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Abstract-The controls in the feedback form and
the optimal cost are obtained for the different
minimax linear-quadratic control problems by
descriptor systems with properly stated leading
term in a Hilbert space. For that purpose the
operators, which are solutions of the operator
Riccati equation, are used, these operators act
in all state space, satisfy the special symmetry
condition, depending on the operators from the
state equation, and determine optimal controls
with the help of the state variable.

Index Terms-Singular systems, feedback,
linear-quadratic control, minimax control.

I. Introduction

For the last twenty years many works devoted to
the study of optimal control problems by systems,
the state equations of which are not resolved with
respect to the derivative have been published (see,
for example, the reviews [1], [2], the monograph
[3] and the paper [4]). In the scientific literature
such systems are frequently named as descriptor,
implicit, singular, differential-algebraic, etc.

∗The work was supported by Russian Fundamental Re-
search Foundation under grant 02-01-00351.

Linear differential-algebraic equations, when non-
invertible operators can be before the derivative
and before the unknown state variable which is af-
ter the derivative sign, were studied in [5]. These
equations are named as equations with properly
stated leading term. The equations of the last
form arise in practice (see[6]).

In the present paper, the controls in the feed-
back form and the optimal cost are obtained for
the following minimax linear-quadratic control
problems by time-varying descriptor systems with
properly stated leading term in a Hilbert space:
the problem with the fixed left point and a free
right point, the problem with the fixed points, the
periodic problem and for the regulation problem
with constant coefficients on an infinite interval.

For that purpose it is not necessary to select from
the state equation an equation resolved with re-
spect to the derivative as it was made in nu-
merous works devoted to linear-quadratic control
problems for time-invariant descriptor systems.
It should be noted that the forms of relations,
defining the controls in the feedback form, are
identical both for singular operators, standing on
the left-hand side of the state equation, and for
nonsingular operators, that is very convenient in
a research of singularly perturbed control prob-
lems. For the entry of the controls in the feedback
form the operators are used which are solutions
of the special operator Riccati equations, they act
in all state space, satisfy the peculiar symmetry
condition, depending on the coefficients from the



state equation, and optimal controls are deter-
mined by these operators and the value of the
state variable.

II. Problem with fixed left

point and free right point

Let us consider the linear-quadratic cost func-
tional

J(u, v) =< x(T ), d > +
1

2
< x(T ), Fx(T ) > +

1

2

T∫

0

(< x(t),W (t)x(t) > + < u(t), R(t)u(t) > −

< v(t), S(t)v(t) >)dt (1)

on trajectories of the linear system

A(t)(B(t)x(t))′ = C(t)x(t) + D(t)u(t)+

G(t)v(t) + h(t), (2)

A(0)B(0)x(0) = z0. (3)

Here t ∈ [0, T ], T > 0 is fixed, d, x(t) ∈ X, u(t) ∈
U, v(t) ∈ V ; z0, h(t) ∈ Z; X, Y, Z, U, V are real
Hilbert spaces, < ·, · > means a scalar product
in appropriate spaces, F,W (t) ∈ L(X), R(t) ∈
L(U), S(t) ∈ L(V ), A(t),∈ L(Y, Z), B(t) ∈
L(X, Y ), C(t) ∈ L(X,Z), D(t) ∈ L(U,Z), G(t) ∈
L(V, Z); W (t) = W ∗(t), R(t) = R∗(t), S(t) =
S∗(t) for all t ∈ [0, T ], V = V ∗, the ex-
ponent star with the notation of an opera-
tor denotes the adjoint operator, the oper-
ators W (t), R(t), S(t), A(t), C(t), D(t), G(t) and
the function h(t) are continuous with respect to t,
the operator B(t) is supposed to depend smoothly
on t, the operators R(t) and S(t) are positive and
invertible for all t ∈ [0, T ].

Admissible controls u(t) and v(t) are continu-
ous functions with values in U,V respectively,
for which there is a solution of the problem (2),
(3) (a solution of (2) is a continuous function
x:[0,T]→X that has a continuously differentiable
product B(t)x(t) and which satisfies (2) point-
wise).

Remark 1. From the relation (3) it follows that
z0 ∈ Im(A(0)B(0)), that is for some x0 ∈ X the
equality z0 = A(0)B(0)x0 should take place.

We will seek controls u∗(t), v∗(t) in a feedback
form, for which

J(u∗, v) = min
u

J(u, v), J(u, v∗) = max
v

J(u, v).

We name such pair of controls (u∗, v∗) as the op-
timal controls pair and the value of the functional
(1) when u(t) = u∗(t), v(t) = v∗(t) we denote by
J∗, i.e.

J∗ = J(u∗, v∗).

Theorem 1. If the operator K(t) ∈ L(X, Z) is
a solution of the differential operator equation

B∗(t)(A∗(t)K(t))′ = −C∗(t)K(t)−K∗(t)C(t)+

K∗(t)A(t)(B(t))′ + K∗(t)(D(t)R−1(t)D∗(t)−
G(t)S−1(t)G∗(t))K(t)−W (t) (4)

with the condition

B∗(T )A∗(T )K(T ) = F, (5)

ϕ(t)∈Z is a solution of the problem

B∗(t)(A∗(t)ϕ(t))′ = −(C∗(t)−
K∗(t)(D(t)R−1(t)D∗(t)−

G(t)S−1(t)G∗(t))ϕ(t)−K∗(t)h(t), (6)

B∗(T )A∗(t)ϕ(T ) = d, (7)

and x∗(t) is a solution of the problem (2), (3) with
the controls, defined by the formulas

u∗(t) = −R−1(t)D∗(t)(K(t)x∗(t) + ϕ(t)),



v∗(t) = S−1(t)G∗(t)(K(t)x∗(t) + ϕ(t)), (8)

then the equalities (8) define the optimal controls
pair for the problem (1)-(3) in the feedback form
and

J∗ =< A(0)B(0)x(0), ϕ(0)+

1

2
K(0)x(0) > +

1

2

T∫

0

< ϕ(t), 2h(t)−

(D(t)R−1(t)D∗(t)−G(t)S−1(t)G∗(t))ϕ(t) > dt.
(9)

Remark 2. From (4), (5) and the symmetry of
the operators F,W(t),R(t), S(t) it follows that the
operator B∗(t)A∗ (t)K (t) is symmetric for every
t∈[0, T], that is

B∗(t)A∗(t)K(t) = K∗(t)A(t)B(t). (10)

Proof of theorem 1. Taking into account the
equality (10), it is not difficult to verify the va-
lidity of the relation

(< x(t), B∗(t)A∗(t)(ϕ(t) +
1

2
K(t)x(t)) >)′ =

< A(t)(B(t)x(t))′, ϕ(t) +
1

2
K(t)x(t) > +

< x(t), B∗(t)(A∗(t)ϕ(t))′+

1

2
(B∗(t)(A∗(t)K(t))′x(t)+

K∗(t)A(t)(B(t)x(t))′) > −
1

2
< x(t), (B∗(t))′A∗(t)K(t)x(t) > .

Using the last relation let us find the deriva-
tive of the function < x(t), B∗(t)A∗(t)(ϕ(t) +
1/2K(t)x(t)) > in view of the expressions (2),
(4), (6), (10). Fulfilling the simple transforma-
tions we have

(< x(t), B∗(t)A∗(t)(ϕ(t) +
1

2
K(t)x(t)) >)′ =

−1

2
(< x(t),W (t)x(t) > + < u(t), R(t)u(t) > −

< v(t), S(t)v(t) >) +
1

2
< ϕ(t), 2h(t)−

(D(t)R−1(t)D∗(t)−G(t)S−1(t)G∗(t))ϕ(t) > +

1

2
< u(t) + R−1(t)D∗(t)(K(t)x(t)+

ϕ(t)), R(t)(u(t)+

R−1(t)D∗(t)(K(t)x(t) + ϕ(t))) > −1

2
< v(t)−

S−1(t)G∗(t)(K(t)x(t) + ϕ(t)), S(t)(v(t)−
S−1(t)G∗(t)(K(t)x(t) + ϕ(t))) > . (11)

Integrating this equality on the segment [0, T ], by
virtue of the relations (1), (5), (7) we obtain

J(u, v) =< A(0)B(0)x(0), ϕ(0)+
1

2
K(0)x(0) > +

1

2

T∫

0

< ϕ(t), 2h(t)− (D(t)R−1(t)D∗(t)−

G(t)S−1(t)G∗(t))ϕ(t) > dt +
1

2

T∫

0

(< u(t)+

R−1(t)D∗(t)(K(t)x(t) + ϕ(t)), R(t)(u(t)+

R−1(t)D∗(t)(K(t)x(t) + ϕ(t))) > − < v(t)−
S−1(t)G∗(t)(K(t)x(t) + ϕ(t)), S(t)(v(t)−
S−1(t)G∗(t)(K(t)x(t) + ϕ(t))) >)dt. (12)

Let us show, that the magnitude
< A(0)B(0)x(0), ϕ(0) + 1/2K(0)x(0) > does
not depend on a controls u(t), v(t). Indeed by
virtue of the remark 1 and the relations (3), (10)
we have

< A(0)B(0)x(0), ϕ(0) +
1

2
K(0)x(0) >=

< z0, ϕ(0) > +
1

2
< x0, K

∗(0)z0 > .

The choice of an optimal controls pair is obvious,
if we use the obtained expression for J(u,v). That
is as the operators R(t), S(t) are positive, from
(12) it follows that the optimal controls pair is
determined by the formulas (8) and the value J∗
is calculated by the formula (9).



Remark 3. Taking into account the remarks 1
and 2 we can write down the formula (9) for J∗
in the form

J∗ =< z0, ϕ(0) > +
1

2
< x0, K

∗(0)z0 > +

1

2

T∫

0

< ϕ(t), 2h(t)−

(D(t)R−1(t)D∗(t)−G(t)S−1(t)G∗(t))ϕ(t) > dt.

III. Problem with fixed

points

Now we deal with the minimax control problem
when the functional is determined by the formula

J(u, v) =
1

2

T∫

0

(< x(t), W (t)x(t) > +

< u(t), R(t)u(t) > − < v(t), S(t)v(t) >)dt (13)

and trajectories of the system (2) satisfy the
boundary values

A(0)B(0)x(0) = z0, A(T )B(T )x(T ) = zT . (14)

Here admissible controls are continuous functions
u(t), v(t) with values in U, V respectively, for
which there is a solution of the problem (2), (14).

Theorem 2. If the operator K(t) ∈ L(X, Z) is a
solution of the differential operator equation (4)
under the symmetry condition (10), ϕ(t)∈Z is a
solution of the equation (6) and x∗(t) is a solu-
tion of the problem (2), (14) with the controls,
defined by the formulas (8), then the equalities
(8) determine the optimal controls pair for the
problem (13), (2), (14) in the feedback form and

J∗ =< A(0)B(0)x(0), ϕ(0) +
1

2
K(0)x(0) > −

< A(T )B(T )x(T ), ϕ(T ) +
1

2
K(T )x(T ) > +

1

2

T∫

0

< ϕ(t), 2h(t)− (D(t)R−1(t)D∗(t)−

G(t)S−1(t)G∗(t))ϕ(t) > dt. (15)

Proof. Integrating the equality (11) on the seg-
ment [0,T], by virtue of the relation (13) we ob-
tain

J(u, v) =< A(0)B(0)x(0), ϕ(0)+
1

2
K(0)x(0) > −

< A(T )B(T )x(T ), ϕ(T ) +
1

2
K(T )x(T ) > +

1

2

T∫

0

< ϕ(t), 2h(t)− (D(t)R−1(t)D∗(t)−

G(t)S−1(t)G∗(t))ϕ(t) > dt+

1

2

T∫

0

(< u(t) + R−1(t)D∗(t)(K(t)x(t)+

ϕ(t)), R(t)(u(t)+R−1(t)D∗(t)(K(t)x(t)+ϕ(t)) > −
< v(t)−S−1(t)G∗(t)(K(t)x(t)+ϕ(t)), S(t)(v(t)−

S−1(t)G∗(t)(K(t)x(t) + ϕ(t))) >)dt. (16)

We further establish that the term outside the
integrals on the right-hand side of (16) is equal
to

< z0, ϕ(0) > +
1

2
< x0, K

∗(0)z0 > −

< zT , ϕ(T ) > −1

2
< xT , K∗(T )zT >,

where zT = A(T )B(T )xT , that is it does not de-
pend on a controls u(t), v(t), it depends on the
boundary values (14) only.

As the operators R(t) and S(t) are positive, from
(16) it follows that the optimal controls pair for
the problem (13),(2),(14) is defined by the formu-
las (8) and J∗ is calculated by the formula (15).



IV. Periodic problem

Let us consider the periodic minimax control
problem with the functional (13) when trajecto-
ries of the system (2) satisfy the condition

x(0) = x(T ). (17)

Here in addition to the previous conditions we
assume that all operators and h(t) are T-periodic
in t functions.

Admissible controls are continuous T-periodic in
t functions with values in U, V respectively, for
which there is a solution of the problem (2),(17).

Theorem 3. If the operator K(t) ∈ L(X, Z) is a
solution of the differential operator equation (4)
under the conditions (10) and

K(0) = K(T ), (18)

ϕ(t) ∈ Z is a solution of the equation (6) under
the condition

ϕ(0) = ϕ(T ), (19)

and x∗(t) is a solution of the problem (2), (17)
with the controls, defined by the formulas (8),
then the equalities (8) determine the optimal con-
trols pair for the problem (13), (2), (17) and

J∗ =
1

2

T∫

0

< ϕ(t), 2h(t)− (D(t)R−1(t)D∗(t)−

G(t)S−1(t)G∗(t))ϕ(t) > dt.

For the proof of the theorem 3 it is necessary to
integrate the equality (11) on the segment [0, T ]
using the relations (13), (17), (18), (19).

V. Regulation problem on

infinite interval

Now we consider the minimax control problem
with constant coefficients and the functional

J(u, v) =
1

2

+∞∫

0

(< x(t),Wx(t) > +

< u(t), Ru(t) > − < v(t), Sv(t) >)dt (20)

on trajectories of the system

(Bx(t))′ = Cx(t) + Du(t) + Gv(t), (21)

Bx(0) = y0. (22)

(Here it is assumed that Z = Y .)

Admissible controls are continuous functions
u(t), v(t) with values in U, V respectively, ensur-
ing a finite value of the functional (20) and the
relation

x(+∞) = 0,

where x(t) is a solution of the problem (21), (22)
corresponding to the controls u(t) and v(t).

Theorem 4.If the invertible operators R and
S are symmetric positive, the operator K ∈
L(X,Y ) is a solution of the algebraic operator
Riccati equation

C∗K+K∗C−K∗(DR−1D∗−GS−1G∗)K+W = 0

under the condition

B∗K = K∗B, (23)

x∗(t) is a solution of the problem (21), (22) with
the controls, defined by the formulas

u∗(t) = −R−1D∗Kx∗(t), v∗(t) = S−1G∗Kx∗(t),
(24)



and these controls are admissible, then the equal-
ities (24) determine the optimal controls pair for
the problem (20)-(22) and

J∗ =
1

2
< x(0), B∗Kx(0) > .

The proof of this theorem is analogous to the
proof of the theorem 1.

Remark 4. The solvability of an algebraic oper-
ator Riccati equation under the symmetry con-
dition of the form (23) was considered in [7].
The solvability of an operator differential Riccati
equation unresolved with respect to the derivative
was discussed in [8].

Remark 5. The statements, which are similar
to the heorems 1-4, were obtained for the linear-
quadratic optimal control problems by descriptor
systems in a Hilbert space in [9].

References

[1] F.L. Lewis, A survey of linear singular sys-
tems. Circuits, Systems, and Signal Process-
ing, vol.5, no.1, 1986, pp.3-36.

[2] G.A. Kurina, Singular perturbations of con-
trol problems with state equation unresolved
with respect to derivative. Survey, Izvestija
RAN. Tehnicheskaja kibernetika, no.4, 1992,
pp.20-48, (in Russian).

[3] V.L. Mehrmann, The Autonomous Linear
Quadratic Control Problem, Lecture Notes
in Control and Information Sciences, vol.163,
1991.

[4] D.J. Bender and A.J. Laub, The linear-
quadratic optimal regulator for descriptor
systems, IEEE Trans. Autom. Control, AC-
32, 1987, pp.672-688.

[5] R. März, Differential algebraic systems
anew, Applied Numerical Mathematics,
vol.42, 2002, pp.315-335.
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