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On the control of an uncertain rigid body dynamics
Hebertt Sira-Ramı́rez, Senior Member, IEEE and Michel Fliess

Abstract— A new algebraic method, which is based on a
recently developed algebraic identification approach proposed by
the authors for the on-line identification of uncertain parameters
in linear controlled dynamic systems, is here used for obtaining
the solution of the fully actuated multi-variable feedback stabi-
lization problem of the, unperturbed, classical Euler model of
a rigid body with constant, but completely unknown, principal
moments of inertia. The results can also be used in the under-
actuated case.

Index Terms— Algebraic identification, Euler equations

I. INTRODUCTION

The feedback controlled stabilization of a rigid body (also
referred to as the “de-tumbling” maneuver) is considered
to be one of the classical problems in nonlinear multi-
variable aerospace control systems. Regulation of the rigid
body dynamics is the object of a vast literature from various
viewpoints. The interested reader is referred to the tutorial
review by Coppola and McClamroch appearing in the book
by Levine [1]. We point out that a challenging problem
associated to this particular subject is the case in which the
control algorithm is to be derived, and implemented, with
the rather realistic assumption of the principal moments of
inertia being constant but, otherwise, completely unknown.
A common approach for the solution of such an uncertain
control problem is the adaptive control approach. However,
this approach suffers from several difficulties arising from the
non-linear nature of the system parametrization. Even if the
over-parameterized description of the Euler equations can be
induced to exhibit an asymptotically exponential convergence
of the angular velocity state variables towards the equilibrium
condition, the actual values of the unknown but constant mo-
ments of inertia parameters are never recovered and, moreover,
angular accelerations are needed in the algorithm.

In this article, we treat the problem of a fully actuated
controlled “de-tumbling” maneuver in a set of classical non-
linear Euler equations describing the dynamics of a parameter
uncertain rigid body. The problem of regulating, or stabilizing,
such a nonlinear system with unknown inertia parameters does
not fit the linear parametrization scheme, or even the over-
parametrization alternative, commonly advocated in adaptive
control based formulations. We find however, that the Euler
system, with unknown moments of inertia, is indeed linearly
identifiable in the sense made precise in a previous work by
the authors (see Fliess-Sira[3]) to which the reader is referred
for theoretical details and some illustrative examples. The key
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consideration to establish linear identifiability of the constant
principal moments of inertia of a rigid body is related to the
linear parametrization of the expression describing the energy
balance of the system. From the unperturbed dynamics of a
rigid body evolving in free outer space, the energy balance is
simply associated with the rate of the total rotational kinetic
energy written in terms of the external supplied power. By
taking the same steps followed in the algebraic identification
framework of a linear SISO, we arrive at an explicit formula
for the unknown parameters, which requires a rather small
computation time, is independent of the initial conditions,
and which only requires the knowledge of the measured
system inputs and outputs (i.e. it requires the input torques
and the angular velocities), thus avoiding angular acceleration
measurements. The computed value of the parameters can
then be quickly substituted, in an on-line fashion, on the
expressions of any stabilizing certainty equivalence controller.

Section 2 deals with the Euler equations of a rigid body
dynamics. In this section we propose, under the assumption of
perfect knowledge of the system parameters, a rather simple,
and well known, stabilizing nonlinear feedback controller
achieving a closed loop exact linearization of the angular
velocities. This controller is regarded as a certainty equiva-
lence controller. Section 3 demonstrates that the rigid body
dynamics is indeed linearly identifiable and it presents an
on-line formula for the fast (on-line) unknown parameter
calculation. This section proposes then the combination of
the certainty equivalence controller with the fast parameter
identification scheme. The results of the proposed scheme are
illustrated by means of computer simulations.

II. THE FULLY ACTUATED RIGID BODY DYNAMICS

Consider the dynamic model, known as the Euler equations,
of a rigid body fixed at its center of mass in free space (See
Wertz, [5] and also Jurdjevic [4])

I1ω̇1 = (I2 − I3)ω2ω3 + u1

I2ω̇2 = (I3 − I1)ω3ω1 + u2

I3ω̇3 = (I1 − I2)ω1ω2 + u3 (1)

where I1, I2 and I3 are the moments of inertia, around the
principal axes of the body, ω1, ω2 and ω3 are the angular
velocities, assumed to be measurable, around such axes and
u1, u2 and u3 represent the applied control input torques (these
may be obtained, for instance, from the usual reaction jets
symmetrically located on the body, as shown in Figure 1).

A. A certainty equivalence controller

System (1) is flat (see Fliess et al [2]) with the three flat out-
puts being the angular velocities, ω1, ω2 and ω3. This means,
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Fig. 1. Fully actuated rigid body

in this particular case, that the system is equivalent, under
static state feedback and state coordinate transformations, to
a set of three linear systems representing pure, decoupled,
integration chains. Under the assumption of perfect knowledge
of the moments of inertia, I1, I2 and I3, a stabilizing, or
de-tumbling, multi-variable feedback strategy is given by the
following prescription of a control law, which includes integral
compensation terms.

u1 = −(I2 − I3)ω2ω3 + I1

(

−λ11ω1 − λ01

∫ t

0

ω1(σ)dσ

)

u2 = −(I3 − I1)ω3ω1 + I2

(

−λ12ω1 − λ02

∫ t

0

ω2(σ)dσ

)

u3 = −(I1 − I2)ω1ω2 + I3

(

−λ13ω1 − λ03

∫ t

0

ω3(σ)dσ

)

(2)

The closed loop system evolves in accordance with the fol-
lowing dynamics

ω̇1 = −λ11ω1 − λ01

∫ t

0

ω1(σ)dσ

ω̇2 = −λ12ω1 − λ02

∫ t

0

ω2(σ)dσ

ω̇2 = −λ13ω1 − λ03

∫ t

0

ω3(σ)dσ (3)

which can be made to have the origin as an asymptotically
exponentially stable equilibrium point under suitable choice
of the controller design parameters λ1i, λ0,i, i = 1, 2, 3.

The performance of the proposed feedback controller (2),
which is addressed as the certainty equivalence controller, is
depicted in Figure 2

The numerical values, used in the simulations, for the
moments of inertia, and for the design parameters were set
to be:

I1 = 1 [N − m − s2], I2 = 0.5 [N − m − s2],

I3 = 0.2 [N − m − s2]
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Fig. 2. Closed loop response of controlled rigid body with perfect knowledge
of the system parameters

λ1i = 2ζiωni, λ0i = ω2

ni ζi = 0.707, ωni = 0.5, i = 1, 2, 3

Remark 2.1: It is known that integral control actions, such
as those specified in equation (2), are specifically aimed at
counteracting possible unknown constant disturbance torque
perturbation inputs. However, when such perturbation inputs
are present in the dynamics of the rigid body, the combined
controller-identification procedure, to be presented below, is
valid provided the parameter identification part is carried out
before the unknown constant disturbance moment vectors ap-
pear in the system dynamics. Otherwise, the proposed control
scheme is not valid and it has to be substantially modified.

III. LINEAR IDENTIFIABILITY OF THE RIGID BODY
DYNAMICS

The fundamental problem with the proposed feedback con-
trol law (2) is that the system parameters, represented by the
moments of inertia, are not known, except for the fact that
they are constant. We now concentrate our efforts in devising
a parameter calculation scheme which is based on an algebraic
identification approach proposed by the authors in previous
works (see Fliess and Sira-Ramı́rez [3]). We first prove, in
accordance with our established definitions, that the system is
linearly identifiable.

The energy balance of the unperturbed system readily yields
the following relationship, which is linear in the parameters
representing the unknown principal moments of inertia

1

2

[

I1

d

dt

(

ω2

1

)

+ I2

d

dt

(

ω2

2

)

+ I3

d

dt

(

ω2

3

)

]

= ω1u1 + ω2u2 + ω3u3 (4)

We proceed as follows (See [3]): Multiply out both sides
of the above equation by the time variable t. Integrate both
sides from 0 to t and integrate by parts the terms containing
the integral of the products of t with the time derivatives
of the squared angular velocity. One obtains the following
expression, which is clearly free of any initial condition at
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time t = 0,

I1

[

tω2

1
−

∫ t

0

ω2

1
(σ)dσ

]

+ I2

[

tω2

2
−

∫ t

0

ω2

2
(σ)dσ

]

+I3

[

tω2

3
−

∫ t

0

ω2

3
(σ)dσ

]

= 2

∫ t

0

σ [ω1(σ)u1(σ) + ω2(σ)u2(σ) + ω3(σ)u3(σ)] dσ

(5)

From the obtained expression (5), we generate, by simple time
integration, the following system of three equations in the three
unknown constants





p11(t) p12(t) p13(t)
p21(t) p22(t) p23(t)
p31(t) p32(t) p33(t)









I1

I2

I3



 =





q1(t)
q2(t)
q3(t)



 = q(t)

(6)
where, for i = 1, 2, 3,

p1i(t) =

[

tω2

i −

∫ t

0

ω2

i (σ)dσ

]

,

p2i(t) =

∫ t

0

[

σω2

i (σ) −

∫ σ

0

ω2

i (σ1)dσ1

]

dσ,

p3i(t) =

∫ t

0

∫ σ

0

[

σ1ω
2

i (σ1) −

∫ σ1

0

ω2

i (σ2)dσ2

]

dσ1dσ

(7)

and

q1(t) = 2

∫ t

0

σ

[

ω1(σ)u1(σ) + ω2(σ)u2(σ)

+ω3(σ)u3(σ)

]

dσ

q2(t) = 2

∫ t

0

∫ σ

0

σ1

[

ω1(σ1)u1(σ1) + ω2(σ1)u2(σ1)

+ω3(σ1)u3(σ1)

]

dσ1dσ

q3(t) = 2

∫ t

0

∫ σ

0

∫ σ1

0

σ2

[

ω1(σ2)u1(σ2) + ω2(σ2)u2(σ2)

+ω3(σ2)u3(σ2)

]

dσ2dσ1dσ (8)

A. A feedback controller with fast identification

As in the linear system parameter identification case (see
[3]), the matrix P (t) =

(

pij(t)
)

is not invertible at time
t = 0, but it is certainly invertible after an arbitrarily small
time t = ε > 0. In the proposed certainty equivalence
controller (2), we utilize, during the calculation interval [0, ε],
arbitrary numerical values for the moments of inertia, I1, I2,
I3. After time t = ε, we proceed to substitute in the controller
expression (2), the computed inertia parameters, as obtained
from equation (6), which are now denoted by I1e, I2e, I3e.
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Fig. 3. Closed loop response of parameter uncertain rigid body to the
proposed controller identifier scheme

We thus propose:

u1 = −(I2e − I3e)ω2ω3 + I1e

(

−λ11ω1 − λ01

∫ t

0

ω1(σ)dσ

)

u2 = −(I3e − I1e)ω3ω1 + I2e

(

−λ12ω1 − λ02

∫ t

0

ω2(σ)dσ

)

u3 = −(I1e − I2e)ω1ω2 + I3e

(

−λ13ω1 − λ03

∫ t

0

ω3(σ)dσ

)

(9)

with




I1e

I2e

I3e



 =







arbitrary for t ∈ [0, ε]

P−1(t)q(t) for t > ε

(10)

Figure 3 depicts the performance of the feedback controller
(9)-(10), where the arbitrary values of the moments of inertia
were taken to be I1e = 0.5 [N-m-s2], I2e = 0.9 [N-m-s2] and
I3e = 0.6 [N-m-s2] during a time interval [0, ε] where ε was
determined by the violation of the condition: |det P (t)| ≤
10−16 (approximately 0.171 [s]). The computed values of the
moments of inertia precisely coincide with the values used
for the simulation of the system, i.e., I1 = 1.0[N − m − s2],
I2 = 0.5 [N − m − s2], I3 = 0.2 [N − m − s2].

Note that the proposed linearizing controller with the fast
identification scheme (9)-(10) is also robust with respect to
sudden constant disturbance moments, provided these per-
turbations appear after the inertia parameters have been ac-
curately computed. If the constant moments are present for
all times (i.e. from the beginning), then a similar linear
identification procedure can be still used by including the
unknown perturbation moments as further constants to be
identified in a linear fashion. Details of the solution of this
possible variant of the problem will be presented elsewhere.

Figure 4 shows the performance of the proposed controller
when the system is subject to sudden constant perturbation
moments appearing after the system parameters have been
identified. The perturbed model used in the simulations was
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Fig. 4. Closed loop response of parameter uncertain rigid body subject to
external constant perturbation moments

set to be,

I1ω̇1 = (I2 − I3)ω2ω3 + u1 + ξ11(t − τ1)

I2ω̇2 = (I3 − I1)ω3ω1 + u2 + ξ21(t − τ2)

I3ω̇3 = (I1 − I2)ω1ω2 + u3 + ξ31(t − τ3) (11)

with ξ1 = 0.04 [N-m], ξ2 = 0.05 [N-m] and ξ3 = −0.06
[N-m], with τ1 = 16 [s], τ2 = 10 [s] and τ3 = 14 [s].

In order to test the performance of our closed loop identifi-
cation scheme with respect to stochastic inputs and stochastic
measurement noises, we also run simulations on the following
perturbed system including measurement noises.

I1ṙ1 = (I2 − I3)r2r3 + u1 + ξ1 + η1

I2ṙ2 = (I3 − I1)r3r1 + u2 + ξ2 + η2

I3ṙ3 = (I1 − I2)r1r2 + u3 + ξ3 + η3

ωi = ri + νi, i = 1, 2, 3 (12)

with νi, i = 1, 2, 3 representing zero mean stochastic mea-
surement noises affecting the angular velocity measurements
and ξi, i = 1, 2, 3 being the components of the constant
perturbation moment vector. The additive perturbation signals
η1, η2 and η3 also represent zero mean stochastic input noises.

Figure 5 depicts the simulated performance of our controller
identification scheme when subject to stochastic input and
measurement noises. The computer generated noises used in
the simulations are represented by normally distributed quasi
random variables at each time instant. For the stochastic
processes affecting the measurement we used amplitudes of
the order 1×10−5 [rad/s]. The input perturbation noises were
taken to be of amplitude 1×10−4 [N-m]. The constant moment
disturbances representing the bias terms in the stochastic
inputs were taken to be the same constant perturbations used
in the previous simulation example.

IV. CONCLUSIONS

In this article we have proposed a direct, non-dynamic,
identification scheme for the explicit and fast computation of
the principal moments of inertia in a rigid body dynamics
described by the classical Euler equations requiring only input

Fig. 5. Closed loop response of parameter uncertain rigid body subject to
external stochastic perturbation moments with constant bias and stochastic
measurement noises

torques and output angular velocities. The principal moments
of inertia in the Euler equations were shown to be linearly
identifiable from the rotational kinetic energy expression writ-
ten in terms of the supplied energy. The identified principal
moment of inertia parameters are then used on a certainty
equivalence linearizing feedback controller, initialized with
arbitrary system parameter values, which achieves exponential
asymptotic stabilization (de-tumbling) of the angular velocities
around the main body axes and counteracts constant but
unknown torque disturbances.

When external unknown disturbance moment vectors are
present, the proposed identification controller scheme still pro-
duces robust performance and equilibrium recovery provided
these perturbations are all zero during the small time interval
where the parameter computation is carried out. The lifting of
this restriction is the subject of on-going research.

The proposed identification scheme is also applicable to the
under-actuated rigid body case with only two torque inputs.
Such system is also differentially flat (See [2]) and, hence,
a certainty equivalence linearizing controller, which avoids
singularities, is not difficult to devise.
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