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Abstract—In this article, an `-step ahead output uncertainty prediction
algorithm for linear discrete Auto-Regressive (AR) systems is presented.
The novelty in the suggested scheme stems from the utilization of a lat-
tice filter for the system description. Subject to the a priori bounds of the
lattice-filter’s reflection coefficients and the operating limits of the exciting
signal, the set all the feasible predicted output values is computed. This
computation is recursive over the length of the `-step ahead time window
and the number of stages of the lattice filter. Simulation studies are used to
investigate the efficacy of the suggested scheme.
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I. INTRODUCTION

T
I me series prediction of linear discrete systems [1], has
matured over the past years with the numbers of publica-

tions too large to be cited inhere. Certain algorithms [2] exhibit
some degree of conservatism due to the volume of the a priori
required knowledge regarding the system model. The system’s
structural description (transversal, cascade, parallel, lattice) and
order, the transmission delay, and the degree of stability are
amongst those parameters that need proper attention in the al-
gorithm’s initialization process.

The majority of research has focused on the transversal struc-
ture [3] with fixed parameters reflecting the typical IIR and FIR-
parametrization of the system. The system’s parameters are as-
sumed to be known and the output of the process is predicted
over an `-step ahead prediction horizon. Recursive schemes and
computationally efficient algorithms have appeared [4], while
certain branches of research have focused in the algorithm’s ro-
bustness and accuracy [5–7] due to the numerical quantization
of the system’s parameters. Issues related to the parameters’ nu-
merical accuracy (i.e., quantized values from sampling proce-
dures) as well as roundoff errors and numerical conditioning as-
sociated with the algorithms’ implementation (i.e. using fixed-
point rather than floating-point operations) have been discussed
extensively in the literature [8, 9].

In comparison to the transversal filter, a lattice filter is modu-
lar, and has better robustness and numerical conditioning prop-
erties compared to the classical transversal structure [10]. The
stability of the lattice filter can be inferred by simple monitoring
of the magnitude of its reflection coefficients. However, despite
the relevant merits that are embedded in a filter employing a lat-
tice structure, there has been scant attention in the utilization of
lattice filters for prediction purposes [11].

It should be noted that most of the forecasting algorithms re-
gard the model description as a singleton, where the model’s
parameters have fixed known values. Subsequently, the typical
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prediction requirement amounts to the computation of a single
future system output value that minimizes a certain cost func-
tional.

For the case of uncertain systems, rather than predicting dis-
tinct future output values, the problem of forecasting the in-
tervals within which the prospective output will vary is con-
sidered to be of increased complexity. This problem has been
partially addressed in the research domain of set membership
identification (SMI) [12, 13]. In SMI, the objective is to iden-
tify a closed-set (ellipsoid, polytope, orthotope) within which
the model’s parameters vary subject to the uncertainty of the
model. In most applications, there is an uncertainty embed-
ded in the model’s transversal coefficients inferred by the noise
contaminating the measurements. The prediction of the uncer-
tainty intervals within which the output is constrained subject to
the uncertainty of the system has been discussed in recent re-
search efforts [14, 15], where the underlying stable model was
of transversal structure with known order.

The presented work in this article contributes in the prediction
area of the system’s output bounds (uncertainty). The novelty of
the suggested algorithm comprises in the usage of a model with
lattice rather than a transversal structure, with the uncertainty of
the predicted output stemming from: a) the partial knowledge
of the model’s reflection coefficients, and b) the bounds of the
noise contaminating the measurements.

The problem of describing the output uncertainty for an un-
certain lattice filter is addressed in the sequel, followed by the
prediction problem in Section III. Simulation studies to explore
the applicability of the proposed algorithm are presented in Sec-
tion IV, followed by concluding remarks.

II. OUTPUT UNCERTAINTY PREDICTION PROBLEM

STATEMENT

Consider the following AR-discrete stable system of orderM ,
as shown in Figure 1 with the ensuing nominal transversal pa-
rameterization:

y(n) =

MX
i=1

aÆi y(n� i) + u(n� 1) ; (1)

where aÆi are the nominal AR-parameters, and y(n) and u(n)
correspond to the system’s output and input respectively at the
n–th time instant.

Let the uncertainty embedded in the system with a nominal
transfer function from (1)
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Fig. 1. Output uncertainty prediction problem structure
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1
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:

Assume that the measured input ur(n) and output yr(n) sig-
nals are contaminated with noise of known bounds, or u r(n) =
u(n) + wu(n) and yr(n) = y(n) + wy(n), where jwu(n)j <
Wu(n), jwy(n)j < Wy(n) with Wu(n) and Wy(n) known a
priori. Due to these contaminating noise sources, it is equiva-
lent to state that the actual system input and output sequences
can be determined at each sample with a predetermined accu-
racy, or

u(n) 2 [ur(n)�Wu(n); u
r(n) +Wu(n)] =

�
u�(n); u+(n)

�
;

y(n) 2 [yr(n)�Wy(n); y
r(n) +Wy(n)] =

�
y�(n); y+(n)

�
:

The system’s equivalent nominal lattice parametrization [16],
amounts to the formation of a sequence of primitive ”butterfly”
blocks placed in a cascade configuration, as shown in Figure 2.
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Fig. 2. Lattice–filter structural configuration of AR–system

Classical two–port circuit theory can be used to analyze the
behavior of this lattice structure [17]. Based on this observation,
each stage is considered as a two-input / two output system with

an admittance description

�
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where fÆm(n) (bÆm(n)) is the nominal forward (backward) pre-
diction error of the mth-stage, and z�1 corresponds to the delay
operator. The kÆm; m = 1; : : : ;M parameters, known as the
nominal systems reflection coefficients, characterize the behav-
ior of each stage. The system’s stability is guaranteed through
the restriction of the reflection coefficients within a hypercube
fk1 � k2 � : : : kMg 2 f[�1; 1]� [�1; 1]� : : : [�1; 1]g �

<
M .
The lattice-structure’s boundary conditions are:

fÆM (n) = u(n� 1); and fÆ
0
(n) = bÆ

0
(n):

The input-output nominal system description can be computed
based on the observation that

y(n) = fÆ
0
(n) = fÆM (n)�

MX
m=1

kÆmb
Æ

m�1(n� 1) : (3)

In a similar manner, working with the lattice parameteriza-
tion, the uncertainty about the system can be reflected through
the reflection coefficient vector ~k = [k1; : : : ; kM ]

T , or

~k 2 [kÆ
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n
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o
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T
o
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The link between the direct and lattice form parameterizations
can be found from the following relationships shown in Table I.
It should be noted that an orthotope reflection coefficient uncer-
tainty is not mapped at an equivalent AR-parametric uncertainty
of the same orthotopic-shape.

TABLE I

LATTICE TO AR–REALIZATION

D1(z) = k1
Recursive Computation – For AR-order m = 2; : : : ;M .
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In order to facilitate the mathematical formulation, consider
the following notation concerning the interval arithmetic of a
fixed, yet uncertain bounded quantity. The notation �x indicates
that x takes values over an interval restricted by x 2 [x�; x+];

the width of this interval is defined as w (�x)
4

= x+ � x�. Fur-
thermore, classical interval arithmetic theory [18] states that the
addition and multiplication operations over two interval quanti-
ties �x1 and �x2 are defined as
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In this research effort, the objective is to compute the `–step
ahead interval of the system’s output ŷ(n+ `), subject to:
� the knowledge regarding the system’s interval inputs u(i) 2
[u�(i); u+(i)] ; i = n+ `� 1; n+ `� 2; : : :,
� the system’s interval output y(n� 1) 2

�
y�(n� 1); y+(n� 1)

�
,

and
� the system’s uncertainty indicated by the bounds of the reflec-
tion coefficients km 2 [k�m; k

+

m].
Inhere, it is emphasized that the predicted output interval must

contain the actual future system response, or

y(n+ `) 2 ŷ(n+ `) =
�
ŷ�(n+ `); ŷ+(n+ `)

�
:

III. `-STEP AHEAD OUTPUT PREDICTED UNCERTAINTY

From the single–stage input/output description from (2), the
expressions relating the interval outputs of each stage at the nth
sample, can be computed recursively as

fm�1(n) 2
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i
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m
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�
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where the m-index of each stage varies recursively within m =
M; : : : ; 1.

The boundaries of the quantities fm�1(n) and bm(n) can be
found, based on the interval arithmetic properties as
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This recursive procedure is computed over the order m =
M; : : : ; 1 of the lattice stages, and is initialized with:
� f+M (n) = u+(n� 1) and f�M (n) = u�(n� 1) for the case of
a partially known exciting input, and
� b+

0
(n� 1) = y+(n� 1) and b�

0
(n� 1) = y�(n� 1).

At the end of the first recursion in time, the predicted output
uncertain interval can be inferred from ŷ(n) = f0(n) = b0(n).
The aforementioned recursion, shown in (6) is repeated for
n+1; : : : ; n+ `with the backward substitution of the reflection
coefficient-intervals from the previous recursion. In a similar
manner, the boundary conditions are:
� f+M (n+ i) = u+(n+ i�1); f�M (n+ i) = u�(n+ i�1) and
� b+

0
(n+i�1) = ŷ+(n+i�1) and b�

0
(n+i�1) = ŷ�(n+i�1)

for i = 1; : : : ; `.
The predicted output uncertainty interval ŷ(n+ `) is com-
puted after `-iterations of the recursive set of equations
in (6). Is should be noted that during this computation, the
set of all intermediate predicted output intervals are inferred
ŷ(n); ŷ(n+ 1); : : : ; ŷ(n+ `).

The uncertainty of the predicted output, as expressed by the
width of the predicted interval, can be computed as

w
�
y(n+ `)

�
= w

�
u(n+ `� 1)

�
+ w

�
kmbm�1(n+ `� 1)

�
:

This quantity is a monotonic function with respect to the predic-

tion horizon, or w
�
ŷ(n+ i)

�
< w

�
ŷ(n+ j)

�
, for i < j.

IV. SIMULATION STUDIES

For simulation purposes, we consider a second-order AR–
process with its poles located at�0:76�0:5678�; its correspond-
ing kÆi reflection coefficients are set at [kÆ

1
; kÆ

2
] = [0:8; 0:9]. The

system is excited with a zero mean uniform white noise bounded
in the interval [�1; 1]. There is a multiplicative 10% uncertainty
associated with the reflection coefficients, or k1 2 [0:72; 0:88]
and k2 2 [0:81; 0:99].In Figure 3 we present the mapping of the
orthotopic reflection uncertainty to its equivalent uncertainty re-
garding the system’s pole–locations.

k1

k
2

Fig. 3. Reflection coefficient to pole uncertainty mapping

The input and output data streams are quantized and subse-
quently fed to the prediction routine. The uncertainty regarding
the knowledge of the measured quantities stems from the quan-
tization process, or wu(n) = wy(n) =

Umax
min

2
Q , where Q corre-

sponds to the accuracy (# of bits) of the quantizer and U max

min
is

the dynamic range of the quantizer unit; in the ensuing simu-
lations Umax

min
= 10. The previous recursive algorithm is used

to compute the predicted interval output ŷ(n+ `), as shown in
Figure 4.
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Fig. 4. Lattice-based output interval prediction

The results for the one-step (` = 1) ahead prediction uncer-
tainty intervals appear in Figure 5. In this Figure’s top (bot-
tom) portion, the output y(n) and the bounds ŷ(n+ 1) are pre-
sented for the case of a Q = 4 (12)–bit quantization pro-
cess. As expected, the actual output y(n + 1) is restricted
within the bounds of the predicted uncertainty, or y(n + 1) 2
[ŷ�(n+ 1); ŷ+(n+ 1)].



Similarly, the larger measuring uncertainty (wu(n); wy(n))
emanating from the usage of a less accurate quantizer, results
in a higher prediction uncertainty. This is clearly indicated by a
visible comparison of the bounds of the predicted output interval
between the top (Q = 4) and the bottom (Q = 12) case.
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Fig. 5. One-Step Ahead Predicted Output Uncertainty Bounds

In Figure 6, we present the system’s predicted output se-
quences for a one-step and a two-step ahead prediction horizon
for the case of the 12-bit quantized data stream. The bounds
for the latter case are significantly larger than the ones for the

shorter horizon, or w
�
ŷ(n+ 1)

�
< w

�
ŷ(n+ 2)

�
.
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Fig. 6. 1- & 2–Steps Ahead Predicted Output Uncertainty Bounds

V. CONCLUSIONS

The main contribution of this paper is the design of out-
put uncertainty predictors, based on lattice filters in a recursive
scheme, for linear AR–models of known order. These predic-
tors instead of predicting a future value of the output, predict

the confidence interval that includes the nominal future value of
the system output, based on the a priori known parameter un-
certainty intervals of the reflection coefficients and the bounds
of the system driving signal. The presented algorithm is recur-
sively computing the bounds for the output of each separate lat-
tice stage, and finally the bounds for the last stage that equals
the system output. It is shown that the width of the confidence
intervals increases with respect to the prediction horizon.

Extensions of this work to ARMA-systems of unknown or-
der are underway. Furthermore, the adaptive version of this
scheme for identification of the reflection coefficients’ bounds is
expected to fulfill the gap in the SMI-area of systems expressed
by a lattice filter configuration.
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