

Abstract--The numerous amount of existing Route Guidance
Systems (RGS) leads to increasing efforts to integrate these
stand-alone tools into an overall solution, possessing the ability
to process information of all the individual systems. Especially
in the fields of intermodal services and in order to combine
RGS of neighboured regions enhanced developments can be
regarded. As representatives of intermodal services, i.e.
calculating the best ways of certain origin-demand matrices
with respect to the simultaneous use of different Public
Transportation Means (PTM) and Individual Transportation
(IT), the European project Marco Polo [EK01] can be named
as well as the German projects Mobilist [MOB02] or Mobinet
[EK01], mainly trying to implement shortest path models
under a star topology with distributed information storage.
Also, Personal Digital Assistents (PDA) with integrated GPS
modul are curently available [PTV 02], thus being able to
perform intermodal navigation within the vehicle as well as by
the use of PTM and for pedestrians.
Unfortunately, analysis of different path search algorithms is
commonly done by comparing the amount of necessary
instructions O(·) in possible net topologies. However, as
computing power is in the meanwhile at a fairly high level,
delay in a distributed environment can mainly be expected due
to communication time. Dynamic calculations demand to
transmit actual traffic conditions during several time periods,
thus this paper examines the different routing strategies by
evaluating the occuring message transmission time in common
graph classes. It will be shown that possessing a star topology
(one central server) Label-Setting algorithms can be proved to
be superior in regard to Label-Correcting algorithms. In
addition, considerable improvements will be achieved by
parallel message transfer for possible next link investigations.
Here, the paper proposes solutions with a profit in delays by a
factor of ' ()O n , where n denotes the number of nodes in a
network.

I. INTRODUCTION

Specifying the fastest path in a net topology has yield to
numerous solutions in literature, each of them possessing
(dis-)advantages in certain graph classes. As these
algorithms have to work in a fast way, the crucial criteria in

 Institute of Industrial Information Technology (IIIT), Hertzstr.16
Geb. 06.35, University of Karlsruhe (TH), Germany

analyzing the models is commonly determined by the
complexity ()O ⋅ of necessary instructions in order to
decrease required processor power.
However, increasing efforts to combine co-existing Route
Guidance Systems (RGS) into single solution models
exhibit concepts for adequate best path approaches in the
resulting distributed environment. Here, significant delays
during iteration result not mainly because of restrictions in
computation power but rather in the fact of existing,
inevitable communication between distributed computers
and/or storage devices.
Especially in the field of intermodal services, i.e.
calculating the best ways of certain origin-demand matrices
with respect to the simultaneous use of different Public
Transportation Means (PTM) and Individual Transportation
(IT), calculations have to be based on various databases
stored in (locally) distributed devices. As representative
efforts in this field, the European project Marco Polo
[EK01] can be named as well as the German projects
Mobilist [MOB02] or Mobinet [EK01], mainly trying to
implement shortest path models under a star topology with
distributed information storage. Surely, the integration of
several IT-Guidance Systems from locally distributed areas
into one overall architecture also focuses on this challenge.
This paper investigates existing routing strategies in
distributed environments by evaluating the occuring
communication complexity ' ()O ⋅ in order to perform the
algorithm accurately, a consideration, which is fairly
different from the commonly regarded amount of executed
instructions ' ()O ⋅ within the processor. Therefore, the
beginning of the next section provides a short overview
over the commonly used Label-Setting (LS) and Label-
Correcting (LC) models and its implementation. Based on
this knowledge, results will be worked out concerning on
one side the total amount of necessary message transmission
within a distributed environment, on the other side
conclusions will be drawn how to efficiently set up parallel
message transmission in order to additionally decrease
computation time. It will be shown that in general LS
algorithms are superior to LC realizations by a factor of
O’(n), a fact which contradicts the requirement of a sorted
storage of examined nodes in LS models (leading to and
increased processor load but less communication delay).

 Reiner Kriesten, UweKiencke

Implementing Fastest Path Algorithms in a
Decentralized Traffic Environment

Before analyzing message transmission complexity, the next
section presents an overview over the relevant search
algorithms.

II. FASTEST PATH ALGORITHMS

A. The Basic Algorithm

The most relevant methods of Fastest Path algorithm’s
(FPA) within a given network network (,)G N L= , where
G denotes the set of nodes connected via links
L N N⊆ × possessing nonnegative impedances ()c l ,
can be classified into Label-Setting (LS) and Label-
Correcting (LC) algorithms. The representation of
mathematical formulation will be given with the Min-Plus
Algebra,
 min { }= ∪ ∞R R (1)
which possess the characteristics of a monoid
 min,(',)⊕ ⊗R� (2)
with additive neutral element ∞ using the compositions
 min' min{ , }, , ,a b a b a b⊕ = ∈R (3)
 min ., ,a b a b a b⊗ = + ∈R� (4)
As path search algorithms mainly rely on comparisons of
temporary specified paths (usage of '⊕) and additions of
segment impedances (usage of ⊗), the Min-Plus
representation describes a convenient tool for evaluation.
For detailed information it shall be refered to [BAC92],
[KIE97].
The determination of a shortest way between the origin
node o N∈ and a destination d N∈ results in a
consecutive search in forward direction beginning from
origin o . In each iteration of the algorithm, a node k from
the set Q of so far reached nodes will be elected. Then,
each successor ()l S k∈ , i.e. nodes l possessing a link
(,)k l L∈ from k , will be analyzed in order to evaluate
possible better connections from o to l via k (if the node l
is not reached so far, surely the new connection displays the
optimal one). Once the set Q of investigated points is
getting empty, the algorithm has found the optimal path
o d→ [CHR75]. The basic implementation of LS/LS
algorithms are as follows:
Basic Implementation for LS/LC FPA’s:
Initialization: The initial distance between nodes ,o k N∈
will be defined by
 (,) , o ,d o k k= ∞ ≠ (5)
 (,) 0.d o o = (6)
The set Q of initially reached nodes is declared by
 { }.Q o= (7)

Furthermore let ()p k denote the direct predecessor of k
under the current specified connection. So at the beginning
we find
 () , ,p k k o= ∅ ≠ (8)
 () .p o o= (9)
Iteration: For Q ≠ ∅ , perform the following instructions:
Choose k Q∈ by the logical rules of the elected LC/LS
algorithm and set { }Q Q k= − .
Verify for all successors ()l S k∈ of node k the condition
of an eventual new ideal route:
 (,) ((,)) (,).d i k c k l d i l⊗ < (10)
 If condition (10) holds, declare () ,p l k=

{ }Q Q l= ∪ and set the new distance of node l to
 (,) (,) ((,)).d i l d i k c k l= ⊗ (11)
Within step 0 of the algorithm, the choice of node k Q∈
depicts the crucial difference of LS/LC models. As the
name Label-Setting indicates, these methods insert each
(reachable) node exactly one time into the set Q . So once
we find k Q∈ , there is no better alternative route o k→
available than the specified way, the label (,)d o k remains
unchanged after its first assignment.
Contrary, LC algorithms may insert a certain point k
several times into Q . Unfortunately, according to the
Belman Principle all further paths o l→ with in-between
node k have to be updated once again, as the new
impedance 2(,)d o k leads to the new cost value
 2 2(,) (,) (,)d o l d o k d k l= ⊗ (12)
of route o l→ . However, LS models depend on an
ordered storage of the set Q because it has to be ensured
that the ideal route to k is already fixed when assigning
k Q∈ . The following subsections will give a short outline
of variants in LS/LC implementations.

B. Label-Correcting Algorithms
Label-Correcting algorithms are not restricted to one single
inclusion of individual nodes k N∈ into Q , the selection
criterias in step 0 are widely spread. The most common
methods are listed below
1. Ford Algorithm: This approach is scanning the set Q

according to paths with smallest path length, hence
representing a Breadth-First Search. In each iteration,
one node possessing the least segments on its
temporary route (independent from the impedance d)
is chosen for further evaluation. Thus, the storage of Q
can be realized in a queue obeying the FIFO principle
because new incoming nodes have per se an increased
path length.

2. The LIFO Principle: Is Q being realized as a stack,
then the actual path keeps being evaluated until no
further successor is achievable. These kinds of models
are known as Depth-First Search and prefer routes with
a high amount of segments.

3. Combined Strategies: Strategies combining Breadth-
First and Depth-First characteristics have become more
and more popular within the last years. As most
important variants the Threshold Algorithms, the
Dequeue Algorithm and the d’Esopo Algorithm can be
named [DOM95] [SCO97].

C. Label-Setting Algorithms
Including each node at most one time into Q exhibits the
selection of a node k with minimal route costs (,)d o k
out of the set Q . Otherwise an eventually better way
leading to k can be found by an in-between point l Q∈
possessing less impedance,
 (,) (,) (,).d o l d l k d o k⊗ < (13)
As the sequence of analyzing Q is completely determined,
all realizations of LS algorithms are commonly referered as
Dijkstra Algorithm. Differences exist in the way how the set
Q is sorted in order to access the smallest route
impedances.
1. Unsorted Dijkstra Algorithm: the set Q is not being

ordered in any iteration. Identifying the minimum
{ }' (,)k Q d o k∈⊕ has to be accomplished by

comparing all nodes k Q∈ .
2. Completely sorted Dijkstra Algorithm: at each instance

the set Q is totally sorted by its route costs. The
ordering can be performed by one of the various sorting
algorithms [REM99].

3. Heap-sorted Dijkstra Algorithms: Heaps are defined as
partly ordered arrays [1..]H n , characterized by the
conditions [] [2]H i H i≤ and [] [2 1]H i H i≤ + .
Due to the party ordered storage, savings during the
determination of extremas can be obtained.

4. Bucket-sorted Dijkstra Algorithms: Possible route
impedances are divided into several intervals in which
specified paths are categorized.

The following table presents an overview over the number
of instructions ()O ⋅ which have to be performed using the
different implementations [DOM95]. Here, | |n N=
displays the number of nodes in a network, | |m L=
depicts the amount of links and maxc is an upper bound for
possible segment costs,
 max .: ()l L c l c∀ ∈ ≤ (14)

Algorithm Complexity ⋅O()
Ford Algorithm ()O nm
D’Esopo Algorithm (2)nO n
Dequeue Algorithm 2()O n m
Unsorted Dijkstra Algorithm 2()O n
Heap-sorted Dijkstra Algorithm
(depending on realization)

max(),
(log),
(log).

d

d

O m nc
O m n
O m n n

+

+
Bucket-sorted Dijkstra Algorithm max()O m nc+
Completely sorted Dijkstra Algorithm 2(log)dO n n

Table 1: Complexity ()O ⋅ for FPA’s (#instructions)

III. ADAPTION OF FPA’S TO DISTRIBUTED ENVIRONMENTS

As the integration of intermodal and/or locally distributed
RGS leads to decentralized networks, the question how to
realize FPA’s within this distributed environment arises.
The following categorization of net topologies can be given:
RGS without essential delay due to message transmission
are defined as centralized systems [SUN96]. Here, only the
number of executed instructions are relevant for efficiency.
Computers and/or Information Storage Devices (ISD) are
connected to one central instance (CI). This setup leads to a
star topology according to figure 1(a), where all information
is transmitted to the main computer, being solely
responsible for the execution of instructions.
The decentralized devices can be individually
interconnected without central instance, see figure 1(b). In
this case no superior node exists, so problems arise in the
adjustment and provision of actual dynamic information.
Several devices can be combined to a network via star
topology and/or flat hierarchy. Integrating some of these
networks into one single architecture, topologies as depicted
in figure 1(c) are possible.
In a decentralized network the far most popular way to
setup the topology is realized by a star network. This is due
to the fact that each node only needs to transmit relevant
information to the main node and not performing 1:n
communication. In addition, just one server is responsible
for the actuality and distribution of information, so
adjustments between nodes (concerning e.g. current
specified paths, costs, etc.) don’t have to be taken into
consideration. Taking this into account the analysis of
message transmission complexity is further regarded under
the assumption of a star topology with distributed
information (instructions are executed by the control
instance).

ISD

(c) Unions of Networks(b) Flat Hierarchy

ISD ISD
ISD

ISDISDISD

ISD

ISD
ISD

ISD

ISD
ISD

ISD
ISD

ISDISD

ISD
ISD

ISD

ISD

CI

Figure 1: Topologies in a decentralized environment

The linkage of routing systems via a star topology connects
each ISD/computer directly to a main node, following
denoted by CI (central instance). All essential information
will be transferred to the CI, consequently instructions
(relying on the information) should run at this node. As
soon as the algorithm has to access certain knowledge such
as dynamic varying segment impedances ()c l , message
transmission toward the CI is inevitable. In this context,
data transfer between individual ISD’s is not intended,
hence complexity evaluation is based on communication
with the server.
Clearly, allowing parallel messaging leads to savings in
time. Therefore, beside the number of overall transfers the
latter definition of required time units is of main interest:

Definition 1: Let ' ()cO ⋅ denote the amount of overall
transmitted messages between adjacent nodes in an
existing network (,)G N L= .
Definition 2: Let the required time for a transmitting a
message between adjacent nodes be 1 time unit. Then

' ()tO ⋅ depicts the complexity of time units an algorithm
needs for message transfer.

Before a deeper evaluation of the different LC/LS methods,
a principle consideration is helpful under what
circumstances communication occurs. Assuming a star
topology the basic algorithm for FPA’s given in the last
section can be implemented as follows:
the storage of the set Q and the variables (,)d o k ,

1,...,k n= , is recommended in the CI, as execution is
performed here.
the initialization does not lead to any communication as it
commonly holds that (,)d i k = ∞ , k o≠ .
the selection of k Q∈ takes place at the main instance.
Only the knowledge of logical criterias is decisive for
correct selection, no data transfer is demanded. So
concerning iteration step 0, the dynamic varying link costs

()c l for ()l S k∈ are sufficient for transmission. Based
on that information, the comparison
 (,) ((,)) (,)d i k c k l d i l⊗ < (15)
can be realized as well as the further specified assignments.
Complexity Analysis Oc(·),Ot(·) of FPA Message
Transmission
During each iteration step the data
{ (,) | ()}c k l l S k∈ has to be sent to the server, so the

overall message amount depends significantly on the
amount of fulfilled iteration cycles and therefore on the
logical sequence of choosing k Q∈ . If i denotes the
number of executed iteration steps, it follows directly that
 ' ' '() (| () |) ()c c cO O i S k O in⋅ = ≤ (16)
Allowing parallel data messaging, this implementation
claims only 1 time unit sending (,)c k l for all nodes

()l S k∈ in contrast to | () |S k n≤ units for serial
transmission. Thus, gainings can by achieved by a factor of
| () |S k n≤ leading directly to

 ' '() ().t tO O i⋅ = (17)
Specifying boundaries for individual LC/LS algorithms
requires results about the maximum number of possible
iterations. In the case of LS methods conclusions can be
easily drawn.
message Evaluation for LS algorithms
Differences in the realization of LS algorithms can be
regarded concerning the storage of the set Q and the way
to extract its minimum route costs. As already explained,
this operation doesn’t have any influence on necessary data
transfer, hence the following results are valid for all LS
variants.
Fortunately, we find the maximum number of iterations to
be bordered by | |n N= as each point will be examined
maximal one time. So upper boundaries can be denounced
by
 ' ' ' 2() (| () |) (),c c cO O n S k O n⋅ = ≤ (18)

 ' '() ().t tO O n⋅ = (19)
message Evaluation for LC algorithms
In the case of LC methods, the number of iteration cycles
depends in a significant way on the given graph structure
and the logic of choosing nodes k Q∈ , a topic being
widely researched [CHE93] However, a strong influence of
communication efforts in regard to execution time should
lead to efforts minimizing the amount of iteration steps. The
following theorem provides an upper bound for the most
popular Label-Correcting method, the Ford Algorithm.

Theorem 1: In a given network (,)G N L= , each node
is chosen at most | | 1 1V n− = − times in Q
performing a Breadth First Search. Furthermore, the
communication complexity can be bounded by the upper
border

 ' ' 3() (),c cO O n⋅ = (20)

 ' ' 2() ().t tO O n⋅ = (21)
Proof: The proof of the theorem is mainly relying on the
next lemma:

Lemma 1: Having specified a path Γ with path length
| | 1nΓ = − while executing the Ford Algorithm leads
to the fact that Γ is not inserted once again into .Q To
be more exact, the leaf k of the path is remaining the

end of the path as long as Γ depicts the shortest way
o k→ .

throughout the whole algorithm, not being reinserted into
.Q

Proof (Lemma): A further node in Γ leads to a loop as
| |N n= . Let l N∈ denote a point being two times an
element of a path. The second stop in l is determined by
the fact
 (,) (,) (,),d o p c p l d o l⊗ < (22)
where p depicts the direct predecessor of l before the
second stop. As node l is lying on the way ,o p→ we
find
 (,) (,),d o p d o l≥ (23)
resulting in a contradiction to the upper equation.

q.e.d (Lemma)
Proceeding with the proof the theorem, k denotes again the
leaf of a current path Γ with | | .pΓ = Deleting k out of
the set Q requires the specification of a path to ()g S k∈
with | | 1o k g p→ → = + . By reinserting node k into
Q , Breadth-First Search exhibits k to be successor of an
element l , ()k S l∈ , with path length
 | |o l p→ ≥ (24)
(otherwise the route o l→ would have been taken into
account before o k→). Proposition 1 gives an upper
bound for specified routes | | 1nΓ ≤ − , thus each node is
inserted at most 1n − times into Q . With equation (16) it
follows directly
 ' ' 3() ()c cO O n⋅ = (25)

as each of the n nodes is chosen at most 1n − times.
Parallel transmission reduces required time at each iteration
by the factor | () |S k n≤ , hence

 ' ' 2() ().t tO O n⋅ = (26) q.e.d.

The following table summarizes the communication
complexities ' ()cO ⋅ , ' ()tO ⋅ for LS/LC algorithms under the
assumed star topology.
Algorithm ⋅'cO () ⋅'tO ()
LS Algorithms
(all realizations)

' 2()cO n ' ()tO n

Ford Algorithm ' 3()cO n ' 2()tO n

Table 2: Comunication Complexity ' ()O ⋅ for FPA’s

IV. CONCLUSION
This paper investigates the setup of routing strategies in
distributed environments, an essential topic for combining
co-existing Route Guidance Systems into one single
solution. Here, delays due to necessary communication is

getting more and more significant in comparison to
execution time, so the amount of transmitted messages is
playing an important factor for efficient implementation
beside the number of instructions to be performed.
After specifying possible ways to setup networks of
combined RGS, this paper evaluates the communication
load for the most popular FPA’s. Analysis is done by
determing the total amount of messages as well as time
savings due to parallel data transmission. In this context it is
proved that assuming a star topology (one central server),
Label-Setting algorithms are superior to Label-Correcting
algorithms by a factor of ' ()O n concerning the overall
number of messages as well as parallel messaging. As
processor power is getting increasingly more powerful,
these results give helpful indications to efficiently combine
autonomous RGS for fastest path determination.

V. REFERENCES
[1] [BAC92] Baccelli, F., Cohen, G. (1992): Synchronization and

Linearity. An Algebra for Discrete Event Systems. Wiley & Son,
New York.

[2] [CHE93] Cherkassky, B., Goldberg, A., Radzik, K. (1993):
Shortest Paths Algorithms: Theory and Experimental Evaluation.
ACM-SIAM Symposium on Discrete Algorithms (SODA), Texas.

[3] [CHR75] Christofides, N. (1975): Graph Theory: An Algorithmic
Approach. Academic Press, San Diego.

[4] [DOM95] Domschke, W. (1995): Logistik: Transport.
Oldenbourg Verlag München (Germany).

[5] [EK01] Europäische Kommission (2001): Das Programm Marco
Polo. Konsultationsdokument Europäische Kommission.
Generaldirektion Energie und Verkehr, Direktion Landverkehr,
Brüssel.

[6] [HAL01]: Halbritter, G. et al (2001): Verkehr in Ballungsräumen.
Optionen für eine effizientere und umweltverträglichere Gestaltung.
Institut für Technikfolgenabschätzung und Systemanalyse,
Forschungszentrum Karlsruhe (Germany).

[7] [KIE97] Kiencke, U. (1997): Ereignisdiskrete Systeme.
Oldenbourg Verlag, München (Germany).

[8] [MOB02]: Stadt Stuttgart (2002): Mobilist. Mobilität im
Ballungsraum Stuttgart. http://www.mobilist.de.

[9] [PTV 02]: PTV AG (2002): ptv NaviGuide – Innovative Offboard
Navigation. http://www.ptv.de/cgi-bin/produkte/naviguide.pl.

[10] [REM99] Rembold. U. (1999): Einführung in die Informatik für
Naturwissenschaftler und Ingenieure. Carl Hanser Verlag, Munich
(Germany).

[11] [SCO97] Scott, K. et al. (1997): Finding alternatives to the best
path. Proceedings of the 76th annual meeting of The Transportation
Research Board, paper number 970682, Washington.

[12] [SUN96] Sun, W. (1996): Optimale Steuerung verteilter,
ereignisdiskreter Systeme. Ph.D. thesis, University of Karlsruhe
(Germany).

	Conference Program
	Author Index
	Main Menu

