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Abstract—It is shown that if the number of plant outputs is the next step after appearance of the excitations. It is also
equal to at least half of the number of plant states then the shown that the properties of these regulators remain unchanged
observer may be designed which in one step detects the ey yransients generated in the closed loop (CL) system with

value of the state. It is also shown that in multi-variable discrete- . . .
time (DT) systems the LQ regulator based on the reduced order NCNZ€ro excitations belonging to a determined general class.

Luenberger observer is optimal for adequate initial conditions ~ The contribution of the paper is partly in deriving the
of the observer. The case of non-adequate initial conditions of observer which in one step detects the true value of the plant
the observer is considered, too. Further on, the properties of state, partly in showing that the regulator based on the reduced
this regulator applied in the closed loop system with nonzero o qer | yenberger observer with adequate initial condition is
excitations are analyzed. It this case the DT regulator based on imal d Vi . h h | based

the observer which in one step detects the true value of the plant Opt'ma_ and partly in prO\_llng_ that the regu ator_ ased on
state is optimal for transients, starting from the next step after the derived observer, applied in the CL system with nonzero
appearance of the excitations. excitations, generates the transients which are optimal, starting

Index Terms— Linear-quadratic regulator; discrete-time; out- from the next step after appearance of excitations.

put regulator; multi-variable systems; observers.

II. LQ REGULATOR WITH STATE FEEDBACK

. INTRODUCTION Let the DT state space model of a multi-variable plant takes

Linear-Quadratic Regulator (LQR) problem, in infinite horithe form
zon, has usually the solution in the form of a static state
feedback control law and may be implemented when all the ~ *(t +1) = Az(t) + Bu(t),  y(t) = Cx(t) (1)

state variables are available [3]. This observation concerng . a . u andy are the vectors of state, input and outputy
i ’

coqtlnuous- and discrete-time, as well as single- and muI‘I:{hdp-dimensional, respectively}, B, C are constant matrices
variable plants. When only the outputs of the plant are mege appropriate dimension and— 0, 1,2, ... is discrete time.

sured, the state feedback LQ control law may be implemented,Assume thatd has a full rank i.e. ranki — n. This case

if an appropriate state observer is included in the system [%)]ccurs when the DT equations (1) result from discretization

.There Is ajmost common conviction that LQ control problerBf a continuous-time model of the plant. This is very frequent
with output feedback may be solved by more modéfp case in applications

approach [5]. This conviction does not concern the problem Let the quadratic performance index takes the form
considered in the present paper. In tHe approach applied

to the deterministic case there is the assumption about zero G
initial conditions of the regulator, while in our considerations J =Y [ (t)Qu(t) + u'(t) Ru(t)] 2
nonzero initial conditions of the regulator play an essential t=0
role. where the symmetric matrice@ = D’D and R are semi-

In the present paper, first the observer which in one stgpsitive and positive definite, respectively. Assume, that the
detects the true value of the plant state is considered. Then jpagr (A, B) is controllable and the pait4, D) is detectable.
following question is researched: whether and in what senseThe solution of the DT LQR problem (1), (2) in the form
the observer based LQ regulator is optimal? The case of linegf-the state feedback is
guadratic regulator (LQR) problem with output feedback, for
multi-variable discrete-time (DT) systems is considered. u=—Kux 3)

It is shown that the LQ DT regulators based on the reduc
order Luenberger observer are optimal for adequate init
conditions of the observer. The properties of these regulators in K = (R+B'SB)"'B'SA 4)
the case of non-adequate initial conditions are also researched.

In this case the regulators with the observer detecting in ombere S is the solution of an appropriate algebraic Riccati
step the true value of the plant state are optimal starting fraequation [3].

Fxg?were the gain matri¥{ is determined by



The minimal value of the performance index (2) for given Neitherv nor x appearing in (10) are known, but for any
initial condition z:(0) of the plant is initial conditions©(0) andz(0) of the equations (7) and (1),
respectively, we havé(t) — v(t) and £(t) — z(t) when

/
Tmin = 2(0)52(0) ) t — oo. Thus &(t) determined from (7) is the estimate of
The closed-loop (CL) system is described by x(t). Similarly (t) — v(t) whent — oo.

In the case for which\; = 0. i = 1,2,...m the observer

z(t+1) = (A - BK)a(t) ®) has the finite time of decaying af(¢) to zero (smaller than
Let A1, A2, ..., A, be the poles of the CL system (6). or equal tom). This kind of observer is called the dead-beat

observer.

I1l. REDUCED ORDER OBSERVER Note that from the third equation of (7) it results that the

gnatricesW, C,V, P, nXxp, pXn, nxXxm, mxn,
%oectively, must have full ranks, that is rallk = p, rank
= p, rankV = m, rank P = m. Taking this into account
e may formulate the following Lemma.

The control law (3) may be implemented if all the stat
components are available (measured). Further on, the ¢
when only the output variablgis available will be considered.
It is known that in this case the control law (3) may b

implemented if an appropriate observer estimating the state
Lemma 1. Assume thatm = n — p < p. Then for

is applied. ) . . !
The equations of the reduced order (Luenberger) obserjer— 0 there exist the matrice®, £, G, W, V' which fulfill
for the plant (1) have the form [5] the equations (13).

Proof. Since maximal rankK F'C) = p andm < p then

o(t +1) = Eo(t) + Fy(t) + Gu(t) (7) We may choose the matri' so that rank(FC) = m. The

T(t) = Vo(t) + Wy(t) maximal rank(PA) = m. Then for the chosel’ there exist

where and¢ are the vectors of the plant state and observée solutionP of the matrix equation”A = F'C. Matrix G
state estimates; and m-dimensional respectivelyp = n — results from the second equation of (8). MatridésV’ we
p, E, F, G, V, W are the constant matrices of appropriatebtain from
dimension; the choice ot is such that its eigenvalues;, p1t
i = 1,2,...,m fulfill the inequality |\;|] < 1. Additionally, [V W] = { c } (14)
there exists an x n matrix P fulfilling the equations

PA_EP = FC which results from the third equation of (8).

G=PB ®) 0

WC+VP=1I, Corollary 1 The observer resulting from Lemma 1 with

E = 0 detects the true value of the statét) in one step.
That is, for any unknown initial state(0) of the plant (1)
and any assumed initial conditiar{0) of the observer (7) we
havei(t) = x(t) for t > 1.

Proof. Note that for the observer (7) witlk = 0, from
the second equation of (15) it resuli&t) = 0 for ¢ > 1 i.e.

wherel,, is n x n unit matrix.
To explain denote | _ p.. 9)

Multiplying both sides of (1) byP from left hand side and
accounting (8), (1) and (9) we obtain.

v(t+1) = Ev(t) + Fy(t) + Gu(t) (10) 2(t) = v(t) for ¢ > 1. Therefore from the second equations
a(t) = Vo(t) + Wy(t) of (7) we obtainz(t) = z(t) for t > 1.
Note that it is a freedom in choosing matricés F* (and _ B
eigenvalues);) which guarantees the fast observer conver- The state space equations of the regulator based on the
ence. reduced order observer, result from (7) and (11) and take the
g
The CL system with dynamic output feedback LQ regulatd®rm
(DOFR) which may be implemented when only the output B+1) = (E—GKV)i(t)+(F—GKW)
. . . . . . =E- - y(t)
is available is described by (1), (7) with accounting u(t) = —KVo(t) — KWy(t) (15)
u=—-K% (11)

After transformations we obtain the description of the CL !V- WHETHER AND IN WHAT SENSE THE RESEARCHED
system in the form REGULATOR IS OPTIMAL?

z(t+1) = (A - BK)z(t) + BKVd(t) One can suppose that the reduced order observer (7) deter-
(t+1) = Ed(t) (12)  mines the accurate estimate of the state @i.e= x) if the
o(t) = v(t) — o(t) (13) initial condition ©(0) of the observer is adequate to the initial

, conditionz(0) of the plant state. Note, that the second formula
From the form of (12) it results the known fact that the Cl (10) determines the transformation of the stafé y7]” to

system with DOFR is ofn +m)-th order and has the poleSihe state;, which may be written in the form
A1, A2y ey An, AL, A2, .oy Ay, DEING the union of the poles of ’

the CL system (6) with LQ regulator and state feedback and

v
of the observer (7). z=[V W] { y } (16)



Accounting the third formula of (8) we obtain the inverse V. CLOSED LOOP SYSTEM WITH NONZERO EXCITATIONS

transformation in the form Consider the CL system shown in Fig. 1 with the plaht
v| | P - 17) (1) and regulator-observeR described by (7), (11). The CL
y| | C system fort > 0 is described by the equations

z(t+1) = Az(t) + Bu(t), y(t) = Cz(t) (20)

Lemma 2. Optimality of the regulator. For the initial Vit + 1) = Bol(t) + Fe(t) + Gu(t)

conditionsxz(0), ©(0) fulfilling the relation 2L(t) = Vol (t) + We(t) (21)
(0) = P(0) (18)
_ 1

the regulator (15) based on the reduced order observer, applied u(t) = —Kz'(t) (22)

to the plant (1) is optimal in the sense that in the resulting CL y .

system the performance index takes the optimal value equal to e(t) = y(t) —d"(t) —w(t) (3)
that obtained in the CL system with LQR and state feedbagkdd*(t),w*(t) denote some given vector functions. Assume
(for the same initial condition of the plant(0)). that the initial condition of the plant(0) = 0 and of the

Proof. From (17) and (18) it results tha{0) = v(0), then observery!(0) = 0, while the excitations take the form
©(0) = 0 and from (12) we obtaif(t) = 0 which givesi(t) = . .
v(t) for anyt > 0. Accounting (7) and (10) we obtaifyt) = d=d"(t)1(1), w = w*(t)1(t) (24)
z(t) for any ¢ > 0. Therefore the formula (11) determinesyhere1(¢) denotes the unit step function(t) = 1 for ¢ >
then the optimal control of the CL system with LQR and stat¢ and 1(¢) = 0 for ¢t < 0) and d*(t), w*(t) are somep—
feedback. dimensional vector functions, components of which describe
¢ the disturbances and set points for particylasutputs of the
The initial condition?(0) determined by (18) is called thep|ant,
adequate initial condition of the observer. ~ Assume that the vector function (¢), w*(t) determined
In the case when the initial condition of the observer ig the interval—oo < ¢ < oo would generate in the considered
non-adequate (i.e. it does not fulfill the dependence (18), thg¢ system a "steady state” in this interval (if the excitations
properties of the CL system are somewhat different. would be described by these functions in the intervab <
o t < o0). The components of these vector functions may for
Lemma 3 about optimality of the regulator. In the case, instance take the form of any constant and/or any periodic
(18), the regulator based on the reduced order observer Witermined by the solutions of the equations (20)-(23) for any
E = 0, working in the CL system with plant (1) is optimal,given functionsi* (), w*(t) determined in the intervat oo <

starting from timet = 1, i.e. we have t < oo.
o0 Denote by the functions* = z*(t), u* = u*(¢), y* =
D [ ®)Qx(t) + ' (HRu(t)] = 2/ (1)Sz(1)  (19) (1), e* = e*(t), v™* = v'*(t), 2'* = 21*(¢) the solutions of
t=1 the equations (20)-(23) in the intervabo < t < co. Further

wherez(1) is the state of the plant resulting from applying @n the signalsc*, u*, y*, e*, v**, ™ will play the role of
non-optimal controk:(0) at time¢ = 0, while S is the matrix the reference signals and will determine the "steady state” in

appearing in (5). the system.
Proof results from the fact that for the observer with the Consider the performance index in the form
matrix E = 0, a nonzero initial conditiow(0) decays to zero 0o
in one step. This means thaft) = x(t) for ¢t > 1. J= Z[f’(t)@f(t) + u'(t)Ru(t)) (25)
& t=0

wherez = x — z* anda = u — uv* denote the deviations of
x and u from the reference signalg* and u* appearing in

o G "steady state”.
Theorem 1 about optimality of the regulator . Regulator
(15) with the observer matrik = 0, applied in the CL system
shown in Fig. 1, with plant (1) and excitations (24) generates
R the control which minimizes the performance index (25) in
the intervalt > 1, starting from the stat&(1) resulting from
the non optimal control(0). That is we have
o
Fig. 1. Closed loop system. Z[i‘/(t)Qf(t) + ﬂ’(t)Rﬂ(t) = 53/(1)557(1)] (26)

t=1
where S is the matrix appearing in (5).



Proof. Accounting (23) in (21) and applying the superwhich are valid fort > 1. From the second equation of (37)
position principle we obtain and from (17) it results that the initial conditiong1) and
o(1) fulfill the dependence& (1) = Pz(1). Thus from Lemma
1 it results that the contral(t) determined by (38) minimizes
where the functions = v(t) andz = z(¢) result from solving performance index (25), which means that the equality (26) is
the equations fulfilled.

;&Jr_l)v;(gvf%j 55/ (8) + Gu(?) (28) Let us notice that the performance index (25) accounts only
o Y the transients and does not take into account the accuracy in
and (20) with the control: determined by (22) the output the "steady state” determined by the reference signals.
determined by the second equation of (20) and initial condition

v(0) = 0; the functionsy? = v?(t) andz? = z(¢) resultfrom  Corollary 2. Regulator (15) with the observer matrix =

vt =v—d, ol =gz — ¢ 27)

<&

solving the equations 0, applied in the CL system with the plant (1) and excitations
vi(t + 1) = Evi(t) + Fld*(t) + w* (1] - (24) g(?,nerates fot% 1 the optimal transients. The accuracy
24(t) = Vol () + W[d* () + w* (¢)] (29)  of the "steady state” must be analyzed, separately.

with v4(0) = 0. Denote also by* = v*(¢) andv?®* = v¥*(t) V. EXAMPLE

the solutions of the first equations of (28) and (29), respec-
tively, with initial conditionsv* (—oc) = 0 andv®*(—co) = 0.
From the second equations of (28) and (29) we obtain thgx

Consider the plant with two-inputs two-outputs described

appropriately the variables* = 2*(t) and z%* = 2%*(t). We —a 0 0 1 0
have also similarly as (27) A= 0 —a1 0 |, B=]0 Fkp
T T 1 = A (30) 0 0 a 0 Fo
where as previously the variables with super-star denote the ki 1 0
appropriate functions in "steady state” corresponding to exci- C= kay 0 1 (39)

tationsd* (t) i w*(t). Let us note that fot > 1 v¢ = vi(t) =
v¥*(t) = v¥* andz? = z4(t) = ¥ (t) = 2%*. From here and
from (27) and (30) it results that far> 1

wherea = —0.8187, k11 = 0.3625, ko1 = 0.1813, a1 =
—0.7515, k12 = 0.3728, as = —0.6703, koy = 0.7253.
Assuming the quadratic performance index (2) with

Pl=al—aV=2-a*=2
Gl ol ol — oy — o (1) Q=C'C, R=rdiag[l,1], r=0.001
We also have we obtain the feedback control law (3) (usidigr of MAT-
e = y* — d* — w* LAB), where
E=e—e" =y—d —w — (y —d* —w*) = (32) Jo_ [ 08049 27368 —1.2485
=y-y =7 | 0.0055 —0.6751  1.2298

The reference signals*, u*, y*, e*, v'*, z'* fulfill the The CL system (6) has the poles; = 0.0009,\ =
equations (20)-(23) in the intervaloo < ¢t < co. Subtracting 0.0148, A3 = 0.7796.
from the equations (20)-(23) (valid in the interval> 0),
the same equations with substituted in them the referenceThe considered plant is of third order and has two inputs
signals (valid in—oco < t < o0) and using (31) we obtain and two outputs, them = 1 < p = 2. To design the observer
the following equations valid in the interval> 0 (7) with E = 0 we assumd” = [1 1] and from equations (8)

Bt+1) = Az(t) + Ba(t), g(t)=Cz(t) (33 Weopin
P =[0.6642 1.3307 1.4918],
vt +1) = Evl(t) + Fe(t) + Gu(t) (34)
zH(t) = Vol(t) + We(t) G = [0.6642 1.5781]
a(t) = —Kz'(t) 35) The matricedV andV of dimension3 x 2 and3 x 1 we obtain
from (14)
Accounting (31) and (32) in (33)-(35) we obtain the equa-
tions
W V]=| —4.4421 —6.1010 4.0896

15.0112 16.8286 —11.2806]

z(t+1) = Az(t) + Bu(t), y(t) = Cx(t) (36) —2.7211 —2.0505 2.0448

The equations (15) of the regulator—observer take the form

B(t+1) = 0.77920(t + 1)+[—0.7894 — 1.2739]y(¢)
o[ oMo [ 33225 05920 ]
a(t) = —Kz(t) @8) “ =1 o308 | 0.2645 —1.6901 | Y

(37)
(40)



The state equation of CL system with zero excitations (for
analyzing stability) is

z(t+1)
{ o(t+1)

—0.2785 —3.3225  0.5920 0.4401 (41)
| —0.0785 0.8501 —0.6300 0.1150 [x(f)}

(1
(2]
(3]
[4]

—0.1526  0,1919 —0.5555 0.2238
—0.5171 —0.7894 —1.2739 0.7792

The CL system has the following poles = 0.0009, Ay =
0.0148, A3 = 0.7796, A4 = 0.

From Theorem 1 it results that the CL system shown in Fig.
1 and composed of the plant (1), (39) and the regulator (40)
(in the latter equationg is replaced bye) under excitations
(24) has optimal transients far> 1. It may be e.gd;(t)
[Az sin(wit + 1/%) + dz]l(t), UJ: (t) = wll(t), 1 =1,2, where
A;, wi, Y, d;, w, © = 1,2 are given. For the transients
appearing in the system the performance index (25) takes the
optimal value fort > 1.

(5]

VII. CONCLUSIONS

It is known, that the CL multi-variable DT system with the
observer based LQ regulator has the poles being the union of
those of the CL system with LQ regulator and state feedback
and those of the observer [1].

In the present paper the additional property of the mentioned
system has been noted. Namely, the regulator LQ based on
the reduced order Luenberger observer is optimal when the
observer starts from the adequate initial conditions.

The considerations concerning properties for the discussed
regulators, when they start from non-adequate initial condi-
tions of the observer, have the basic meaning utilized in further
considerations. A special case of the dead-bear observer is
considered, which in one step detects the true value of the
state. It is shown that this kind of the observer may be designed
if the number of the plant outputs is equal to at least half of
the number of the plant states. It is also shown that in the CL
system the discussed regulator with the considered observer
is optimal, starting from the next step following the initial
instance of time.

This property of the regulator is partially retained if the
regulator is applied in the CL system with prescribed nonzero
excitations appearing at time= 0. In this case the property
concern the transients generated in the system after appear-
ance of the excitations. In this case the considered regulator
generates the transients which are optimal, starting from the
next step after appearance of the excitation.

In the case of the continuous-time systems the observer
based regulators has partially similar but somewhat different
properties [4].
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