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Abstract— A continuation method for the inverse kinemat-
ics of redundant serial robotic manipulators is presented
that maximizes the manipulators kinematic dexterity. The
algorithm consists in three steps. A predictor step achieves
geometric tracking of the target end-effector configuration.
An intermediate perturbation step reconfigures the predic-
tor value in self motion direction that increase dexterity. In
a final corrector step an admissible configuration, with in-
creased dexterity, in the neighborhood of the perturbed pos-
ture is determined. These three steps are applied iteratively
in each continuation step. Dexterity is justified by det JJT
and the inverse condition number of JJT, J is the manipu-
lator Jacobian. An algebraic expression for the gradient of
these measures is given, which allows a straight forward im-
plementation of the algorithm. Except at singularities the
iteration procedure converges rapidly and three iterations
were sufficient for all considered examples. The target end-
effector configuration is provided at discrete sample times
and no explicit information about its time dependence is
necessary. Thus the approach may be used as a ’plug-in’.
Its performance is demonstrated for a 4R wrist, a planar 5R.
and spatial 10R manipulator.
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I. INTRODUCTION

Redundancy of robotic manipulators can be exploited to
cater for various goals. It is exploited to minimize joint
motion or joint torques [4], to maximize the manipulators
manipulability [1,14] possibly avoiding singularities [7] and
to circumvent obstacles [13]. Common to these strategies
is the use of a pseudoinverse solution for the inverse kine-
matic problem (IKP). In order to achieve certain further
goals a potential function is minimized on variety of IKP
solutions. For path tracking/planing additional joint incre-
ments belonging to the kernel of the manipulator Jacobian
and pointing along the gradient of this potential field are
added to a particular IKP solution [6]. A proper minimiza-
tion was, however, not attempted.

In this paper a dexterity maximizing perturbation
method for solving the IKP of redundant serial manipu-
lators (SM) is given that accomplishes this minimization.
Before deriving the proposed path tracking method the
kinematics of redundant SM is described in section 2 using
the product-of-exponentials (POE) formulation on the ma-
trix Lie group SE (3). Section 3 recalls kinematic dexter-
ity measures and their frame invariance and independence
from some joint variables. Also the key for an efficient
implementation of the proposed scheme is provided: the
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algebraic expression of the gradient of dexterity measures.
The article concludes with two examples: a planar 5R and
spatial 10R manipulator.

II. ROBOT KINEMATICS

Robotic manipulators are rigid multibody system
(MBS). As such a SM is constituted by a single branch with
n rigid bodies B,k = 1,...,n of a tree structured MBS.
All bodies numbered in increasing order starting from the
ground By. Rigid body configurations are described by
homogenous matrices forming the Lie group SE (3) with
generating Lie algebra se (3) [10]. The configuration of By,
of is expressed by the homogenous matrix g (g9) € SE(3)

in terms of a rotation matrix R€ SO (3) and position vec-
k

tor p€ R?® w.r.t. an inertial frame (IFR)
k

C(q):<lk%(q) Ilj(q)>_ "

With the assumption that all technical joints can be as-
sembled with one-DOF joints the MBS contains ng revo-
lute and np prismatic/screw joints. Their joint variables
¢,k = 1,...,n are generalized coordinates of the config-
uration space V" = T"® x R"?. With the POE mapping
%‘: V™ — SE (3) [8,11] the configuration of By, is

k

, M€ SE(3), X€ se(3), (2)

Xq
...Mek:
k

i

. . Xq
where M is the constant transformation and eiq is the

k3
variable transformation of a B;-fixed to a B;_;-fixed refer-
ence frame. ¢' is the joint variable of the joint linking B;
to B;_1 and the matrix X is given in terms of the screw

(3
vector X € R® x R® associated to joint ¢ via! X=X7 E;j with

Ei,...,Eg being a basis for the Lie algebra se (3) deduced
from the B;_;-fixed joint frame. X J are the Pliicker screw

\4
coordinates. The respective conversion is denoted by X=X
(2 (2
and X=X. The body velocity of By, is found from V:C_lg'
i kok
as the push forward mapping T,V" — se(3)

V=Ki¢', with K; =Ad -14(X), (3)
koK k koo

i

1The Einstein summation convention X*¢; = >y X is used.



with the Adjoint operator Ad : SE (3) x se(3) — se(3).
The kinematic basic functions (KBF) K; (also termed the
k

geometric Jacobian) play a fundamental part in mechanism
analysis [9]. In vector form the KBF of B, is assembled in

K = (Kl) € R%". The end-effector (EE) is represented
n
by an EE frame (EFR) mounted on B,,. Let M€ SE (3)
E

be the EFR configuration w.r.t. the B, frame. The EE
configuration and velocity is
C(a) =C (a) M, V = Adjy (Kid'). (4)
n E N

The se (3) matrix V € se(3) contains the angular velocity
tensor w € so (3) and the linear velocity vector v € R3:

(i 3)

The left invariant metric on SE (3), i.e. a metric for which
(X,X)=XTGX,X € se(3), is independent from the par-
ticular IFR, is

G(a,ﬂ):<06f ;I>,a,ﬂe]1§. (6)

This metric, however, depends on a scaling factor /3 that
scales rotation vs. translations [10]. The EE accessibility
distribution
D:qe V" D(q) =span(Ady; (Ki(q))) C se(3)
E n
assigns to each configuration ¢ € V the vector space of
possible EE velocities. Its involutive closure D is equivalent
to a subalgebra of se (3) w.r.t. a conjugation. It is always
D = Span(Kia [Ki7 Kj], [Ki7 [Kj7 Kk]]v [Ki7 [Kj7 [Kk7 Kl]]])
n n n n n n n n n n
but in general less then three Lie brackets are necessary
[8]. Here [X,Y] = XY — YX is the Lie bracket on se (3).
The accessibility algebra D is the vector space containing
all possible EE velocities, the corresponding group exp D
containes all possible EE configurations, and is thus a main
characteristic of the SM.
With P being a projector to D the EE Jacobian in

V=1Jgq (7)
is J := PAd]T/‘,lK, where Ad is the matrix of the adjoint
E

map [10] and \\;E V = (w,v)" is the EE twist vector. E.g.
in case of planar manipulators D £ se (2) and P removes
all non-planar components. Denote the instantaneous EE-
DOF by d(q) = dim D (¢q) = rank (J; (¢)). The global EE-
DOF of a SM is d = maxgey»d(g). If the mechanisms
DOF n is larger than the EE-DOF the SM is redundant
with a redundancy n —d and the Jacobian matrix J € R4
is non-square.

Since for redundant SM (4) is not injective at regular
g € V™ there is an n — d dimensional self motion subman-
ifold M) C V™ such that C'(p) = C(q),Vp € Mc(y).
Moreover, there are in general several such self motion man-
ifolds intersecting at EE singularities. The number of self
motion manifolds was addressed in [2] and is closely related
to the number of inverse kinematics solutions.
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ITII. KINEMATIC DEXTERITY

Several local kinematic and dynamic dexterity measures
(or manipulability measures) were introduced to character-
ize manipulator dexterity. Two such kinematic dexterity
measures are [14], [3]

w2 = 1/4/k(JJT) and pz = Vdet JJT, (8)

where x(JJ7) is the condition number of JJ?. Each mea-
sure accounts for a particular goal, us is proportional to
the EE velocity ellipsoid in se (3) and p» determines its de-
formation. It shall be noted that both measures are based
on the left invariant metric (6) on SE (3) which depends on
the scaling of translations and rotations. However, never-
theless they constitute proper manipulability measures in
the sense that both penalize EE singularities, i.e. config-
urations with dg (¢) < dg. Hence regardless of the used
scaling path planing strategies may ovoid EE singularities
and nearby points by incorporating either measure. A use-
ful result is the following lemma.

Theorem 1: Both measures are invariant from the IFR
and ps is invariant from the EFR. It holds that ps =
2 (ql,...,q"_l) and pz = s (ql+1,...,qm_1), where [ =
max(i|[Y,Y], 1 <i=0)and m = min(i[[Y,Y] =0,Vi <n).

k3 (2 n

Hence ps3 is at least independent from ¢' and ¢™.

For a redundant SM, with prescribed EE motion C (t),
the inverse kinematics may select those points from the self
motion manifold for a fixed C (¢) that maximize dexterity.
Aiming the solution of the IKP while maximizing dexterity
it will be necessary to compute gradients of the manipu-
lability measures. Crucial for the computational efficiency
of the path tracking method is the algebraic determina-
tion of these gradients. The derivatives of the KBF are
algebraically expressed as [8]

0y Ki = [Ki, Kj], i < j <n. 9)
n n n

The determinant of A = JJT is det 4 = }, AijA*é.,Vj,
where A*'; is the cofactor of A’;, and its derivative is
O det A =37, 575 9 A A*. With (9) the terms 9,5 A =
8y JJT +J0y5 J* and thus V, 3 can be given algebraically.
Though the gradient of ps can also be derived algebraically
in what follows the path tracking will only incorporate us.

IV. PATH TRACKING VIA CONTINUATION

The potential advantage of redundant manipulators is
that an optimal posture can be chosen from the self mo-
tion manifolds that maximizes dexterity and thus possi-
bly avoids EE singularities. Given a desired EE trajectory

(C ),V (t),t €[0,1] the IKP is to find ¢(t) such that
C (q(t)) = C(t). A solution is, with given initial values,
obtained by integrating the under-determined DEQ system

J (q) ¢ = V (t) using the particular solution
q=J"V () (10)

in each integration step, where J7 is the pseudoinverse of
J. Except at singularities it can be obtained as



Jt=JT (JJT)_I. Continuation methods for path track-
ing solve the IKP using the particular pseudoinverse so-
lution ¢ = J¥V (t) + (I — J*.J)go to predict joint veloci-
ties. A variety of approaches choose this null-space velocity
to achieve a particular goal [1,4,6] but the obtained solu-
tion is not optimal and depends on a damping parameter.
The algorithm proposed here uses an iterative procedure
to avoid these dependence. In order to maximize dexter-
ity while tracking C (¢) along C (t), the arbitrary tangent
vector (I —JtJ)go € kerJ to the self motion manifold
passing through ¢ is used to serve a gradient search.

Continuation methods basically solve the IKP by ad-
justing ¢ at discrete sample times t;41 = t; + At; so
that C(q(tiy1)) = C(tir1). Denote with ¢; := q(t;)
and Ag; := qi+1 — qi- If ¢; is a IKP solution at t;,
ie. Cl(g) = C(t;), then the IKP at time step i + 1
is to find joint increments Ag; such that C (¢; + Ag;) =
C (t; + At;). For infinitesimal joint increments it holds
C (¢ +dq) = C(q)+9,C (q) dg. The corresponding config-
uration change AC (q) (dg) = C~ 1 (q) C' (¢ + dq) € se(3) is
found as AC (q) (dq) = I + J (g) dq. For sufficiently small
but finite Ag; it holds

AC (¢i) (Agi) = I+ T (¢i) Ag; (11)
though AC (¢;) (Ag;) ¢ se(3).
The target increment for the transition ¢; — ¢;411

is 6*1(75 )C (t; +Ati).
ie. C(gi) = C(t;), then the joint increment steering
from C (t;) to C (tiy1) is thus implicitly determined by

If ¢; is a solution at time ¢;,

AC (¢:)(Aqi) = AT (g:, At;) with
AC (g1, At) :=C () C (ti+Ak).  (12)
This increment is, with (4 — I)” = AV, predicted by
Ag; = J*(g;) AC (i, At;)” (13)

The prediction error is the distance of C (¢q; + Ag;) and
C (ti+1), compatible with the left invariant, i.e. IFR inde-
pendent, metric G («, ) on SE (3) [10]

(14)

4(A,B) = o [log Ry 'Ry |0 + B Ip4 — p5ll.

Here log R = 2sm¢ (R — RT) is the log function on SO (3)

and ||w||§o(3) = —1tr (w?) is the norm on so(3) such that
llog R|,,(5) = || is the angle of the rotation determined
by R. For small rotations the log function is approximated
by log R ~ 1 (R — R"). Hence the path tracking problem
is to find ¢ (¢) fulfilling

d(C(t),C(q(t) =0,t€[0,1] (15)
for a given curve C (t). For redundant SM the solution is
not unique and at fixed time a q € M@(t) can be chosen that

maximizes dexterity. Presumed C () is a smooth curve in
SE (3) and because C, us and ps are analytic functions
the solution of (15) will be a smooth curve in V", except
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at singularities, where dimker J > n —d. Let ¢; be an
optimal solution at t; such that d (C (q),C (t)) = 0 and
w3 (g;) = max(usz (q),q € M@(ti))- The solution ¢j+1 =
q; + Ag; of

{ w3 (gi—1 + Agi—1) — max }

_ (PT;)
d (C (gi-1 + Agi—1),C (tl)) =0

will be an optimal posture at time t; 11 = t; + At;.

A perturbation approach is proposed here to solve (PT;).
It consist in a predictor, perturbation and corrector step.
The idea is to perturb the predictor value (13) in direc-
tion with increasing dexterity, so that Ag; is closed to the
gradient V,us|,,. A solution of

lAg; —
with  AC (¢, At;) =T+ J (g;) Ag;

AV, us|” = min (16)

and A > 0 is a combination of the predictor term (13) and
a dexterity increasing perturbation vector projected to the
null-space of J (g;)

I (q:) (AC (g3, t:) = 1)Y +
+ (I — J" (@) J(qi)) V‘I'u3|q=qi :

This solution yields a posture closer to a dexterity maxi-
mizing solution of (PT;) but will not fulfill the geometric
condition (15) for finite AC. In a third step the obtained
joint increment is corrected with (13) in order to fulfill
d(C (g; + Ag;),C (tix1)) = 0. Since the pseudoinverse so-
lution is a minimum norm solution (A = 0 in (16)) this
correction will remain closed to the perturbed posture with
increased dexterity. The prediction, perturbation and cor-
rection steps are applied iteratively until the component
of V,us tangential to the self motion manifold MC(t ) 18
below a specified threshold . This accomplishes a gradlent
search on Mx Cltizn)" The perturbation algorithm applied in
each contlnuatlon step is summarized as follows:

Ag; = (17)

Predictor-perturbation-corrector algorithm at time #;41

o Initialization: Ap? :=0,Aq? :=0,j:=1
o Input: actual time ¢;41 = t; + At;, solution ¢; of PT;
e Do

- predictor step j

pi=J g+ Agl )AC(gi+q/ i)
- perturbation step j
6= (I=J (i + Ad))(J (i + Ad])) Vsl y—g y agi—

Api‘ =

_ ])V

p+/\,6

- corrector step j
vi=J% (g + Apl !

Aqi‘ = arg miH(Ati Umax; ’7)

Y(AC(g; + Apl~' 1) — 1)V

N |
While ||§]] > &, V d (6 (tis1),C (qi + Aqg')) > e
o Result: Ag; := Aqf solving PT;




If ¢ is time then vmax = maxy; ||¢|| is the maximally ad-
missible joint velocity determined by the drive capability
and thus At;vmax is the maximal in At; achievable joint
increment and a maximum for Ag;. The precision goal for
the geometric tracking problem is determined by ¢4 and
that of the dexterity maximization problem by €.

As for all gradient based tracking schemes the choice
of A\; is crucial. The step size \; must at least en-
sure that the perturbation A\;d is at the same scale as
the increment Ag; and does not exceed the maximally
achievable joint increment. An estimate for the maxi-
mal norm of V3 is found by considering non-redundant
SM for which puz = |detJ|. The partial derivative
is 9 detJ = Y rdet (Ky-+0,K; -+ K,) and because
span (K1 Oy K - -Kn) =span (K --- [K;, K] --- Ky)

C AdyDg there is a ¢ € V" for which uz(q) =
E

det (Ky---0,4K;--- Ky) (g) (not considering joint limits).
Since at least 0jipuz = Oynpz = 0 it holds that Jgips <
(n — 2) 3 max- This bound proved to be valid also for re-
dundant SM. The step size that limits Ag; to this bound

8 At
i Umax
N=——————. 18
(n - 2) M3 max ( )

For constant time steps \; = A.

V. EXAMPLES

The proposed algorithm was applied to a variety of ma-
nipulator structures and proved to be very efficient and
robust. Three examples are presented here. The first
is a 4R wrist mechanism proposed in [14]. This mecha-
nism, used as orientation device, has a EE DOF d = 3
and thus a redundancy of n — d = 1. The initial pos-
ture of the 4R wrist is shown in figure 1 corresponding to
q = (ql,q2,q3,q4) = (0,7/2,—m/6,0). The desired EE
motion is a rotation about the vertical axis starting from
this position with a velocity of /6 rad/s. Figure 2 shows
results for the standard pseudoinverse and for the proposed

ﬂ\
Initial ! " Start configuration Y
nitia _ .
configuration a=(0.0/2,5/6,0) 3 T‘
q=(0,0,0,0)
/
I M |
uJ ;
-
1
-
Fig. 1. Redundant 4R wrist in its initial and start configuration.
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perturbation method. In both solutions ¢ and ¢* remained
constant. The step size is At; = 0.01 s and the distance
metric with @« = § =1 was used. While the pseudoinverse
solution controls the manipulator through the singularity
the predictor-corrector method maximizes its dexterity and
thus avoids this singularity. At all sample points one iter-
ation was sufficient to achieve a precision in the range of
the working precission.

q

perturbation method

pseudo inverse

t[s]

o5 ‘ ‘ ‘ ‘ ‘ i
q3 - perturbation method

2.5 +

pseudo inverse

t[s]

1a | ‘ ‘ ‘ o "]
12 + ’ - S, 4
perturbation method g -
1 ’ -
08
06 1 ‘ pseudo inverse
04
02 |
ol
0 2 4 6 t[s] 8 10 12
Fig. 2. IKP solutions for the 4R wrist rotating the EE about the

vertical axis with constant velocity 7/6 rad/s.

As second example the planar 5R manipulator in figure
3 is considered. It has a EE DOF d = 3, degree of re-
dundancy n —d = 2 and unit limb lengths. The EE is

tracked along a straight line in SE (3) w.r.t. to the met-



ric (6), with scaling & = 8 = 1. That is the EE has to
move along a straight line in R® connecting the start point
(—4.99,0.11,0) and target point (0, 1,0) while rotating with
constant speed to the target configuration. The task dura-
tion is only 1 second and thus the linear velocity is almost
V26 m/s. Further a relatively large step size of At; = 0.01s
was chosen. Even though this coarse sampling and fairly
high velocity the accuracy goal of e = 4 = ¢, = 107 three
iterations were sufficient in each time step (figure 4). Ob-
viously at the begin where the manipulator is very closed
to a singularity, where J becomes ill conditioned and the
convergence is poor and would furthermore be lost in this
singularity. At one side this is at due to the predictor (13).
On the other side the condition ||d|| < g, is not a proper
convergence criterion because in a singularity there are al-
ways increment belonging to ker.J that are not tangent
vectors to one of the self motion manifolds. These incre-
ment vectors would possibly leave the set of addmissible
configurations which in turn violates the geometric conver-
gence criterion. So closed to singularities the algorithm will
not converge.

1

Target

0.5

-0.5

Perturbation——"
method

Fig. 3. Motion of the planar 5R mechanism tracking the EE along a
straight line in SE(3) from Start to Target EE configuration.

number of iterations for 0= 10"

5
Fig. 4. Manipulability measure p3 during motion of the planar
5R mechanism. The shown number of iterations where necessary
to achieve the acuracy ¢ = 10~
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Figure 5 shows results for a more complex spatial 10R
manipulator with EE DOF d = 6 and redundancy n —d =
4. Starting from the same initial configuration the pseu-
doinverse and the proposed disturbance method yield com-
pletely different motions. Again the task duration is 1 s
only and the sampling time is At; = 0.01 s. The scheme
converges within three iterations per time step (Figure 6).
Clearly the manipulability measure is increased during the
motion for the 5R and 10R example compared to the re-
spective pseudoinverse solution. With more realistic, i.e.
lower velocities and smaller step size the method only needs
one iteration.

.
4
~
|
i Target
L v
)’:j P -
T=IB-T " “reoimene =
4G, Perturbation / &
| method D
pod
7 |
1L
)
Q .
s.\\ /
\\"O \ —
o -
P e ~H -
Start % //\\
// \\
Fig. 5. Motion of the 10R mechanism tracking the EE along a

straight line in SE(3) from Start to Target EE configuration.

Perturbation method

Pseudo inverse method

iterations

4 0‘6 O‘R 1
Fig. 6. Manipulability measure 3 during motion of the 10R mech-
anism. The shown number of iterations where necessary to achieve
the acuracy € = 10~6



VI. CONCLUSIONS

The introduced perturbation method for the IKP solu-
tion for redundant manipulators yields configurations with
increased kinematic dexterity. The necessary number of
iterations in each continuation step is low and tends to
one in regular points. The proposed method can also be
applied for joint torque minimizing IKP solution, where in-
stead the inverse of p2 = det JJ? is maximized, i.e. us is
minimized (Note, however, that EE singularities are attrac-
tors for this problem [4]). Also using the inverse condition
number o instead of pu3 would yield the positive side effect
that the error propagation, which is related to the condi-
tion number, is kept at minimum. If (13) is replaced by a
singularity consistent IKP solution [5,12] it may also con-
tribute to path tracking through singularities, where in sin-
gularities the optimal value of ps and us is zero, however.
As further improvement a singularity consistent gradient
method for the IKP solution can be constructed based on
the distance measure (14), which has the advantage that
all gradients are given algebraically in closed form. The ap-
proach also extended to parallel manipulators, where the
geometric loop constrants and the path tracing constraints
are treated in a uniform way.
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