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Abstract This paper deals with parametric SISO timeda system with a finite number of parameters. This paper
event graphs identification. First an appropriate modehef tproposes a new method for parametric identification based on
graph is derived from the input-output transfer function. Ithe knowledge of the model structure. First we develop an
the following an identification algorithm is developed wginappropriate TEG model and then the identification algorithm
Residuation Theory. Some theoretical results are alsdgedv As one will notice, the method is not restricted to the case of

impulse response estimation, as in the previous cited paper
and it can be used in other input conditions. The main

Keywords * Discrete event dynamic systems, Timed petﬁdvantage is that the obtained model is closer, in a dioidesen

nets, (max, +) algebra, Systems Identification. to the actual system model than the one obtained by a direct
calculation of the greatest impulse response.
|. INTRODUCTION The paper is organized as follows. Section Il introduces

Discrete Event Systems (DES) appear in many applicatioﬁ%me algebraic tools concerning the Dioid theory . Residnat

in manufacturing, computer and communication systems aﬁﬁd Llnear' Systems Thgory IS pre;ente.d_ |n.sect|ons i ‘f.jmd
V' respectively. In section V the identification method is

are often described by the Petri Net formalism (see [1] looed and tion VI ai Jlustrati le. A
If the concerned systems are characterized by delay ang/€loped and section gives an tilustrative example.

synchronization phenomena, the Timed Event Graphs (TEESnCIUSIon Is given in section VII.
constitute interesting models. TEG are timed Petri nets in
which all places have single upstream and single downstream 1. DIOID THEORY
transitions and therefore can be linearly described inddioi
algebra ([2], [3], [4]). This formulation has permitted nyan
important achievements on the control of TEG, as for ingtan _
the internal model control [5], the closed-loop control vi§)- The neutral elements of and® exist and are represented
output or state feedback ([6], [7]), and the predictive coint VY e anQe respectlvely. The operat!0® is d|str|bgted at left
[8]. One should remark that the dioid formalism is useful i?‘nd at right with respect t® anq; IS an apsorbmg elemgnt
DES contexts other than TEG control, as for example for tg® @ = ¢ ®¢ = ¢, Va). In a dioid, a partial order relation
modeling and control of continuous and hybrid Petri nets [of d€fined bya = b iff a = a® b. As resulte is a bottom

A central problem in TEG control is, as in classical contrdflement of the dioid because, for alla = e. o
theory for continuous dynamic systems, the identification o A dioid D is said to be complete if it is closed for infinite
the model. Boimond et al. [10] have proposed a paramef{MS and if® d|str|but§s over |nf|n|t(=T sums. The greatest
identification method based on the system impulse respor€ment of a complete diclt noted byT is equal tod, c, =-
The approach considers two ARMA models: one for the The greatestlower bound of every sebf a complete dioid
transient and another for the periodic behavior. Galloalet P always exists an@ is a distributive dioid if it is complete
([11], [12]) have considered the identification of the syste@nd for all subset€ of D, (A cc¢) © a = A cclc @ a) and
impulse response based on a decomposition of the system ifccc ©)A@ = Bccc(cAa), wherez Ay denotes the greatest
a sum of first order sub-systems (the impulse response is sifvér bound between andy.

A dioid D is a set supplied with two internal operations
fenoted by® and®. The operatior is idempotentd ® a =

into a sum of so called simple elements). Mengyal. [13] Example 1 Zuax dioid ): Consider the selZ = Z U
have developed an algorithm for the non-parametric (diredr—o0, +oc} and defines as the max operator and as the

Representation of a dynamic system by an impulse respofise 0 and T = +oo0. o _ _
usually requires an infinite number of parameters. However, Theorem 1 ([2]): The implicit equationz = ax &b defined

given a model structure, parametric models allow to repries@ver a complete dioid> admitsz = a*b as least solution,
wherea* = @ a' (Kleene star operator) with® = e.
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i TABLE |
e(k) = —oo,Vk, ande(k) = { (loli gt%e?wise FORMULZ OF RESIDUATION
Remark 1: The variabley of dioid Zmax[['y]] can be usually .
regarded as a backshift operator in the event domain. Isplay a2z (€
in the TEG study, a role similar to the operator! in the .
applications ofZ — transform to discrete-time linear dynamic a—— =aw 2
systems .
The support of a series(y) in the dioidZ,,.,[7] is defined @@y ea=(@eadlyea @
as supp(x(v)) = {klz(k) # €}. (e a)®a=(z®a) @)

Definition 1: The valuationval(xz(~)) of a seriesz(y) is

defined as the greatest lower boundsapp(z(v)). (@@a)ea=(zea) ®

ze (a®b)=(rea)eb=(xeb)ea | (6

IIl. RESIDUATION THEORY AND DI0OIDS

Residuation deals with solutions of equations of the type
f(x) = b by assuming thayf is an isotone mapa(=< b =
f(a) = f(b)). In this section some results on this theory Yz € D andvy € €.
are summarized. Further details can be found in Blyth and
Janowitz [14]. Theorem 6 ([2]): The isotone mapping, : z — a ® x
Define the subsolutions (supersolutions) of the equatiéi®m a complete dioid into itself is dually residuated. Itsad
f(z) = b as the elements of the sgt|f(z) < b} ({z|f(z) = residual is denotel)(z) =z o a.
y}. Remark 3:x e a=¢ < a = x.
Definition 2 (Residual and residuated mappindjn The table | gives some useful equations involving the
isotone mappingf : D — &, whereD and £ are ordered residuation (e ), in dioids (see[2]).
sets, is aresiduated mappingf for all y € £ there exists  property 1: In the Zmax[y] dioid, y(y) e z(y) =

a greatest subsolution for the equatiftw) = y (hereafter {D yk)v*Y o (B z(i)y'} = B (yk) =
denotedf¥(y)). The mappingf* is called theresidual of f. keZ = kEZ

Theorem 2 ([2], Residuation )tet f : D — & be an z(k)7".

isotone mapping wher® and £ are ordered sets, thef is Proof:  Directly from table I, formulee (3) and (6),
residuated ifff* is the unique isotone mapping such that and observing thaty(k)y* e {€P z(i)y'} = y(k)y* and
_ i>k
foffy) =y and flof(z)>== Q) yk)n e {Eljkx(i)vl} = (y(k) o (k))y". u
Ve € DandVy € €£. Remark 4:The associated dater (a nondecreasing trajec-
Theorem 3 ([2]):Let f : D — & where D and £ be tory) to the seriesw(y) = y(v)e z(y) is given by
complete dioids whose zero elements are respectively éénoiv(k) = @ (y(i) e z(i)). As a result, ifw(y) # (v) then
ep and eg. Then f is residuated iff f(ep) = e¢ and, i<k
VACTD, f(@® z) = @ f(z). w(val(w(v))) = y(val(w(v))).
zEA zEA Property 2: If y(v) e z(y) # e(v) thenval(y(y) e z(7))
Theorem 4 ([2]): Mappings L, : =z — a ® z and = val(y(7)). ' ' o
R, : © — z ® a defined over a complete dioi®® are both Proof: Obtained by using property 1 and definition W.

residuated. Their residuals are isotone mappings denoted
respectively byLf (z) = az = & and Rf,(z) = afa = .

IV. LINEAR SYSTEMS THEORY
Remark 2: These results can be extended to a matrix dioid

(see [2]). :
It is important to notice that in a commutative diaid () Given a TEG, it is possible to associate to each transition
=R (x). a sequencer = {z(k)},., Wherexz(k) represents the date
The concept of dual residuation can be defined in simil@f the k' firing of the transitionz. Such a sequence, usually
way from the equatioryf (z) = b. called a dater, is a nondecreasing functiorkoT he trajectory

Definition 3 ([2], Dual Residuation):An isotone mapping of the transitionz can also be represented by a formal series
f: D — & whereD and £ are ordered sets, is aually z(7) = @ z(k) ® v* wherez(k) € Znax -
residuated mappingf for all y € £ there exists the least z
supersolution forf(z) = y. It is denotedf”(y) and it is called
the dual residualof f.

S
The following example, which represents a workshop with
3 machines {1 to M3), illustrates this idea.
Theorem 5 ([2], Dual Residuation)tet f : D — £ be an Let u anq Y be respectively the daters of the |r}put and
isotone mapping wher® and £ are ordered sets, thef is output transistions and; to xz3 be the daters of the internal
. b . . - ransitions in TEG of figure 1. The system equations (3) gives
dually residuated iff” is the unique isotone mapping such thaﬁhe relationship of these variables in the difigl..[] (when

fof'y) =y and f’o f(z) <=z (2) there is no confusion, the operaterwill be omitted).



M, where z(v) = (sy")*u(y). This equation is a solution of the

,,,,,,,,,,,,,,,,,,,,

| 6 ; affine equationz(v) = (s7")z(v) @ u(y). Hence, the system
3 ] can be represented by the following equations in Zhg.,
3 6 g dioid
O 0 OR 4
X 4
\\) z2(k) = s®z(k—r)®ulk)
ﬂ<~5) | > L L7l ) = w6 @tk — v+ e ©)
\\)jJO s Y qoz(k—v)® ... & ¢ a1z(k—v—r+1)
: ! M
- 3. } with initial conditions z(k) = u(k) = y(k) = ¢ for k < 0.
R ! Taking inspiration from the classical identification thgor
M, for the continuous variable dynamic systems [1&]k) can

be rewritten as

Fig. 1. Example of Timed Event Graph (TEG)

y(k) = ¢ ©0, (10)

wherep? = [u(k) ... u(k—v+1)z(k—v)...z2(k—v—r+1)]

21(y) = 6ya1 () @ 3uly) is the regression vector artl= [py...p,—1qo-..q—1)7 is
ra(y) = 3z () ® 10u(y) the parameter vector which will be estimated.

3 . . ;-
w3y = dyzs(y) @ 621(7) @ 3za(7) ) . Tr}grefore, for ant observation of N input and output transi
y(y) = dz3(7) ion firings, one gets

y() = (1T @20y & (2592)(69) u(r). (@) Y =000, (11)

This result can be generalized for every TEG. Baccelli et althere ® = [¢g ... on]T is the regression matrix and =
[2] have shown that transfer functidnhas periodic behavior [y(0)...y(N)]" is the observed output vector.
and the output of the system in tig,..[v] dioid is given by In order to obtain an estimate of the parametean error
criterion is defined as
y(v) = h(y)u(). (5)
where J(0) = @(y(k) —y(k)). (12)

h(y) = p(v) ® q(v)v" (s77)*, (6) Where the output of estimated modegi(k) = ¢ ® 0) is
. -l i . . such thaty(k) < y(k). This criterion means that the best
\é\”th l.)éw t_h G?Z:o . pit 1 ’hpi < Nf’ t?1 ponntomlaI thh model must be as close as possible but less than the observed
escribes the transient behavior of the system abg = output,i.e., the greatesf such thatb @ § < Y.

r—1 g ) . .
;-0 4; +’, & € N, a polynomial which represents a pattern. g, g step, variable will be assumed known. Hence

This pattern is reproduced for eacfevents and lasts time an optimum estimator for the criteriom(g) can be obtained

units. . : .

Baccelliet al. [2] also have shown that in the set of datertsJy using Residuation Theory,
one may write 5o @ i BRY. (13)

k PRO=Y
k)= h(l k—1 7 - . . S
y(k) 16:% (D) & u( ) ) Explicitly, the solution to this equation is given by

whereh is the system impulse responge=£ h whenu = e, R N ‘ .
i.e., transitionw fires infinitely many times at = 0). i = /\l[c\]:o u(k — 1) xy(k), ie0v—1], (14)

Property 3 ([2]): Let z andy be two daters, then the dater ¢; = Ai_oz(k—v—j)gy(k), j€[0 r—1].

x{y exists and is given b k)= x(s k+ s). ~
W g Yol (k) = Aseza(s) vyl ) Remark 5:p; > p; andg; > g; since ¢ is the greatest

solution of ® ® # =< Y. Consequentlyy is a solution to

V. IDENTIFICATION METHOD ; ; . o
. . equation (11)j.e, Y = ® ® 6. This results implies thap;
This paper assumes that there exists a model for a TFagfd q; satisfies equation (9) fok = 1,...,N. By setting

SISO as expressed iq equation (5). Its structiueeparameters u(k) = 400 for k > N (This means that no events occur
v and r (see equation (6)) are assumed to be knowngier i - N), the equation (9) is satisfied for all € Z. So

The purpose of the identification method is to estimate thge can also apply the transform, which leads to
unknown polynomial®(vy), ¢(v) and the period duratios.

Expanding equation (5) by using (6), one obtains y(v) = P()u(y) ® GV (7). (15)

y(v) = p(Muly) © (V)7 2(7), (8)



Proposition 1: If the parameters is known and the input
signalu(v) is sufficiently "rich” (i.e, e < u(y) < h((”)) then

T\ * — 3 M T\ %
the above estimators will converge to the actual parameters (sup?”) (7::11mn 57
preciselyp(v) = p(v) andg(v) = q(7). = @;OO( Ilmn LMJ Y
Proof: e T ) (22)
< fast J
If e < u(y) < % then h(y) = y(v) = h(y )h((a,)) = < ee@@é (L (JT.)J,;Z/]T)
h(v)(see table |, equation (2) ). Kis assumed to be known, D Jc—(l )
z is also known. Moreover the proposed estimator always gives - 7
pi > p; andgq; > g;, howeverp; = /\2’20 u(k — i) }h(k) < Finally, the conclusion is that,, is the greatest element of
u(0)§h(i) < h(i) = p; (i < v) becauseu(0) > 0. The same S. Our proposition is to take = s,,, as an estimator fos.
reasoning can be applied . Some properties of this estimator are given below.

] Lemma 1:1f win s () # € thenval(wins(v)) > v.

However, since variable is unknown, one must estimate ~ Proof: ~
it. If an estimate ofs (denoteds) is available, an estimate of U@l(winf(“ﬁ) = val{y(y) & p(v)u(y)} = val{(w(v) &
z (denoted?) is obtained iteratively, following equation (9), p(yu(y)) e p(Nu(v)} = wva{w(y) e p(y)u(v)} =
by val(w(y)) = v (by formula (5), table |, and property 2).
[ |

P ition 2: If e < < ) andw;, th
2k) =502k —1) ®u(k). (16) §:r:p05| ion e=2u(y) 2y noy andw; #(7) # ¢ then

- o= zr) )
To estimate the period duration, one must remember that Proof: 5 i:rlnln |57 ) ande(y) = w()ins ky(7)-

the estimates given in equation (14) must satisfy the eqmatlBy lemma 1,v, = Ual(wmf('Y)) > v. Ase X u(y) =
(15) as explained in remark (5). Introducing a new vanabl;;z— = y(y) = h(y) then wi,r(vy) = h(vy,) (by us-

w(7y), this equation can be rewritten as ing property 1 and observing remark 4). Therefo(e) =
(@ )ing WD) = AjZo 5500 < iied = hlr +

{ w(fY) = q(’Y)’yy( ’77)*u(’7) (17) Uw) - h(vw) =S, beCaUSdl(T =+ k’) — h(k) = s whenk 2 V.

y(v) = bp(uly) ®w(v). Finally, 5 = _min_ | | < ¢(r) < 5. As§ > s (sinces is

A lower bound forw(v) is given by the dual residuation: an upper bound fos) the conclusion is thak = .

|
R Remark 7:If w;,¢(v) = ¢ theny(y) = p(y)u(y), s =T
w(Y)ing = y(v) & p(y)u(v). (18) andg = e. This means thai(+) is a good model for the TEG.
o . The following algorithm summarizes the identification
Therefore one has the following inequalities: method.
Algorithm
)% T\ % b%ln
w(V)ing 2w(y) = (7") W Y)ing = (77) w() 2y(y)- Collect N pairs of input and output dates (), y(k));
| W9 hi= Agulk ) hy(k) i =0, = 1;
Hence,(sv")* < w(7v)ins Yy(y). Then in order to estimate for k=0,...,
? one must study the set (BEu(n)(k) = B (bi & ulk —i);
Wing (k) = @_o{y(i) & (BHy)u()(@)}:
S={s eN[(s7")" 2 c(7)}, (20) end

o

(k) = AF wmf i) yy(k + 1) for k=0, ..., N;

wherec(v) = w(7)ins Ry (7). . §= min L“" J whereL = [ £];
Remark 6:As w(y)ims = y(v) then c(y) = e which 2k ) 5© 2k —r) @ ulk) for k=0,..,N
implies thatS is nonempty § = 0 € S). G = /\N 2k — v — ) ky(k) for j 0 1
Expanding the inequalitysy”)* < ¢(7), one has end. 0 T ’
0 <(0) VI. |LLUSTRATIVE EXAMPLE

<
\1 T
(57_ o2y Consider the TEG model depicted in the figure 1, where
: (21) the structural parameters ave= 2 andr = 1. For an input
(") = clir)(y7)t firing sequence given by = [0 5 9 15 19 21] the output firing
: sequence ig = [17 22 26 32 37 43]. The figure 2 shows those
sequences and the behavior in dashed lines when the input is
c(ir , : un(y) = h(7) )h(7)-
. As result,s < iﬁ » Viz1,an .upper'bound fop in N 'E'h)e ap[(aliB:Zti(()n) to the proposed method to the observed
IS sup = rlnln [—J where [z] is the integer part oft. 5t givesP(0) = 17, P(1) = 21, Q(0) = 25 ands = 6, that

Moreoversup € S because is, the method converges to actual parameters of the system.
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One must note that the input condition does not satisfy the
requirements of proposition 4.¢. u £ w;). This example
shows that the proposition is sufficient for the convergence
but not necessary.

VIl. CONCLUSION

The paper presents a parametric method for the identifica-
tion of SISO TEG. The method is not restricted to the case
of impulse input and it can be used in other input conditions.
Some theoretical results are obtained as the convergence to
the actual parameters in case of "rich” input signal.
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