredspectrumandsta-
bilizesthe systemin theclosed-loop.

This work is also basedon the use of the
techniqueof reduced-ordesystemobtained
by the projectionof the original systemtra-
jectoriesin the subspacassociatedavith the
undesirableeigervalues[13], [7] and [14].
This canbe achieved by a Schurdecompo-
sition of thesystemmatrixin two blocksas-
sociatedrespectrely with the desirableand
undesirableopen-loopeigervalues. Thus,
let us recall the main outlinesof this tech-
niquedetailedin [7].



Let usdefineasubspaces, associatedvith

Recall that it is always possibleto have

the (n —r) stableopen-loopeigervaluesand rank(B,) = r andthereducedair (R,, B;)
considerS, a complementarysubspacdo completelycontrollable[7].

S,, .e S, ® S, = R*. NotethatS, canbe
associatedvith the unstableor undesirable
eigervalues.

In this way, considerthe following change
of basisin (1):

= [Qo |Qr] [ zo :| ;20 € Rn_Tazr eR
(7)

wherethematrix @ € R**" is orthonormal,

Q= [Qo| Qr]; Q, € RHX(H_T); Qr € R*~"
QTQ = QQT = Iy; Qer =1, (8)

suchthat,

the columnsof @, spanS, 2 Ker(F)
the columnsof (), spansS,

Matrix ¢) can be obtainedfrom a Schur
decompositiorof matrix A by reorderingjf
necessaryts Schurblocks[11].

In the orthonormal basis formed by the
columnsof matrix @), the open-loopsystem
(1) isrepresentedly :

%] _[Ro BRo [ 2() B,
)=le B ED AL e
9)
where,
Ro R2 .
=40 = [ Otrx(n—r)) Br ] ’
T
o= ][] o

2z, Is theprojectionof x on .S, along.s,
z, iIs theprojectionof x on S, alongs,

{

Note thatthe dynamicof z, associateavith
the undesirablepolesto be modified, is de-
coupledfrom z,. Thuswe canisolatethe
following open-loopreduced-ordesystem:

% = Ry 2. (t) + Bru(t) (11)

In the new basis,the feedbackmatrix F' is
representedy:

FQ = F[Qo | Qr] = [Omx(n—r)| Fr]; (12)

with rank(F,) = r. In this way, matrix F,

assignghe desiredspectrumof the closed-
loop reduced-ordesysten:

2, = (R, + B.F;) z:(t) (13)
e Notice thatif » = m, the stabilizing
statefeedbackgain is given by F' =

F.QT .

If » < m, the controlvectoris ordered

in such a way that the reduced-order

system(11) canbe rewritten underthe
i (t)

form:
us(t) ]

(14)
whereB,; € R™" is square full-rank
matrix. To achieve the desiredcontrol
requirementsyeimposethatmatrix £
hastheform:

Fr: |:F7‘1

O(m—r)xr
the factthat (R,, B,) is alsocontrol-
lable, implies that the vectorus is in-
active, thatis, ua(t) = Ogn—r). In this
case,system(14) can be rewritten as
follows:

Z.r = (Rr + BrlFrl)zr(t)

ZIT = Rr zr(t) + [Brl | Br2] [

] F—FQT (15

(16)

3 Main result

In this section,we presentwo results. The
firstassociatetheLMI of asymptoticstabil-
ity of linear continuous-timesystemgo the
techniqueof orderreducing. The second,
concernghe problemof partial eigenstruc-
tureassignment.



Lemma 1l Thesystem(3) with assumptions thiscase theresolutionofthereduced-oder

H1) and H2) is asymptoticallystableif and
only if the reduced-ader following LMI
holds:

R.X,+ X,.RT' +B,Y, +YI'BT <0
X, =XI'>0
(17)

Proof. The system(1) with (2), (5) and
assumption$il) andH2) is asymptotically
stableif andonly if theLMI (6) is satisfied.
Rewrite (6) equivalentlyasfollows,

X TA+ ATX 1+ X 'BY X'+
X YWTBTX-1 <0
X=XT>0

(18)

By usingthefollowing transformations:
Qr A
Y

RTQZ; QZB = Br; Fr = Y;"Xr_l
QN X' =Q.X'Q7 (19)

andmultiplying in theleft andin theright by
matrices)? and@, respectiely, inequality
(18) becomes,

X 'R, +RT'X '+ X 'B, Y, X'+
X 'WYITBTX1 <0
X, =XI'>0
(20)
Multiplying in the left andin the right this
latterby matrix X,., oneobtains,

R.X,+X,RT +B,Y,+YIBT <0
X, =XI'>0

This leadsto the asymptoticstability of the
reduced-ordesystem.

Thereciprocalis easilyestablishedy mul-
tiplying in theleft andin theright inequal-
ity (17) by matrix X! to obtaininequality
(20). The useof the transformationg19)
leadsto inequality(18). =

Remark 2 It is worth noting that this re-
sultcanbe usedfor partial stabilization.In

LMI (17)is obviouslymore efficientthanthe
resolutionof the full LMI (18). Besidespne
canfurther simplifiesthe LMI (17) by using
Finsler'slemma:

(B.)T (R X, + X,RT) (B;)L <0
X, =XT>0
(21)
wheee (B,)  is the orthogonal complement
of B,.

The secondresult of this sectionconcerns
theproblemof partialeigenstructurassign-
ment which is relatedto a reduced-order
Sylvesterequatiornassociatetb agivenma-
trix H, by usingtheLMI technique.

Theorem 3 For a matrix H, € R™" given
sudthat A\(H,) = A, and X,, ¥, solutions
of thefollowing LMI problem:

{ XI'+X,>0

uc.R. X, +B,Y,—X,H. =0
(22)

theregulator of gain F' = F, QT; with F, =

Y, X! assignghespectrum\, U A, for the

systen(3) with assumption$il andH2.

Proof. Considerthe following changeof
variables,
Z(t)=Px

wherematrix P is givenby (5), it follows,
i = P(A+ BYP)x(t)

If thereexistsa stablematrix H € R»*"
suchthat:

P(A+BYP)=HP, (23)
thensystem(3) is transformedo,
i = H%(t) (24)



For P = X!, theequation(23) becomes
linearequationn X andY’,

AX+BY =XH, (25)

which is the so-called Sylvester matrix
equationwhich is frequently usedin the
problem of eigenstructureassignmentfor
linearsystemg9].

Following the reduced-ordersystemtech-
niguequotedin Section2, we caneasilyap-
ply theabove stepgo thesystem(13) with a
similar changeof variables:

Zt) = X"z

r

Give astablematrix H, suchthat,

H, € R¥T\(H,) = A,

— The spectrumof matrix H, can
contain someeigernvaluesof the
remainderspectrumA, of matrix
A.

¢ Onehasto notethat the solutionof the

LMI (17) is symmetriadefinitepositive
asrequired by the partial stabilization
problemwhile the solution of the LMI
(22)is onlynonsingularasrequiredby
the poleassignmenproblem.

Theresolutionof the LMI (22) can be
associatedo the resultsof [5] whee
matrix H, hasto be chosenaccoding
to someconditionsto ensue a robust
poleassignmentor uncertainsystems.

To apply the resultof Theorem3, onehas,

Using the sametransformations(19) and however, to distinguishtwo differentcases:

H = Q,.H,QT, equation(25) becomes,
R, X,+B,Y, =X,H,, (26)

whichis the Sylvesterequatiorassociatetb
thefollowing reduced-ordesystem:

4(t) = H, £.(t)

Thus, to computematrix £ which assigns
thespectrumA, U A, onehasonly to solve
theLMI (22). m

Comments4

e It isknown[8] thatanonsingularsolu-
tion X of the Sylvesterequation(25) is
genericallyobtainedif the pair (A4,Y)
is observableand A\(4) N A\(H) = 0.
Thesetwo assumptionsre not needed
in our apprad. Further,

— Thesolution X, of the LMI (22)
is only non singular but not nec-
essarypositivedefinite hencehis
LMI is notrestrictive

e In thecaser = m, the solutionof the

problemis given by the resolutionof
the LMI (22), with F = F,.QT =
v, XQr.

For the caser < m, the solution of
the problemis given by the resolution
of the LM1T (27) wherematrix B, €

R™*™ js changedo matrix B,; € R™*"

andY, € R™*" toY,; € R™*",

{ XI'+X,>0
uck.X,+B.Y1—X,H. =0

(27)
In this contet, the feedbackmatrix
F thatassignghe desiredclosed-loop
eigervaluesandguaranteethe asymp-
totic stability of the system(3) is ob-
tainedasfollows:

F= [ VX, ] Qr
O(m—r)xr

It is worth notingthat,for thetwo main
cases,we realize A(R, + B,F,) =
A(H,) and\(A + BF) = A(H,) UA,.



The following algorithm summarizesthe
stepsof calculationdollowedduringthede-
velopmentof this new approachby intro-
ducingtheLMI. It is worthto recallthatthe
useof aSchurdecompositioguaranteesu-
mericalrobustnessn thecomputatiorof the
open-loopeigervalueswhile it determines
new basisfor the associatedubspacefL1].

Algorithm 5

e Stepl: \erify that (A, B) is control-
lable and fix the undesiable eigerval-
uesof matrix A. A, is the setof the
remainder(n — r) eigervaluesof A.

e Step2: Applya Schur decompositiomf
matrix A by reorering, if necessaryits
Sdurblodksto havematrix @), € R™*"
and the reduced-ader system(11) as-
sociatedwith theundesiableeigerval-
uesof matrix A.

e Step3: Give H, € R™" sud that
)\(Hr) = Al-

e Step4:- If r < m computethe LMI
(27); Fry =Y Xt and

Relf ]

O(m—r)xr
- If r = m computeheLMI (22); F, =
Y. X!

e Step5:Computethe gain matrix F' =
F.QT.

e Step 6:\erify that A\(A + BF) =
AOUAI

Example 6 In order to illustrate the useof
the proposedmethodolgy, we considerthe

sameexampletreatedby [9].

—5 10 00
A=|0 1 1|;B=]|01
1 11 10

Theopen-loopeigenvaluesof the systenare
givenby:

A(A) = {—4.9711, —0.0973, 2.0684}

The undesiable open-loop eigervalue is
2.0684. Inthiscaser =1 < m.

Applying a Sdur decompositiorto matrix
A, weobtain;

0.9851  0.1427 0.0962
0.0284 —0.6864 0.7267 | ;
| —0.1697 0.7131  0.6802

[ 0.0962
0.7267
| 0.6802

Q =

Qr:

—4.9711 —1.4069 0.0268
R= 0 —0.0973 0.1413
0 0.0000 2.0684

—0.1697 0.0284
0.7131 —0.6864
0.6802  0.7267

ChooseH, = -1, the resolutionof the
LMI (27)yieldsthefollowing solution,

Bg =

X, = 500.5; Y, = —2257.7686

Frl =

Yo X ' =—-45112; F, = [ Fr ]

0

Fromthe Algorithm, we havethe next feed-
badk matrix that assignghe desied closed-
loop spectrum,

F=FEQT = —0.4341 —-3.2783 —3.0684 ]

0 0 0

The assignedspectrumin closed-loopis
thencomputed,

A(A+ BF) = {—4.9711, —0.0973, —1}
= AO U )\(HT)



Assumenow that the undesiable eigerval-
uesare {—0.0973, 2.0684}. In this case
r = m = 2. For that, the sameSdwur de-
compositionof matrix A is still used,whee
matrix ¢, is nowgivenby:

0.1427  0.0962
—0.6864 0.7267
0.7131  0.6802

Choose random matrix H, of spectrum
A H,) = {-1, -2} asfollows:

Qr

H. = —0.1161 —0.9186

Theresolutionof the LM I (22) yieldsthe
following solutionswith X, non symmetric
andnondefinitepositive

_ [ —2.0811 0.7588]

v | 2826.329 —4050.0884 ]
" 7 | 4050.0884 2826.329 |’
v [ —16151.8 0
" T | —8461.3281 —7388.2863
P [ —1.8716 —2.6819
"7 | 0.2463 —2.2611

Fromthe Algorithm, we havethe next feed-
bad matrix that assignghe desired closed-
loop spectrum,

| —0.5251 —0.6643 —3.1588
| —0.1824 —1.8122 —1.3632

The assignedspectrumin closed-loopis
thencomputed,

AMA+ BF) =AU NH,)

= {—4.9711,—-1.0000, —2.0000}
Note that one can add a decouplingcon-
straint on the solution X of the LMI (27),

like X(2,1) = 0. In this case the obtained
solutionsare givenby:

F

y _ [ 2452.6058 0 _
re 0 2452.6958 |’

v _ [ —3787.773  —3987.507

r= | 31535506 —6349.1127

Remark 7 For a systenmwith anordern >
3, the useof the reduced-ader systemand
thelinear matrix inequalityproposedn this
work is very efficient while in the previous
works basedon the resolutionof Sylvester
equation, the stepsare increasingly com-
plex, owing to the numbes of the ele-
mentarytransformationsand the arbitrary
choice of several parametes. Moreover,
it is noticedthat the numberof the condi-
tionsto ched for this approac is verylim-
ited. Indeed,it is not necessaryto have
AA)NA(H,) = 0 nor a particular choice
of thematrix H, (sud diagonalor full).

4 Conclusion

In this paper a new approachof partial
eigenstructur@assignmenby statefeedback
is presented. This techniqueis basedon
the use of the reduced-ordersystemand
the LMI's. The number of assumptions
is reducedwhile a non singularsolutionis
guaranteed. The resultsare given for the
continuous-timesystemsput they canalso
be extendedto the discrete-timesystems.
The paperpresentsa simple algorithm and
anillustrative example.
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