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On the boundary control of passive infinite
dimensional systems

Ömer Morgül

Abstract— We will consider the feedback stabilization of

a class of passive infinite dimensional systems by means of

boundary control. Such systems usually possess an internal

energy, and along their solutions a conservation of energy

equation hold. This equation shows the balance between the

internal and external powers. By utilizing this balance, we

will prove various stability results. We will also give some

examples on the application of the proposed technique to

some well known passive systems.
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I. Introduction

Many mechanical systems, such as spacecraft with flex-
ible attachments, or robots with flexible links, and many
practical systems such as power systems, and mass trans-
port systems contain certain parts whose dynamic be-
haviour can be rigorously described only by partial differ-
ential equations (PDE). In such systems, to achieve high
precision demands, the dynamic effect of the system parts
whose behaviour are described by PDE’s on the overall
system has to be taken into account in designing the con-
trollers.

In recent years, boundary control of systems represented
by PDE’s has become an important research area. This
idea is first applied to the systems represented by the wave
equation (e.g. elastic strings, cables), see e.g. [1], [5], and
extended to beam equations, [2], and to the rotating flexi-
ble structures, see [9], [10]. In particular, it has been shown
that for a string which is clamped at one end and is free
at the other end, a single non-dynamic boundary control
applied at the free end is sufficient to exponentially sta-
bilize the system, see [1]. For an extension of these ideas
to dynamic boundary controllers, see [9], [10]. For more
references on the subject the reader is referred to [6], [7].

The stabilization of systems is an important research
area in the control theory. While the stabilization is an
important subject in its own right, it could also be viewed
as a first step in designing controllers to achieve some addi-
tional tasks such as tracking, disturbance rejection, robust-
ness, etc. In this sense, when a system to be controlled is
given, it would be desirable to determine a relatively large
class of stabilizing controllers, if possible all. Then within
this class of controllers one may try to find suitable ones
to solve additional problems like tracking, disturbance re-
jection, etc.

In this work we will consider the boundary control of a
class of passive infinite dimensional systems. We follow the

Ö. Morgül is with the Bilkent University, Dept. of Electrical Eng.,
06800, Bilkent, Ankara, Turkey. E-mail: morgul@bilkent.edu.tr .

general framework introduced in [7] for such systems. We
will develop some general results for the stabilization of this
class of infinite dimensional systems by means of boundary
control techniques. In this class of systems the inputs and
outputs are assumed to act on the boundaries of the sys-
tem. For this class of systems, we will first investigate the
effect of a simple feedback law and prove certain stability
results. We also show that some of the examples frequently
encountered in the literature (e.g. the wave equation, the
Euler-Bernoulli and the Timoshenko beam equations) can
be viewed in this class and we present the stability results
for such systems. We also consider certain examples and
apply the proposed approach for the stabilization of these
systems.

II. A General Framework

First we consider a general case to motivate the concept
of passivity. Let S be a dynamical system, let u, y ∈ Rm

be its input and output vectors, respectively, let X be a
Hilbert space in which the solutions of S evolve and let
E : X → R be an appropriate “energy” function which
depends on the solutions of S. Assume that the following
holds

Ė = uT y =

m
∑

i=1

uiyi, (1)

where the derivative is taken along the solutions of S and
we set u = (u1 . . . um)

T
, y = (y1 . . . ym)

T
∈ Rm, the super-

script T denotes the transpose. Here we may view E as
the internal “energy” of the system and (1) may be viewed
as the conservation of energy, where the right hand side of
(1) may be viewed as the “external power” supplied to the
system, and the left hand side may be viewed as “internal
power”. Hence, we may also consider (1) as a “balance of
power” equation. It follows from (1) that a natural choice
for the control inputs ui for the stabilization is the following

ui = −αiyi, αi ≥ 0. (2)

If we use (2) in (1), the latter becomes

Ė = −

m
∑

i=1

αi(yi)
2
. (3)

Therefore as a result of the feedback law given by (2), the
energy of the system decreases along the solutions and un-
der appropriate assumptions some stabilization results may
be deduced.

To elaborate further, let H be a Hilbert space, let
< ·, · >H and ‖·‖H denote the inner-product and the as-
sociated norm for H, respectively. Consider the following
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second order systems:

wtt + Aw = 0 , (4)

where a subscript denotes the partial derivative with re-
spect to the corresponding variable, and A is a linear (not
necessarily bounded) operator on H. Assume that A de-
pends on the (one dimensional) spatial variable x and that
x ∈ [0, 1]. Assume that the system given by (4) has the
following boundary conditions

( B1
i w )(0) = f1

i , i = 1, .., k , ( B2
i w )(1) = f2

i , i = 1, .., l,
(5)

( B3
i w )(0) = 0, i = 1, .., p , ( B4

i w )(1) = 0, i = 1, .., r, (6)

where Bj
i are various linear (not necessarily bounded) oper-

ators on H, k, l, p, r are some appropriate integers, and f j
i

are control inputs of our systems. In the sequel we will not
state the range of indices, which should be obvious from
the context. We note that here ( Bj

i w )(·) : [0, 1] → H and

( Bj
i w )(c) denotes the value of Bj

i w at x = c.
We first define the following sets :

S1 = {w ∈ H | ( B1
i w )(0) = 0 , ( B2

i w )(1) = 0}, (7)

S2 = {w ∈ H | ( B3
i w )(0) = 0 , ( B4

i w )(1) = 0}. (8)

Let D(A) ⊂ H be the domain of A, which may be given as

D(A) = {w ∈ H | Aw ∈ H }. (9)

We also define the operator Auc as A with the following
domain

D(Auc) = D(A) ∩ S1 ∩ S2. (10)

We make the following assumptions
Assumption 1 : D(A) is dense in H. 2

Assumption 2 : D(Auc) is dense in H, Auc is self-
adjoint and coercive in H, i.e. the following holds for some
α > 0

< w,Aucw >H≥ α‖w‖2
H , w ∈ D(Auc). 2 (11)

It follows then that A
1/2
uc exists, is self-adjoint and non-

negative. Let V be defined as :

V = D(A1/2
uc ). (12)

For technical reasons we assume the following.
Assumption 3 : The set V ⊂ H satisfies the following

V ∩ S1 6= V , V ∩ S2 = V. 2 (13)

In most of the examples, the sets S1 and S2 impose cer-
tain conditions at the boundaries, and one may easily mod-
ify V without changing the density assumptions.

Consider the system given by (4)-(6) with f 1
i = f2

j = 0.
Since the control inputs are set to zero we call the resulting
system as uncontrolled. Now (4) can be rewritten as

ż = Az , z(0) ∈ X, (14)

where X = V × H, z = (w wt)
T

∈ X, and A is a linear
operator defined on X as

A =

[

0 I
−A 0

]

, (15)

with D(A) = D(Auc)×V . Here, and in the sequel, the su-

perscript T denotes the transpose. For z1 = (u1 v1)
T
, z2 =

(u2 v2)
T
∈ X, the inner-product on X is given as

< z1, z2 >X=< A1/2
uc u1, A

1/2
uc u2 >H + < v1, v2 >H , (16)

and for z = (u v)
T

the norm in X is given as

‖z‖2
X = ‖A1/2

uc u‖2
H + ‖v‖2

H , (17)

Consider the system given by (4)-(6). Our control prob-

lem is to determine appropriate forms for f j
i such that the

resulting closed loop system is well posed and stable in
certain senses.

To define a feedback control law, we need an output
function. On the other hand, the balance of power equa-
tion given by (1) also imposes a certain constraint on the
choices of outputs. Hence the selection of appropriate out-
puts are quite important. The next assumption suggests
an appropriate choice for the outputs.

Assumption 4 : Let D1 = D(A)∩S2 and D = D1×V .
D1 is dense in D(Auc) and the following holds

< z,Az >X =
∑k

i=1( B1
i u )(0)( O1

i v )(0)

+
∑l

i=1( B2
i u )(1)( O2

i v )(1),

(18)

where z = (u v)
T

∈ D and Oj
i , i = 1, . . . k or l, j = 1, 2,

whichever appropriate, are linear (not necessarily bounded)
operators on H. We will call (18) as the power form for
the system given by (14). (cf. (1)). 2

Remark 1 : Let the operator A generate a C0 semi-
group of contractions T (t), and for z(0) ∈ D(A) , let z(t)
be the solution of (14). Let us define the energy E(t) of
the solutions of (14) as

E(t) =
1

2
< z(t), z(t) >X . (19)

Since z(t) is then differentiable, see [7], by differentiating
(19), using (14), and (18), we obtain Ė = 0. Therefore, in
the uncontrolled system the energy E is conserved. By uti-
lizing (18) we will propose appropriate control laws which
results in asymptotically stable closed loop systems. 2

Let z = (w wt)
T

be the solution of (14). It follows from

(18) that appropriate outputs yj
i of the system (14) may

be given as

y1
i = ( O1

i wt )(0) , i = 1, .., k , y2
i = ( O2

i wt )(1) , i = 1, .., l.
(20)

Let us assume that the Assumptions 1-4 hold for the
system given by (4)-(6). Let us choose the outputs as given
by (20). We will denote the resulting system as S. Then
(18) may be rewritten as

< z,Az >X=

k
∑

i=1

f1
i y1

i +

l
∑

i=1

f2
i y2

i . (21)
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For the system S, the control problem we consider is to
find appropriate control laws for f j

i by using the outputs

yj
i such that the resulting closed-loop system is well-posed

and asymptotically stable. The following simple feedback
law is frequently used in the literature

f j
i = −αj

i y
j
i , (22)

where αj
i ≥ 0, (cf. (2)). This choice is quite natural since

then (21) becomes the following

< z,Az >X= −

k
∑

i=1

α1
i (y

1
i )

2
−

l
∑

i=1

α2
i (y

2
i )

2
. (23)

Hence A becomes dissipative with this control law, which
is quite important in proving both the well-posedness and
the asymptotical stability of the closed-loop system. For
the asymptotic stability, we may use the energy E defined
by (19) as a Lyapunov function. Note that Ė is then given
by (23), cf. (3). From LaSalle’s invariance Theorem, it
may be concluded then that under certain conditions all
solutions of system S asymptotically tend to the maximal
invariant set contained in

O = {z ∈ X | < z,Az >X= 0} , (24)

see e.g. [7]. In this case, the inputs, as well as for any

αj
i > 0 the corresponding outputs become zero. If we can

prove that, under these conditions the only possible solu-
tion of the system S is the zero solution, then by LaSalle’s
invariance theorem, we may conclude that all solutions of
the system S asymptotically decay to zero, [7]. We also
note that in this case, the question of asymptotic stability
is also related to the observability, see [3].

By using (20) and (22) in (5), (6), we obtain the following
boundary conditions for the closed loop system

( B1
i w + α1

i O
1
i wt )(0) = 0 , i = 1, . . . , k, (25)

( B2
i w + α2

i O
2
i wt )(1) = 0 , i = 1, . . . , l. (26)

Let us consider the boundary conditions (25) and (26).
To incorporate these in the closed-loop system, we define
the following set

S1c = {(u v)
T
∈ H × H | ( B1

j u + α1
jO

1
j v )(0) = 0

( B2
i u + α2

i O
2
i v )(1) = 0

j = 1, . . . , k, i = 1, . . . , l}

.

(27)
We also define the following set

D(Ac) = D(A) ∩ S2, (28)

where S2 is given by (8). The closed loop system can be
rewritten as

ż = Az , z(0) ∈ X, (29)

where X = V × H, the operator A is given by (15) and

D(A) = (D(Ac) × V ) ∩ S1c. (30)

This system will be referred as the system Sc. For this
system we will make the following assumption.

Assumption 5 : The operator λI−A : D(A) ⊂ X → X
is onto for all λ > 0. 2

A simple consequence of this assumption is given in the
following theorem.

Theorem 1 : Consider the system Sc given by (29)
and let the Assumptions 1-5 hold. Then the operator A
generates a C0-semigroup of contractions T (t) on X. If
z(0) ∈ D(A), then z(t) = T (t)z(0) is the unique classical

solution of (29) and z(t) ∈ D(A) for t ≥ 0. If z(0) ∈ X,
then z(t) = T (t)z(0) is the unique weak solution of (29).

Proof : The proof easily follows from the assumptions
and the Lümer-Phillips Theorem, see [15], [7]. 2

The following assumptions are required to establish some
asymptotic stability results.

Assumption 6 : The operator (λI −A)
−1

: X → X is
compact for λ > 0. 2

Assumption 7 : The only invariant solution of (29) in
the set S1 ∩ S2 ∩ S3 is the zero solution, where S1 and S2

are given by (7), (8) and S3 is given by

S3 = {(u v)
T
∈ H × H |

( O1
i v )(0) = 0 , ( O2

j v )(1) = 0
for α1

i > 0, i = 1, . . . , k, for α2
j > 0, j = 1, . . . , l}.

2

(31)
Remark 2 : We note that in most of the examples

encountered in the literature the Assumptions 5 and 6 are
satisfied, see e.g. [4, p. 187]. For the assumption 7, we
need to solve (4) in S1 ∩ S2 ∩ S3. In most of the cases
S3 introduces extra boundary conditions, and due to these
conditions in most of the examples the Assumption 7 is
also satisfied. 2

Theorem 2 : Let the assumptions 1-7 hold, consider
the system Sc given by (29), and let T (t) be the unique C0-
semigroup generated by A. Then, the system Sc is globally
asymptotically stable, that is for any z(0) ∈ X, the unique
(clasical or weak) solution z(t) = T (t)z(0) of (29) asymp-
totically approaches to zero, i.e. limt→∞ ‖z(t)‖X = 0.

Proof : Proof follows from the assumptions and the
LaSalle’s invariance theorem, see [7]. 2

To establish the exponential stability, we may use the
following well-known result.

Theorem 3 : Let the assumptions 1-5 hold, consider
the system Sc given by (29), and let T (t) be the unique
C0-semigroup generated by A. Then T (t) is exponentially
stable, i.e. the following holds for some M > 0, δ > 0

‖T (t)‖X ≤ Me−δt‖z(0)‖X , (32)

if and only if the imaginary axis belongs to the resolvent
set of A and the following holds

sup
ω

‖(jωI −A)−1‖X < ∞ (33)

Proof : This result is known as Huang’s Theorem, see
e.g. [7] 2

In the applications, the difficult part in using the The-
orem 3 is to establish (33). Alternatively, we may use the
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so-called energy multiplier methods. One such result is
given below.

Theorem 4 : Consider the system Sc given by (29) and
let the assumptions 1-5 hold. Let T (t) be the C0-semigroup
of contractions generated by A. Let z = (u v)T ∈ H and
let us define the projections P1 : X → V , P2 : X → H as
P1z = u, P2z = v. Let z(0) ∈ D(A) and let z(t) denote the
solution of (29). Assume that for a linear map O : H → H
the following holds

|< P2z(t), OP1z(t) >H |≤ CE(t), (34)

d
dt < P2z(t), OP1z(t) >H≤ −E(t)

+
∑k

i=1 a1
i (f

1
i )

2
+

∑l
i=1 a2

i (f
2
i )

2
,

(35)

where C > 0 and aj
i are arbitrary constants. Then the

system Sc is exponentially stable, i.e. (32) holds.
Proof : See e.g. [7] 2

The result given above can be used rather easily. How-
ever, note that this is only a sufficient condition, and that
it may not be applicable to certain cases.

III. Examples

Consider the wave equation given below. For conve-
nience the relevant coefficients are assumed to have unit
value :

wtt − wxx = 0 , 0 < x < 1 , t ≥ 0, (36)

w(0, t) = , wx(1, t) = f(t), (37)

where f(t) is the boundary control input. We set H =
L2(0, 1), Au = −u′′ where a prime denotes derivative, and
D(A) = {u ∈ H | u, u′, u′′ ∈ H}. Note that D(A) is
dense in H, hence the Assumption 1 holds. By comparing
(37) with (5)- (6) we see that B1

i and B4
i do not exist,

(i.e. k = r = 0), l = p = 1, B2
1w = w′, B3

1w = w and
f2
1 = f . Hence we have S1 = {w ∈ H | w′(1) = 0},
S2 = {w ∈ H | w(0) = 0}. It then follows from (10) that
D(Auc) = {w ∈ H | w ∈ D(A), w(0) = w′(1) = 0}. Note
that D(Auc) is dense in H, moreover we have :

< w,Aucw >= −

∫ 1

0

ww′′dx =

∫ 1

0

(w′)2dx (38)

By using (37), we obtain :

∫ 1

0

w2dx ≤

∫ 1

0

(w′)2dx . (39)

Hence, Auc is coercive and the Assumption 2 holds. It can
be shown that we can choose V as

V = {w ∈ H | w,w′ ∈ H,w(0) = 0}, (40)

see [7], hence the Assumption 3 also holds. Accordingly we
have X = V × H, with the following inner-product

< z1, z2 >X=

∫ 1

0

u′

1u
′

2dx +

∫ 1

0

v1v2dx, (41)

where z1 = (u1 v1)
T
, z2 = (u2 v2)

T
, see (16). To check

the Assumption 4, first note that D1 = {w ∈ H | w ∈

D(A), w(0) = 0}. For z = (u v)
T
∈ D1 × V , by using (41)

we obtain

< z,Az >X =
∫ 1

0
u′v′dx +

∫ 1

0
vu′′dx

= u′(1)v(1) = ( B2
1u )(1)v(1).

(42)

Note that (42) has the same form as (18) with O2
1v = v.

Hence, the Assumption 4 also holds. For the system (36)-
(37), according to the power form, the appropriate output
is

y2
1(t) = wt(1, t). (43)

By using (22) and (43), we obtain :

wx(1, t) = −αwt(1, t). (44)

By using (27) and (28) we obtain

S1c = {(u v)T ∈ H × H | u′(1) + αv(1) = 0},

D(Ac) = {u ∈ D(A) | u(0) = 0} . (45)

Therefore, the system given above can be put into the form
(29). Note that in this case D(A) given by (30) becomes

D(A) = {(u v)
T
∈ X | u ∈ D(Ac), v ∈ V,

u′(1) + αv(1) = 0},

= {(u v)
T
∈ X | u, u′, u′′ ∈ H, v, v′ ∈ V,

u(0) = v(0) = 0, u′(1) + αv(1) = 0}.

(46)

It can be shown that λI − A : D(A) ⊂ X → X is onto
for λ > 0, see e.g. [12]. Hence, by Theorem 1, A generates
a C0-semigroup of contractions on X. It can be shown that
the Assumptions 6-7 also hold in this case as well, hence
T (t) is asymptotically stable as well. To prove exponential
stability, we may use both Theorem 3 and 4. For the latter,
note that E(t) given by (19) takes the following form

E(t) =
1

2

∫ 1

0

w2
t dx +

1

2

∫ 1

0

w2
xdx, (47)

see (17). An appropriate function O could be given as

< P2z(t), OP1z(t) >H=

∫ 1

0

xwtwxdx. (48)

By comparing (34) with (48) we see that ( Ow )(x) =
xw′(x) for w ∈ V . After straightforward calculations we
obtain the following

|

∫ 1

0

xwtwxdx |≤

∫ 1

0

| wtwx | dx ≤ 2E(t), (49)

hence (34) is satisfied with C = 2. Next, by taking the
derivative and noting that w is a solution of (36)-(37), we
obtain

d

dt

∫ 1

0

xwtwxdx =

∫ 1

0

xwxxwxdx +

∫ 1

0

xwtwxtdx. (50)

By using integration by parts, we obtain

∫ 1

0

xwxxwxdx =
1

2
w2

x(1, t) −
1

2

∫ 1

0

w2
xdx, (51)
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∫ 1

0

xwtwxtdx =
1

2
w2

t (1, t) −
1

2

∫ 1

0

w2
t dx, (52)

where we used w(0, t) = 0. By using (51), (52) and (44) in
(50) we see that (35) is satisfied with a2

1 = (α2 + 1)/2α2.
Hence by the Theorem 4, it follows that T (t) is exponen-
tially stable.

As a second example, let us consider the following cou-
pled wave equation :

utt − uxx = α(v − u) , 0 < x < 1, t ≥ 0, (53)

vtt − vxx = α(u − v) , 0 < x < 1, t ≥ 0, (54)

u(0, t) = , ux(1, t) = f(t), (55)

v(0, t) = , vx(1, t) = g(t), (56)

see e.g. [14]. Here, α > 0 is the coupling constant, f(t)
and g(t) are the boundary control forces. We set H =
L2(0, 1) × L2(0, 1). The operator A : H → H is defined as

A

(

u
v

)

=

(

−u′′ − α(v − u)
−v′′ − α(u − v)

)

. (57)

Similar to previous example, we have

D(A) = {(u v)T ∈ H | u, u′, u′′, v, v′, v′′ ∈ H} .

Since D(A) is dense in H, the Assumption 1 holds. The
sets S1 and S2 can be found as

S1 = {(u v)T ∈ H | u(0) = v(0) = 0} ,

S2 = {(u v)T ∈ H | u′(1) = v′(1) = 0} .

Consequently, D(Auc) is found as

D(Auc) = {(u v)T ∈ H | (u v)T ∈ D(A) ,
u(0) = v(0) = 0 , u′(1) = v′(1) = 0} .

For z = (u v)T , we obtain

< z,Aucz >H =
∫ 1

0
[u(−u′′ − α(v − u))

+ v(−v′′ − α(u − v))]dx

=
∫ 1

0
((u′)2 + (v′)2)dx + α

∫ 1

0
(u − v)2dx

(58)
From (39) it follows that Auc is coercive, hence the As-
sumption 2 holds. As in previous example, we may choose
V as

V = {(u v)T ∈ H | (u′, v′)T ∈ H, u(0) = v(0) = 0 , }

It then easily follows that the Assumption 3 is also satisfied.
Accordingly we have X = V ×H with the usual extension
of the inner product in L2(0, 1).

To show that the Assumption 4 is also satisfied, first
note that D1 = D(A) ∩ S2 is dense in D(Auc). Let us set
z = (u v u1 v1)

T ∈ X, and z̃ similarly. From (58) it follows
that the appropriate inner product in X is the following :

< z, z̃ >X = 1
2 (

∫ 1

0
(uũ + vṽ + u1ũ1 + v1ṽ1

+ α(u − v)(ũ − ṽ))dx)
(59)

By using the inner product given in (59), using integration
by parts, after straightforward calculations we obtain the
following

< z,Az >X= u′(1)u1(1) + v′(1)v1(1) (60)

for any z ∈ D1×V . It then follows easily that the Assump-
tion 4 is also satisfied. Let z = (u v ut vt)

T ∈ D(A) be
the solution of (54)-(56). Note that the Energy expression
given by (19) becomes

E(t) = 1
2 < z(t), z(t) >X= 1

2 (
∫ 1

0
(u2

t + v2
t

+ (u′)2 + (v′)2 + α(u − v)2)dx)
(61)

Hence from (59)-(61) we obtain :

dE

dt
= f(t)ut(1, t) + g(t)vt(1, t) (62)

Therefore, the outputs y1 and y2 should be chosen as :

y1 = ut(1, t) , y2 = vt(1, t) (63)

By using (22) and (43), we obtain :

f(t) = −α1ut(1, t) , g(t) = −α2vt(1, t) . (64)

By using (27) and (28) we obtain

S1c = {(z ∈ X | u′(1) + α1u1(1) = 0, v′(1) + α2v1(1) = 0},

D(Ac) = {u ∈ D(A) | u(0) = v(0) = 0}

Therefore, the system given above can be put into the form
(29). Note that in this case D(A) given by (30) becomes

D(A) = {z ∈ X | (u v)T ∈ D(Ac), (u1 v1)
T ∈ V,

u′(1) + α1u1(1) = 0 , v′(1) + α2v1(1) = 0},
(65)

Similar to the previous example, it can be shown that λI−
A : D(A) ⊂ X → X is onto for λ > 0, see e.g. [12]. Hence,
by Theorem 1, A generates a C0-semigroup of contractions
on X. As in previous example, the Assumption 6 is also
satisfied. To prove the assumption 7, let us assume that
α1 > 0 and α2 = 0, i.e. only one boundary control force is
active. In this case, the set S3 given by (31) is found as

S3 = {z ∈ X | u1 = 0} .

Hence accordingly we should look at the nonzero solutions
of the system given by (53)-(56) with

f(t) = 0 , g(t) = 0 , ut(1, t) = 0 .

By using separation of variables, see e.g., [13], we could find
the possible solutions of this system. Note that, by using
w+ = u + v , w− = u−w, this system of equations can be
reduced to two decoupled system of equations of the form

w+
tt − w+

xx = 0 , w+(0) = 0 , w+′(1) = 0 ,

w−

tt − w−

xx + 2αw− = 0 , w−(0) = 0 , w−′(1) = 0 .
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It can be shown that the natural frequencies of the first

system are given by ω+
i = (2i+1)π

2 , i = 0, 1, . . . (i.e. the

eigenvalues are λi = ω+
i ). Similarly, the natural frequen-

cies of the second system are given by ω−

i =
√

2α + (ω+
i )2.

By using these and the eigenvalue expansion, and noting
that 2u = w+ + w−, it follows that to have a nontrivial
solution satisfying ut(1, t) = 0, for some i and j, we must
have ω+

i = ω−

j . Therefore, if this equation is not satisfied,
then the only possible solution of this system is the trivial
(i.e. zero) solution. Hence we conclude that if

α 6=
1

2
((ω+

i )2 − (ω+
j )2)

for any i, j, then the system given above is asymptotically
stable. It can also be shown that in this case exponential
stability does not hold; and when α2 > 0 holds as well, this
system is exponentially stable, see [14]. We simulated this
system for α1 = 0, α2 = 0.1, α = 1, and the simulation
results are shown in the following figures. As can be seen,
the asymptotic stability holds.

IV. Conclusions

In this work we considered the feedback stabilization of
a class of passive infinite dimensional systems, by means of
boundary control. We utilized the general framework in-
troduced in [7] for such systems. We first gave some general
results for the stabilization of this class of infinite dimen-
sional systems by means of boundary control techniques. In
this class of systems the inputs and outputs are assumed to
act on the boundaries of the system. For this class of sys-
tems, we first investigated the effect of a simple feedback
law and proved certain stability results. Some of the exam-
ples frequently encountered in the literature (e.g. the wave
equation, the Euler-Bernoulli and the Timoshenko beam
equations) can be viewed in this class. We then considered
certain examples and applied the proposed approach for
the stabilization of these systems. We also presented some
simulation results. We note that this approach could be
generalized to dynamic boundary controllers, see [7].
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