Implementation of Numerical Approximations of
Control of the Schrodinger Equation with MATLAB
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Abstract— This paper considers the use of MATLAB to nu-
merically implement the propagation in time of a quantum
wavepacket in the presence of static or moving potential bar-
riers. Time-dependent barriers are of interest as controls.
‘We show the results of propagation with trigonometrically
oscillating barriers at different frequencies. We give an ex-
ample of steering localized initial data to localized terminal
data.
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I. INTRODUCTION

FFORTS to control atomic and molecular systems

have probably been made, at least informally, since
interest in these systems began. In recent years, with such
striking technological advances as the development of fast
(picosecond) lasers and the construction of quantum dots
and other nanometer-scale devices, the problem of control
of quantum-mechanical systems has received heightened
stimulus, e.g. [1], [2]. Each system is associated with an
appropriate Schrodinger equation,
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Solutions ¥ of the equation are called wavefunctions or
state functions and are used to describe the behavior of
the system. In particular, the product of the wavefunction
and its complex conjugate is considered to be a probability
density for position. Here H is the Hamiltonian of the
system and V is the potential, assumed real.

Experimentally, control is generally exercised by choice
of the potential, e.g. corresponding to choice of laser radia-
tion. Mathematically this gives a bilinear control problem,
as the potential multiplies the state. There is a developed
theory for controllability of finite dimensional bilinear sys-
tems (ODEs), using differential geometry and Lie theory.
Great progress has been made in treating controllability
problems for infinite dimensional systems such as the wave,
heat and rod equations, in which control enters linearly or
through the boundary. However, less is known about con-
trollability of infinite dimensional bilinear systems, such
as the Schrodinger equation with the potential as control.
Further, the Schrodinger equation can be solved exactly
only in a few elementary cases, and otherwise solutions
must be approximated numerically.

Here, we will consider the one-dimensional Schrodinger
equation,
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Za = 7@ —+ V(x,t)\:[l,

0<z<l,t>0, (1)
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with an oscillating square potential barrier,

0 0<zr<a
Vizg,t)=¢ V() a<xz<b
0 b<x<1.

Technically, when \A/(t) is positive we have a barrier and
when negative a well, but we will use the word barrier
whether V(t) is negative or positive. Such potentials are
simpler than the dipole potential associated with laser ra-
diation and may be a precursor to treating the dipole and
other more complicated potentials. The initial condition is

U(x,0) = \Ilo(x)7

where U9(x) is a complex function, and the boundary con-
ditions are
U(0,t) = ¥(1,t) =0.
We approximate numerically using the Crank-Nicolson
(C-N) method, [3], with h the space step and k the time
step, obtaining the difference equations
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Here, ¥} approximates ¥(z;,t,), j = 1..J—1,n > 0, where
x; = jh,t, = nk, and V* approximates V'(z;,t,). We take
6 =9% =0 for all n and \Ilg = \Ilo(xj),j =1..J—1.

II. TIME-INDEPENDENT POTENTIALS

_In the case of time-independent potential barriers
(V(t) = ¢), the C-N method is equivalent to that obtained
from the Cayley form and is used in the classic work of
Goldberg et al, [4], as well as subsequent works, e.g. [5].
The propagation (snapshots in time) of a wavefunction
with Gaussian initial data, with impingement on a bar-
rier and consequent transmission and reflection, is shown
in [4].

The C-N method may be implemented in MATLAB. It
may be shown analytically that when no barrier or well
is present (free propagation) a wavepacket with Gaussian
initial data remains Gaussian and spreads in time, in con-
currence with the Heisenberg Uncertainty Principle.

In Fig. 1, we show free propagation of a wavepacket with
Gaussian initial data and observe the spread in time. In
Fig. 2 we show propagation of the same initial data in the
presence of a time-independent (static) barrier.
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Fig. 1. Free propagation of Gaussian initial data, 70 time steps

III. TIME-DEPENDENT POTENTIALS AND CONTROL

The C-N method with a time-dependent potential was
used in [6] to treat a discretized control problem, with small
numbers of space and time steps. We wish to study the
problem with a larger number of space and time steps,
which is needed for physical interpretations. We consider
the question: Given a discretized initial state, a discretized
terminal state and a time T' = Nk, is there a discretized
time-dependent potential which steers the initial state to
the terminal state by time 77 That is, given {z;},j =
1.J—1,and {y;},j = 1..J — 1, does there exist a sequence
{z;l},j = 1..J — 1,n = 0..N, such that the solution of
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Fig. 2. Propagation of Gaussian initial data in the presence of a
static barrier, Vj" = 0.75,7 = 144..156, 110 time steps

the system of difference equations with {¥9} = {z;} and
v} {2}'} satisfies {\Ilév} {y;}? This discretized
time-dependent potential is then the desired control.
Several issues arise. First, one would like to have some
examples of the behavior of a wavepacket with a known
time-dependent potential, using a sufficiently large num-
ber of space and time steps. This aids with visualization
and suggests what one might expect from control. Propa-
gation of an initial Gaussian with a time-independent vs. a
time-dependent potential may be examined. To our knowl-
edge, closed form solutions of the Schrodinger equation



with time-dependent barrier/wells have not been found,
although there are abstract existence results.

The C-N method with time-dependent potentials may be
implemented in MATLAB. In Fig. 3 and Fig. 4, we show
the propagation of the same initial data as in Fig. 1 and 2,
now in the presence of cosinusoidally oscillating barriers.
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Fig. 3. Propagation of Gaussian initial data in the presence of a
time-dependent barrier, V* = (0.75)cos(n),j = 144..156, 110 time
steps |

Comparing Fig. 2 with Fig. 3 and Fig. 4, we see there
is marked contrast between the propagation of Gaussian
initial data with a time-independent potential and prop-
agation with trigonometrically oscillating potentials. The
higher frequency of oscillation of the barrier in Fig. 4 gives

rise to spikes at t=80,90,100 and 110 which are not present
in the other cases. The wavefunctions with oscillating bar-
riers have complicated forms, indicating that characteriza-
tion of pairs of initial/terminal data, for which a desired
”steering” control exists, will not be simple.
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Fig. 4. Propagation of Gaussian initial data in the presence of a
time-dependent barrier, Vj" = (0.75)cos(6n),j = 144..156, 110 time
steps

In Fig. 5 we show the propagation of centered Gaussian
initial data in the presence of a static barrier. The wave-
function splits; one bunch of peaks approaches the bound-
ary on the left and another the boundary on the right. In
Fig. 6 we show the propagation of the same initial data
in the presence of a cosinusoidally oscillating barrier. The



wavefunction is gradually flattened and spread and the side
bunches of peaks do not arise in the same time interval. In
Fig. 7 we show the propagation of the same initial data
with a barrier oscillating at five times the frequency as
that in Fig. 6. Now two bunches of peaks form on each
side of the barrier.
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Fig. 6. Propagation of centered Gaussian initial data in the presence
of a time-dependent barrier, V" = (0.75)cos(10n),j = 144..156, 70

t=0 t=10
1 1
0.5 0.5 M\
0 0
0 100 200 300 0 100 200 300
t=20 =30
1 1
) ANN ) /\Nﬂ\
0 0
0 100 200 300 0 100 200 300
t=40 t=50
1 1
) /\\HM ) J\J/—/\
0 0
0 100 200 300 0 100 200 300
t=60 t=70
1 1
0 0 W MM IVAAY.
0 100 200 300 0 100 200 300

time steps

Fig. 5. Propagation of centered Gaussian initial data in the presence
of a static barrier,Vj" = 0.75,j = 144..156, 70 time steps

Second, attempting to find a desired sequence {z}l}, j=
1..J —1,n=0..N, for a given pair of initial/terminal data
is a symbolic problem. It may be approached using the
computer algebra system Maple, but increasing the num-
ber of space and time steps pushes Maple’s computational

limits. As in [6], taking h = 1 and k = 2, we may write
(2) in matrix form as follows:
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Fig. 7. Propagation of centered Gaussian initial data in the presence
of a time-dependent barrier, V" = (0.75)cos(50n), j = 144..156, 70
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We may specify initial values R?, MJQ, 7=1.J—1and
terminal values R;V,M]N,j = 1..J — 1, write (4) for n =
0..N —1, and form the resulting system of equations. Thus,
if we let S™ be the matrix in parentheses on the left side
of (4), and T™ be the matrix on the right side of (4), for 3
time steps we would form

) R o7
™ -5 0 0 BS,%
0 T — 52 0 Pi% -
0 0 T? —53 Pi:f :

I 1] 0

We then ask, for which values of V" are there non-trivial
solutions of the system? These solutions will be R7, M7,
j=1.J—1,n=1.N —1, the intermediate states between
the initial and terminal data. When there are solutions,
we may also obtain the values of the control. Clearly this
becomes very complex as more space and time steps are
taken. Within its limits, Maple will perform row reduc-
tion on such systems, resulting in equations for the Vi
Computations for examples obtained thus far may involve
polynomials in the V" with some coefficients of the order
of 1014,

One can consider specifying properties of initial /terminal
pairs to be studied, such as the degree to which they are
localized and the amount of contact with the barrier. Ex-
amples suggest that the simple choice of a trigonometrically
oscillating barrier as control will not serve to steer localized
initial data to localized terminal data. The tendency of the
wavefunction to spread remains important.

In one example with 12 space steps, we have shown that
it is possible to steer initial data fully localized on the
left(zero on the right half of the space interval) to terminal
data fully localized on the right(zero on the left half of the
space interval) in 3 time steps. Both the initial data and
the terminal data have contact with the barrier.

In Fig. 8, we show free propagation of the localized initial
data. At t=3, the wavefunction is non-zero at each space
step, although of small magnitude for the first five steps.
In Fig. 9 we show the propagation of the localized initial
data with a time-dependent barrier which is centered and
one-sixth the width of the interval. The time-dependence
is not trigonometric. Now the wavefunction is zero for the
first 6 space steps. Comparing t=2 in Fig. 8 and Fig. 9,
we see that a large peak was created at that time in the
case of the time-dependent barrier. This raises the question
of "trade-offs” that may result if one wishes to control to
localized terminal data.

This numerical approach has the advantage of allowing,
when possible, explicit construction of the desired con-
trols for initial/terminal data pairs. Remaining subjects
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Fig. 8. Free propagation of localized initial data, t=0..3
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Fig. 9. Propagation of localized initial data, moving barrier, t=0..3

of study include determining the size of systems such as
those above that Maple can treat successfully, characteriz-
ing properties of "steerable” initial /terminal pairs with var-
ious sizes of barriers, and determining the degree to which
the full infinite dimensional problem is approximated with
Crank-Nicolson and other numerical methods.
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