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Abstract— In the present work, we consider a simplified “slug” model
that describes the flow in an ablative parallel-plate pulsed plasma thruster,
a form of electromagnetic propulsion. The complex flow in the PPT can
be described by the compressible, viscous, magnetohydrodynamic (MHD)
PDEs coupled to an external circuit. The one-dimensional “slug” model
used in this study is coupled with anopen loop hybrid controller. Under this
approach, the physical system parameters (resistor, capacitance) are reset
to different constant values at discrete time intervals during the PPT pulse.
Extensive simulation studies are included to demonstrate the feasibility of
the proposed hybrid open loop control scheme.

Keywords— Magnetoplasmadynamic accelerator, pulsed plasma mi-
crothruster, distributed parameter systems, nonlinear approximation,
switched controllers, hybrid system.

I. INTRODUCTION

�
HE pulsed plasma microthruster (PPT) is an electromag-
netic onboard propulsion device depicted in Figure 1, [1].

The parallel-plate ablative PPT consists of two electrodes that
are connected to a capacitor and use solid Teflon as propellant.
The capacitor is discharged in microsecond duration pulses.The
arc ablates the propellant and creates a plasma that is accelerated
by electromagnetic forces to produce thrust [2]. The result of
the Teflon� decomposition and ionization processes in the PPT
channel is an unsteady, partially ionized plume that consists of
plasmoids emitted at the pulsing frequency of the thruster [3].
The fundamental plasma flow processes inside a PPT are com-
plex and subject to continuing investigations. The PPT flow can
be described with various sets of the single and multi-fluid mag-
netohydrodynamic equations (MHD). The MHD equations are
coupled with a heat transfer model that describes the physics of
the discharge and Teflon ablation [2], [4], [5].

The PPT flown on several spacecraft is currently consid-
ered for onboard propulsion and attitude control maneuvers [6].
Therefore one of the objectives related to enhancing the per-
formance of a PPT is to increase the terminal plasma velocity,
which relates to the Isp [1]. This can be achieved by the external
circuit, as shown in Figure 1, in which the circuit parameters can
be optimized in order to yield the largest possible plasma veloci-
ties. Coupling the circuit equation with the MHD equations will
produce a faithful albeit complex system with the obvious im-
plementation issues. Instead, simplified models for the plasma
mass are assumed and coupled to the external circuit equation.
This immediately simplifies the governing equations along with
the optimization procedure for optimal circuit design. In the ab-
sence of external disturbances, in the form of sinks, the system
parameters (circuit parameters) may be optimized to produce the
best achievable plasma terminal velocities dictated by the circuit
limitations. When disturbances are included, terminal velocities
decrease and thus dynamic adjustment of circuit parameters is
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warranted in order to bring terminal plasma velocities to the de-
sired levels.

Due to the simplified dynamic equations assumed for the PPT,
one may not update circuit parameters in a continuous fashion
as this would invalidate the very same dynamic equations of the
simplified system. The alternative is to intermittently change
circuit parameters, which then leads to a hybrid system. This
direction is undertaken in this manuscript in which switching
of circuit parameters takes place in order to improve terminal
velocities in the presence of sink terms.

The modelling equations of the system under consideration
are summarized in section II. The simplified model is described
in section III and the system analysis is presented in section IV.
Sensitivity studies on circuit parameters are performed in sec-
tion V and the proposed hybrid control along with results of our
numerical studies are presented in section VI.

II. MODELLING EQUATIONS

A typical set of equations that has been used to described the
PPT flow is the following single-fluid MHD equations:
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where ρ�u� p�τxx� j�B�et �λ�σ and µ0 are the density, flow veloc-
ity, pressure, viscous stress, current density, magnetic induction
field, specific internal energy, heat conduction coefficient con-
ductivity of the plasma and permeability of free space, respec-
tively. The above system (1)-(3) is coupled to an external circuit
with equation
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where L0�R0�Rp�C are the circuit inductance, the external re-
sistance, the plasma resistance and the circuit capacitance.
The above set of PDEs is of mixed hyberbolic/parabolic type
depending on the range of parameters. The constraint of
divergence-free magnetic induction is considered as an initial
condition satisfied at all times, but removes the hyperbolicity of



the ideal MHD equations. These PDEs may be written as an evo-
lution system in an appropriate abstract space(Hilbert/Sobolev)
[7], [8]. Existence and well-posedness of the above system may
be examined in the framework of the resulting evolution sys-
tem. Furthermore the associated approximate controllability [9]
of (1)-(5), may also be examined but while of importance, will
not be considered here but rather will be examined at a later
stage.

Fig. 1. Pulsed Plasma Thruster.

III. MODEL SIMPLIFICATION-SLUG MODEL

One-dimensional simplified models derived from the un-
steady 1-D MHD equations are often used to describe the PPT
(1)-(4). One such model used in literature is the slug model [1],
where the entire plasma produced in a discharge is represented
by a constant mass element of a conventional electric model (2),
i.e. no mass is accumulated or lost as the accelerating plasma
traverses the channel. The equations capturing the salient dy-
namics of such a process are given by the coupled nonlinear
integro-differential system�
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The above equations are derived by nondimensionalizing the cir-
cuit equation which includes the capacitor voltage. The nondi-
mensionalized variables, namely current J�t�, time t and dis-
tance x�t� are related to the current J�t�, time t and position x�t�
via
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where L1 is the channel inductance per unit length and V0 is
the initial voltage. The control objective now becomes that of

manipulating the circuit variables so that a desired particle ve-
locity dx�t��dt is achieved while all other state variables re-
main bounded. An efficient numerical scheme will allow one to
perform sensitivity analysis of the above variables on the state
quantities thus paving the way for a methodologically rigid con-
trol scheme. In addition to the computational model, a control
scheme is proposed that takes into account system limitations.

IV. SYSTEM ANALYSIS

The above set of equations (7),(8) can be placed in state space
form via
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with initial conditions
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Following the analysis in [1], the slug position x1�t� is always
nonnegative and thus one may divide the third equation in (9) by
�1� x1�t��. In vector form, the above then becomes

ẋ � f �x� (11)
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and x�t� � �x1�t� x2�t� x3�t� x4�t��T . The asymptotic behavior
of the above system has been studied extensively in [1] for dif-
ferent ranges of the system parameters α and β. For exam-
ple, when α � 1, one observes distorted damped current J�t�
with monotonically accelerating slug trajectories which produce
a given terminal velocity at the current completion, see Fig. 2.
This is dictated by the initial energy storage and resistive losses
throughout the pulse. On the other hand, if α � 1�β� 1, it
is observed that J�t� exhibits slowly damped sinusoidal oscilla-
tions, see Fig. 3. As in the previous case, the slug trajectories
do not oscillate but exhibit minor fluctuations in the time deriva-
tives (slug velocities) in approaching a terminal velocity.

The control objective would be to ensure that the slug ve-
locities reach their terminal values as soon as possible with the
largest possible steady-state value. Sensitivity analysis along
with solution of an associated inverse problem would certainly
allow one to find the set of achievable terminal slug velocities
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subject to circuit constraints, and via some form of optimization,
to find these optimal parameter values of α�β. This then may be
considered as “static” optimization in the sense that one chooses
fixed constant values of these parameters for the duration of cur-
rent exhaustion. In reality, one may encounter “damping” (or
“sink”) terms due to disturbances, which, for constant values of
the parameters α and β, would yield terminal slug velocities be-
low the achievable ones corresponding to the ideal case with no
sinks.

If one were free to choose these two parameters, i.e. consider
them as the two control inputs, then a Lyapunov method would
provide the dynamic adjustment of both α�t� and β�t� in feed-
back form (i.e. as nonlinear functions of x1�x2�x3�x4). Toward
that end, one redefines the above system (9) or (11) via

�x1�t� � x1�t�� xss� �x2�t� � x2�t�� vss�

where xss and vss are the desired (or ideally achievable) steady

state position and velocity, respectively; e.g. corresponding to
the values achieved in the ideal case with no sink terms. This
then gives rise to the following error system which includes
sinks terms

�̇x � f0��x��g1��x�α�t��g2��x�β�t��d��x�t��� (12)
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and d��x�t�� denotes the unknown term due to disturbances. The
error system now has the origin as its equilibrium. The con-
trol objective now becomes that of choosing the “control” terms
α�t��β�t� so that regulation of the state �x�t� to zero is achieved
in finite time. To do so, a Lyapunov function V ��x�t�� is sought
that is positive definite. Choosing α�t��β�t� so that the time
derivative of the Lyapunov function along the trajectories of (12)
becomes negative semidefinite for all d��x�t�� belonging to a cer-
tain class of functions, would provide closed loop stability and
consequently asymptotic convergence of �x�t� to zero [10]. This
then would accommodate for the presence of “sink” terms and
thus ensure that the terminal slug velocities are close to the nom-
inal ones achievable under nominal conditions. Unfortunately,
if one changes the system parameters α�β indiscriminately and
continuously, as would be the case of feedback form, then the
above model (6)-(8) ceases to be valid. A way to avoid this is
to consider the infinite dimensional system (1)-(5) along with
a finite dimensional controller associated with it. This would
immediately increase the computational cost and the controller
complexity with the obvious effects on its real-time control im-
plementability.

An alternative to the above would be to intermittently update
the constant values of α�β at the onset of a time subinterval;
i.e. consider piecewise constant variations for α�β. This may be
placed in an adaptive parameter adjusting scheme wherein hy-
brid adaptation takes places at discrete time instances and whose
objective is to bring the values of the “unknown” parameters α�β
to some “ideal” values. These unknown ideal values correspond
to the optimal values of the equivalent system that includes the
unknown “sinks” and which provide the allowable terminal slug



velocities. The drawback to this is twofold since (i) one needs
to have functional knowledge of the “sink” term, and parameter-
ize it by available quantities, e.g. known nonlinear functions of
the four states, and (ii) one must a priori guarantee the existence
of the optimal values of α�β regardless of the class of damping
functions (“sinks”).

To address this predicament, one may intermittently change
the values of α�β as suggested above, but in an “open loop”
fashion. This requires parametric studies to be performed a pri-
ori for a range of different functions describing “sinks” moti-
vated by physical phenomena; i.e. consider all d � D, where
the class of functions D provides existence of the solution to
(12). This then results in multiple models corresponding to the
different choices of “sinks”. To demonstrate this, we adopt the
notation

fi�x� � f �x�αi�βi��

where f �x�α i�βi� denotes the vector field in (11) evaluated at
the specific values of α � α i and β � βi. The decision policy
to change the values of α�β would then require one to match
current values of the state x�t� with those from a bank of mul-
tiple models generated by computer simulations. Once the sys-
tem trajectories are matched at a given time instance with the
computer values, one may then adjust the values of α�β accord-
ingly. This type of switching may be viewed as state-dependent
switching [11]. Following [12], one rewrites the above system
as

ẋi�t� � fi�x�� i � I � (13)

where the family of functions f i, i � I maps �4 to �4 and I is
some index set, which in this manuscript is assumed to be a sub-
set of a finite dimensional linear vector space. Concomitant to
the above is the switching signal [11], [13]. This is a piecewise
constant function σ : �0�∞�� I . This switching signal serves
the role of specifying, at each time instant t, the index σ�t� � I
of the active subsystem fi�x�, in other words which system in
(13) is being followed. The size of the index set I is dictated
by physical and hardware considerations, and hence we have
for our system under consideration that I � �1�2� � � � �m� with
m� 10.

This appears to be the most promising alternative, assuming
a form of uniqueness and one-to-one correspondence of “sink”
expressions with given α �s and β�s. In addition to this, one may
employ sensitivity analysis by using gradients of the current slug
velocity with respect to α�β and adjust accordingly.

Due to practical considerations, a simplified form of the latter
will be considered in this study. Nominal values of α�β will
be used as starting values, and will be adjusted to other nearby
values according to a gradient-like method.

V. SENSITIVITY STUDIES

Prior to performing sensitivity analysis on the system in (11),
we consider the analysis of the circuit of pulsed accelerators,
which is given by

L0Q̈�R0Q̇�
Q
C

� 0�

where L0 is the circuit inductance, R0 the external resistance and
C the capacitance. The charge is denoted by Q�t� and the current

by J�t� ��Q̇�t�. The above equation is essential in deriving the
nondimensionalization of (6)-(7). Using a fixed inductance of
L0 � 5	 10�5 henry and enforcing the ratio 4L0�R2

0 
 10�2 to
get the initial resistance as R0 �

�
20	10�3 ohm, we consider

the damped case which requires a capacitance C0 
 104µF. For
an underdamped circuit, we chose C � 0�05C0 � 500µF. To in-
vestigate the effects of intermittently changing the external cir-
cuit resistance on the circuit current, we changed the resistance
via Rk�1 � Rk ��k� 1�4R0, with Rk denoting the resistance at
the time instance k∆T where ∆T � Tf inal�10 and Tf inal � 10�4

seconds; i.e. change(increase) the resistance every 10µsec by
a fixed value of 4R0. Fig. 4 depicts the evolution of both the
circuit charge Q�t� and circuit current J�t� for the case where
the resistance is kept constant (solid line) and the case of vari-
able resistance. The fact that the current J�t� can converge to
zero faster than the case of fixed resistance, it allows us to fur-
ther investigate the effects of varying the resistance in the PPT
in Fig. 1. The circuit values also allow us to find the nondimen-
sionalized time which is given by

t �
1�
L0C

t �
t�

5	10�10
�

and hence for a time duration of 100µsec produces a simulation
time of 10 (nondimensionalized) time units, see Fig. 7. We first
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Fig. 4. Effects of variable resistance on circuit.

consider the so-called “nominal” system (11) wherein the dis-
turbance term d�x� � 0. Using a constant value of β � 10�4,
we studied the effects of α on the terminal slug velocity at the
terminal time t � 10. In Fig. 5, one may observe the terminal
velocity increases proportional to

�
α. The opposite is observed

when one uses a nominal value of α � 0�1 and varies β. Fig. 6
depicts this dependence of the terminal velocity on β. The ter-
minal velocity is inversely proportional to β, and therefore one
may consider increasing α and decreasing β as a strategy to in-
crease the terminal velocity.
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VI. HYBRID CONTROL

Using a diffusion type for the sink term, we simulated the
above system in (11) with the particle acceleration now given by

ẋ2�t� � αx2
3�t��dx2�t�� d � 0� (14)

This has the effect of reducing the terminal slug velocity as de-
picted in Fig. 7 for the nominal values of α � 10, β � 0�05 and
with d � 0�1 (dashed). The nominal system (d � 0, solid line)
produces a terminal velocity vss � 4�1544 whereas the system
with the disturbance (d � 0�1, dashed line) yields vss � 1�8349.
The proposed hybrid controller takes the form

αk�1 � αk �∆α� βk�1 � βk�∆β� (15)

where k denotes the discrete time index in the (nondimension-
alized) time interval of interest �0�10�; i.e. α k � α�k∆T � with
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Fig. 7. Effects of disturbances on terminal velocity.

∆T � Tf inal�ns, where ns : # of switchings over a time inter-
val �0�Tf inal �. Table 1 depicts the various values of the system
parameters α�β for the ideal case and when there are two switch-
ings in �0�10�, i.e. update the values of α�β once in the time in-
terval with α � α1, β � β1 for t � �0�5� and α � α2, β � β2 for
t � �5�10�. The highest value of terminal velocity (vss � 4�1544)
is achieved in the case of zero disturbances (d � 0). Even in
this case, one may increase the terminal velocity when α�β are
changed to a value of vss � 4�32. By changing the values of
the parameters, one may increase the terminal velocity even in
the presence of disturbances. For example, when the circuit pa-
rameters are chosen equal to the initial values α � 10�β � 0�05
throughout �0�10� and d � 0�1, the corresponding terminal ve-
locity is vss � 1�8349. When the circuit parameters change in the
interval �5�10� to α � 60�β � 0�02, the corresponding terminal
velocity is vss � 1�9641. Continuing, one may achieve higher
terminal velocities with the values of α�β in �5�10� chosen as
α � 210�β � 0�04; in this case the terminal velocity becomes
vss � 2�4567.

While the proposed parameter switching increases the termi-
nal velocity, it cannot reach the levels acquired by the nomi-
nal system. Increasing the switching frequency would in the-
ory increase the terminal velocity, but at the same time would
invalidate the modelling equations, since a ∆T less than 4�472
(nondimensionalized) time units falls below the pulse duration
(t � t�

�
L0C � 4�472	 104t � 4�472	 104	 10�4 � 4�472).

This suggest further investigation on the (nonlinear) controlla-
bility issues arising by considering the intermittent parameter
adaptation of the proposed hybrid controller.

The proposed open loop hybrid controller, while considering
circuit and modelling restrictions, provided encouraging results
that translated into increased terminal velocity, a more compre-
hensive model would allow one to consider entrainment effects
and hence arrive at a model better describing the PPT dynamics.
This along with controllability and stability issues, and a form
of closed-loop hybrid controller are currently under investiga-
tion by the authors.



d α ∆α β ∆β ns vss

0 10 0 0.05 0 0 4.1544

0 10 50 0.05 0.03 2 4.3200

0.1 10 0 0.05 0 0 1.8349

0.1 10 50 0.05 0.03 2 1.9641

0.1 10 40 0.05 0.002 2 1.9642

0.1 10 80 0.05 0.004 2 2.0906

0.1 10 100 0.05 0.01 2 2.1534

0.1 10 200 0.05 0.01 2 2.4567

TABLE I

EFFECTS OF PARAMETER SWITCHING ON TERMINAL VELOCITY.
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