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    Abstract– The paper presents a design method  
for  optimizing  the  loop-gain of  unstable -
nonminimum  phase  feedback  systems. Due to 
obvious  gain-band-width  limitations existing in 
such systems, the proposed  best  loop  optimization 
goal is  maximization of  the stability gain and 
phase margins,  which are low inherently in such 
feedback systems. The design procedure is based 
on coprime factorization of the plant and 
controller,  and the  Bezoult identity. An 
optimization  process  varies  iteratively the 
observer-based controller parameters until 
maximization of the gain  and phase margins is 
achieved.  
 
    Index Terms-Coprime factorization, Bezout iden-
tity, controller parameterization, stability, relative 
stability margins, optimal loop-gain, uncertain 
plants, robustness. 
 

I. INTRODUCTION 
The problem of stabilizing unstable -nonminimum 
phase (NMP) plants has been subject to intensive re-
search. In the 1970’s, a great advance of the matter 
was attained by introducing the principle of coprime 
factorization of unstable- NMP plants and of the con-
trollers, thus accomplishing internal stabilization of 
the closed-loop feedback system by means of the 
Bezout identity, [1]-[3] and many other papers treating 
this topic. An exhaustive treatment of the Facto-
rization Approach to feedback control synthesis can be 
found in [4]. The central advantage of this approach is 
that internal stability of the closed-loop system is 
guaranteed for any unstable -NMP plant, with no res-
trictions on the number of right half plane (RHP) zeros 
and poles, and of their relative locations in the s-plane. 
Unfortunately, for such complex systems, the resulting 
performances of the design are quite poor: the ob-
tained phase and gain margins are very small, there is 
no way to control the bandwidth of the open-loop 
system, the gain peaking of the closed-loop transfer 
function (TF), and so on. There have been found ge-
neral analytical constraints on the maximum 
achievable crossover frequency for a feedback-loop in 
which the NMP plant contains one RHP zero, or the 
minimum crossover frequency when the plant 
comprises one unstable pole [5]. The achievable 
maximum bandwidth when the plant contains several 
RHP zeros, or the achievable minimum bandwidth 
when the plant contains several RHP poles was also 
analytically estimated, [6]. In the  two references abo-
ve, it is clearly shown   that    tradeoffs   exist between 
achievable crossover frequencies and gain and phase 
margins. It was also possible to derive analytical 

relations between achievable crossover frequencies, 
and gain and phase margin for the case when the plant 
comprises one RHP zero preceding one RHP pole, and 
vice versa, [7]. The analytical approach in the last 
three references was not attempted for plants com-
prising simultaneously multiple RHP poles and zeros, 
because of obvious theoretical and practical diffi-
culties.  

The coprime factorization and controller 
parameterization approaches gained a vast popularity 
in the development of the H ∞ -control paradigm for 
robust feedback systems, and is, in some sense, the 
mile-stone of this so important design approach for 
uncertain robust systems, [8], [9] and others. 

The theoretical problem of stabilizing a feed-
back system when the plant comprises numerous RHP 
poles and zeros is completely solved by the con-
ventional coprime factorization theory, and the Bezout 
identity. Unfortunately, as far as the author knows, no 
serious attempt has been made to characterize a sui-
table engineering definition of  “goodness” to such 
stabilized feedback system. The usual desired design 
specifications, as relative stability margins, bandwidth, 
maximum closed-loop gain peaking, steady state error 
coefficients, etc., are not compatible when the plant  
includes several RHP poles and zeros. If defined, these 
specifications cannot be all achieved completely. 
What remains to the designer is to attain the “best pos-
sible performances” of the feedback controlled sys-
tem, in general, the best stability margins.  

In order to get an idea of the difficulties 
emerging out of the problem at hand, the following 
illustrative example is considered. On the Nichols 
chart (NC) in figure 1a are displayed two stabilizing 
open-loop TFs pertaining to the unstable- NMP plant 
P(s) = (s-1)/s(s-2). L1(s) was achieved in [3] by using 
the technique of coprime factorization of the plant and 
controller, and satisfying the Bezout identity. L2(s), 
that also stabilizes internally the same plant, was ob-
tained by using the design technique in which the the-
oretical approximate maximum phase and gain mar-
gins are calculated first, and then achieved by conven-
tional classical loop-shaping, [7]. It is clear from the 
figure that the L2(s) design improves significantly the 
gain and phase margins, thus ensuring improved stab-
ility robustness to larger plant uncertainties. The L2(s) 
design  is  also not  satisfactory   from  an  engineering  
viewpoint; unfortunately, this is the best that can be 
achieved with such an unfriendly plant.  

The problem to be solved in this paper is 
maximization of the phase and gain margins for unsta- 
 



 
 ble- NMP feedback systems, by means of plant copri-

me factorization, and optimization of  the controller   
parameters satisfying  the  Bezout  identity, thus gua-
ranteeing internal stability. 
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 For lack of space, and in order to simplify the 
explanation of the optimization procedure, the single 
input-single output (SISO) case is treated here.      

 
 

d

n

r y 

_+
P G

1 

 Figure 2. Canonic ODOF  unity-feedback system. 
       II. DEFINITION OF THE OPTIMAL L(jω) ON  
We conclude that, by lowering |T|max, the gain and 
phase margins are both increased. This fact  is   clearly  

                     THE NICHOLS CHART. 
We propose here an optimality characteristic to the 
open-loop TF L(jω) displayed on NC, where the rela-
tive stability phase and gain margins are clearly exhi-
bited, see Fig. 1.  The closed loop TF gain of the cano-
nic ODOF (one- degree- of- freedom) unity-feedback 
structure in Fig. 2 is:  

perceived in Fig. 1b, where |T1|max = 25dB, while 
|T2|max = 12dB only. Moreover, according to the 
Nyquist stability criterion, the number of negative 
encirclements of the stability critical point (0dB, -180o 
on the NC) must equal the number of unstable open-
loop poles. Hence, for unstable plants, two, or more 
gain-margins, phase-margins and crossover frequen-
cies should be observed, as shown in Fig. 1a. Accor-
dingly, we may define an optimal L(jω) for an unsta-
ble- NMP plant as that L(jω) for which the stability 
phase and gain margins are maximized. 

 
|T(s)| = |Y(s)/R(s)| =| L/(1+L)|; L(s)=G(s)P(s)      (1) 
 
Looking at contours of constant |T| on NC, (not shown 
here) it is apparent that the larger |T|max is, the smaller 
the phase and gain margins are. There exist analytic 
relations that express minimum gain and phase mar-
gins in terms of the highest |T| constant gain contour 
touched by the open-loop TF L(jω), [7], [11].  

  
Remark 1. It is important to remind the reader that in 
cases the plant contains RHP zeros only, or RHP poles 
only, any desired phase and gain margins can be achi-
eved, of course, under obvious restrictions on their 
crossover frequencies. They will be, accordingly, low 
for the former, and high for the later case.   

 
GM ≥  1+ 1/|T(jω)|max;             (2a) 
PM ≥  2 sin-1[1/2| T(jω)|max]                           (2b) 
 

 

     III.  MAXIMIZATION OF STABILITY MARGINS 
The procedure for obtaining a stable solution together 
with maximal phase and gain margins for unstable- 
NMP SISO plants is as follows: 
 
3.1- Coprime factorization of plant P(s) and controller 
G(s). 
Define 
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G(s);

dp(s)

np(s)
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For coprime factorization of both P(s) and G(s), define 
polynomials xp(s) and xg(s), with stable roots, to 
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sert the definitions of (4a,b,c,d) into (5) to obtain: 

 

                b- Bode plots of |T1(jω)| and |T2(jω)|. 
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3.2- Calculation of the order of the controller     
polynomials ng(s) and dg(s). 

 
(s). For a proper G(s), 

 + δg +1 = 2(δg +1)              (7) 

o

              (8) 

up ose tha δp = 3 ( e plant
poles), then δ  = δ  –1 = 2, and the controller G(s) 

For a proper, or a strictly proper P(s), δp is the order 
of dp(s), but hence, also of xp
δg is the order of dg(s), but hence, also of xg(s).  In 
order to satisfy (6), it is clear that the following iden-
tity must be held: 
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3.3- Derivation of the controller  polynomials ng(s) 
and dg(s). 

ix 
 are to be derived, so that the optimized 

(s) is 
best exp

xample 1. Find a controller G(s) that stabilizes the 
plant P(s)= (s-5)/[s(s-2)(s-10)].  

e plant in the common form: 

G(s) in (9) insinuates that for this special case, s
parameters
L(jω) will come out with maximal gain and phase 
margins. In the general case, the parameters qi and gi 
cannot be arbitrarily assigned. They must satisfy 
equation (6), in which the coefficients of the polyno-
mials xp(s) and xg(s) are freely chosen, under the 
restriction that the two polynomials will be Hurwitz, 
(with no roots in the closed RHP). In section 3.4, it 
will be shown how to derive coefficients of xp(s) and 
xg(s) optimizing L(jω), in the sense of achieving the 
‘maximal obtainable’ gain and phase margins.  

Derivation of the controller G(s) for the arbi-
trary choice of the coefficients of xp(s) and xg

lained by solving a real example. 
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o
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ext, arbitrarily assign the positive design 

.(9). 
), dp(s), 

v = u            (10) 

1 2 3  q1  q2  q3]T,   

1  1  r2)   (f r1 +d r2+ r3)   

A =                    (11) 

Finally, 

1 2  g3  q1  q2  q3]T  = M-1u.                        (12) 

1 2 3

N
parameters a, b, c, d, and f. (The roots of xp and xg 
are stable for positive a, b, c, d, and f.) 

3. The controller G(s) is defined as in Eq
4. Substitute the so defined polynomials np(s
ng(s),   dg(s),    xp(s)   and    xg(s)   into   (6)   to    get:  
np(s) ng(s)+ dp(s) dg(s) = xg(s) xp(s). The obtained 
polynomials in both sides of the equation will be of 
order 5. After equating coefficient expressions of the 
same order, we obtain six linear equations in six un-
knowns, which  are  the  coefficients  of  the controller 
polynomials  ng(s) and  dg(s), namely, q1, q2, q3, g1, g2,  
and g3. These equations can be put in matrix form: 
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v = [g  g  g

u = [1  ( d + r )  ( f + d r  +
 ( f r2+d r3)    f r3)]T , and 
  



























zkt
kzktt

kzkttt
ktt

t

00300
0230

0123

00112

000011

000001

v = [g  g

In this example, z = -5, p  = -2, p = -10, p  = 0. a, b, c, 
d, and f are arbitrarily assigned as:  
a = 2, b = 2, c = 4, d = 4, f = 9.  
The derived controller is: 

56.32120
4.149.13096.574)( 2 −+

−−
=

2

ss
sssG  

The obtained open-loop TF, named 
Linit(jω

 plant uncertainty viewpoint. Two of 

, 

 
.4- Definition of a cost function optimising L(jω).  

 

assigning  

), is shown in Fig. 3a. The unstable -NMP 
plant has been  stabilized,   however, L init   is  quite 
poor   from  
sensitivity to
the phase margins are very small, about ± 1 deg, 
the two gain margins are also very small -0.2dB 
and +0.01dB. Such a design is of no practical use. 
The solution can in theory be improved by varying 
the design parameters a, b, c, d, and f with the 
hope of increasing the gain and phase margins, 
but, due to their large number, five in this 
example, the task seems to be unrealistic. To 
overcome this difficulty, we shall define a 
compatible cost function, and mini-mize it by an 
iterative optimization process. 

2. Define the p lynomials: 
2 3 2

 r = a+b, r = a b + c; r  = a c;1 2 3
xg = (s2 +d s + f).  3

The clue in choosing a cost function to our problem 
is found in Fig. 3b, where the unity-feedback |Tinit| is 
shown (this TF was achieved by arbitrarily  
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e define next the vector of optimizing parameters: 

 

  of  th ability  margin
en achieved by: 

the design parameters a, b, c, d, and f).  This unity-
feedback g  Bode Diagram 
Fig.3a. In Fig. 3b, |Tinit| reaches numerically a peak 
value of 44dB. We suggest improving this initial 
solution by using a “minimax algorithm” that will 
decrease |Tinit| to its achievable minimum, |Topt|. 
According to (2a,b), minimization of |T| maximizes 
the phase and gain margins. Consequently, let us 
define the cost function 
 
 C
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 par = [a b c d f]T            (14)

 
The  maximization e  st s  is  
th
 

 min [ ]1)(max −ωjT
par
imize

(1

(|T(jω
 

          

5) 

)| is in arithmetic units in this context.) 

F is as 
llows: as long as the difference |T| -1 is positive, 

the opti

ing in |T| was decreased by more than 25dB, see 

The rationale behind the proposed C
fo

mization process tends to decrease |T| toward 
unity gain. When the difference |T| -1 is negative, the 
optimization process tends to make |T| smaller. After 
performing the optimization by use of any standard 
“minimax” algorithm,  for  instance,  FMINIMAX  
in  
Optimization toolbox, Matlab, (see Appendix), the 
peak

ny standard 
“minimax” algorithm,  for  instance,  FMINIMAX  
in  
Optimization toolbox, Matlab, (see Appendix), the 
peak
|Topt|  in  Fig. 3b. The phase and   gain margins, as 
ex- 
pected, are drastically increased, see L opt in Fig. 3a. 
 

|Topt|  in  Fig. 3b. The phase and   gain margins, as 
ex- 
pected, are drastically increased, see L opt in Fig. 3a. 
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n [9] is performed  by  using the  H
paradigm. It is marked L  in Fig. 4a. The control  

 same problem was solved by hand ca lation, 
based on the theory in [7], page 140. The resulting 
L2 is also shown in Fig. 4a. The controller is 
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the optimization procedure presented
L1 in Fig. 4a is obtained. The controller is  
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It is clear from the shown L(jω)’s that L1  is the best 
solution. It is worth remarking that this solution is 

 

remarks are in order: 
- A feedback control system is expected to fulfill 

 a good input –output 
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very close to the theoretically predicted optimal L2  
in [7].  
 
Several 
1
several control tasks, such as
behavior in the time domain, immunity to external 
disturbances, satisfactory relative stability margins, 
stability and sensitivity robustness in spite of plant 
parameter ignorance. These basic performances are 
to be achieved with the lowest possible sensor noise 
amplification. Such conflicting requirements are 
solved by trading off between them, which is a 
common procedure in control design. With plants   
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dB where |Tii|’s are the unity- feedback gains of the 
direct channels, and   q is  the number of inputs to 
the plant.    The results of a design example follow. 
 

Example 3. The plant is given by: 
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p11= k11(s+z1)/(s+p1); p12= k12s/(s+p1); 
p21=k21/(s+p2); p22=k22(s+z2)/(s+p2). 

 
Figure 4. a -L’s of 3 design methods; b-  Bode plots                      

The initial vector  par  is chosen as parinit = [-1 –1.5 –
0.5 –1]T . The obtained   initial open- loop TFs    L11init 
and L22 init  are shown  in figure 5, telescoped  near  the 
Nyquist  stability point, 0dB and –180 deg on the  Ni-
chols chart. After performing the optimization by use 
of any  minimax algorithm, for instance,  MINIMAX, 
in Optimization toolbox, Matlab, the optimizing   vec-
tor    par   changed  to    paropt =   [ -50 –50 –1.726 –
1.7188]T. The optimized L11opt(jω)   and L22 opt(jω) are 
shown on  the same figure 5. It is evident that the ini-
tial solution, based on an arbitrary  choice of    vector 
par, was   substantially improved. The two  gain mar-
gins of L11(jω) increased from (0.15dB and  1.8dB) to 
(1.5dB  and 1.8dB), and the  phase  margin  increased 
from 20 to 110 . The two gain margins of  L22( jω) inc-

reased from (0.2dB and  1.4dB) to (1.6dB and 1.8dB),    
and the phase  margin  increased  from 30 to 110.  

k11= 2; z1= -1; p1= -1.5; p2= -2.0; k12= -5; k21=1; k22=3; 
z2= -3. 

    of  |Tinit| and of |Topt|  (optimization design 
method).  

timization design 
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cannot be achieved because of the inherently expec-
ted excessive peaking in |T(jω)|.  
3-Immunity to external disturbances cannot be achie-
ved at will, because the crossover frequencies are 
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4-Robustness to plant uncertainties that can be achie-
ved is very restricted. Two gain margins and three 
phase margins are apparent in figure 1a. The plant 
ignorance that this kind of L(jω) can tolerate is very 
limited.  
The conclusion is that the best the control designer 
can do is to maximize the phase and gain margins.    
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%calct.m 29 December 2002, to be 
%used with minimaxt.m, rev.13/1/03 
function F=calct(par) 

 
VI.  SUMMARY. 

A procedure for stabilizing unstable- NMP plants, 
while achieving maximal gain and phase margins, 
has been  presented   in   this   paper. With   such 
difficult  

%P(s)=k(s+z)/(s+p1)(s+p2)(s+p3); 
%enter plant parameters 
k = 1;z = -5;p1= -10;p2= -2; p3 = 0; 
%input data  
global np dp ng dg;% plants, the achievable stability margins are low, and 

no analytical procedures exist to predict  them, 
except  

a1=par(1);b1=par(2);c1=par(3); 
d1=par(4); f1=par(5);%optimizing 
%parameters for plants  comprising  a very limited  number of 

RHP poles and   zeros. The design procedure  
presented  in  

t1= p1+p2+p3;t2=p1*p2+p1*p3+p2*p3; 
t3= p1*p2*p3; 
 this paper achieves open-loop L(jω)’s with  

improved phase and gain margins, as  compared to 
solutions ba- 

np=k*[1  z]; dp=[1  t1   t2  t3];  
r1=a1+b1; r2=c1+a1*b1; r3=a1*c1; 
mat=[ 1    0    0     0    0     0; sed on arbitrary choice of controlling parameters, 

that satisfy the Bezout  identity. The presented 
design tec-hnique  in   this paper  can be applied  to 
an  unstable -NMP  plant of any  order  by 
modifying  accordingly the plant and controller 
structures.  

     t1    1    0     0    0     0; 
     t2   t1    1     k    0     0; 
     t3   t2   t1   k*z    k     0; 
      0   t3   t2     0  k*z     k; 
      0    0   t3     0    0   k*z]; 
  % mat vout = vinp  
vinp=[1 d1+r1  f1+r1*d1+r2  
r1*f1+r2*d1+r3  r2*f1+r3*d1 r3*f1]';                               APPENDIX 

(Comments into m- files are printed 
in italic).Run with Matlab 5.3 

vout=inv(mat)*vinp;g1=vout(1); 
g2=vout(2); g3=vout(3); Run “minimaxt” to obtain the 

controller G(s)=ng(s)/dg(s).  q1=vout(4);q2=vout(5);q3=vout(6); 
ng=[q1 q2 q3]; dg=[g1 g2 g3]; %----------------------------------- %calculation of |T|; 
%T=ng*np/(ng*np+dg*dp); %listing of minimaxt.m to be used 

%with calct.m revised 13 Jan. 2003 nt1=conv(np,ng);nt=[0 0 nt1]; 
%par(1)=a1; par(2)=b1; par(3)=c1; 
%par(4)=d1; par(5)=f1;%init. cond.  

dt=nt + conv(dp,dg);roots(dt); 
[mag ph w] = bode(nt,dt);[mag ph w]; global np dp ng dg;% F = mag - 1; 

par0 = [2   2  2 2 2 ];%I.C. on 
%optimizing parameters a1 b1 c1 d1 
%f1; 

%=================================== 
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