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I . INTRODUCTION

This paper proposesa novel approachto studying well-
posed linear systemsvia their reciprocal systems.A well-
posedlinear systemhasgeneratingoperators

���������
thatare

typically unboundedoperators.Under the genericassumption
that �	��
� ��� , this well-posed linear system possessesa
reciprocalsystemwith thecorrespondinggeneratingoperators���������������������������

that areall bounded. In Curtain[3], [4]
andCurtainandSasane[5] this connectionhasbeenexploited
to solve certaincontrolproblemsfor well-posedlinearsystems
by showing that they are equivalent to correspondingcontrol
problems for the reciprocal systems.Due to the bounded
natureof thegenerators,theproblemsfor thereciprocalsystem
areeasierto solve andthesesolutionscan be translatedback
to solutions for the original well-posedlinear system.This
approachworksperfectlyfor stablewell-posedlinear systems
[3], [5], but for unstablesystemsone needsto imposesome
extra assumptions.In Opmeerand Curtain [12] it is shown
that, under a certain condition (see (II.9)), optimal control
problems(with a coercive costfunctional)for (unstable)well-
posedlinear systemshave a solution if andonly if the corre-
spondingreciprocaloptimalcontrolproblemhasa solution.In
this case,thecostoperatoris thesolutionof a Riccatiequation
involving only boundedoperators.Sinceit is known that for
well-posedlinearsystems,theexpectedRiccatiequationis not
alwayswell-defined,this result is significant.The aim of this
paperis to obtain new sufficient conditionsfor (II.9) to hold
andso ensurethat the resultsof [12] apply.

I I . RECIPROCAL SYSTEMS OF WELL-POSED LINEAR

SYSTEMS

First we review theconceptof a reciprocalsystemthatwas
introducedin Curtain [3], [4] for a well-posedlinear system�

with the generatingoperators
���������

andtransferfunction�
underthe genericassumptionthat � �!
� ��� . � generates

a strongly continuoussemigroup"��$# � on a Hilbert space% ,& �('
areHilbert spaces,

� �*)��,+-� ���.�('�� , ������� �*)�� & � % � ,
and

�
and

�
areadmissiblecontrolandobservationoperators

with respectto "��(/ � , i.e., given 021	� thereexists a 341	�
suchthat5!6

7	8 � "��9# ��: 8<;>= #@?43 8 : 8<; for all
: �A+-� �����

and for any 0B1C� there exists a DE1F� such that for allG �IH ; �J�
� 0LK & �
8
5 6
7 "��9# ��� G �9# � = # 8 ; ?4D

5 6
7 8 G �$# � 8 ; = #<M

If
�����

areadmissibleoperatorswith respectto "���/ � , thenwe
definethe observability map N 6 �A)��,% � H ; �J�

� 0LK 'O��� and the

controllability map P 6 �Q)��,H ; �J�
� 0LK & ��� % � by

N 6 : �9# �SRT� "��$# �(: for ��?!#U?V0 ��: �Q+-� ��� (II.1)

P 6 G R
5W6
7 "��J0 �YXZ�(� G � XZ� = X G �AH ; �J� � 0LK & � M(II.2)

The transfer function is determinedup to an arbitrary
constantfor

X[� D in someright-half plane by the following
expression� � X<�\� � �]D �SR �]D �!X<��� � XZ^��2��� ��� �_D ^O�Y��� �`� � M (II.3)

If the right-handside is uniformly boundedin norm on some
right half-plane,then

����������� � �_D � definea well-posedlinear
systemwith transfer function

�
. The transfer function is

independentof the choice of D and (II.3) can be extended
analyticallyto 
ba-� ��� , the largestcomponentof the resolvent
set that containsan interval ced ��f4� . It also has an extension
to all

X[� Dg�E
� ��� (see Staffans and Weiss [16]), but this
extensionneednot equalthe analyticextensionof the transfer
function outside 
 a � ��� . A simple example illustrating this
is given in Curtain and Zwart [2, Example4.3.8]. To avoid
confusionwe reserve thenamecharacteristic functionandthe
symbol h for this extension.

A large subset of well-posed linear systems has a
more familiar expression for the transfer function. First
we need to define the Lambda-extension of

�
by�jiLklRnm9oqp�r�s a4t � �,t ^2�u���v����k for

k �w+-� �ji�� , the
subsetof % for which the limit exists.

�
is a regular linear

systemif for each G � & � � � X<� G has the limit + G as
X

approachesinfinity along the positive real axis for some+E�Q)�� & ��'�� . ����������� + are called the generatingoperators
of
�

and the transfer function has the more familiar form� � X<�SR +Tx � i � XZ^��A�����`��� for
X

in someright half-plane.
Its characteristicfunction h�� XZ��R +yx � i � XZ^��!���v����� forX �-
� ��� .

We introducethe following stability notions.
Definition 2.1: The well-posedsystem

�
with generating

operators
���������

andtransferfunction
�

is stableifz it is input stable: thereexists a constantD21W� suchthat
for all G �QH ; �,�

��f K & �
8
5 a7 "��$# �(� G �9# � = # 8 ; ?4D

5 a7 8 G �9# � 8 ; = #<Kz it is outputstable: thereexists a constant3-1V� suchthat
for all

: �Q+-� ���5 a7 8 � "��$# �(: 8 ; = #{?43 8 : 8 ; Kz it is input-output stable: the transfer function
� �| a �])�� & ��'��(� .

Remark2.2: FromthePaley-WienerTheoremA.6.21in [2]
output stability implies for every

: �!% the existenceof the
Laplacetransform }N~�(/ ��: � | ; �

'��
of
� "���/ ��: �IH ; �J�

��f K '�� .
In other words,

� � XZ^��4��� �`� : has an analytic extensionto}N~� XZ�(: � |-� � '�� for all
: �A% . Moreover, this extensionequals� � X<^I�����v����: for

X �E
� �������~�7 , since for
: �g+-� ���}N~� XZ� � XZ^-�V���(:VR���: can be extendedto

���7 , the domain

1



of analyticity of }N . This then can be extendedto hold for
all
: ��% . Similarly, output stability implies, for every

: �% � G � & , the existenceof � :�� }P��(/ � G� � | ; that satisfies� :�� }P�� X<� G� R � :�� � X<^O�2�����`�v� G� for all
X � �~�7 � 
>� ��� .

Remark2.3: For input stability the terminology
�

is an
infinite-timeadmissiblecontrol operator for "��(/ � is oftenused
and for output stability the terminology

�
is an infinite-time

admissibleobservationoperator for "��(/ � is in use.(We shall
alsousethe terminology � ������� is input stableand � ������� is
output stable.)
If
�

is output stable,then the map in (II.1) makessensefor0 R�f and N a �Q)��J% � H ; �J� ��f K '�� . Similarly, if
�

is input
stable, P a �-)��,H ; �,� ��f K & ��� % � , where

P a G R�mqo9p6 s a
546
7 "�� XZ�(� G � XZ� = X for G �IH ; �,�

��f K & � M
If
�

is an infinite-time admissiblecontrol operator, then its
controllabilit y gramian �~����)��,% � is defined by �~� R
P a �]P a ��� . If

�
is an infinite-time admissibleobservation

operator, thenits observabilitygramian �S���-)��J% � is defined
by �S� R �_N a �(� N a .

The essentialdifferencein Definition 2.1 to previous defini-
tions is that we have made no stability assumptionson

�
and so it can have spectrumin

�~�7 . However, in Curtain [4,
Lemma2.3] it wasshown that for a stablesystem(II.3) holds
on
�~�7 � 
� ��� ; moreprecisely, the following is true.

Lemma2.4: If the well-posed linear system
�

is either
input stableor output stable,then the transfer function has
an extensionto an analytic function on

� �7 , (II.3) holds forX�� DT� �~�7 � 
� ��� and the characteristicfunction equalsthe
transferfunction in this region. Moreover, if

�
is regular, then� � XZ�SR +�x �ji � XZ^������v������R h�� X<� for

X � �~�7 � 
� ��� .
In Grabowski [7] it is shown that

�
is an infinite-time

admissibleobservation operator for "���/ � if and only if the
observationLyapunov equationhasa self-adjointnon-negative
solution ���*)��,% �� � � : x!� ��:�R���� � ��: for all

: �Q+-� ��� M (II.4)

Moreover, the observability gramian �S� is the smallestself-
adjoint non-negative solution.The key stepin the conceptof
a reciprocalsystemis to notice that if �-��
� ��� , then (II.4)
hasa solution if andonly if the following equationdoes� ��� �Qx!� � ��� R��U� �L� � � ��� ��� M (II.5)

This is the observability Lyapunov equation for the pair� ���`������������� . Similarly, the control Lyapunov equationfor
the infinite-time admissible

�
operator has a solution if

and only if the control Lyapunov equation for the pair� ���`�������`����� has (Hansenand Weiss [8]). Notice that the
operators

���`�������`�����������`�
areall bounded.If we substituteD R � in (II.3), we obtain

h�� XZ��R h��,� � x XZ� � XZ^��2��� ��� � �`� � (II.6)R h��,� �`�!��� ��� �[�X ^O�A� �`� � ��� � �`� � M (II.7)

This motivatesthe following definition.

Definition 2.5: Supposethat the well-posedlinear system
with generatingoperators

����������� + , transferfunction
�

and
characteristicfunction h is suchthat ���-
� ��� . Its reciprocal
system is the regular linear system

� � with the bounded
generatingoperators

�����Z�(���������.�������`��� h��J� � .
Remark2.6: (II.6) shows that the characteristicfunctions

of the well-posedlinear systemand its reciprocalsystemare
relatedby

h�� X<��R h � ���X � for
X �*
>� ��� M (II.8)

As remarkedearlier, sucha relationshipmay not hold for the
transferfunctions.
In OpmeerandCurtain [12] it is shown that a necessaryand
sufficient condition for relating a control problemfor a well-
posedsystemwith a control problemfor its reciprocalsystem
is that the following shouldhold at least for

X
in someright

half-plane.

� � XZ�~R � � � �X � K }N~� XZ�SR �X }N � � �X � M (II.9)

In Curtain[4, Lemma2.3] it wasshown that this alwaysholds
for stablesystems.

Theorem 2.7: Supposethat
���������

are generatingopera-
tors of a well-posedlinear systemwith transfer function

�
andzero is in the resolvent setof

�
. Then

1)
�

is an infinite-timeadmissibleobservationoperatorfor"��$# � if and only if
�����`�

is one such for " � �$# �2R�.��� ����� # . If they areinfinite-timeadmissible,thentheir
observability gramiansare identical,and

}N~� XZ�(:�R �X }N � � �X ��: for
X � � �7 ��: �A%�M (II.10)

2)
�

is aninfinite-timeadmissiblecontroloperatorfor "��9# �
if and only of

���`�v�
is one such for " � �9# � . If they

are infinite-time admissible, then their controllability
gramiansare identicaland

� :�� }P�� XZ� G>� R �X`� :�� }P � ���X � G� for
X � �~�7 � G � & ��: �A%�M

3) If
�

is input or output stable,then
� � XZ�SR � � � �  � forX � �~�7 , and so

�
is input-outputstableif and only if� � is.

4)
�

is a stablesystemif andonly if
� � is a stablesystem.

I I I . ADMISSIBLE FEEDBACKS

The main aim of this sectionis to obtain sufficient condi-
tionsunderwhich (II.9) holds.To achieve this we examinethe
effect of admissiblefeedbackson the reciprocalrelationship
and, in particular, output stabilizingfeedbacks.

Definition 3.1: The well-posedlinear system
�

with gen-
erating operators

���������
and transfer function

�
is output

stabilizableif thereexists ¡��-)��,+-� ����� & � suchthatz ������� c � K�¡�¢ aregeneratorsof a well-posedlinearsystem
with transferfunction

� £
satisfying

� R c ^ K���¢ �¤£ ;
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z ce� ��^ ¢ is an admissiblefeedbackoperator for
�¤£

, i.e.,� ^�� ce� ��^ ¢ �¤£ � hasa well-posedinverse,andthe closed-
loop system

�j¥§¦
is well-posedwith semigroupgenerator� ¥§¦ andtransferfunction given by� ¥§¦ R � £ � ^O� c � ��^ ¢ � £ � ��� M (III.11)z �j¥§¦ is outputstable.

Note that we have used the notation ce¨uK�©*¢ for a column
block and ce¨ � © ¢ for a row block.

Remark3.2: Note that a regular linear system is output
stabilizableif ¡ exponentially stabilizes � ������� in the sense
of Rebarber[13]. Our definition of stabilizability is different
from thosein Staffans [15] and in Mikkola [10]. Ours does
not assumeuniform boundednessof the semigroup.

Remark3.3: In the casethat
�j£

has boundedgenerating
operatorsand feedthroughoperator ce+-K�+ £ ¢ , c ��K ^ ¢ is an ad-
missible feedbackoperator for

�j£
if and only if

^ � + £
has a boundedinverse.The closed-loopsystem

�j¥§¦
has the

generatingoperators� ¥§¦ Rª� x � � ^O� + £ � ��� ���U� ¥§¦ R�� � ^�� + £ � ��� �c � ¥§¦ K�¡ ¥§¦ ¢ R c � x4+-� ^�� + £ � �`� ¡�K<� ^U� + £ � ��� ¡�¢ �+ ¥§¦ R c +-K�+ £ ¢(� ^�� + £ � ��� M
Direct computations verify that the inverse of

^g�
c ��K ^ ¢ �¤£ � X<�ER ^2� ce��K ^ ¢«h £ � XZ� is � ^2� + £ �����-� � ^2�+ £ ���`� ¡�� X<^ �V� ¥§¦ ���`�v� � ^ � + £ ����� , which is always uni-
formly bounded on some right half-plane, since

� ¥§¦ is
bounded.Moreover, theinverseof

^>� c ��K ^ ¢§h £ � XZ� existsfor allX �-
� ����� 
� � ¥§¦ � . So, in additionto (III.11) direct algebraic
computationsshow that

h ¥§¦ R h £ � ^�� ce� ��^ ¢§h £ � ��� for
X �Q
� ����� 
� � ¥§¦ � M (III.12)

For the closed-loopsystemto have a well-definedreciprocal
system we need �C�¬
� � ¥§¦ � . The following result from
Salamon[14, Lemma 4.4] shows that a sufficient condition
for this to hold is that � �-
��c � ��^ ¢§h £ �,� � .Lemma3.4: Let

�
be a well-posed linear system with

generatingoperators
���������

andtransferfunction
�

. Suppose
that thereexists an ¡E�4)��J+-� ����� & � such that

������� c � K�¡�¢
are generatorsof a well-posed linear systemwith transfer
function

�¤£
with

� R c ^ K��Z¢ �* and ce� ��^ ¢ is an admissible
feedbackoperatorfor

� £
. If
� ¥§¦ is the semigroupgenerator

of the closed-loopsystem,thent-�-
� ��� and � �*
>�(ce� ��^ ¢§h £ �,t �(��RL® t �-
� � ¥§¦ � M
Remark3.5: A corollary of the above lemma to systems

with boundedgeneratingoperatorsasin Remark3.3 is that ift-�-
� ��� , then

� �-
��ce� ��^ ¢§h £ �,t �(� if andonly if tI�*
>� � ¥§¦ � M
The following lemma shows that if �¯�l
� ��� , then the
condition � �V
>�(ce� ��^ ¢§h £ �,� � is necessaryfor ce��K ^ ¢ to be an
admissiblefeedbackoperatorfor

�j£
.

Lemma3.6: Let
�j£

be a well-posedlinear systemwith
generatingoperators

������� c � K�¡�¢ , transfer function
�¤£

and
characteristicfunction h £ andsupposethat ���*
>� ��� . Then

1) ce��K ^ ¢ is anadmissiblefeedbackfor thereciprocalsystem�j£ � if andonly if ° R�^�� ce��K ^ ¢«h £ �,� � hasa bounded
inverse.

2) If ° is boundedlyinvertible, then
^�� ce��K ^ ¢ �¤£ � XZ� is

invertible in )�� & � for
X

in someright half-plane
3) If ce��K ^ ¢ is an admissiblefeedbackoperatorfor

�j£
, then���-
� � ¥§¦ � .

Proof (1) This follows from Remark 3.3 since
�j£ � has

boundedgeneratingoperators.Denotethe closed-loopsystem
by
�j±b²§³

andits generatingoperatorsaccordingly.
(2) Since ���-
� ��� we cansubstitute

X�R � in (II.3) to obtain

h £ � XZ��R h £ �J� � x X c � K�¡�¢(� X<^´�2��� �`� � ��� �R h £ �J� �`� c � K�¡�¢ � ��� ���X ^��A� ��� � �`� � ��� �R h £ � � �X � for all
X �-
� ��� M

This equalsthe transferfunction on someright half-plane
andso we have for

X
in someright half-plane

ce��K ^ ¢ � £ � XZ�{R c ��K ^ ¢§h £ � X<�jR ce� ��^ ¢§h £ � � �X � M (III.13)

From part (1) we know that
^�� c � ��^ ¢§h £ � �Jt � hasa bounded

inverse if and only if ° does and this inverse exists forX �4
� ���`�<��� 
� � ±b²§³ � . Now by Remark3.5 we know thattª��
>� � �`� � and � �T
��c ��K ^ ¢§h £ � �,t ��RL® tª��
>� � ±�²§³ � . So
� ���`�v��µ 
>� � ±b²§³ � . Since
�

is an infinitesimal generator

�<¶ 
� ������� containsa right half-planeand so the sameholds
for �Z¶ 
� � ±b²§³ � . So from (III.13) we seethat

^O� ce��K ^ ¢ �¤£ � XZ�
hasa boundedinversefor

X
in someright half-plane.

(3) If c ��K ^ ¢ is an admissiblefeedbackoperatorfor
�j£

, then
by part2 ° ��� hasa boundedinverse.So by Lemma3.4 witht R � we obtain ���-
� � ¥§¦ � .

Remark3.7: In [3] asystemwascalledr-outputstabilizable
if it is output stabilizableand ���Q
>� � ¥§¦ � . Lemma3.6 shows
that this extra condition is superfluous.

We show that the reciprocal relationshipis preserved under
admissiblefeedbacks.

Lemma3.8: Let
�j£

be a well-posedlinear systemwith
generatingoperators

������� c � K�¡�¢ , transfer function
�¤£

and
characteristicfunction h £ . Supposethat ce��K ^ ¢ is anadmissible
feedbackoperatorfor

�j£
thatproducestheclosed-loopsystem�j¥§¦

having the semigroupgenerator
� ¥§¦ , transfer function�¤¥§¦

and characteristicfunction h ¥§¦ . If �4�u
� ��� , then the
reciprocalsystems

�j£ � � �j¥§¦� of
�j£ � �j¥§¦

, respectively, arewell-
definedand ce��K ^ ¢ is an admissiblefeedbackoperatorfor

� £ �
that producesthe closed-loopsystem

�j¥§¦� . Moreover, if
�

is
output stabilizable,thenso is

� � .
Proof Sincethecharacteristicfunctionsandtransferfunctions
agreeon someright half-plane,from (III.11) and (II.8) we
deduce

h ¥§¦� � XZ�{R h £ � � XZ� � ^�� ce� ��^ ¢§h £ � � XZ�(� ��� (III.14)

for �<¶ X in some right half-plane. From Lemma 3.4 �g�
� � ¥§¦ � andfrom Remark3.3
�j¥§¦� hasthegeneratingoperators� �`�¥§¦ ��� �`�¥§¦ � ¥§¦ �.� c � ¥§¦ K�¡ ¥§¦ ¢ � ���¥§¦ � h ¥§¦ �J� � .
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On the other hand, by parts 1 and 2 of Lemma 3.6, ce��K ^ ¢
is an admissiblefeedbackoperatorfor

�j£ � with generating
operators

�������(���������.� c � K�¡�¢ ������� h £ �,� � . FromRemark3.3
the resulting closed-loopsystem

� ±�²§³
has the generating

operators� ±�²·³ Rª�������A���`�v� ° ��� ¡ ���`�<� ° R�^O� ce��K ^ ¢§h £ �,� ���� ±�²·³ RV������� ° �`��� + ±�²·³ R h £ �,� � ° �`� ,� ±�²·³ R��������`� xVc ^ K���¢«h £ �,� � ° �`� ¡ ����� ,¡ ±�²·³ R�� ° ��� ¡ ����� M
Moreover, from(III.12), for

X �-
� � ��� �L� 
� � ±b²§³ � we have

h ±b²§³ � XZ�jR h £ � � X<� � ^�� ce� ��^ ¢§h £ � � X<��� ��� M (III.15)

We now show that for �<¶ X in someright half-planethereholds

h ±�²·³ � X<�SR h ¥§¦� � X<� M (III.16)

Comparing(III.14) with (III.15) we seethat we needto show
that �<¶ 
� � ±�²·³ � containsa right half-plane.From Lemma3.4
we have that if tY�Y
>� ����R �<¶ 
� ������� and

^�� c ��K ^ ¢§h £ � � �r �
hasa boundedinverse,then tI� �Z¶ 
� � ±b²§³ � . But^O� c ��K ^ ¢§h £ � ���t �SRT^�� ce��K ^ ¢§h £ �Jt �
andthis hasa boundedinversefor t in someright half-plane.
Moreover, since

�
is an infinitesimal generator, its resolvent

setcontainsa right half-plane.So �Z¶ 
>� � ±b²§³ � containsa right
half-planeandwe have shown (III.16).
Since both

�j¥§¦� and
� ±�²·³

have boundedoperators,we can
concludethat their feedthroughoperatorsareequal,i.e.,

h ¥§¦ �J� �SR + ¥§¦� R + ±b²§³ R h £ �,� � � ^O� c ��K ^ ¢§h £ �J� �(� ��� M
So we have^�� ce��K ^ ¢§h ¥§¦ �J� �~R � ^�� ce��K ^ ¢§h £ �J� ��� ��� � (III.17)

and
^\� c ��K ^ ¢§h ¥§¦ �J� � hastheboundedinverse � ^S� ce��K ^ ¢§h £ �,� � .

But since � �!
� ���~� 
>� � ¥§¦ � , both h £ and h ¥§¦ are analytic
in a neighbourhoodof the origin. So in this neighbourhood

� ^O� ce��K ^ ¢«h ¥§¦ � XZ�(� ��� RV^�� ce��K ^ ¢§h £ � XZ���
and the following equalitieshold at leastfor

X
in someright

half-plane

� ^�� ce��K ^ ¢«h ¥§¦� � XZ�(� ��� R�^O� ce��K ^ ¢§h £ � � XZ�
h ¥§¦� � XZ�{R h £ � � XZ� � ^�� ce��K ^ ¢§h £ � � X<��� �`� M

But (III.15) also holdsat leastin someright half-planesince� ±�²·³
and

�����
areboundedoperators.Thus h ±b²§³ R h ¥§¦� on

someright half-planeand� ±b²§³QR � ¥§¦� on someright half-planeM (III.18)

Next we show that the output maps are equal. For
X �
� � ±�²·³ �L� 
>� � �`� � the outputmapof

�j±b²§³
is given by

c ��±�²·³ K�¡ ±b²§³ ¢(� XZ^��2��±�²§³~� �`� R (III.19)� � ^ xVh ±�²§³ � X<� ce��K ^ ¢ � c ��� ��� K�¡ � �`� ¢·� X<^O�2��� �`� M
TakingLaplacetransformsof the perturbationformula for the
closed-loopobservationmap(Weiss[18, (6.13)]) for

X
in some

right half-planewe obtain

}N ¥§¦ � XZ�SR � ^ x � ¥§¦ � X<� ce��K ^ ¢ � N £ � XZ�

or equivalently

c � ¥§¦ K�¡ ¥§¦ ¢(� XZ^j�-� ¥§¦ � ��� R � ^ x¸h ¥§¦ � XZ� ce��K ^ ¢ � c � K�¡�¢(� X<^\�*��� ��� M
With somealgebraicmanipulationsandsubstituting �<¶ X for

X
this gives

c � ¥§¦ � �`�¥§¦ K�¡ ¥§¦ � ���¥§¦ ¢(� XZ^��A� ���¥§¦ � �`� R� ^ xªh ¥§¦� � X<� c ��K ^ ¢ � c ��� �`� K�¡ � ��� ¢(� X<^O�A� �`� � ���R � ^ xVh ±�²§³ � X<� ce��K ^ ¢ � c ��� ��� K�¡ � �`� ¢(� XZ^��2� ��� � �`�
for �<¶ X in someright half-plane,wherewe have used(III.16)
in the last step.So combiningthis last equationwith (III.19),
we obtain

c � ±�²·³ K�¡ ±�²§³ ¢(� X<^O�Y� ±�²·³ � �`� R (III.20)� c � ¥§¦ � �`�¥§¦ K�¡ ¥§¦ � ���¥§¦ ¢(� XZ^��A� ¥§¦ � �`� (III.21)

for �Z¶ X in someright half-plane.Now, as
X�¹ � ,c � ±�²·³ K�¡ ±�²§³ ¢(� X<^O�Y� ±�²·³ ���`��� ±�²·³ :�¹º� c � ±b²§³ K�¡ ±�²·³ ¢ : ,

and c � ¥§¦ � ���¥§¦ K�¡ ¥§¦ � �`�¥§¦ ¢ � ±�²§³ :�¹ c � ¥§¦ K�¡ ¥§¦ ¢ � ±b²§³ : as
X�¹ � .

Thus(III.20) implies that

c ��±�²·³ K�¡ ±�²·³ ¢ R�� c � ¥§¦ K�¡ ¥§¦ ¢ ��±b²§³ M (III.22)

To show that
� ±�²§³ RT� ¥§¦ we considerthe resolvent identity

for
� ±�²§³ R4���`� x ������� ¡ ±b²§³
� X<^O�Y��±�²·³�� �`� � � X<^���� ��� � �`� RXZ^���� �`� � ��� � ��� � ¡ ±b²§³ � XZ^��2� ±b²§³ � ��� �

which holds for
X ��
� � ±b²§³ � 
� ������� . Now we substitute

from (III.20) to obtain

� X<^O�Y� ±�²·³ � �`� � � X<^���� ��� � �`� R (III.23)� � X<^O�Y� ��� � �`� � �`� � ¡ ¥§¦ � �`�¥§¦ � XZ^��A� �`�¥§¦ � ��� �
which now holds for �<¶ X in someright half-plane.(Recall
that �<¶ 
� � ±�²·³ �b� �<¶ 
>� ������� containsa right half-plane).Now
we takeLaplacetransformationsof thesemigroupperturbation
formula in Weiss[18] to obtain

� XZ^���� ¥§¦ � ��� � � X<^@�»��� �`� R�� � X<^@�»��� �`� � ¡ ¥§¦ � XZ^��»� ¥§¦ � �`�
for
X

in someright half-plane.With somemanipulationsthis
implies

� X<^O�Y� ��� � ��� � � X<^O�Y� ���¥§¦ � ��� R� � X<^O�Y� ��� � �`� � �`� � ¡ ¥§¦ � �`�¥§¦ � XZ^��A� �`�¥§¦ � ��� �
for �Z¶ X in someright half-plane.Comparingthis with (III.23)
yields � X<^��Q� ���¥§¦ �����{R � XZ^��Q� ±b²§³ ����� andso the generators
areequaland(III.22) yields

c � ±�²·³ K�¡ ±b²§³ ¢ R c � ¥§¦� K�¡ ¥§¦� ¢(M
A similar typeof argumentshows that � X<^\��� ±b²§³ ���`��� ±b²§³ R� XZ^��4� �`�¥§¦ � ��� ��¥§¦ for �Z¶ X in someright half-planeand this
implies that

� ±b²§³ RV� ���¥§¦ � ¥§¦ and
� ±b²§³ R �j¥§¦

.
Supposenow that

�j¥§¦
is outputstable.ThenTheorem2.7 part

3 shows that
�¤¥§¦

and N ¥§¦ are analytic on
���7 and for

X �
� � ¥§¦ � using(II.8), we have
�¤¥§¦ � XZ�SR h ¥§¦ � XZ� . But

}N ¥§¦ � XZ��R c � ¥§¦ K�¡ ¥§¦ ¢(� XZ^��2� ¥§¦ � �`�R � �X c � ¥§¦ K�¡ ¥§¦ ¢ � �`�¥§¦ � �X ^��2� ¥§¦ � �`� �
4



andso

�X }N ¥§¦ �[�X �~R�� c � ¥§¦ K�¡ ¥§¦ ¢ � ���¥§¦�� X<^O�2� ���¥§¦ � ��� R }N ¥§¦� � XZ�
for
X �2
� � ���¥§¦ � . This containssomeright half-plane,and so}N ¥§¦� hasan extensionto an

| ; function.

In Curtain[3] a slightly differentformulaof theclosed-loop
generatorwas given. We show that it equalsthe one found
here.

Corollary 3.9: Underthesameassumptionsandnotationas
in Lemma,if

�j£
is regular with zero feedthroughoperator,

then the generatorof the closed-loopsemigroup
� ¥§¦ satisfies� ���¥§¦ Rª� ��� �A� �`� � ¡ i � ���¥§¦ M (III.24)

Proof
�j£ � has the generating operators������������������� c ������� K�¡ ���`� ¢ ��� c � i ������� K�¡ i ���`�v� ¢ .

From Lemma3.8 we have� ¥§¦� R � ±�²·³ RV� ��� �2� ��� � � ^ x!¡ iL� �`� ��� �`� ¡ � �`�R � ��� �2� ��� � � ^O� ¡ i � �`�¥§¦ ��� ¡ � �`� by (III.17).

So it remainsto show that� ��� � ¡ i � �`�¥§¦ RV� ��� � � ^O� ¡ i � �`�¥§¦ ��� ¡ � ��� M
Applying Lemmas7.9 and 7.10 in Weiss[18] to our closed-
loop system

�j¥§¦
gives for all

k �I+-�J¡ i�� .� ¥§¦ k�R � � x � ¡ i �(k and
��k R � � ¥§¦ �Y� ¡ i ��k M

But +-�J¡ i � contains+-� ��� andsowith
k R4� �`� :

and
: �I% ,

we obtain
:�R � � ¥§¦ �2� ¡ i��§������: andso

¡ iL� ���¥§¦ :nR ¡ iL� �`�¥§¦ � � ¥§¦ �¸� ¡ i��·� �`� :R ¡ � ��� :O� ¡ i � �`�¥§¦ � ¡ � ��� :��
which completesthe proof.

Remark3.10: If
� � is ouput stabilizable,

�
neednot be,

as the characteristicfunction h ¥§¦� � �  � neednot be uniformly
boundedon someright half-plane.However, in Curtain [3] it
is shown that if

�
is a boundedoperator, then

�
is output

stabilizableif andonly if
� � is output stabilizable.

We now obtain sufficient conditionsthat ensurethat
�

hasa
uniqueanalytic extensionto 
>� �����A� �7 that agreeswith its
characteristicfunction.

Theorem3.11: Let
�

be a well-posedlinear systemwith
generatingoperators

���������
, � �2
� ��� , transferfunction

�
and characteristicfuntion h . If

�
is output stabilizableand& �('

arefinite-dimensional,then
�

hasa uniqueextensionto
a function that, except for countablymany isolatedpoints, is
analyticon

� �7 and
� R h in this region.

Proof Now
�j¥§¦

is output stable and so by Lemma 2.4,�¤¥§¦ � XZ��R h ¥§¦ � XZ� for
X �W
>� � ¥§¦ � . From (III.11) it is readily

deducedthat on someright half-plane

� ^ xVce� ��^ ¢ � ¥§¦ � � ^O� c � ��^ ¢§h £ �~RT^R � ^�� ce� ��^ ¢§h £ � � ^ x�ce� ��^ ¢ � ¥§¦ � M (III.25)

Since
^ x¤ce� ��^ ¢ � ¥§¦ is analyticon

�~�7 , it hasonly isolatedzeros
andits inversehasat mostcountablesingularities,saythe set¼  §½ ±�¾

. So
^ xyce� ��^ ¢ � ¥§¦ � XZ� has a unique inversedefinedon�~�7 ¶ ¼  §½ ±[¾ . Since ce� ��^ ¢ is an admissiblefeedbackoperatorfor�j£

,
� ce� ��^ ¢ is an admissiblefeedbackoperatorfor

�j¥§¦
and

the following holdson someright half-plane� £ R � ¥§¦ � ^ xTce� ��^ ¢ � ¥§¦ � �`� M (III.26)

But
^ xyce� ��^ ¢ � ¥§¦ has a unique inverseon

�~�7 ¶ ¼  ·½ ±�¾ . Thus
(III.26) shows that

�¤£
has an extension to a function

that is analytic on
�~�7 ¶ ¼  §½ ±�¾ . This extension is unique

and it necessarilyagreeswith its characteristicfunction on� �7 ¶ ¼  §½ ±[¾ .
Remark3.12: In fact, we have shown that if a systemwith

finite-dimensional
&

and
'

is output stabilizable,its transfer
function hasat mostcountablesingularitiesin

�~�7 .

We now show thatunderthesameassumptionsasin Theorem
3.11 the reciprocalrelationships(II.9) hold.

Lemma3.13: Supposethat
���������

arethegeneratingoper-
atorsof the well-posedlinear system

�
with transferfunction�

and ���-
� ��� . If it is output stabilizableand
&

and
'

are
finite-dimensional,then (II.9) holds for all

X �T
� ���j�A� �7 ,
where

� � is the transferfunction and N � is the observation
mapof the reciprocalsystem

� � .
Proof By Lemma3.8

�j£ � is also ouput stabilizable.So
from Theorem3.11 we have that both

�¤£
and

�¤£ � have
extensionsto functionsthat areanalyticon

� �7 ¶ ¼  §½ ±�¾ , where¼  §½ ±�¾
is a countable set and these extensions agree with

their characteristicfunctions on
�~�7 ¶ ¼  ·½ ±�¾ . Taking Laplace

transformsof the perturbationformula in Weiss [18, (6.13)]
givesfor

X
in someright half-plane

}N £ � XZ�SR � ^ x � £ � X<� ce��K ^ ¢ � }N ¥§¦ � XZ� M
The ouput stability of

�j¥§¦
shows that }N ¥§¦ is analytic on

�~�7
and so }N £ hasan extensionto a function that is analytic on�~�7 ¶ ¼  §½ ±[¾ and similarly for }N £� . As in Remark2.2 for

X �
� ���`�*�~�7 ¶ ¼  ·½ ±�¾ we have

}N £ � XZ��R c � K�¡�¢·� X<^´�A��� �`�R � �X c � K�¡�¢ � ��� ���X ^��A� ��� � �`�R �X }N £� � �X � M (III.27)

Note that
¼  ·½ ±�¾

is a countableset and that the singularities
of c � K�¡�¢(� XZ^������v��� and of c � K�¡�¢ ����� � �  ^-���������v��� are
containedin 
>� ��� . So the above equalitiesextend to

X �
� ���`�*�~�7 andwe have proven the secondpart of (II.9).
Since }N £ has an extension to a function that is analytic on�~�7 ¶ ¼  §½ ±[¾ , (II.3) canbe extendedto obtain� £ � X<�jR h £ �,� � x X }N £ � XZ�§� �`� � for

X � �~�7 ¶ ¼  §½ ±�¾ M
Combining this with (III.27) and noting that the set

¼  ·½ ±[¾
is countable,shows that the singularitiesof

�¤£
in
���7 are
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containedin 
� �����-�~�7 andso for
X �-
� �����-�~�7 we have� £ � XZ�SR h £ �,� � x }N £� �[�X �§� ��� � M (III.28)

Arguing in a similar fashionfor
�j£ � we obtain� £ � � X<�jR h £ �,� � x }N £ � � XZ�§� �`� � (III.29)

for
X �*
>� ����������~�7 . So using(II.8), (III.28) and(III.29) we

obtain h�� XZ�SR � £ � XZ�SR � £ � ���X �~R h £ � ���X �
for
X �-
� �����-�~�7 , which completesthe proof of (II.9).

The following example shows that both
&

and
'

needto
be finite-dimensionalfor (II.9) to hold.

Example3.14: Let
�

be the right shift on ¿ ; �_À
�LR % . So

� ��:��·Á�R�:.Á �`� � � � ��� :��§Á�RT:�Á � � andÂ � ���{R Â ¥ � ���SR�Ã�X � �VÄ�Å XbÅ�R �ÇÆ R Â � � ��� �SR Â ¥ � � ��� � M
Moreover,


ba-� ����R�Ã�X � ��Ä�Å XbÅ 1 �ÇÆ R 
�aÈ� � ��� � M
For the input let

& R % and
�ÉR�^

. For the output take'ÊRÌË
and define

��:ÍRÎ: ��� , We consider the system
with boundedgeneratingoperators

����������� � . This systemis
clearlyexponentiallystabilizableandhenceouputstabilizable.
For example, ¡ R���Ï�^ shiftsthespectruminto

Ã�X�Ä�Ð � X ? ��Æand since
�ª�!Ï�^

is boundedthe semigroupis exponentially
stable.We shall show that (II.9) doesnot hold.
To make the calculations easier we calculate the transfer
functionsof the dual systemwhich hasgeneratingoperators������������R����`�v� 7 ��^�� � , where � � 7 G �§Á¤R�Ñ 7�Ò Á G . Its impulse
responseis given byÓ<Ô�Õ~Öb×§Ø � ��� � 7.Ù Á R aÚ

±bÛ 7 � � ± ��� #
±Ü~Ý Ñ 7.Ò Á

R aÚ
±bÛ 7 #

±Ü~Ý Ñ 7.Ò Á � ± � �
R # � Á �`�� �´Þ�� � � Ý for

Þ�ß � � otherwise ��M
So taking Laplacetransformswe obtain�*à � XZ�§Á�RVX Á for

Þ�ß � � otherwise ��M
The reciprocal system has the generating operators�������������Z�����������<�.�������`�

andits dual systemhasthe gen-
eratingoperators

������� 7 �����.�´� 7 .
The impulseresponseof the dual reciprocalsystemis

á �U� Ô.ÕLØ � 7.â Á R � aÚ±bÛ 7 � ± � � #
±Ü~Ý Ñ 7.Ò Á

R � aÚ±bÛ 7 #
±Ü~Ý Ñ 7.Ò Á � ± ���

R � # Á �`�� Þ�� � � Ý for
Þ�ã � � otherwise ��M

Taking Laplacetransformswe obtain the transferfunction of
the dual of the reciprocalsystemto be�*à� � XZ�SR���X � Á for

Þ�ã � � otherwise ��M
So comparingthis with our calculationsabove for

�
, we see

that we never have
� à � X<�SR � à � � �  � .

IV. HISTORICAL REMARKS

It appearsthat the concept of a reciprocal system first
appearedin the Russianliterature in the context of nodes;
see,for example,the book by Livsic [9]. Partial relationships
between the pairs

�����
and

���`�<���O�����
have been used

by Fattorini and Triggiani in the study of controllability for
boundarycontrol systemsand by Grabowski and Callier in
their work on the circle criterion for boundarycontrol via
Lyapunov stability andLur’e equations(see[1]). However, the
closestconnectionwe areawareof is in thefinite-dimensional
papers[6] by FernandoandNicholsonand [11] by Muscato,
Nunnari and Fortuna who used the concept of reciprocal
systemsin the context of stochasticbalancing and model
reduction.
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