
 

  
Abstract— Adaptive fuzzy logic control systems with Gaussian 
membership functions are described. A stabili ty proof is given. 
A systematic simulation study of 'dynamic focusing of 
awareness' in fuzzy logic control systems is provided. This 
study shows how the final steady-state values of the 
membership functions change in response to varying initial 
membership functions, changing desired trajectory, and 
varying system nonlinear ities. I t is shown that the fuzzy logic 
control system is focusing on a different region of the state-
space depending on these varying factors. Conclusions on 
higher-level behavior of the fuzzy logic control system are 
drawn. 
 
Index Terms— adaptive systems, fuzzy logic, nonlinear 
control, 
 

I. INTRODUCTION 

 
Adaptive fuzzy logic (FL) systems are becoming more and 
more popular in control systems due to the abilit y to select 
initial membership functions (MFs) based on experience 
and intuition, and the abilit y to tune the MFs to learn about 
the unknown dynamics of the system. By now, proofs of the 
stabilit y and performance of FL systems have been provided 
by a variety of researchers ([1], [2], [3], [4], [5], [6], [7], 
[8], [9], [10], [11] and others). However, the cognitive 
behavior of FL controllers has yet to be investigated. 
Specifically, it is not known how the MFs adapt in response 
to changing initial MF selections, different desired 
trajectories, and changing system dynamics. and how FL 
control systems emulate the higher human functions of 
consciousness including focusing of awareness and the 
filtering out of irrelevant details and noise. 
In this paper, we provide a systematic simulation study of 
"dynamic focusing of awareness" and cognitive features in 
FL control systems. It appears that some cognitive functions 
of human awareness are reflected in the behavior of FL 
control systems. We define here cognitive function of the 
FL system as the abilit y of the FL system to acquire 

 
Research was supported by NSF grant NSF ECS -0140490 and ARO grant 
DAAD 19-02-1-0366 

Ognjen Kuljaca is with Automation & Robotics Research Institute, Fort 
Worth, TX 76118, USA(phone: 817-272-5955; fax: 817-272-5989; e-
mail: okuljaca@arri.uta.edu).  

Frank L. Lewis is with Automation & Robotics Research Institute, Fort 
Worth, TX 76118, USA(phone: 817-272-5955; fax: 817-272-5989; e-
mail: flewis@arri.uta.edu). . 

knowledge of the controlled plant in it's entirety, or , in 
another words, to establish the base functions needed for 
system identification over the whole state space involved in 
the system operation, including the history and the present 
states (we connect this with the "awareness" of the system), 
and the abilit y of the FL system to focus on the current state 
trajectories (we connect this with making proper judgment 
of which part of the space of awareness is important at the 
moment). Similar proofs for multiple input multiple output 
(MIMO) neural network control can be found in the 
literature and the work on extending the ideas described 
here is the current research topic of the authors. 
 

II . DYNAMIC SYSTEM PRELIMINARIES  

 

In this paper the Frobenius norm 
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F
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unless otherwise specified. 
Let the process have dynamics of the general nonlinear form  
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with the state [ ]T

n21 x....xxx = , )t(u  the control input to 

the plant, and )t(y  the output of interest.  Signal )t(d  

denotes the unknown disturbance. The system nonlinearities 
are given by the smooth function mn RR:)x(f → .Given a 

desired trajectory and its derivative values 
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define the tracking error as 
).t(x)t(x)t(e d −=  ( II-3 ) 

Define the filtered tracking error mR)t(r ∈ :  
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stable. This means that 0)t(e →  exponentially as 

0)t(r → . When )t(r is small, the system performance is 

good. Using equations ( II-1 ), ( II-2 ) and ( II-3 ) the 
dynamics of the performance measure signal ( II-4 ) 

),t(d)t(u)x,x(gr d −−=
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 ( II-5 ) 

where )x,x(g d  is a complex unknown nonlinear function 

of the state and desired trajectory vectors )t(x  and )t(xd , 

respectively.  
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III . BACKGROUND ON FUZZY SYSTEMS  

 
To fully take advantage of the learning abiliti es of FL 
systems, in this section we describe a nonlinearly-
parametrized control function. In this FL control function 
we tune the output representative values, but also the MF 
centroids and spreads. Let )b,a,z( l
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The output of the fuzzy logic system  can be expressed in a 
vector notation as 

)b,a,z(Wy TΦ= . ( III -2 ) 

Note that l

ib  are the MF centroids and l

ia  determines the 

MF spread or width. The adjustable parameters are 
l

i

l

i b,a,W  so that this FL system is nonlinear in adjustable 

parameters.  
 

IV. FL LOGIC CONTROL ARCHITECTURE 

 
There are two distinct parts of the proposed FL control 
architecture: a proportional-plus-derivative (PD) outer 
tracking loop, and a nonlinear adaptive FL loop. Without 
the FL adaptive loop this scheme boils down to PD control 
and its performance deteriorates. The FL loop is fed by 
plant states and desired trajectories and in essence it is used 
to approximate the nonlinear function )x,x(g d  in ( II -5 ). 

Instead of desired states xd, the error vector can be used as 
an input to the FL system since e = xd – x. This FL logic 
control architecture is shown in Fig. IV-1. 
 

Controlled
PlantK

v[ΛΤ I]
r(t)

-

Input Membership
Functions

Fuzzy Rule Base

Output Membership
Functions

x
d
(t)

e(t)

-

-
)x,x(ĝ d
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Fig. IV-1: Fuzzy control system architecture 

 
We now derive an adaptive FL logic controller for nonlinear 
systems. According to the approximation properties of 
fuzzy logic systems, the continuous nonlinear function 

)x,x(g d  in ( II -5 ) can be represented as 
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where z is the input vector to the fuzzy system and the 
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known constant Nε . The ideal parameters a, b and W that 

approximate )(g ⋅  are unknown. Vector z may be selected 

as [ ]TT

d

T xx or as [ ]TTT ex . 

Let the control input )t(u be given by 

),x,x(ĝrK)t(u dv +=  ( IV-2 ) 

where )x,x(ĝ d  is provided by the fuzzy system and the 

control gain matrix is 0KK T

vv >= . Let the fuzzy 

functional estimate for the continuous nonlinear function 
)x,x(g d  be: 
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where Ŵ,b̂,â  are the actual current parameters of the FL 
system. Then, the filtered error dynamics ( II-5 ) can be 
rewritten as  
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Some required mild assumptions are now stated. These 
assumptions will be true in most practical situations and are 
standard in the existing literature. 
Assumption 1: The ideal FL parameters W, a and b are 
bounded by known positive values so that the Frobenius 
norms satisfy 

.bb,aa,WW MMM ≤≤≤  ( IV-5 ) 

Assumption 2: The desired trajectory is bounded in the 
sense, for instance that 

dd
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Assumption 3: The disturbance and FL approximation error 
are bounded in the sense 

Nd ;bd εε ≤≤ . ( IV-7 ) 

Now, the following theorem can be formulated. 
Theorem 

Suppose that assumptions 1, 2 and 3 hold. Let the system be 
given by ( II-1 ). Let FBF functions be defined as in  ( III-1 
) and fuzzy system output as in ( III-2 ). Let control signal 
be defined by 

),x,x(ĝrK)t(u dv += . ( IV-8 ) 
Let the tuning laws for the FL system be 
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where Kv, Ka, Kb, Kw, ka, kb, kw are design parameters. Then 
the filtered error r and FL parameters W, a and b will be 
uniformly ultimately bounded. In addition, the filtered error 
can be made as small as desired by increasing gain Kv. 2  
The detailed proof is given in the appendix. 
 

V. COGNITIVE BEHAVIOR OF FL CONTROL SYSTEM 

 
As linguistic systems, FL systems have a long history of 
applications involving the emulation of human cognitive 
functions. This history has not been tied to adaptive FL 
control systems, where the literature has been more 
concerned with mathematical proofs of stability of signals in 



 

the hardware control loops. In this section we propose to 
study through computer simulations the effects on the 
learned final membership functions of changing initial MF 
information stored in the FL approximator portion of the 
control signal. We begin by noting that the FL component ( 
IV-3 ) in the control signal ( IV-2 ) has two components. 
The short-term memory resides in the values of the control 
representative values W, and the long-term memory resides 
in the shape (a,b) of the MFs. Indeed, we observed, and 
shall discuss, the interesting behavior that the W weights 
tune faster and with more activity than the (a,b) weights. 
As controlled plant, a Van der Pol oscillator was used. It 
has dynamics given by 
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1xy = . ( V-2 ) 
Simulation studies for the system with adaptive fuzzy 
control architecture were performed for  sinusoidal 
reference )t5.0sin(2x d1 Π⋅= . All simulations were 

performed for 100 s. No disturbance was introduced in the 
system. Cases of two different sets of initial membership 
functions of the fuzzy system were investigated. 
The fuzzy control system parameters were: Λ=5, Kv 
=diag{3}, Kw = diag{10.15}, kw = 0.0985, Ka = diag{0.01}, 
ka = 0.1, Kb = diag{0.355}, kb = 0.0282. The fuzzy system 

input vector z was defined as [ ]T

2121 eexxz = . 

Membership functions were defined as Gaussians with 3 
membership functions per each of state dimensions x and 3 
membership functions per each of errors, which totals to 81 
membership functions with the given fuzzy system 
architecture. 

A. Detailed Plots for Sinusoidal Reference Input 

 
Here are provided detailed plots in order to show the 
performance characteristics of the proposed FL control 
architecture. Also, the performance of the fuzzy controller is 
compared with a nonadaptive PD controller. Detailed plots 
are given for a sinusoidal reference input )t5.0sin(2x d1 Π⋅=  

and with oscillator having parameter a = 0.1. 
A phase-plane plot for the oscillator controlled by FL is 
given in Fig. V-3. It can be seen that the state trajectories 
converge to the required ellipse in state space for the given 
reference input.  
The complete FL controller was compared to a standard PD 
controller in order to show the superiority of the FL 
controller. Parameters of the PD controller for comparison 
were: proportional gain Kp = 15 and derivative gain Kd=3. 
The error plot in Fig. V-4 confirms that the error with FL 
control is indeed small. The solid line in Fig. V-4 denotes 
error for the system controlled by the FL controller, dashed 
line for the system controlled by PD controller. 
Spreads and centroids of MFs are shown in Fig. V-5. It can 
be seen that the changes are smooth and relatively slow 
when compared with reference input. No higher frequency 
components can be observed in tuning of spreads and 

centroids of MFs. It can be also seen that spreads and 
centroids do not exhibit any short-term changes, but are 
tuned steadily over the time. An analysis in following 
Sections shows that spreads and centroids are indeed tuned 
in such way that MFs cover the whole state space in which 
state trajectories lay. This behavior exhibits the long-term 
memory which maps the space in which the state trajectories 
are moving during the operation of the FL controlled 
system. In this way an appropriate function space is set for 
the linear tuning of the output layer values. 
Output layer values of the FL controller are shown in Fig. 
V-6. In contrast to the spreads and centroids of MFs one can 
observe a significant higher frequency components in tuning 
output layer weights W. Output layer weights exhibit the 
higher frequency component with the same frequency as the 
desired trajectory xd. That is, output layer weights exhibit a 
short-term memory adapting themselves to fast changes.  

 
Fig. V-1: Membership functions at start of simulation for sinusoidal input 
with A=2, f=0.25 Hz, a=0.1 assuming error vector e=0 

 

 
Fig. V-2: Membership functions at start of simulation for sinusoidal input 

with A=2, f=0.25 Hz, a=0.1 assuming error vector e=0 – contour plot 

 
Membership functions at the end of simulation for 
sinusoidal reference input in Fig. V-7 have a very different 
shape than the initial membership functions in Fig. V-1. 
Also they cover a broader area than the original MFs, but 
with the area covered by initial MFs almost completely 
included (Fig. V-8). Recall the phase-plane plot for 
sinusoidal input in Fig. V-3. It can be seen that elli psoid-
like contour of final MFs covers the region that comprises 
state trajectories of the system completely. It can be said 
that FL input layer membership functions dynamically focus 
to cover the area in which state trajectories are moving over 
time. 



 

 
Fig. V-3: Phase-plane plot for sinusoidal input with A=2, f=0.25 Hz, 

a=0.1, system controlled by fuzzy controller 
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Fig. V-4: Error for sinusoidal input with A=2, f=0.25 Hz, a=0.1 
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Fig. V-5: Spreads and centroids of membership functions for sinusoidal 
input with A=2, f=0.25 Hz, a=0.1 

 

 
Fig. V-6: Output layer weights for sinusoidal input with A=2, f=0.25 Hz, 

a=0.1 

 

 
Fig. V-7: Membership functions at the end of simulation for sinusoidal 
input with A=2, f=0.25 Hz, a=0.1 assuming error vector e=0 

 

 
Fig. V-8: Membership functions at the end of simulation for sinusoidal 
input with A=2, f=0.25 Hz, a=0.1 assuming error vector e=0 – contour 
plot 

 
However, the final MFs cover much broader area than 
needed for final state trajectories. It seems that MFs do not 
focus only exactly on the area in which the final state 
trajectories are lying, but cover the area that includes states 
trajectories during the whole simulation. This reveals the 
presence of the cognitive focusing of awareness both of 
long-term memory and short-term memory. 
It is important to note that the sinusoidal reference is PE for 
the given plant. 
 

B. Effect of Shifted Initial Membership Functions on 
Final Membership Functions 

 
In this subsection is provided a simulation study of the 
effect of shifted initial MFs on final values of MFs. This 
reveals the effect of initial incorrect information on the final 
information learned by the FL system. A contour plot of 
Initial weights for all simulations in Section B, assuming 
that errors are 0, is shown in Fig. V-9. Initial states x0 are 
marked with "x" in Fig. V-9. It is important to note that the 
initial system states lay outside area covered by these initial 
FL MFs (i.e. value of MF's in that area is very small ).Final 
MFs and phase-plane plots are shown in Fig. V-10 - Fig. 
V-12 Results show that initial MFs do have significant 
effect on final MFs. The FL system does focus on the final 
state trajectories area and does covers the whole state space, 
but final MFs are in general different than in Section A.  



 

 
Fig. V-9: Membership functions with shifted centroids at start of 
simulation for sinusoidal input with A=2, f=0.25 Hz, a=0.1 assuming error 
vector e=0 – contour plot 

 
Fig. V-10: Membership functions with shifted centroids at the end of 
simulation for sinusoidal input with A=2, f=0.25 Hz, a=0.1 assuming error 
vector e=0 

 
Fig. V-11: Membership functions with shifted centroids at the end of 

simulation for sinusoidal input with A=2, f=0.25 Hz, a=0.1 assuming error 
vector e=0 – contour plot 

 
Fig. V-12: Phase-plane plot for sinusoidal input with A=2, f=0.25 Hz, 

a=0.1 – initial MFs with shifted centroids 

 

Effect of initial values of MFs can be clearly seen. This 
result leads to a conclusion that while FL system will t ry to 
cover the space inside which state trajectories are comprised 
and in the same time to focus on the final state trajectories 
area, the final MFs will be affected by initial MF's. In 
another words, a different "state knowledge" will be 
reached depending on the initial MFs while trying to reach 
the same goal. Mathematically speaking, this ill ustrates the 
fact that in the case when no unique solution exists, the final 
state of FL logic system will depend very much on it's initial 
state, converging to a local minimum. It can be also noted 
that the area covered by MFs at the end (Fig. V-9) is shifted 
toward the area covered by the final MFs in the case when 
the initial centroids were not shifted (Fig. V-8). Comparison 
with phase-plane plot in Fig. V-12 shows that FL system 
tries again to cover the whole space in which state 
trajectories are comprised and to focus towards the area in 
which final state trajectories lay.  
 

VI. CONCLUSION 

 
A fuzzy logic control architecture is described in the paper. 
A detailed stabilit y proof is given. The proposed FL control 
algorithm does not require any assumptions on the initial 
parameters of FL controller for the system to be stable. The 
performance of the FL controller is studied in detail using 
simulation studies. Effects of changes in initial FL 
parameters, plant nonlinearity, and different reference 
trajectories on the final FL MFs were investigated with the 
intention of drawing some conclusions on how the learned 
MFs adapt to changing environments. It was observed that 
input layer MFs are changing in such a way that the whole 
state space in which plant states are contained is covered by 
MFs, but also that MFs are trying to put more weight on 
approximating plant states at their steady trajectories after 
the transient is finished if the excitation is PE. Simulations 
were also performed for the step reference input. It was 
noted that in the case of step reference although the fuzzy 
controller kept the system stable, the learning was very slow 
and it included only long-term memory first layer weights. 
Also, the final trajectories (only a point in this case), was 
just barely covered by the final MFs. The conclusion was 
that no meaningful learning process occurred due to lack of 
information in step reference signal. Step signal is not PE 
signal for the Vad der Pol oscill ator. The plots are not given 
due to space constraints. 
 

VII . APPENDIX – PROOF OF THEOREM 

 
.Using equations ( II -1 ), ( II -2 ) and ( II -3 ) can be written 
as: 

),t(d)t(u)x,x(gr d −−=
�

 ( VII -1 ) 

where )x,x(g d  is a complex nonlinear function of the state 

and desired trajectory vectors x  and dx , respectively. Note 

that this function includes the original system unknown 



 

nonlinear function )x(f . The continuous nonlinear 

function )x,x(g d  in ( VII-1 ) can be represented by ( IV-1 

). Let the control input )(tu be given by ( IV-2 ). Let the 

fuzzy functional estimate for )x,x(g d  be given by ( IV-3 ). 

Then, filtered error dynamics ( VII-1 ) can be expressed as 
in ( IV-4 ) and the functional estimation error is defined as 

)x,x(ĝ)x,x(g)x,x(g~ ddd −= . 
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Now, Taylor expansion of Φ can be written as 
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Ba~Aˆ +++= ΦΦ , ( VII-3 ) 
where A and B are suitable jacobians and H represents 
higher order terms. 
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Introduce ( IV-2 ) into ( II-5 ): 
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With Taylor expansion ( VII-3 ) equation ( VII-5 ) can be 
written as 
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Define Lyapunov candidate 
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where KW, Ka, and Kb are design matrices and 
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Substituting ( VII-6 ) into ( VII-8 ) and introducing tuning 
laws ( IV-9 ), ( IV-10 ) and ( IV-11 ) yields 
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rkâa~rk)ŴW
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For Gaussian FBFs there exists the following bound [4]: 
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Now, with ( VII-10 ) and with assumptions 1 and 3 holding, 
the following inequality can be obtained: 
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where Kvmin is the minimum singular value of Kv. 
Let us define auxiliary variables DW, Da, Db and ∆: 
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Using ( VII-12 ) and completing squares in ( VII-11 ), it can 
be seen that L

�

< 0 as long as: 
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According to a standard Lyapunov theorem extension, that 

proves that r, W
~

, a~  and b
~

 are UUB. Since W, a and b are 

bounded, Ŵ , â  and b̂  are also bounded. This fact 
concludes the stabilit y proof. 
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