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Some Remarks on The Problem of Model Matching
by State Feedback

Petr Zagalak, Jorge A. Torres-Muñoz, and Manuel A. Duarte-Mermoud

Abstract— The problem of model matching by state feedback
is reconsidered and new necessary and sufficient conditions of its
solvability are established.

Index Terms—Linear systems; model matching; state feedback.

I. I NTRODUCTION

The problem of model matching represents a succinct ab-
stract formulation of many control problems in which the cen-
tral role plays the transmission properties of the system, that is
to say, the modification of the transfer function is the core prob-
lem. Since theregular static state feedback, which is defined
below, forms the basic type of feedback, the discussion con-
centrates on model matching with this kind of feedback. Same
remarks are also devoted to model matching by dynamic com-
pensation.

Consider a linear time–invariant system described by the
equations

.
x = Ax + Bu (1)

y = Cx (2)

whereA ∈ Rn×n, B ∈ Rn×l, C ∈ Rp×n with rankB = l
and rankC = p. The system (1) and (2), called also the plant,
is supposed to be controllable and observable, and its transfer
function is given by

T (s) = C(sI −A)−1B ∈ Rp×l
sp , rankT (s) = p. (3)

Whenever convenient, the system (1) and (2) is also referred to

as the triple(C, A,B), or T (s).
As far as notation is concerned, some standard symbols like

:=,R[s], andR(s) denoting the defining equality, the ring of
polynomials over the field of real numbersR, and its quotient
field, respectively, andRp(s) (Rsp(s)) standing for the ring
of proper (strictly proper) rational functions overR, will fre-
quently be used; some other symbols are defined throughout
the text.

Let (Cm, Am, Bm) be another system, called the model, that
has the same properties as(C, A, B), the dimension of which
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is nm ≤ n (from now on all the symbols related to the model
will have the indexm), and gives rise to the transfer function
Tm(s) ∈ Rp×l

sp (s), i.e. pm = p andlm = l. The problem of
model matching then consists of finding a (regular) static state
feedback

u = Fx + Gv, (4)

whereF ∈ Rl×n andG ∈ Rl×l with rankG = l, such that
the transfer function of the closed–loop system exactly matches
that of the model, i.e.

Tm(s) = TF,G(s) (5)

whereTF,G(s) := C(sIn −A−BF )−1BG.

More generally, the equation (5) can also be written in the
form

Tm(s) = T (s)C(s) (6)

whereC(s) ∈ Rl×l
p (s) is the transfer function of a compen-

sator. If a certain type of feedback is used for model matching,
the compensatorC(s) has to be realizable by that feedback.
In the case of state feedback (4), for instance, it follows that
C(s) = (Il−F (In−A)−1B)−1G, which implies thatC(s) is
a biproper matrix (a unit of the ringRl×l

p (s)).

The literature concerning the model matching problem by
different types of feedback is fairly rich. Most of the contribu-
tions however deals with dynamic compensation; see [17], [10],
[12], [15], [7], [5] and the references therein. The problem of
model matching by state feedback has been defined in [16] for
the first time, where also necessary and sufficient conditions of
its solvability can be found. In the same year, a solution, based
on Silvermann’s inversion algorithm, was established in [11].
Other necessary and sufficient conditions for there to exist a so-
lution to the problem can be found in [5]. These conditions are
stated in terms of finite and infinite zeros of the system; how-
ever, they are valid just in the case where the system transfer
functions are nonsingular. In this paper we build upon the re-
sults given in [13], [19], where just necessary conditions have
been established, to derive new necessary and sufficient condi-
tions of solvability for the problem of model matching by (reg-
ular) state feedback.

II. BACKGROUND

Recall first some facts concerning the Morse invariants of
(C, A,B). The relationship

(C,A, B) ◦ Ω = (C ′, A′, B′),
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whereC ′ := HCT−1, A′ := T (A − BF − LC)T−1, and
B′ := TBG, describes the action of the Morse group on
(C, A,B) where the quintupleΩ := (H,T, F, L,G) is an el-
ement of the Morse group. The matricesT, G, andH are non-
singular and stand for similarity, input space, and output space
transformations, whileF andL represent state feedback and
output injection, respectively.

Using the Morse transformations the system(C,A, B) can
be brought into the Morse canonical form [8] that is character-
ized by certain invariants. These invariants are known as the
Morse invariants and correspond to the Kronecker invariants of
the system matrix

P(s) :=
[

sIn −A −B
−C 0

]

Generally, there are four kinds of the Kronecker invariants
(invariant polynomials, row and column minimal indices, and
infinite zero orders) that are, in the case of(C, A,B), reduced
to the infinite zero orders and column minimal indices ofP(s).

As the matricesC,A, andB represent a minimal realization
of T (s), there clearly exists a one–to–one correspondence be-
tween the aforementioned Morse invariants and some quanti-
ties characterizingT (s). For example, the infinite zero orders
of P(s) andT (s) are the same and can be obtained from the
Smith–McMillan form ofT (s) at infinity. The column minimal
indices ofP(s) will appear in the so–calledextendedinteractor,
the concept that is defined below.

Lemma 1: [17] Let H(s) ∈ Rp×l
sp (s) be a right invertible

matrix. Then there exists a unique matrixΦ(s) ∈ Rp×p[s],
called the interactor ofH(s), such that

Φ(s)H(s) = [Ip 0]B(s) (7)

whereB(s) is a biproper matrix. The interactorΦ(s) is of the
form

Φ(s) = UΦ(s)Λf (s)

whereΛf (s) = diag {sfi}p
i=1 with fi being positive integers

and

UΦ(s) =




1
ϕ21(s) 1

...
.. .

. . .
ϕp1(s) . . . ϕpp−1(s) 1




The polynomialsϕij(s) are divisible bys, or are equal to zero.

The equation (7) shows that[Φ−1(s), 0] the Hermite form
of H(s) whenRp(s) is considered as a special case of gen-
eralized polynomials [12]. As the bibroper matrices play, in
the case of the ringRp(s), the role of unimodular matrices, it
easily follows that the interactor is unchanged whenH(S) is
postmultiplied by a biproper matrix. If the interactorΦ(s) is
row reduced, then an interesting fact is that the integersfi are
the infinite zero orders ofH(s), and that the row reducedness
of Φ(s) can be achieved just by permuting the rows ofH(s);
see [6].

The supremal output–nulling controllability subspaceR∗
that is contained inKerC plays an important role in the prob-
lems like this one. This subspace is characterized by the col-
umn minimal (orR∗–controllability) indices ofP(s). To reveal
them, we addm − p new rows to the matrixC in such a way
that the new matrix, sayCe, will be of rankl and the supremal
controllability subspace of the system(Ce, A, B) contained in
Ker Ce will be zero. The system(Ce, A, B) is calledthe ex-
tended system[3] and has the transfer function

Te(s) := Ce(sIn −A)−1B.

The interactorΦe(s) of Te(s) is called theextended interactor
and is of the form

Φe(s) =
[

Φ1(s) 0
Φ2(s) Φ3(s)

]

whereΦ1(s) stands for the interactor ofT (s), Φ2(s) is a poly-
nomial matrix whose entriesφij(s) have the properties stated
in Lemma 1, and

Φ3(s) = diag {sσi}m−p
i=1

with σi being the column minimal indices ofP(s). The in-
dicesσi are supposed to be non–decreasingly ordered (and the
indicesσi,m of the model as well).

In the sequel the following lemma will be useful.

Lemma 2: [4] Let P (s) ∈ Rn×m[s], m ≤ n, and leta(s)
andb(s) be polynomial vectors such that

b(s) = P (s)a(s)

ThenP (s) is column reduced if and only if

deg b(s) = max{degci P (s) + deg ai(s), 1 ≤ i ≤ m}

Let nowN(s) andD(s) be polynomial matrices that form a
normalized matrix fraction description (n.m.f.d.) ofT (s), i.e.

T (s) = N(s)D−1(s) (8)

whereN(s), D(s) are coprime andD(s) is column reduced
with column degreesc1 ≤ c2 ≤ . . . ≤ cm. Let furtherNm(s)
andDm(s) form a n.m.f.d. ofTm(s) and letC(s) be a state–
feedback realizable compensator such that (6) holds. Then us-
ing a n.m.f.d. ofT (s) and a n.m.f.d. ofTm(s), the relationship
(6) can be rewritten in the form

[
N(s)

C−1(s)D(s)

]
=

[
Nm(s)
Dm(s)

]
X(s) (9)

where X(s) is nonsingular and represents a greatest com-
mon right divisor of N(s) and C−1(s)D(s). Notice that
C−1(s)D(s) ∈ Rm×m[s] by assumption. Recall that this re-
lationship describes a necessary and sufficient condition for the
compensatorC(s) to be realizable with a (regular) static state
feedback [2]. In fact the relationship (9) describes the result
stated in [16], which is a starting point of our development.



3

To begin with, a special case of model matching that arises
whenTm(s) represents the feedback irreducible system [1] will
be considered first. To enlighten this concept, consider the re-
lationship (9) again. Applying the state feedback (4) to the sys-
tem (1),(2) may result in a cancelation of zeros betweenN(s)
andC−1(s)D(s). But this not all; another kind of cancelation
caused by the non–trivialR∗ of (C, A,B) is possible. To ex-
plain that, let

K(s) :=
[

Q(s) 0
0 Im−p

]
U(s), (10)

whereQ(s) ∈ Rp×p[s] is nonsingular andU(s) is a unimodular
matrix given by the equation

N(s) = [Q(s) 0] U(s). (11)

ThenK(s) andD(s) form a n.m.f.d. ofTe(s)[18].
Next, by Lemma 1, we have that

Φe(s) Te(s) = Be(s) (12)

whereBe(s) is a biproper matrix. It follows then, from (9), that

[
N(s)

Be(s)D(s)

]
=




Ip 0
Φ1(s) 0
Φ2(s) Im−p


 Γ(s) (13)

with

Γ(s) :=
[

Q(s) 0
0 Φ3(s)

]
U(s)

Thus, applying the state feedback(FΦ, GΦ) given byBe(s)
to (C, A,B) results in the feedback irreducible system, denoted
by (CΦ, AΦ, BΦ), that is a minimal realization of its transfer
function TΦ(s) = Φ−1

1 (s). Moreover, the relationship (13)
reveals all the cancelation that take place in the closed–loop
system(C,A + BFΦ, BGΦ). The matrixQ(s) represents the
(finite) pole–zero cancelation whileΦ3(s) corresponds to the
second kind of cancelation. All that is summarized in the fol-
lowing

Proposition 1: GivenT (s) andTΦ(s) := Φ−1
1 (s), then there

exists a state feedback(FΦ, GΦ) (given by Be(s)) such that
TΦ(s) = T (s)Be(s) and the McMillan degree ofTΦ(s) is the
lowest achievable one; its value is given by the sum of the infi-
nite zero orders ofTΦ(s).

III. M ODEL MATCHING BY STATE FEEDBACK

It has been shown in [1] that the transfer functionsTF,G(s)
can be ordered with respect to their McMillan degrees, i.e.

∂(TΦ(s)) ≤ ∂(Tm = TF,G(s)) ≤ ∂(T (s))

The matter in question now is a characterization of all the trans-
fer functionsTF,G(s). To that end, write the relationship (12)
in the form

D(s) = B−1
T (s)Φe(s)K(s) (14)

and similarly, for the model,

Dm(s) = B−1
Tm(s)Φe,m(s)Km(s) (15)

and consider the relationship (9) whereC(s) represents a state–
feedback realizable compensator. Substituting (14) and (15)
into (9) gives

[
N(s)

B(s)Φe(s)K(s)

]
=

[
Nm(s)

Φe,m(s)Km(s)

]
X(s) (16)

whereB(s) := BTm(s)C−1(s)B−1
T (s) is a biproper matrix

that is state–feedback realizable. This can further be simplified
using (10), (11), and (12) such that

[Q(s) 0] = [Qm 0]Z(s) (17)

and

B(s)
[

Φ1(s)Q(s) 0
Φ2(s)Q(s) Φ3(s)

]
=

=
[

Φ1,m(s)Q(s) 0
Φ2,m(s)Q(s) Φ3,m(s)

]
Z(s)

(18)

whereB(s) andZ(s) := Um(s)X(s)U−1(s) are of the form

B(s) =
[

B11(s) 0
B21(s) B22(s)

]

Z(s) =
[

Z11(s) 0
Z21(s) Z22(s)

]
.

Based on the relationships (17) and (18), necessary condi-
tions for the existence of a state feedback compensatorC(s)
satisfying (6) can now be established.

Theorem 1:Let T (s) and Tm(s) be transfer functions of
the systems(C, A,B) and(Cm, Am, Bm), respectively. Then
there exists a state–feedback realizable compensatorC(s) such
thatTm(s) = T (s)C(s) if and only if

(a) the interactors ofT (s) andTm(s) are the same;
(b) the matricesTm(s) and [T (s) Tm(s)] have the same

finite zero structures;
(c) σi ≥ σi,m for i = 1, 2, . . . ,m− p;
(d) There exist polynomial matricesZ21(s) andZ22(s)

nonsingular such that

degci Γ(s)V (s) ≤ degci Φ1(s)Q(s)V (s) (19)

for i = 1, 2, ..., p, whereΓ(s) := Φ2m(s)Q(s) −
Φ3m(s)Z22(s)Φ1

3(s)Φ2(s)Q(s)+Φ3m(s)Z21(s) and
V (s) is a unimodular matrix making the product
Φ1(s)Q(s) column reduced.

Proof: (Necessity). The claim (a) follows from the prop-
erties of the interactor; see Lemma 1. To prove (b), write
[T (s) Tm(s)] in the form

[T (s) Tm(s)] = [N(s) Nm(s)]
[

D(s) 0
0 Dm(s)

]−1

,

which is a n.m.f.d. for[T (s) Tm(s)]. The finite zero structure
of [T (s) Tm(s)] is given by the greatest common left divisor of
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N(s) andNm(s), which is the matrixQm(s) in view of (17).
To show that (c) holds, consider the equality

B22(s)Φ3(s) = Φ3,m(s)Z22(s) (20)

whereB22(s) is a biproper matrix andZ22(s) a nonsingular
polynomial matrix. The following lemma gives an answer.

Lemma 3:Let P (s), Q(s) ∈ Rn×n[s] be column reduced
with column degreesα1 ≤ α2 ≤ . . . αn, β1 ≤ β2 ≤ . . . βn,
respectively. Then there exist a biproper matrixV (s) and a
polynomial matrixZ(s) such that

V (s)P (s) = Q(s)Z(s) (21)

if and only if αi ≥ βi, i = 1, 2, . . . , n.

Proof: As V (s) is biproper, the productV (s)P (s) is
clearly column reduced withdegci V (s)P (s) = αi, i =
1, 2, . . . , n. This means that the productQ(s)Z(s) is column
reduced, too, and has the column degreesαi. Then, by Lemma
3,

αj = max{βi + deg zij(s), 1 ≤ i ≤ n}
for j = 1, 2, . . . , n, which implies thatαj ≥ βj , j =
1, 2, . . . , n.

To prove the sufficiency part, define

Z(s) = diag{sαi−βi}n
i=1

and
V (s) := L(s)P−1(s)

where L(s) is a column reduced matrix withdegci = αi,
i = 1, 2, . . . , n. The matrixV (s) is clearlybiproper while the
productQ(s)Z(s) is column reduced with column degreesαi.
It follows that (21) holds.

By definition,Φ3(s) andΦ3,m(s) are clearly column reduced
with the column degreesσi andσi,m, respectively, which means
that the inequalities (c) hold.

To prove (d), consider the equation

B21(s)Φ1(s)Q(s) + B22(s)Φ2(s)Q(s) =
= Φ2,m(s)Q(s) + Φ3,m(s)Z21(s),

(22)

whereB21(s) is proper rational,B22(s) biproper, andZ21(s)
polynomial. SubstitutingΦ3m(s)Z22(s)Φ3(s) for B22(s) and
F−1(s)G(s) for B21(s), where the matricesF (s), G(s) form a
n.m.f.d. ofB21(s), the relationship (22) can be written in the
form

B21(s) := F−1(s)G(s) = Γ(s)
[
Φ1(s)Q(s)

]−1
, (23)

whereΓ(s) is defined in (d). As the matrixB21(s) is proper, it
implies that

degci Γ(s) ≤ degci Φ1(s)Q(s), i = 1, 2, ..., p (24)

Postmultiplying the matrix

[
Γ(s)

Φ1(s)Q(s)

]
by the unimodular

matrixV (s) then gives (19).

(Sufficiency). To prove the sufficiency part, a biproper matrix
B(s) and polynomial matrix Z(s) will be constructed such that
the relationship (18) will hold. Notice first that the relationship
(17) implies thatZ11(s) = Q−1

m (s)Q(s). Further, the equality
Φ1(s) = Φ1m(s) givesB11 = Im. The rest of the proof follows
from the assumption that there exist matricesZ21(s) andZ22(s)
such that (20) and (refgn) hold. ThenB21(s) is given by (23)
andB22(s) can be computed from (20).

In the following corollary a special case, in which both ex-
tended interactors are diagonal, is considered.

Corollary 1: [19] Given a plantT (s) and modelTm(s)
with the interactorsΦ1(s) = diag {sni}p

i=1 andΦ1,m(s) =
diag {sni,m}p

i=1 where both the integersni andni,m are non-
decreasingly ordered, and with the extended interactorsΦe(s)
and Φem(s) in which Φ2(s) = 0, Φ2,m(s) = 0, Φ3(s) =
diag {sσi}l−p

i=1, andΦ3,m(s) = diag {sσi,m}l−p
i=1. Then there

exists a state feedback (4) such that (6) holds if and only if
(α) ni = ni,m for i = 1, 2, . . . , p,
(β) the matricesTm(s) and[T (s) Tm(s)] have the same

finite zero structures,
(γ) σi ≥ σi,m for i = 1, 2, . . . , p,
(δ) There exist a polynomial matrixZ21(s) and a proper

rational matrixB21(s) such that

B21(s)Φ1(s)Q(s) = Φ3,m(s)Z21(s) (25)

Another special case, in which necessary and sufficient con-
ditions of solvability are known, arises when bothT (s) and
Tm(s) are square and nonsingular.

Corollary 2: Given nonsingularT (s), Tm(s) ∈ Rl×l
sp (s),

there exists a state-feedback realizable compensatorC(s) such
that (6) holds if and only if

(1) Φ(s) = Φm(s),
(2) N(s) = Nm(s)X(s) for some nonsingular

X(s) ∈ Rl×l[s].

It is readily seen that the condition (2) is just the condition
(b) of Theorem 1. In other words, the conditions (a) and (b) of
Theorem 1 are necessary and sufficient ifT (s) andTm(s) are
nonsingular.

It should also be noted that the condition (1) and (2) of Corol-
lary 2 are equivalent to the conditions established in [5] that are
stated as equality between finite and infinite zero structures of
the matricesT (s) and[T (s), Tm(s)]. It can be shown that this
result is an easy consequence of Corollary 2 and subsequent

Lemma 4:Given nonsingularT (s), Tm(s) ∈ Rl×l
sp (s), then

Φ(s) = Φm(s) if and only if the infinite zero orders of the
matricesT (s) and[T (s), Tm(s)] are the same.

IV. CONCLUSIONS

The problem of exact model matching by (regular) state feed-
back has been reconsidered and new necessary and sufficient
conditions of its solvability have been established. It is be-
lieved that these conditions bring more insight into the problem
of model matching and help in understanding the propeties of
basic control laws.
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