
   
Abstract--The numerous amount of existing Route Guidance 
Systems (RGS) leads to increasing efforts to integrate these 
stand-alone tools into an overall solution, possessing the ability 
to process information of all the individual systems. Especially 
in the fields of intermodal services and in order to combine 
RGS of neighboured regions enhanced developments can be 
regarded. As representatives of intermodal services, i.e. 
calculating the best ways of certain origin-demand matrices 
with respect to the simultaneous use of different Public 
Transportation Means (PTM) and Individual Transportation 
(IT), the European project Marco Polo [EK01] can be named 
as well as the German projects Mobilist [MOB02] or Mobinet 
[EK01], mainly trying to implement shortest path models 
under a star topology with distributed information storage. 
Also, Personal Digital Assistents (PDA) with integrated GPS 
modul are curently available [PTV 02], thus being able to 
perform intermodal navigation within the vehicle as well as by 
the use of PTM and for pedestrians. 
Unfortunately, analysis of different path search algorithms is 
commonly done by comparing the amount of necessary 
instructions O(·) in possible net topologies. However, as 
computing power is in the meanwhile at a fairly high level, 
delay in a distributed environment can mainly be expected due 
to communication time. Dynamic calculations demand to 
transmit actual traffic conditions during several time periods, 
thus this paper examines the different routing strategies by 
evaluating the occuring message transmission time in common 
graph classes. It will be shown that possessing a star topology 
(one central server) Label-Setting algorithms can be proved to 
be superior in regard to Label-Correcting algorithms. In 
addition, considerable improvements will be achieved by 
parallel message transfer for possible next link investigations. 
Here, the paper proposes solutions with a profit in delays by a 
factor of ' ( )O n , where n denotes the number of nodes in a 
network. 
 

I. INTRODUCTION 
 
Specifying the fastest path in a net topology has yield to 
numerous solutions in literature, each of them possessing 
(dis-)advantages in certain graph classes. As these 
algorithms have to work in a fast way, the crucial criteria in 
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analyzing the models is commonly determined by the 
complexity ( )O ⋅ of necessary instructions in order to 
decrease required processor power.  
However, increasing efforts to combine co-existing Route 
Guidance Systems (RGS) into single solution models 
exhibit concepts for adequate best path approaches in the 
resulting distributed environment. Here, significant delays 
during iteration result not mainly because of restrictions in 
computation power but rather in the fact of existing, 
inevitable communication between distributed computers 
and/or storage devices. 
Especially in the field of intermodal services, i.e. 
calculating the best ways of certain origin-demand matrices 
with respect to the simultaneous use of different Public 
Transportation Means (PTM) and Individual Transportation 
(IT), calculations have to be based on various databases 
stored in (locally) distributed devices. As representative 
efforts in this field, the European project Marco Polo 
[EK01] can be named as well as the German projects 
Mobilist [MOB02] or Mobinet [EK01], mainly trying to 
implement shortest path models under a star topology with 
distributed information storage. Surely, the integration of 
several IT-Guidance Systems from locally distributed areas 
into one overall architecture also focuses on this challenge. 
This paper investigates existing routing strategies in 
distributed environments by evaluating the occuring 
communication complexity ' ( )O ⋅  in order to perform the 
algorithm accurately, a consideration, which is fairly 
different from the commonly regarded amount of executed 
instructions ' ( )O ⋅  within the processor. Therefore, the 
beginning of the next section provides a short overview 
over the commonly used Label-Setting (LS) and Label-
Correcting (LC) models and its implementation. Based on 
this knowledge, results will be worked out concerning on 
one side the total amount of necessary message transmission 
within a distributed environment, on the other side 
conclusions will be drawn how to efficiently set up parallel 
message transmission in order to additionally decrease 
computation time. It will be shown that in general LS 
algorithms are superior to LC realizations by a factor of 
O’(n), a fact which contradicts the requirement of a sorted 
storage of examined nodes in LS models (leading to and 
increased processor load but less communication delay). 
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Before analyzing message transmission complexity, the next 
section presents an overview over the relevant search 
algorithms. 
 

II. FASTEST PATH ALGORITHMS 

A. The Basic Algorithm 
 
The most relevant methods of Fastest Path algorithm’s 
(FPA) within a given network network ( , )G N L= , where 
G  denotes the set of nodes connected via links 
L N N⊆ ×  possessing nonnegative impedances ( )c l , 
can be classified into Label-Setting (LS) and Label-
Correcting (LC) algorithms. The representation of 
mathematical formulation will be given with the Min-Plus 
Algebra, 
 min { }= ∪ ∞R R  (1) 
which possess the characteristics of a monoid 
 min,( ', )⊕ ⊗R�  (2) 
with additive neutral element ∞ using the compositions  
 min' min{ , },  , ,a b a b a b⊕ = ∈R  (3) 
 min .,  ,a b a b a b⊗ = + ∈R�  (4) 
As path search algorithms mainly rely on comparisons of 
temporary specified paths (usage of '⊕ ) and additions of 
segment impedances (usage of ⊗ ), the Min-Plus 
representation describes a convenient tool for evaluation. 
For detailed information it shall be refered to [BAC92], 
[KIE97]. 
The determination of a shortest way between the origin 
node o N∈  and a destination d N∈  results in a 
consecutive search in forward direction beginning from 
origin o . In each iteration of the algorithm, a node k  from 
the set Q  of so far reached nodes will be elected. Then, 
each successor ( )l S k∈ , i.e. nodes l  possessing a link 
( , )k l L∈  from k , will be analyzed in order to evaluate 
possible better connections from o to l via k  (if the node l  
is not reached so far, surely the new connection displays the 
optimal one). Once the set Q  of investigated points is 
getting empty, the algorithm has found the optimal path 
o d→ [CHR75]. The basic implementation of LS/LS 
algorithms are as follows: 
Basic Implementation for LS/LC FPA’s: 
Initialization: The initial distance between nodes ,o k N∈  
will be defined by 
 ( , ) ,   o ,d o k k= ∞ ≠  (5) 
 ( , ) 0.d o o =  (6) 
The set Q  of initially reached nodes is declared by  
 { }.Q o=  (7) 

Furthermore let ( )p k  denote the direct predecessor of k  
under the current specified connection. So at the beginning 
we find 
 ( ) ,   ,p k k o= ∅ ≠  (8) 
 ( ) .p o o=  (9) 
Iteration: For Q ≠ ∅ , perform the following instructions: 
Choose k Q∈  by the logical rules of the elected LC/LS 
algorithm and set { }Q Q k= − . 
Verify for all successors ( )l S k∈  of node k  the condition 
of an eventual new ideal route: 
 ( , ) (( , )) ( , ).d i k c k l d i l⊗ <  (10) 
 If condition (10) holds, declare ( ) ,p l k=  

{ }Q Q l= ∪  and set the new distance of node l  to  
 ( , ) ( , ) (( , )).d i l d i k c k l= ⊗  (11) 
Within step 0 of the algorithm, the choice of node k Q∈  
depicts the crucial difference of LS/LC models. As the 
name Label-Setting indicates, these methods insert each 
(reachable) node exactly one time into the set Q . So once 
we find k Q∈ , there is no better alternative route o k→  
available than the specified way, the label ( , )d o k  remains 
unchanged after its first assignment. 
Contrary, LC algorithms may insert a certain point k  
several times into Q . Unfortunately, according to the 
Belman Principle all further paths o l→ with in-between 
node k  have to be updated once again, as the new 
impedance 2( , )d o k  leads to the new cost value  
 2 2( , ) ( , ) ( , )d o l d o k d k l= ⊗  (12) 
of route o l→ . However, LS models depend on an 
ordered storage of the set Q  because it has to be ensured 
that the ideal route to k  is already fixed when assigning 
k Q∈ . The following subsections will give a short outline 
of variants in LS/LC implementations. 

B. Label-Correcting Algorithms 
Label-Correcting algorithms are not restricted to one single 
inclusion of individual nodes k N∈  into Q , the selection 
criterias in step 0 are widely spread. The most common 
methods are listed below 
1. Ford Algorithm: This approach is scanning the set Q  

according to paths with smallest path length, hence 
representing a Breadth-First Search. In each iteration, 
one node possessing the least segments on its 
temporary route (independent from the impedance d ) 
is chosen for further evaluation. Thus, the storage of Q  
can be realized in a queue obeying the FIFO principle 
because new incoming nodes have per se an increased 
path length. 



2. The LIFO Principle: Is Q  being realized as a stack, 
then the actual path keeps being evaluated until no 
further successor is achievable. These kinds of models 
are known as Depth-First Search and prefer routes with 
a high amount of segments. 

3. Combined Strategies: Strategies combining Breadth-
First and Depth-First characteristics have become more 
and more popular within the last years. As most 
important variants the Threshold Algorithms, the 
Dequeue Algorithm and the d’Esopo Algorithm can be 
named [DOM95] [SCO97]. 

 

C. Label-Setting Algorithms 
Including each node at most one time into Q  exhibits the 
selection of a node k  with minimal route costs ( , )d o k  
out of the set Q . Otherwise an eventually better way 
leading to k  can be found by an in-between point l Q∈  
possessing less impedance, 
 ( , ) ( , ) ( , ).d o l d l k d o k⊗ <  (13) 
As the sequence of analyzing Q  is completely determined, 
all realizations of LS algorithms are commonly referered as 
Dijkstra Algorithm. Differences exist in the way how the set 
Q  is sorted in order to access the smallest route 
impedances. 
1. Unsorted Dijkstra Algorithm: the set Q  is not being 

ordered in any iteration. Identifying the minimum 
{ }' ( , )k Q d o k∈⊕  has to be accomplished by 

comparing all nodes k Q∈ . 
2. Completely sorted Dijkstra Algorithm: at each instance 

the set Q  is totally sorted by its route costs. The 
ordering can be performed by one of the various sorting 
algorithms [REM99]. 

3. Heap-sorted Dijkstra Algorithms: Heaps are defined as 
partly ordered arrays [1.. ]H n , characterized by the 
conditions [ ] [2 ]H i H i≤  and [ ] [2 1]H i H i≤ + . 
Due to the party ordered storage, savings during the 
determination of extremas can be obtained. 

4. Bucket-sorted Dijkstra Algorithms: Possible route 
impedances are divided into several intervals in which 
specified paths are categorized. 

The following table presents an overview over the number 
of instructions ( )O ⋅  which have to be performed using the 
different implementations [DOM95]. Here, | |n N=  
displays the number of nodes in a network, | |m L=  
depicts the amount of links and maxc  is an upper bound for 
possible segment costs,  
 max .:  ( )l L c l c∀ ∈ ≤  (14) 
 
 
 

Algorithm Complexity ⋅O( )  
Ford Algorithm ( )O nm  
D’Esopo Algorithm ( 2 )nO n  
Dequeue Algorithm 2( )O n m  
Unsorted Dijkstra Algorithm 2( )O n  
Heap-sorted Dijkstra Algorithm 
(depending on realization) 

max( ),  
( log ),  
( log ).

d

d

O m nc
O m n
O m n n

+

+
Bucket-sorted Dijkstra Algorithm max( )O m nc+  
Completely sorted Dijkstra Algorithm 2( log )dO n n  

Table 1: Complexity ( )O ⋅ for FPA’s (#instructions) 
 

III. ADAPTION OF FPA’S TO DISTRIBUTED ENVIRONMENTS 
 
As the integration of intermodal and/or locally distributed 
RGS leads to decentralized networks, the question how to 
realize FPA’s within this distributed environment arises. 
The following categorization of net topologies can be given: 
RGS without essential delay due to message transmission 
are defined as centralized systems [SUN96]. Here, only the 
number of executed instructions are relevant for efficiency. 
Computers and/or Information Storage Devices (ISD) are 
connected to one central instance (CI). This setup leads to a 
star topology according to figure 1(a), where all information 
is transmitted to the main computer, being solely 
responsible for the execution of instructions. 
The decentralized devices can be individually 
interconnected without central instance, see figure 1(b). In 
this case no superior node exists, so problems arise in the 
adjustment and provision of actual dynamic information. 
Several devices can be combined to a network via star 
topology and/or flat hierarchy. Integrating some of these 
networks into one single architecture, topologies as depicted 
in figure 1(c) are possible. 
In a decentralized network the far most popular way to 
setup the topology is realized by a star network. This is due 
to the fact that each node only needs to transmit relevant 
information to the main node and not performing 1:n 
communication. In addition, just one server is responsible 
for the actuality and distribution of information, so 
adjustments between nodes (concerning e.g. current 
specified paths, costs, etc.) don’t have to be taken into 
consideration. Taking this into account the analysis of 
message transmission complexity is further regarded under 
the assumption of a star topology with distributed 
information (instructions are executed by the control 
instance). 
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Figure 1: Topologies in a decentralized environment 
 
The linkage of routing systems via a star topology connects 
each ISD/computer directly to a main node, following 
denoted by CI (central instance). All essential information 
will be transferred to the CI, consequently instructions 
(relying on the information) should run at this node. As 
soon as the algorithm has to access certain knowledge such 
as dynamic varying segment impedances ( )c l , message 
transmission toward the CI is inevitable. In this context, 
data transfer between individual ISD’s is not intended, 
hence complexity evaluation is based on communication 
with the server. 
Clearly, allowing parallel messaging leads to savings in 
time. Therefore, beside the number of overall transfers the 
latter definition of required time units is of main interest: 

Definition 1: Let ' ( )cO ⋅  denote the amount of overall 
transmitted messages between adjacent nodes in an 
existing network ( , )G N L= . 
Definition 2: Let the required time for a transmitting a 
message between adjacent nodes be 1 time unit. Then 

' ( )tO ⋅  depicts the complexity of time units an algorithm 
needs for message transfer.  

Before a deeper evaluation of the different LC/LS methods, 
a principle consideration is helpful under what 
circumstances communication occurs. Assuming a star 
topology the basic algorithm for FPA’s given in the last 
section can be implemented as follows: 
the storage of the set Q  and the variables ( , )d o k , 

1,...,k n= , is recommended in the CI, as execution is 
performed here. 
the initialization does not lead to any communication as it 
commonly holds that ( , )d i k = ∞ , k o≠ . 
the selection of k Q∈  takes place at the main instance. 
Only the knowledge of logical criterias is decisive for 
correct selection, no data transfer is demanded. So 
concerning iteration step 0, the dynamic varying link costs 

( )c l  for ( )l S k∈  are sufficient for transmission. Based 
on that information, the comparison 
 ( , ) (( , )) ( , )d i k c k l d i l⊗ <  (15) 
can be realized as well as the further specified assignments. 
Complexity Analysis Oc(·),Ot(·) of FPA Message 
Transmission  
During each iteration step the data 
{ ( , ) |  ( )}c k l l S k∈ has to be sent to the server, so the 

overall message amount depends significantly on the 
amount of fulfilled iteration cycles and therefore on the 
logical sequence of choosing k Q∈ . If i denotes the 
number of executed iteration steps, it follows directly that 
 ' ' '( ) ( | ( ) |) ( )c c cO O i S k O in⋅ = ≤  (16) 
Allowing parallel data messaging, this implementation 
claims only 1 time unit sending ( , )c k l  for all nodes 

( )l S k∈  in contrast to | ( ) |S k n≤  units for serial 
transmission. Thus, gainings can by achieved by a factor of 
| ( ) |S k n≤  leading directly to 

 ' '( ) ( ).t tO O i⋅ =  (17) 
Specifying boundaries for individual LC/LS algorithms 
requires results about the maximum number of possible 
iterations. In the case of LS methods conclusions can be 
easily drawn. 
message Evaluation for LS algorithms 
Differences in the realization of LS algorithms can be 
regarded concerning the storage of the set Q  and the way 
to extract its minimum route costs. As already explained, 
this operation doesn’t have any influence on necessary data 
transfer, hence the following results are valid for all LS 
variants. 
Fortunately, we find the maximum number of iterations to 
be bordered by | |n N=  as each point will be examined 
maximal one time. So upper boundaries can be denounced 
by 
 ' ' ' 2( ) ( | ( ) |) ( ),c c cO O n S k O n⋅ = ≤  (18) 

 ' '( ) ( ).t tO O n⋅ =  (19) 
message Evaluation for LC algorithms 
In the case of LC methods, the number of iteration cycles 
depends in a significant way on the given graph structure 
and the logic of choosing nodes k Q∈ , a topic being 
widely researched [CHE93] However, a strong influence of 
communication efforts in regard to execution time should 
lead to efforts minimizing the amount of iteration steps. The 
following theorem provides an upper bound for the most 
popular Label-Correcting method, the Ford Algorithm. 

Theorem 1: In a given network ( , )G N L= , each node 
is chosen at most | | 1 1V n− = −  times in Q  
performing a Breadth First Search. Furthermore, the 
communication complexity can be bounded by the upper 
border 

 ' ' 3( ) ( ),c cO O n⋅ =  (20) 

 ' ' 2( ) ( ).t tO O n⋅ =  (21) 
Proof: The proof of the theorem is mainly relying on the 
next lemma: 

Lemma 1: Having specified a path Γ with path length 
| | 1nΓ = −  while executing the Ford Algorithm leads 
to the fact that Γ  is not inserted once again into .Q  To 
be more exact, the leaf k  of the path is remaining the 



end of the path as long as Γ  depicts the shortest way 
o k→ . 

throughout the whole algorithm, not being reinserted into 
.Q  

Proof (Lemma): A further node in Γ  leads to a loop as 
| |N n= . Let l N∈  denote a point being two times an 
element of a path. The second stop in l  is determined by 
the fact 
 ( , ) ( , ) ( , ),d o p c p l d o l⊗ <  (22) 
where p depicts the direct predecessor of l  before the 
second stop. As node l  is lying on the way ,o p→  we 
find 
 ( , ) ( , ),d o p d o l≥  (23) 
resulting in a contradiction to the upper equation. 

q.e.d (Lemma) 
Proceeding with the proof the theorem, k  denotes again the 
leaf of a current path Γ  with | | .pΓ =  Deleting k  out of 
the set Q  requires the specification of a path to ( )g S k∈  
with | | 1o k g p→ → = + . By reinserting node k  into 
Q , Breadth-First Search exhibits k  to be successor of an 
element l , ( )k S l∈ , with path length  
 | |o l p→ ≥  (24) 
(otherwise the route o l→  would have been taken into 
account before o k→ ). Proposition 1 gives an upper 
bound for specified routes | | 1nΓ ≤ − , thus each node is 
inserted at most 1n −  times into Q . With equation (16) it 
follows directly  
 ' ' 3( ) ( )c cO O n⋅ =  (25) 

as each of the n  nodes is chosen at most 1n −  times. 
Parallel transmission reduces required time at each iteration 
by the factor | ( ) |S k n≤ , hence 

 ' ' 2( ) ( ).t tO O n⋅ =  (26)   q.e.d. 
 
The following table summarizes the communication 
complexities ' ( )cO ⋅ , ' ( )tO ⋅  for LS/LC algorithms under the 
assumed star topology. 
Algorithm ⋅'cO ( )  ⋅'tO ( )  
LS Algorithms 
(all realizations) 

' 2( )cO n  ' ( )tO n  

Ford Algorithm ' 3( )cO n  ' 2( )tO n  

Table 2: Comunication Complexity ' ( )O ⋅  for FPA’s  

IV. CONCLUSION 
This paper investigates the setup of routing strategies in 
distributed environments, an essential topic for combining 
co-existing Route Guidance Systems into one single 
solution. Here, delays due to necessary communication is 

getting more and more significant in comparison to 
execution time, so the amount of transmitted messages is 
playing an important factor for efficient implementation 
beside the number of instructions to be performed. 
After specifying possible ways to setup networks of 
combined RGS, this paper evaluates the communication 
load for the most popular FPA’s. Analysis is done by 
determing the total amount of messages as well as time 
savings due to parallel data transmission. In this context it is 
proved that assuming a star topology (one central server), 
Label-Setting algorithms are superior to Label-Correcting 
algorithms by a factor of ' ( )O n  concerning the overall 
number of messages as well as parallel messaging. As 
processor power is getting increasingly more powerful, 
these results give helpful indications to efficiently combine 
autonomous RGS for fastest path determination.  
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