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Abstract— This paper presents a mathematical technique for
computing the stationary distribution of Markov processes that
evolve deterministically between arbitrarily distributed ‘failure
events’. The key innovation in this paper is the use of a state-
dependent time re-scaling technique, such that the re-scaled
process can be described by a Poisson-interrupted stochastic
differential equation. This technique is first applied to compute
the stationary window distribution of a TCP flow performing
idealized classical congestion avoidance under variable, but state-
dependent, packet loss, and subsequently, to study the distribu-
tion of a TCP flow performing generalized congestion avoidance.
We show how the stochastic differential equation can be solved by
a rapidly convergent numerical technique to obtain the stationary
distribution in the re-scaled (subjective) time, and present the
re-scalings needed to eventually obtain the distribution of the
original Markov process. We demonstrate how this analysis can
be used to compute the window distribution of a TCP flow
interacting with a RED, ERD or ECN queue, with or without
minimally assured throughput guarantees.

I. INTRODUCTION

In this paper, we analyze the stationary distribution of
a class of feedback-controlled Markov processes, where the
feedback events occur with a random but state-dependent
probability. In other words, the state transitions of the process
occur with a state-dependent probability, but are conditionally
independent of past and future transition events. This research
was motivated by a desire to study the stationary distribution
of TCP (the Transmission Control Protocol), which is, by
far, the most dominant adaptive transport protocol used to
regulate Internet traffic. In the stationary phase, TCP regulates
the injection of new packets using a ‘congestion avoidance’
algorithm [1], whereby the congestion window (cwnd) is in-
creased only on successful reception of an ‘acknowledgment’
packet (positive feedback) and decreased on determination of a
missing acknowledgment (negative feedback). Internet routers
provide this feedback through either randomized packet drops
or randomized packet marking techniques, with the feedback
rate (dropping/marking probability) a function, directly, of the
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router queue occupancy, and, indirectly, of the congestion
window size. Our analytical contributions can thus be viewed
as an extension to earlier work on TCP analysis (e.g., [2]),
where the TCP congestion window is computed under the
assumption of a constant feedback rate.

We consider one-dimensional Markovian processes that
evolve deterministically between the occurrence of ‘failure
events’, with each inter-failure duration dependent only on
the process state since the last failure event (and independent
of all past and future failure events). We do not impose
any specific distribution on the inter-failure duration. This
stochastic model applies to TCP behavior when it is ab-
stracted into a continuous cycle of ‘congestion avoidance’,
packet loss/marking and ‘fast recovery’ [3]. We disregard
the details of TCP timeouts and fast recovery and assume
an idealized behavior, whereby a congestion notification that
occurs when the congestion window is W Maximum Segment
Sizes (MSSs) instantaneously reduces the congestion window
(and the number of unacknowledged packets) to � W

2 � MSSs.
The dynamics of TCP window evolution can then be captured
by a discrete-time Markov process with state-dependent tran-
sition probabilities. To further demonstrate the utility of our
mathematical technique, we also consider a more general class
of TCP-like generalized congestion avoidance algorithms. This
is a parametric generalization of conventional TCP congestion
avoidance and belongs to the class of binomial congestion
control algorithms that have been studied recently [4]. More
importantly, recent research (e.g., [5]) has demonstrated how
such parametrized modifications to TCP behavior can lead
to higher network utilization and lower variation in queue
sizes in the emerging QoS-aware and ECN-capable Internet.
Under generalized congestion avoidance, TCP increases the
cwnd from its current value W by c1W

α on receiving an
acknowledgment without congestion indication (packet drop or
marking) and decreases it by c2W

β on receiving an acknowl-
edgment containing a congestion indicator. Here α, β, c1

and c2 are constants that parametrize the algorithm; clearly,
choosing α = −1, β = 1, c1 = 1 and c2 = 0.5 results in the
classical (TCP) congestion avoidance algorithm.
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While the TCP window evolution belongs to the class
of discrete-space (countably infinite), discrete-time processes,
our analytical technique applies to the more general case
of a continuous-time, continuous-space process W (t). The
key innovation in our analysis is the employment of state-
dependent rescaling in both the time and space axes. In
particular, we study the properties of a new process Y (τ),
derived from W (t), where the time index τ is a non-linear
function of t. By using an appropriate time rescaling function,
the ‘points of failure’ of the process Y (τ) become realizations
of a Poisson process, thereby allowing us to relate the steady-
state probabilities via a Kolmogorov equation. The differential
equation is then solved through a novel iterative numerical
technique, which can be shown to exhibit rapid and guaranteed
numerical convergence.

For ease of exposition, we shall usually restrict our for-
mulation and notations to the case of TCP congestion avoid-
ance (ideal or generalized), taking care to point out the
modifications needed for more generic stochastic processes.
Accordingly, we consider the stochastic process (Wn)∞n=1,
where Wn stands for the congestion window just after the
nth acknowledgment packet has arrived at the source. The
resulting discrete-time Markov process exhibits the following
conditional probabilities:

P{Wn+1 = w + c1w
α|Wn = w} = 1 − p(w) (1)

P{Wn+1 = w − c2w
β |Wn = w} = p(w), (2)

where p(w) is the congestion notification probability when
the congestion window is w. (The time index n in the above
equations is referred to as ack time in this paper, since
it increases only with the receipt of acknowledgments.) In
the TCP case, the ‘points of failure’ of the processes W (t)
and Y (τ) correspond to the receipt of congestion feedback
from the routers in the traffic path. Such feedback is usually
provided through either randomized packet dropping (e.g., the
Randomized Early Detection (RED) [6]) or through explicit
packet marking (e.g., the Explicit Congestion Notification
(ECN) mechanism [7]). The exact feedback mechanism is
unimportant for our analysis, which considers TCP response
to abstract congestion notifications and does not distinguish
between packet dropping and marking mechanisms. We shall,
however, provide simulation results with both dropping and
marking based service models to evaluate the accuracy of our
analytical technique.

The rest of the paper is organized as follows. In section
II, we provide a survey of related work and also discuss the
applicability of our model to TCP traffic. In section III, we
describe the time and space rescalings, as applied to both
TCP performing classical congestion avoidance, and to a
more generic class of Markov processes. In section IV, we
obtain the resulting Kolmogorov equation for this re-scaled
process, and derive the iterative technique for rapidly solv-
ing this differential equation. Section V provides numerical
examples analyzing the window behavior of TCP classical
congestion avoidance with Early Random Drop and Random
Early Detection queues and evaluates the effectiveness of
our numerical techniques in predicting TCP behavior. While

section VI shows how the numerical technique applies to the
more general case of a TCP process performing generalized
(as opposed to classical) congestion avoidance, section VII
applies this analysis to the interaction of a generalized TCP
flow with an ORED [8] buffer under the Assured Service [9]
model. Finally, section VIII concludes the paper.

II. RELATED WORK AND MODEL APPLICABILITY

There has been a fairly large body of literature analyzing the
dynamics of TCP congestion control. All of the early papers,
however, assume a constant drop or marking probability. The
‘square-root’ formula, which states that the average window
of a persistent TCP connection if of the order

√
p, and which

ignores the effects of TCP timeouts and fast recovery, has
been rigorously derived in [2] and, less rigorously, in [10] and
[11] (the last publication also considers modifications to the
formula resulting from losses of acknowledgment packets). By
considering the effects of fast recovery and timeouts in greater
detail for various TCP versions, [12], [13] provide better
estimates of throughput (especially at larger loss probabilities).
Among these papers, only [2] derives the stationary window
distribution of the TCP flow, albeit for a constant notification
probability p. [2] employs a scaling technique, where the time
axis is rescaled linearly by a factor p, and the state space
is rescaled linearly by a factor

√
p, resulting in a rescaled

process W (t) =
√

pW� t
p �. (We call the time index generated

by the rescaling subjective time.) We shall also employ similar
rescalings in this paper. While our space rescaling will still be
linear, the variable loss probability of our model requires the
time rescaling to be non-linear, as explained in Section III.

To evaluate the accuracy of our mathematical technique, we
shall compare the analytical model against simulation studies
performed with popular TCP versions (Reno and NewReno).
The individual TCP flow is subject to packet drops performed
by a router buffer according to the popular Random Early De-
tection (RED) or Early Random Drop (ERD) [19] algorithms.
In an ERD buffer, the drop probability is a function of the
instantaneous buffer occupancy; in a RED buffer, the drop
probability is a function of the average queue length.

To further study the applicability of our analysis to gen-
eralized TCP congestion avoidance, we shall also analyze
the interaction of a generalized TCP flow with a router
buffer under the more complicated Assured Service [9] model.
Under this model, a TCP flow is associated with a minimum
assured rate and is subject to congestion notification only
when it exceeds this rate. We consider the interaction with an
ORED buffer, which is described in [8], and which essentially
randomly marks packets (similar to ECN), but only if they
have been tagged as non-conformant at the network edge. The
reasonable accuracy of our analytical model demonstrates the
practical utility of our mathematical technique.

III. PROCESS MODEL AND RESCALINGS

In this section, we first describe the discrete-time model for
TCP classical congestion avoidance and provide the appropri-
ate time and space rescalings used to derive a more amenable
continuous-time, continuous-space process characterized by
Poisson points of failure.
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A. The Model for TCP Behavior

The TCP source is assumed to send a large data file
in the forward direction with the congestion window acting
as the only constraint on the transmission of packets. It is
assumed that the connection never goes into timeout, that
the receive or advertised window never limits the number of
unacknowledged packets, that data is always sent in equal-
sized segments (one MSS) and that acknowledgments are
never lost. The receiver generates an acknowledgment for
every received packet (we shall also extend the analysis
to model the phenomenon of ‘delayed acknowledgments’).
Packet losses are assumed to be conditionally independent.

For the case of classical TCP congestion avoidance, equa-
tions (1) and (2) reduce to:

P{Wn+1 = w +
1
w
|Wn = w} = 1 − p(w), (3)

P{Wn+1 =
w

2
|Wn = w} = p(w), (4)

where p is the packet dropping probability.
The time index in equations (3) & (4) is called ack time

and is is a positive-integer valued variable that increments by
1 whenever an acknowledgment packet arrives at the source.
Ack time increases linearly with clock time only when the
window size and round trip times are both constant. Let the
cumulative probability stationary distribution for this process
under this ack time be Fack(.).

B. Time and State-space Rescaling

To derive a more amenable continuous-time, continuous-
valued random process from the process described by equa-
tions (3) & (4), we rescale both the time and state-space axes.
This leads us to introduce the concept of subjective time,
which is, roughly speaking, related to ack time through an
invertible mapping. For the case considered in [2], where the
loss probability was a constant p, the subjective time was
derived from ack time by linearly compressing the time scale
by a factor p, by using the relation dtsubjective = p.dtack.
When the loss probability is not constant but state-dependent,
a state-dependent (non-linear) scaling must be used.

For the specific TCP process under consideration, our
quantized increment in subjective time t is provided by the
mapping

∆t = p(Wn)∆n (5)

where ∆t is the (real-valued) increment in subjective time,
∆n is the (integer-valued) increment in ack time and p(Wn)
is the loss probability associated with the value of the window
Wn at ack time n. In other words, for a process defined under
this subjective time, time advances at a variable rate, as an
increase in the ack time index of 1 corresponds to a state-
dependent increase of p(Wn) in the subjective time index.
Thus, t(N), the subjective time immediately after sending
packet number N , is expressed as t(N) =

∑N
i=1 p(Wi).

As 0 ≤ p(Wn) ≤ 1, t is a real-valued sequence obtained
by a contraction of the ack time index. As pmax ↓ 0, the
limiting subjective time index becomes a continuous variable.
We shall see that, for this specific case, the process defined in

subjective time has a failure rate that becomes Poisson and
constant asymptotically, as the maximum dropping probability
pmax ↓ 0.

If W ′(t) represents the process Wn in subjective time t via
the transformation in equation (5), its sample path between
the events of packet failure can be modeled by the difference
equation

∆W ′

∆t
=

1
p(W ′)W ′ (6)

As pmax ↓ 0, the difference equation can be modeled by a
corresponding differential equation with increasing accuracy.
The differential equation would however, in the limit, be
ill-behaved as the derivative goes to ∞ as pmax ↓ 0. To
obtain a well behaved process, we also need to rescale the
state space of W ′(t). To rescale properly, we assume that
p(W )
pmax

> ε ∀W , (i.e., the ratio between the minimum and
maximum loss probabilities is uniformly bounded away from
0). If we then rescale the state-space of the process W ′(t)
by the multiplicative constant

√
pmax, the resulting process,

which we call W (t), obeys the functional relationship

W (t) =
√

pmax Wn, (7)

where n = n(t) = arg max j :
j∑

i=0

p(Wi) ≤ t

This continuous-time and continuous valued process W (t) will
be the subject of our study and analysis.

Theorem 1: As pmax ↓ 0, the process defined by equations
(3), (4) & (7), converges (path-wise) to a process whose
window, W (t), behaves as follows:
There is a Poisson process with intensity 1, the points of which
are denoted by (τn)∞n=1. In between the points of this Poisson
process, the window, W , evolves according to the equation

dW

dt
=

pmax

p( W√
pmax

)W
=

1
q(W )

(8)

At the points of the realization of the Poisson process, we have
W (τ+) = 1

2W (τ−).

C. Distribution in (Continuous) ACK Time

We shall see how to compute Fsubj(w), the stationary
cumulative distribution of W (t) in subjective time, later in
section IV. We now consider how to correct this distribution
for the state-space and time rescalings, introduced in equation
(7), assuming Fsubj(w) is already known.

The state-space scaling results in a simple linear transfor-
mation of the probability distribution. Fsubj(w) is corrected
first to obtain Fs(w), the cumulative stationary distribution in
subjective time but without space-rescaling by the relationship
Fs(w) = Fsubj(

√
pmaxw).

The sampling non-uniformity due to time-scaling is cor-
rected, to obtain Fack(w), by dividing the probability density
in subjective time, dFs(w), by the appropriate quantity p(w).
This is achieved by the transformation

dFack(w) =
dFs(w)
p(w)∫ dFs(η)

p(η)

(9)
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IV. THE STATIONARY KOLMOGOROV EQUATION AND ITS

SOLUTION

In this section we obtain the stationary distribution of the
process, defined in section III.B, whose behavior is described
by the equation dW (t)

dt = 1
q(W (t)) in between the points of a

Poisson process of rate λ. At the points of the Poisson process,
W (t) is obtained by W (t+) = A(W (t−)); let a(x) be the
inverse function of A(x).

Theorem 2: The stationary cumulative distribution
Fsubj(x) of the process in section III.B satisfies the differential
equation

dFsubj (x )
dx

= λq(x )(Fsubj (a(x )) − Fsubj (x )) (10)

We were unable to obtain a closed-form analytical solution
for this differential equation. We however provide an open-
form analytical expression for Fsubj(x) that translates into
a rapidly converging numerical technique for evaluating the
cumulative distribution. In passing, we note that the approxi-
mation of the TCP process results in the differential equation

dFsubj(x)
dx

= q(x)(Fsubj(2x) − Fsubj(x)), (11)

which will be used in the numerical examples to be presented
later.

A. Solution of the Equation

Let G be the complementary distribution function defined
by the relation G(x) = 1 − Fsubj(x). Equation (10) is
equivalent to the equation

dG(x)
dx

+ λq(x)G(x) = λq(x)G(a(x)) (12)

with the boundary conditions G(0) = 1, G(∞) = 0. Let
Q(x) =

∫ x

0
λq(u)du and define G(x) = H(x)e−Q(x) where

H(x) is an arbitrary function (to be evaluated). H(x) is then
seen to obey the differential equation

H(x) = H(z) − λ

∫ z

x

q(u)eQ(u)G(a(u))du (13)

By letting z ↑ ∞ in equation (13) and noting that G(a(u)) =
e−Q(a(u))H(a(u)) , we have

H(x) = H̄ − λ

∫ ∞

x

q(u)e(Q(u)−Q(a(u)))H(a(u))du (14)

with the boundary conditions H(0) = 1 and H(∞) = H̄ .
By defining J(u) as J(u) = λq(u)eQ(u)−Q(a(u)) =

λq(u)e−
∫ a(u)

u
q(ρ)dρ, equation (14) reduces to

H(x) = H̄ −
∫ ∞

x

J(u)H(a(u))du (15)

B. Numerical Computation

Repeated substitution in equation (15) offers a numerical
technique for evaluating H(x). As H(x) tends to a limit as x ↑
∞, it can be treated as a constant beyond a certain value xupper

(chosen such that the resulting error in computing H(x) is at
most a small value ε). We can then obtain an approximation
for H(x) by setting the value of H(x) beyond xupper to be a
constant and computing H(x) between (0, xupper). After the
algorithm converges, we can divide by H(0) to satisfy the
boundary conditions H(0) = 1, H(∞) = H̄ .

The complete numerical procedure for computing F subj(x)
is as follows:

1) Choose a small positive constant ε (ε > 0), which
indicates the accuracy of the computation.

2) Find xupper such that
∫ ∞

xupper
J(u) du ≤ ε.

3) Let B0(x) = 1 for all x and let Bi(x) = 1, ∀x >
xupper , ∀ i.

4) Also compute K(x) =
∫ ∞

x J(u) du for A(xupper) ≤
x ≤ xupper . Denote K(A(xupper)) by ζ.

5) For all values of i, let Bi(x) = 1 − K(x), for
A(xupper) ≤ x ≤ xupper .

6) Repeat the following iteration in the range
(0, A(xupper)) until the function converges below
a specified bound:

Bi(x) = 1 −
∫ A(xupper)

x

J(u) Bi−1(βu) du − ζ.

7) Let the final solution be denoted by B(x).
8) Renormalize B(x) = B(x)

B(0) to satisfy the necessary
boundary conditions. B(x) is then the numerical esti-
mate for H(x).

9) The complementary probability distribution is then ob-
tained as

G(x) = B(x)e−Q(x) (16)

10) Compute Fsubj(x) from Fsubj(x) = 1 − G(x).

V. RESULTS FOR CLASSICAL CONGESTION AVOIDANCE

We now compare the analytical results of the previous
section with those obtained via simulations. The simulations
were carried out with the TCP Reno and NewReno versions
in the ns-2 [22] simulator package. Although these versions
differ in their fast recovery mechanisms and in the frequency
of timeouts, the performance of the two versions was found
to be almost identical for the relatively low loss environments
studied in our simulations. To obtain adequate statistical confi-
dence, simulation results were obtained by averaging over runs
with multiple seeds; each run comprised at least 106 packet
transmissions. While the entire simulation process would take
∼ 10 − 15 minutes, the numerical computation over a fairly
fine grid (∼ 1000 points) took only about 30 secs (on a typical
workstation).

A. TCP with Simple State-Dependent Loss

The results in Fig.1 correspond to the case when the packet
drop probability depends directly on the window size. We
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achieve this effect by passing a TCP connection through a
single queue with negligible link propagation and transmission
delay (all outstanding packets are thus effectively resident in
the queue), and independently dropping each arriving packet
with a probability that varies with the queue occupancy. The
drop probability in this example increases linearly with queue
occupancy. It can be seen that the simulated behavior offers
excellent agreement with the numerical prediction in this
example.
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Figure 1: TCP Window Evolution and State-Dependent Loss

B. Predicting TCP behavior with Queue Management Tech-
niques

One of the goals of our analysis is to predict the window
distribution of a persistent TCP flow when it interacts with
router queue management mechanisms like Early Random
Drop (ERD) and Random Early Detection (RED), where the
packet drop probability is not constant but varies with the
queue occupancy. In the present paper, we consider the case
where the router port buffers only a single flow; approximate
techniques for determining the window distribution for multi-
ple TCP flows were presented in [21].

While both ERD and RED involve variable drop probabili-
ties that depend on the queue occupancy, they have significant
differences, of which the two most important are:

• The drop probability in RED is dependent on an EWMA
of the queue occupancy, while the drop probability in
ERD is a function of the instantaneous queue length.

• RED uses drop-biasing to generate an inter-drop gap that
is uniformly distributed; ERD drops each packet with an
independent drop probability, resulting in inter-drop gaps
that are geometrically distributed.

These differences make RED much harder to model than
ERD: the use of averaged queue occupancies to determine
drop probabilities destroys the state-dependent loss model (the
drop probability is then a function of the past state behavior),
while drop-biasing negates the assumption of independent
packet drops. We circumvent these problems by (simplisti-
cally) assuming that the drop probability depends only on the
instantaneous queue length and that each packet is dropped

independently. We thus ignore the effect of queue averaging
in RED; we include a simple correction to account for the
effect of drop-biasing.

Assuming that the transmission pipe is always full, the
occupancy of the queue is given by the residual number of
unacknowledged packets, so that we have

Qn = Wn − B.RTT (17)

For our experiments, the loss function is given by the tradi-
tional model of RED behavior, i.e., p(Q) = 0 for Q ≤ min th,
p(Q) = pmax for Q ≥ maxth and p(Q) = Q−minth

maxth−minth
pmax

for minth < Q < maxth. The loss probability as a function
of the window size is then given by p(W − B.RTT )

Illustrative results of our validation experiments are pro-
vided in figures 2 and 3, which plot the numerically predicted
cumulative distribution of the TCP window against that ob-
tained from simulations.
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Figure 2: Behavior of TCP Window with Early
Random Drop (and External Delay)
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C. Incorporating Delayed Acknowledgments

Our model of TCP window evolution has so far assumed
that TCP receivers generate an acknowledgme nt for every
arriving packet. Many implementations, however, use delayed
acknowledgments to slow the rate of window expansion or
alleviate congestion on the reverse link. We can model this
artifact by noting that if the receiver sends one ack for every
K packets received, then the TCP window grows from W to
W + 1

W for every K packets transmitted. An approximation to
this behavior is achieved by supposing that the TCP window
grows by only 1/K th of its value for every packet transmitted
i.e., by modifying the window evolution equation to Wn+1 =
Wn + 1

K.Wn
.

Numerical results verify the effectiveness of this correction
in accounting for the phenomenon of delayed acknowledg-
ments. The graphs in figure 3 contain the comparisons between
analysis and simulations when a TCP connection performing
delayed acknowledgments is combined with the RED queue
management algorithm, while figure 4 shows the comparisons
when a TCP performing delayed acknowledgments interacts
with the ERD queue management algorithm.
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VI. MODELING THE GENERALIZED CONGESTION

AVOIDANCE ALGORITHM

Having demonstrated the accuracy of our analysis for the
case of classical congestion avoidance, we now extend the
technique to analyze the generalized congestion avoidance
algorithm.

By ignoring transients related to fast recovery and timeouts,
the window evolution under generalized congestion avoidance
is a Markov process with the following conditional probabili-
ties:

P{Wn+1 = w + c1w
α|Wn = w} = 1 − p(w) (18)

P{Wn+1 = w − c2w
β |Wn = w} = p(w). (19)

As in section III.B, we proceed by scaling the process
(Wn)∞n=1 in both the state-space and time axis. For the

generalized case, we use the following state and subjective-
time mappings:

X(t) = p
1

1−α
maxWn (20)

∆t = p(Wn)∆n (21)

As in the classical congestion avoidance, the state-space
rescaling is a constant, while the time-rescaling is state-
dependent.

Theorem 3: It can be shown, that as pmax ↓ 0, the process
X(t), defined by equations (20) and (21) converges (path-
wise) to a process whose window X(t) behaves as follows:
There is a Poisson process with intensity 1, with points denoted
by (τn)∞n=1. In between the points of this Poisson process, X
evolves according to the equation

dX

dt
=

c1 ∗ pmax ∗ Xα

p( X

p
1

1−α
max

)
. (22)

At the points of the realization of the Poisson process, we have

X(τ+) = X(τ−) ∗ (1 − c2)

Accordingly, we can now apply the elaborate numerical
procedure presented in section IV to derive the stationary dis-
tribution of X(t). After computing this stationary distribution,
we simply reverse the space and time-scalings employed (as
in section III.C) to obtain Fack(. . .), the distribution of the
generalized TCP window in ack time.

VII. RESULTS FOR GENERALIZED CONGESTION

AVOIDANCE

We now discuss a practical application of this generalized
analysis. In particular, we determine the window distribution
of a single generalized TCP flow under the Assured Service
Model when it interacts with a single bottleneck queue. The
Assured Service model [9] describes a framework for differen-
tial bandwidth sharing, where each flow (user) is guaranteed
a minimum or assured rate as part of their service profile.
Adequate capacity provisioning is assumed to ensure that
packets from a flow experience minimal congestive losses/
marking as long as its transmission rate lies within this assured
rate. Flows are allowed to inject additional (opportunistic)
packets beyond this assured rate; such packets are treated as
best-effort and have lower priority. To enable network buffers
to differentiate between such packets, [9] proposes a tagging
mechanism at the network edge. Packets which stay within the
profiled rate are tagged as in packets while packets that violate
the profile are tagged as out packets; mechanisms such as a
leaky bucket [23] or modifications thereof [9] may be used
to implement the tagging operation. In packets are provided
preferential treatment in network buffers via the RIO (RED
with In/Out) discard algorithm; RIO is similar to RED except
that it uses different thresholds for in and out packets to
ensure that out (opportunistic) packets were dropped before in
packets. We assume that out bottleneck queue uses the ORED
buffer management algorithm; ORED is similar to RIO but
differs in two respects:
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• ORED marks out packets instead of dropping them.
• ORED does not signal congestion notification for in

packets, except when the buffer overflows and packets
are dropped.

A. Mathematical Model

The persistent TCP is assumed to have a round-trip time of
RTT secs and a maximum segment size (MSS) of M bytes.
It interacts with an ORED buffer serving a link of capacity
B MSSs/sec and is subject to an assured rate of R MSSs/sec.
Our analysis assumes that

B > R. (23)

The marking function of the ORED buffer (for out pack-
ets) is given by the traditional linear model: f(Q) = 0
for Q ≤ minth, f(Q) = pmax for Q ≥ maxth and
f(Q) = Q−minth

maxth−minth
pmax for minth < Q < maxth, where

minth and maxth are expressed in MSSs. Let Q and W
represent the ORED buffer occupancy and the TCP window
size respectively.

If, as before, we assume that buffer underflow never occurs,
it is clear that the TCP average transmission rate will be equal
to the link capacity B. The probability of a packet being tagged
by a conditioner at the edge, γ, is then independent of W and
Q, and is simply given by the fraction by which the capacity
exceeds the profiled rate

γ =
B − R

B
(24)

Also, as before, our assumption of no buffer underflow (for
the bottleneck queue) implies that

W = Q + B ∗ RTT (25)

Now consider the evolution of the TCP generalized window.
It is easy to see that although packets will be tagged as out
as soon as the TCP throughput exceeds R, they will not
be marked (ECN bit set) until the window has expanded
to ensure that the queue occupancy exceeds min th; this,
of course, occurs only after the throughput has reached the
bottleneck bandwidth B and the window size has exceeded
B ∗RTT +minth. Accordingly, a reasonably accurate model
of the marking probability p(W ), as a function of the window
size W , is given by the equations

p(W ) = 0 for W < minth + B.RTT,

= γ ∗ f(W − B.RTT ) for W < maxth + B.RTT

= γ ∗ ¯pmax for W > maxth + B.RTT, (26)

where γ = B−R
B . Having obtained an expression for p(W )

in equations (18) and (19), we can then obtain the stationary
window distribution of the TCP process using the mappings
in section V.

B. Results

To illustrate the accuracy of our analysis, we take the
classical congestion avoidance parameters (α = −1, β = 1,
c1 = 1 and c2 = 0.5) as a baseline parameter set and vary
each of the three parameters α, c1 and c2 in turn. A set of
typical results are provided here, for the following network
parameters: an MSS of 512 bytes, nominal RTT of 13.66
msec, an assured rate of 0.75 Mbps and an ORED queue with
a service rate of 3 Mbps (the bandwidth-delay product is thus
5 segments), minth = 15, maxth = 95 and pmax = 0.02.

Figure 5 shows the simulated and theoretical mean and
variance of the window size of the TCP flow as a function of
α and attests to the accuracy of our analysis. We see that an
increase in α not only increases the mean window size but also
the the coefficient of variation (defined as Std.Deviation(W )

Mean(W ) ).
Note also that our technique becomes less accurate as α
increases. A larger α implies a larger mean queue occupancy
and hence a larger average marking probability; accordingly,
our mathematical approximation, which is clearly based on
the limiting process as pmax ↓ 0, will be progressively less
applicable.
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Figure 5: Statistics of Generalized TCP with α
We have also studied the window statistics and distribution

by varying c1 and verified the accuracy of our technique.
The figures do not provide any great insight and are thus
omitted here. Figure 6 shows the plots of the TCP window
statistics when the decrease coefficient, c2, is varied. We note
that as c2 is decreased from its current value of 0.5, the
mean window size increases but the variance decreases, i.e.,
the coefficient of variation decreases rapidly. [5] contains an
elaborate discussion on preferred changes in the parameter c 2

and shows how a higher value of c2 (less aggressive decrease)
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can be leveraged to provide better TCP dynamics in ECN-
enabled environments.
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Figure 6: Statistics of Generalized TCP with c2

VIII. CONCLUSIONS

In this paper, we presented a technique for analyzing
and predicting the window distribution of a persistent TCP
connection subject to randomized congestion notification with
a variable, but state-dependent, notification probability. The
main contribution of this paper is the state-dependent time-
rescaling technique, which allows us to convert the discrete-
time Markovian TCP process to a process that can be described
by a Poisson-driven stochastic differential equation (SDE).
This re-scaling technique is generic enough to be applied
to any arbitrary continuous-space, continuous-time Markov
process that is subject to a stationary failure process.

We first considered the case of classical TCP congestion
avoidance and subsequently extend the technique to con-
sider the broader class of generalized congestion avoidance
algorithms, where for every incoming acknowledgment, the
TCP flow increases its window by c1W

α in the absence of
congestion and decreases its window by c2W

β in the presence
of congestion. By studying the process in subjective time
(which is a history-dependent rescaling of the time index),
we can describe its evolution using a Poisson-driven SDE.
We have also presented a rapidly and provably convergent
numerical technique for solving this SDE, as well as the space
and time re-scalings needed to eventually obtain the stationary
distribution of the original Markov process. Comparisons
with simulation results suggest that this technique is fairly

accurate in predicting the distribution and other statistics of
the congestion window.

Further simulations involving generalized congestion avoid-
ance have also demonstrate the accuracy and applicability of
our technique under the Assured Service model. We have
found that decreasing c2 (which may be possible if ECN-
capable routers provide stronger feedback) appears to be
an attractive modification, since it appreciably lowers the
coefficient of variation of the window size.
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