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Abstract—We consider continuous descent methods for the minimization
of Lipschitzian functions defined on a general Banach space. We present
several convergence theorems for those methods which are generated by
regular vector fields. Since the complement of the set of regular vector
fields is σ-porous, we conclude that our results apply to most vector fields
in the sense of Baire’s categories.
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I. I NTRODUCTION

THE study of discrete and continuous descent methods is an
important topic in optimization theory and in dynamical

systems. See, for example, [4, 9, 11, 12, 13]. Given a con-
tinuous convex functionf on a Banach spaceX, we associate
with f a complete metric space of vector fieldsV : X → X such
that f 0(x,Vx) ≤ 0 for all x∈ X. Here f 0(x,h) is the right-hand
derivative of f at x in the directionh∈ X. To each such vector
field there correspond two gradient-like iterative processes. In
two recent papers [12, 13] it is shown that for most of the vector
fields in this space, both iterative processes generate sequences
{xn}∞

n=1 such that the sequences{ f (xn)}∞
n=1 tend toinf( f ) as

n→ ∞. In [15] the convergence of the values of the functionf
to its infimum along the trajectories of an analogous continuous
dynamical system governed by such vector fields was studied.
In this paper we consider the situation for Lipschitzian func-
tions which are not necessarily convex. We also discuss contin-
uous descent methods for Lipschitzian functions which satisfy
the Palais-Smale condition.

When we say that most of the elements of a complete metric
spaceY enjoy a certain property, we mean that the set of points
which have this property contains aGδ everywhere dense subset
of Y. In other words, this property holds generically. Such an
approach, when a certain property is investigated for the whole
spaceY and not just for a single point inY, has already been
successfully applied in many areas of Analysis [5-7, 10, 18].

We now recall the concept of porosity [2, 6, 7, 13, 14, 16, 17]
which enables us to obtain even more refined results.

Let (Y,d) be a complete metric space. We denote byBd(y, r)
the closed ball of centery ∈ Y and radiusr > 0. We say that
a subsetE ⊂ Y is porous in(Y,d) if there existα ∈ (0,1) and
r0 > 0 such that for eachr ∈ (0, r0] and eachy∈Y, there exists
z∈Y for which

Bd(z,αr)⊂ Bd(y, r)\E.

A subset of the spaceY is calledσ-porous in(Y,d) if it is a
countable union of porous subsets in(Y,d).
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Other notions of porosity have been used in the literature [2,
16]. We use the rather strong notion which appears in [5, 6, 7,
13, 14].

Since porous sets are nowhere dense, allσ-porous sets are
of the first category. IfY is a finite-dimensional Euclidean space
Rn, thenσ-porous sets are of Lebesgue measure0. The existence
of a non-σ-porous setP⊂Rn, which is of the first Baire category
and of Lebesgue measure0, was established in [16]. It is easy to
see that for anyσ-porous setA⊂Rn, the setA∪P⊂Rn also be-
longs to the familyE consisting of all the non-σ-porous subsets
of Rn which are of the first Baire category and have Lebesgue
measure0. Moreover, if Q ∈ E is a countable union of sets
Qi ⊂ Rn, i = 1,2, . . ., then there is a natural numberj for which
the setQ j is non-σ-porous. Evidently, this setQ j also belongs
to E . Thus one sees that the familyE is quite large. Also, every
complete metric space without isolated points contains a closed
nowhere dense set which is notσ-porous [17].

To point out the difference between porous and nowhere
dense sets, note that ifE ⊂ Y is nowhere dense,y ∈ Y and
r > 0, then there is a pointz∈Y and a numbers> 0 such that
Bd(z,s) ⊂ Bd(y, r) \E. If, however,E is also porous, then for
small enoughr we can chooses= αr, whereα ∈ (0,1) is a con-
stant which depends only onE.

Our paper is organized as follows. In Section 2 we consider
a function f which is Lipschitzian on bounded subsets of a Ba-
nach spaceX, but not necessarily convex. We introduce a class
of vector fields associated with such a function and present a
porosity result for this class. We also discuss briefly the con-
vergence of discrete descent methods for the minimization of
such functions. In Section 3 we present convergence results for
continuous descent methods. The last section is devoted to func-
tions which satisfy a Palais-Smale type condition.

II. L IPSCHITZIAN FUNCTIONS

Let (X, || · ||) be a Banach space,(X∗, || · ||∗) its dual space,
and let f : X → R1 be a function which is bounded from below
and Lipschitzian on bounded subsets ofX. Recall that for each
pair of setsA,B⊂ X∗,

H(A,B) = max{sup
x∈A

inf
y∈B
||x−y||∗, sup

y∈B
inf
x∈A
||x−y||∗}

is the Hausdorff distance betweenA andB. For eachx∈ X, let

f 0(x,h) = limsup
t→0+, y→x

[ f (y+ th)− f (y)]/t, h∈ X, (1)

be Clarke’s generalized directional derivative off at the pointx
and let

∂ f (x) = {l ∈ X∗ : f 0(x,h)≥ l(h) for all h∈ X} (2)

be Clarke’s generalized gradient off atx. We also define

Ξ(x) = inf{ f 0(x,h) : h∈ X and||h||= 1}. (3)



It is well known that the set∂ f (x) is nonempty and bounded.
Set

inf( f ) = inf{ f (x) : x∈ X}.
From now on, we denote byA the set of all mappingsV : X →
X such thatV is bounded on every bounded subset ofX, and
for eachx ∈ X, f 0(x,Vx) ≤ 0. We denote byAc the set of all
continuousV ∈ A and byAb the set of allV ∈ A which are
bounded onX. Finally, letAbc = Ab∩Ac. Next, we endow the
setA with two metrics,ρs andρw. To defineρs, we set, for each
V1,V2 ∈ A ,

ρ̃s(V1,V2) = sup{||V1x−V2x|| : x∈ X}
and

ρs(V1,V2) = ρ̃s(V1,V2)(1+ ρ̃s(V1,V2))−1. (4)

(Here we use the convention that∞/∞ = 1.) Clearly,(A ,ρs) is
also a complete metric space. To defineρw, we set, for each
V1,V2 ∈ A and each integeri ≥ 1,

ρi(V1,V2) = sup{||V1x−V2x|| : x∈ X and||x|| ≤ i} (5)

and

ρw(V1,V2) =
∞

∑
i=1

2−i [ρi(V1,V2)(1+ρi(V1,V2))−1]. (6)

Clearly,(A ,ρw) is a complete metric space. It is also not diffi-
cult to see that the collection of the sets

E(N,ε)= {(V1,V2)∈A×A : ||V1x−V2x|| ≤ ε, x∈X, ||x|| ≤N},
whereN,ε > 0, is a base for the uniformity generated by the
metricρw. It is easy to see that

ρw(V1,V2)≤ ρs(V1,V2) for all V1,V2 ∈ A .

The metricρw induces onA a topology which is called the weak
topology andρs induces a topology which is called the strong
topology Clearly,Ac is a closed subset ofA with the weak topol-
ogy while Ab andAbc are closed subsets ofA with the strong
topology. We consider the subspacesAc, Ab andAbc with the
metricsρs andρw which induce the strong and the weak topolo-
gies, respectively.

To minimize a convex functionf , one usually looks for a se-
quence{xi}∞

i=1 which tends to a minimum point off (if such
a point exists) or at least such thatlim i→∞ f (xi) = inf( f ). If f
is not necessarily convex, butX is finite-dimensional, then we
expect to construct a sequence which tends to a critical pointz
of f , namely a pointz for which 0 ∈ ∂ f (z). If f is not neces-
sarily convex andX is infinite-dimensional, then the problem is
more difficult and less understood because we cannot guaran-
tee, in general, the existence of a critical point and a convergent
subsequence. To partially overcome this difficulty, we have in-
troduced the functionΞ : X → R1. Evidently, a pointz is a crit-
ical point of f if and only if Ξ(z) ≥ 0. Therefore we say thatz
is ε-critical for a givenε > 0 if Ξ(z) ≥ −ε. In [14] we looked
for sequences{xi}∞

i=1 such that eitherliminf i→∞ Ξ(xi)≥ 0 or at
leastlimsupi→∞ Ξ(xi) ≥ 0. In the first case, givenε > 0, all the
pointsxi , except possibly a finite number of them, areε-critical,
while in the second case this holds for a subsequence of{xi}∞

i=1.

In [14] it was shown, under certain assumptions onf , that for
most (in the sense of Baire’s categories) vector fieldsW∈A , the
discrete iterative processes defined in Section 2 yield sequences
with the desirable properties. Moreover, it was shown there that
the complement of the set of “good” vector fields is not only of
the first category, but alsoσ-porous. In this section we will use
porosity with respect to a pair of metrics, a concept which was
introduced in [18].

Recal that when(Y,d) is a metric space we denote byBd(y, r)
the closed ball of centery ∈ Y, and radiusr > 0. Assume that
Y is a nonempty set andd1,d2 : Y×Y → [0,∞) are two metrics
which satisfyd1(x,y)≤ d2(x,y) for all x,y∈Y.

A subsetE ⊂ Y is called porous with respect to the pair
(d1,d2) (or just porous if the pair of metrics is fixed) if there
existα ∈ (0,1) andr0 > 0 such that for eachr ∈ (0, r0] and each
y∈Y there isz∈Y for whichd2(z,y)≤ r and

Bd1(z,αr)∩E = /0.

A subset of the spaceY is calledσ-porous with respect to
(d1,d2) (or justσ-porous if the pair of metrics is understood) if
it is a countable union of porous (with respect to(d1,d2)) subsets
of Y.

Note that ifd1 = d2, then by Proposition 1.1 of [18] our defi-
nitions reduce to those in [5-7, 13]. We use porosity with respect
to a pair of metrics because in applications a space is usually en-
dowed with a pair of metrics and one of them is weaker than the
other. Note that porosity of a set with respect to one of these
two metrics does not imply its porosity with respect to the other
metric. However, it is shown in [18, Proposition 1.2] that if a
subsetE⊂Y is porous with respect to(d1,d2), thenE is porous
with respect to any metric which is weaker thand2 and stronger
thand1. For each subsetE ⊂ X, we denote bycl(E) the closure
of E in the norm topology. The results of [14] were established
in any Banach space and for those functions which satisfy the
following two assumptions.

B(i) For eachε > 0, there existsδ ∈ (0,ε) such that

cl({x∈ X : Ξ(x) <−ε})⊂ {x∈ X : Ξ(x) <−δ};

B(ii) For eachr > 0, the functionf is Lipschitzian on the ball
{x∈ X : ||x|| ≤ r}.

We will say that a mappingV ∈A is regular if for any natural
numbern there exists a positive numberδ(n) such that for each
x∈X satisfying||x|| ≤ n andΞ(x) <−1/n, we havef 0(x,Vx)≤
−δ(n).

We denote byF the set of all regular vector fieldsV ∈ A .
The following result was established in [14].
Theorem 2.1:Assume that both B(i) and B(ii) hold. Then

A \F (respectively,Ac \F , Ab \F andAbc\F ) is aσ-porous
subset of the spaceA (respectively,Ac, Ab andAbc) with respect
to the pair(ρw,ρs).

In the sequel we will also make use of the following assump-
tion:

B(iii) For each integern ≥ 1 there existsδ > 0 such that
for eachx1,x2 ∈ X satisfying||x1||, ||x2|| ≤ n, min{Ξ(xi) : i =
1,2}≤−1/n, and||x1−x2|| ≤ δ, the following inequality holds:
H(∂ f (x1),∂ f (x2))≤ 1/n.



III. C ONTINUOUS DESCENT METHODS FORL IPSCHITZIAN

FUNCTIONS

Throughout this paper we letx∈W1,1(0,T;X), i.e. (see, e.g.,
[3]),

x(t) = x0 +
Z t

0
u(s)ds, t ∈ [0,T],

whereT > 0, x0 ∈ X andu∈ L1(0,T;X). Thenx : [0,T]→ X is
absolutely continuous andx′(t) = u(t) for a.e.t ∈ [0,T].

Recall that the functionf : X→R1 is Lipschitzian on bounded
subsets ofX. Thus the restriction off to the set{x(t) : t ∈ [0,T]}
is Lipschitzian. Hence the function( f · x)(t) := f (x(t)), t ∈
[0,T], is absolutely continuous. It follows that for almost ev-
ery t ∈ [0,T], both the derivativesx′(t) and( f ·x)′(t) exist:

x′(t) = lim
h→0

h−1[x(t +h)−x(t)],

( f ·x)′(t) = lim
h→0

h−1[ f (x(t +h))− f (x(t))].

The next proposition was proved in [1].
Proposition 3.1:Assume thatt ∈ [0,T] and that both the

derivativesx′(t) and( f ·x)′(t) exist. Then

( f ·x)′(t) = lim
h→0

h−1[ f (x(t)+hx′(t))− f (x(t))].

Now we are ready to state three convergence theorems which
have been proved in [1].

Theorem 3.1:Let B(i) and B(ii) hold, letV ∈ A be regular
and let

x∈W1,1
loc ([0,∞);X).

Assume that

x′(t) = V(x(t)) for a.e.t ∈ [0,∞)

and that the functionx(t), t ∈ [0,∞), is bounded. Then for each
ε > 0,

lim
T→∞

µ({t ∈ [T,∞) : Ξ(x(t)) <−ε}) = 0.

Theorem 3.2:Let V ∈ A be regular, let B(i), B(ii) and B(iii)
hold, and letx ∈W1,1

loc ([0,∞);X) be a bounded function which
satisfies

x′(t) = V(x(t)) for a.e.t ∈ [0,∞).

Then
liminf

t→∞
Ξ(x(t))≥ 0.

Theorem 3.3:Let B(i) and B(ii) hold, letV ∈ A be regular,
and suppose that

lim
||x||→∞

f (x) = ∞.

Let K0 andε be positive numbers. Then there existN0 > 0 and a
neighborhoodU of V in A with the weak topology such that for
eachT ≥ N0, eachW ∈U, and each mappingx∈W1,1(0,T;X)
satisfying

||x(0)|| ≤ K0

and
x′(t) = W(x(t)) for a.e.t ∈ [0,T],

the following inequality holds:

µ{t ∈ [0,T] : Ξ(x(t)) <−ε} ≤ N0.

Corollary 3.1: Let B(i) and B(ii) hold, letV ∈ A be regular,
and suppose that

lim
||x||→∞

f (x) = ∞.

Let K0,ε be positive numbers. Then there existN0 > 0 and a
neighborhoodU of V in A with the weak topology such that for
eachW ∈U and each mappingx∈W1,1

loc ([0,∞);X) satisfying

||x(0)|| ≤ K0

and
x′(t) = Wx(t) for a.e.t ∈ [0,∞)

the following inequality holds:

µ{t ∈ [0,∞) : Ξ(x(t)) <−ε} ≤ N0.
This corollary, which is an extension of Theorem 3.1, follows

immediately from Theorem 3.3.

IV. A PALAIS -SMALE TYPE CONDITION

In this sectionf : X → R1 is a locally Lipschitzian function
which is bounded from below. We begin with the following
proposition [1].

Proposition 4.1:For eachε > 0, there existsxε ∈ X such that

f (xε)≤ inf( f )+ ε andΞ(xε)≥−ε.
In our setting we say that the functionf satisfies the Palais-

Smale (P-S) condition if each sequence{xn}∞
n=1 ⊂ X such that

sup{| f (xn)| : n = 1,2, . . .}< ∞

andlimsupn→∞ Ξ(xn)≥ 0 has a norm convergent subsequence.
Note that this is a generalization of the classical Palais-Smale

condition to locally Lipschitzian functions.
Define

Cr( f ) = {x∈ X : Ξ(x)≥ 0}.
Proposition 4.2:Let {xn}∞

n=1⊂X be such thatlimn→∞ xn = x
and

liminf
n→∞

Ξ(xn)≥ 0.

ThenΞ(x)≥ 0.
Propositions 4.1 and 4.2 imply the following fact.
Proposition 4.3:Assume that the functionf satisfies the (P-

S) condition. Then Cr( f ) 6= /0.
Proposition 4.4:Assume that the functionf is bounded on

bounded subsets ofX and satisfies the (P-S) condition. Then for
eachr > 0, the set

{x∈ X : ||x|| ≤ r}∩Cr( f )

is compact in the norm topology.
For eachx∈ X andA⊂ X, set

d(x,A) = inf{||x−y|| : y∈ A}.

Proposition 4.5:Let r,ε > 0, and let f be bounded on
bounded subsets ofX and satisfy the (P-S) condition. Then there
is δ > 0 such that ifx∈ X satisfies

||x|| ≤ r andΞ(x)≥−δ,



thend(x,Cr( f ))≤ ε.
The next three theorems have also been proved in [1].
Theorem 4.1:Let f satisfy B(i), B(ii) and the (P-S) con-

dition, let V ∈ A be regular and letx ∈ W1,1
loc ([0,∞);X) be a

bounded mapping which satisfies

x′(t) = V(x(t)) for a.e.t ∈ [0,∞).

Then for eachε > 0,

lim
T→∞

µ({t ∈ [0,∞) : d(x(t),Cr( f )) > ε}) = 0.

Theorem 4.2:Let f satisfy the (P-S) condition, letV ∈ A be
regular, let B(i), B(ii) and B(iii) hold, and letx∈W1,1

loc ([0,∞);X)
be a bounded mapping which satisfies

x′(t) = V(x(t)) for a.e.t ∈ [0,∞).

Then
limsup

t→∞
d(x(t),Cr( f )) = 0.

Theorem 4.3:Let f satisfy the (P-S) condition, B(i) and
B(ii), and suppose that

lim
||x||→∞

f (x) = ∞.

Let V ∈ A be regular, and letK0 and γ be positive numbers.
Then there existN0 > 0 and a neighborhoodU of V in A with
the weak topology such that for eachT ≥ N0, eachW ∈U, and
each mappingx∈W1,1(0,T;X) satisfying

||x(0)|| ≤ K0

and
x′(t) = Wx(t) for a.e.t ∈ [0,T],

the following inequality holds:

µ({t ∈ [0,T] : d(x(t),Cr( f )) > γ} ≤ N0.
Corollary 4.1: Let f satisfy the (P-S) condition, B(i) and

B(ii), and suppose that

lim
||x||→∞

f (x) = ∞.

Let V ∈ A be regular, and letK0 and γ be positive numbers.
Then there existN0 > 0 and a neighborhoodU of V in A with
the weak topology such that for eachW ∈U and each mapping
x∈W1,1

loc ([0,∞);X) satisfying

||x(0)|| ≤ K0

and
x′(t) = W(x(t)) for a.e.t ∈ [0,∞),

the following inequality holds:

µ{t ∈ [0,∞) : d(x(t),Cr( f )) > γ} ≤ N0.
This corollary, which is an extension of Theorem 4.1, is a con-
sequence of Theorem 4.3.
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[17] L. Zaj́ıček, Small non-σ-porous sets in topologically complete metric
spaces, Colloq. Math. vol 77, 293-304, 1998.

[18] A.J. Zaslavski,Well-posedness and porosity in optimal control without
convexity assumptions, Calc. Var. vol 13, 265-293, 2001.


	Conference Program
	Author Index
	Main Menu

