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Abstract— In this note we study some relationships exist-
ing between two widely applied control techniques, namely
relay feedback control and high-gain saturated feedback con-
trol.

I. Introduction

In the last thirty years, many different approaches have
been employed to study high-gain control systems schemes
(see for instance [4], [5], [6], [7]). As is known, high-gain
feedback is commonly used in several situations to reduce
the effects of disturbances and nonlinearities on the system
performance, in terms of both stability and properties of
the controlled variables. However, when hard bounds on
the control signal magnitude are present, i.e. |u(t)| ≤ umax,
as it happens in many realistic control problems, the effec-
tiveness of the high-gain control approach is reduced, since
such a technique usually requires very large control actions.
As noted in [8] and [9], there exist even open-loop stable
systems where a high-gain feedback law with saturation
does not make the origin a global attractor.

High-gain control also plays an important role in sliding
mode control systems [2], [3]. As is known (see the classic
textbook [1]), when relay control is adopted, the controlled
system exhibits two modes of operation, namely the bang-
bang mode and the sliding mode, where the chattering phe-
nomenon may occur, due to the presence of unmodeled dy-
namics, switching time delays, and other parasitic effects.
The most commonly cited approach to reduce the effects
of chattering has been that of approximating the switching
element with a linear feedback gain in a boundary layer of
the sliding manifold [2], [7]. In order for the system behav-
ior to be close to that of the ideal sliding mode, particularly
when an unknown disturbance is to be rejected, sufficiently
high gain in the linear term is needed.

Referring to Fig.1, we can consider an “ideal” relay as
the limit of a saturated feedback device (“real” version of a
relay) as the feedback gain of the linear term tends to infin-
ity. Then, a question that naturally arises is the following:
Is it possible to derive some of the structural properties of
an ideal relay control system by a limiting approach start-
ing from a feedback saturated system? In this note, we
show that the sliding manifolds and the regions where the
devices behave linearly get arbitrarily close as the gain in
the “real” relay becomes increasingly large, as well as the
linear dynamics on the sliding manifolds. The note is or-
ganized as follows. In Section II some basic facts on relay
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Fig. 1. (a) “Real” and (b) “ideal” relay.

systems are briefly reviewed. In Section III, the properties
of the high-gain feedback systems are discussed and in Sec-
tion IV their behavior as the linear gain tends to infinity
are analysed. A numerical example is reported in Section
V, and some concluding remarks are presented in Section
VI.

II. Preliminaries on relay systems

In this Section we recall some basic facts and results on
relay systems. Let us consider the single input system with
state feedback control and an ideal relay at the input

{
ẋ(t) = Ax(t) + bu(t)
u(t) = sign(Kx(t)) . (1)

Assume that (1) is completely controllable and Kb �= 0
(by the properties of the sign function, with no loss of
generality we take Kb = ±1). Let the region R be defined
as

R := {x ∈ Rn : Kx = 0 and |KAx| < 1} .
It is well known that if Kb = −1 trajectories correspond-

ing to initial conditions x(0) sufficiently “near” to R are
attracted to R, whereas if Kb = 1 the state trajectories
“avoid” R. If x(t) enters the region R at a (finite) time
instant t0, and remains in R in a time interval [t0 t1], with
t1 > t0 (possibly, t1 = +∞), then the value of u(t) is uni-
vocally determined (simply use the condition on x(t) to
belong to R for t ∈ [t0 t1]) from the following formula

u(t) = KAx+γKx = K(A+γI)x, ∀γ ∈ R, ∀t ∈ [t0 t1].

Therefore it is possible to derive the following expression
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for the state dynamics

ẋ(t) = [(I + bK)A+ γbK]x(t) := Fx(t) . (2)

By pre-multiplying (2) by K, if Kb = −1 we obtain

Kẋ(t) = [K(I + bK)A+ γ(Kb)K]x(t)
= [KA+ (Kb)KA− γK]x(t)
= −γ(Kx(t))

and therefore

d(Kx(t))
dt

= −γ(Kx(t))

so that
Kx(t) = Kx(t0)e−γ(t−t0) .

As a consequence, if Kx(t0) = 0, then Kx(t) = 0 ∀t ≥ 0, as
it has to be in R. Indeed, if we took u(t) = K(A+ γI)x(t)
even outside such manifold, the feedback law would still
guarantee that Kx(t)→ 0 if γ > 0.

To analyze the structure of the matrix F in (2), we as-
sume without loss of generality that the pair (A, b) is in
canonical controllability form and Kb = −1, i.e., K =
[k1 k2 . . . kn−1 − 1]. A simple computation shows that F
is in companion form and its n-th row is given by the row
vector

[γk1 , γk2 + k1 , γk3 + k2 , . . . , γkn−1 + kn−2 , kn−1 − γ] .

Let us now introduce an useful change of basis in the state
space. If we choose

T =




1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
k1 k2 k3 . . . kn−1 1




so that the state vector in the new basis is given by



z1
z2
...

zn−1

zn


 = T−1x =




x1

x2
...

xn−1

−Kx


 ,

then we obtain

T−1FT =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
k1 k2 k3 . . . kn−1 1
0 0 0 . . . 0 −γ




(3)

Therefore, if we define

x̃(t) :=




x1

x2
...

xn−1




we have that the evolution of x̃ is given by

˙̃x(t) =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
k1 k2 k3 . . . kn−1


 x̃(t)−




0
0
...
0
1


Kx(t) (4)

with
d(Kx(t))

dt
= −γ(Kx(t)) . (5)

Recalling that equation (2) can be used only when x(t) ∈ R
(and, therefore, Kx(t) = 0), (4)-(5) reduce to

˙̃x(t) =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
k1 k2 k3 . . . kn−1


 x̃(t)

and Kx(t) = 0. Therefore the matrix K determines the
(n − 1)-dimensional state dynamics in the region R once
x(t) has reached (in a finite time) the manifold given by
Kx = 0 and remains in such manifold. In particular,
if γ > 0 and K is appropriately chosen, F can be made
asymptotically stable given that its eigenvalues can be ar-
bitrarily fixed via K.

An interesting characterization of the region R can be
obtained as follows. Evaluation of KA gives

KA = [ a0 a1 + k1 a2 + k2 . . . an−1 + kn−1 ]

So, noting that Kx = 0 gives xn = [ k1k2 . . . kn−1 ] x̃, sub-
stitution of this expression for xn into |KAx| < 1 yields

R = {x ∈ Rn : xn = [ k1k2 . . . kn−1 ] x̃ and | < w, x̃ > | < 1}

where

wT := [ a0 a1 + k1 a2 + k2 . . . an−2 + kn−2 ]
+(an−1 + kn−1) [ k1 k2 . . . kn−1 ] . (6)

III. High-gain feedback

In this Section we analyze the effect of the high-gain
feedback law u = γKx (with γ 
 1) on the system ẋ =
Ax + bu, assuming such a control law holds in the whole
state space Rn.

We introduce two simplifying assumptions:
• the pair (A, b) is in canonical control form (if not, it
suffices to resort to a suitable basis change, since (A, b)
is assumed to be a controllable pair);
• the pair (K, b) satisfies Kb = −1.
As far as the second assumption is concerned, we observe
that the actual necessary assumption needed in the follow-
ing is Kb �= 0, but in this case there is no loss of generality
in assuming Kb = −1. If not, it suffices to simply redefine
the value of γ. Note that, if Kb > 0, the sign of γ has
to be changed, so in the following we will not impose the
constraint γ > 0, and γ will be taken as an arbitrary real
number.
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As a consequence of the previous assumptions, recall-
ing that K = [ k1 k2 . . . kn−1 −1 ], and denoting by
{a0, a1, . . . , an−1, 1} the coefficients of the characteristic
polynomial of A, the closed loop matrix F := A + γbK is
in companion form and its n-th row is given by the row
vector

[γk1 − a0 , γk2 − a1 , . . . , γkn−1 − an−2 ,−(γ + an−1)] .

In order to better understand the modal properties of F ,
we look for a suitable basis change z = T−1x such that




z1
z2
...

zn−1

zn


 := T−1x =




x1

x2
...

xn−1

−Hx




where H := [h1 h2 . . . hn−1 −1 ] has to be deter-
mined and

T =




1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
h1 h2 h3 . . . hn−1 1


 .

Simple computations leads to

T−1FT =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
h1 h2 h3 . . . hn−1 1
v1 v2 v3 . . . vn−1 vn




where


v1 = (γk1 − a0)− h1(γ + an−1 + hn−1)
vi = (γki − ai−1 − hi−1)− hi(γ + an−1 + hn−1),

i = 2, 3, . . . , n− 1
vn = −(γ + an−1 + hn−1) = −γ(1 + δn)

and δn := an−1+hn−1
γ . We want to determine the hi’s in

such a way that v1 = v2 = . . . = vn−1 = 0. In this case
T−1FT assumes a block triangolar form which closely re-
minds the matrix associated with the linear mode of the
ideal relay feedback scheme (see (3)).

Introducing the vector ∆ := [ δ1 δ2 . . . δn−1 ] and
searching for a solution of the form

[h1 h2 . . . hn−1 ] = [ k1 k2 . . . kn−1 ]
+ [ δ1 δ2 . . . δn−1 ]

we obtain that imposing v1 = v2 = . . . = vn−1 = 0 is
equivalent to choosing the δi’s satisfying




δ1 = − 1
γ [(an−1 + kn−1 + δn−1)(k1 + δ1) + a0]

δi = − 1
γ [(an−1 + kn−1 + δn−1)(ki + δi)

+(ai−1 + ki−1 + δi−1)] , i = 2, 3, . . . , n− 1
(7)

In general, (7) can have more than one solution. For
instance, if n = 4, a0 = a2 = k1 = −1, a1 = k2 = k3 =
−2, a3 = 0, γ = 1

2 , we have (at least) two solutions

∆ = [ 1
2

1
2

1
2 ]⇒ ||∆|| =

√
3

2
< 1

and
∆ = [ 2 2 2 ]⇒ ||∆|| = 2

√
3 > 1 .

However, we are interested in finding sufficiently small
solutions (for instance satisfying ||∆|| ≤ 1) corresponding
to sufficiently high values of |γ|. In this case, we will prove
both that a solution always exists and that it is unique.
Such a solution will allow us to evaluate the vector H and
therefore the basis change matrix T which makes T−1FT
the block triangolar matrix

T−1FT =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
h1 h2 h3 . . . hn−1 1
0 0 0 . . . 0 vn




Let us note that (7) can be rewritten as

∆ =
1
γ
L(∆) (8)

where L(·) is a suitable continuous operator depending on
coefficients ai’s and ki’s, which are assumed to be fixed. If
Ξ := [ ε1 ε2 . . . εn−1 ], we have

[L(Ξ)− L(∆)]T =


(an−1 + kn−1 + δn−1)(δ1 − ε1)
+(k1 + ε1)(δn−1 − εn−1)

(an−1 + kn−1 + δn−1)(δ2 − ε2)
+(k2 + ε2)(δn−1 − εn−1) + (δ1 − ε1)

...
(an−1 + kn−1 + δn−1)(δi − εi)

+(ki + εi)(δn−1 − εn−1)
+(δi−1 − εi−1)

...
(an−1 + kn−1 + δn−1)(δn−2 − εn−2)

+(kn−2 + εn−2)(δn−1 − εn−1)
+(δn−3 − εn−3)

(an−1 + 2kn−1 + δn−1 + εn−1)(δn−1 − εn−1)
+(δn−2 − εn−2)




from which it is easy to see that

||L(Ξ)− L(∆)||2 = (Ξ−∆)P (Ξ,∆)(Ξ−∆)T (9)

where P (Ξ,∆) = P (Ξ,∆)T ≥ 0 is a suitable matrix con-
tinuously depending on Ξ and ∆. The greatest eigenvalue
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of P (Ξ,∆), denoted by λMAX(P (Ξ,∆)), continuously de-
pends on the same vectors, too. Therefore, once the ai’s
and the ki’s are fixed, the expression

λ0 := max
||Ξ||≤1,||∆||≤1

λMAX(P (Ξ,∆))

defines a positive (finite) real number. From (9) it follows

1
|γ| ||L(Ξ)− L(∆)|| ≤

√
λ0

|γ| ||Ξ−∆|| := µ||Ξ−∆||

which, evaluated at Ξ = 0, gives

1
|γ| ||L(∆)− L(0)|| ≤ µ||∆||

and therefore
1
|γ| ||L(∆)|| ≤ µ||∆||+ 1

|γ| ||L(0)|| .

If |γ| is chosen sufficiently large, i.e.

|γ| ≥ max{2
√
λ0, 2||L(0)||} ,

it follows that 0 < µ ≤ 1
2 . Moreover

||L(∆)
γ
|| ≤ µ||∆||+ ||L(0)

γ
|| ≤ ||∆||+ 1

2

and

||L(Ξ)
γ
− L(∆)

γ
|| ≤ 1

2
||Ξ−∆|| .

Therefore 1
γL(·) is well-defined as an operator from the

unit ball B1 := {∆ ∈ Rn−1 : ||∆|| ≤ 1} into itself,
and more precisely it is a contractive operator. From the
contraction theorem, it follows that, if |γ| is sufficiently
large, (8) admits in B1 a unique solution ∆0. Denoting
by m > 0 the maximum value assumed by the continuous
function ||L(∆)|| in the compact set B1, (8) also implies
||∆0|| = 1

|γ| ||L(∆0)|| ≤ m
|γ| , proving that ∆0 is infinitesimal

w.r.t. |γ| → +∞, and consequently also that H → K.
Since also δn is infinitesimal, we have that vn � −γ, so
that for |γ| 
 1,

T−1FT �




0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
k1 k2 k3 . . . kn−1 1
0 0 0 . . . 0 −γ




as in the “ideal” relay case.

IV. Connections between relay systems and
saturated linear feedback systems

Let us know consider the feedback scheme (1), where the
ideal relay u = sgn(Kx) is replaced by a “real” one, namely
the saturated linear feedback given by

u(t) =



−1 if Kx(t) < − 1

γ

γKx(t) if |Kx(t)| ≤ 1
γ

+1 if Kx(t) > 1
γ

.

We have that in the region

R(γ) := {x ∈ Rn : |Kx| < 1
γ
}

the system behaves as a linear feedback system with u =
γKx, γ > 0, and Kb �= 0 but not necessarily equal to −1.
Clearly, as stated in the Introduction, the ideal relay can
be obtained as a limit case (γ → +∞), and the goal of
this note is, in fact, that of investigating the relationships
between the real case (with γ sufficiently large) and the
ideal case (γ = +∞).

From (7) and the fact that ∆0 is infinitesimal w.r.t. 1
γ ,

we can write
−γ∆0 = wT + ΞT (10)

where w has been defined in (6), and Ξ := [ ε1ε2 . . . εn−1 ]T

is infinitesimal w.r.t. 1
γ . Let us consider the region R(γ)∩

{x ∈ Rn : Hx = 0}, which represents the portion of the
manifold Hx = 0 where the saturating device obeys the
equation

˙̃x(t) =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
h1 h2 h3 . . . hn−1


 x̃(t).

Imposing Hx = 0 is equivalent to setting xn =
[ k1k2 . . . kn−1 ] x̃+∆0x̃, which substituted into |γKx| < 1,
recalling (10), gives

| < w + Ξ, x̃ > | < 1 .

Therefore

R(γ) ∩ {x ∈ Rn : Hx = 0} ={
x ∈ Rn : xn = [ k1k2 . . . kn−1 ] x̃+ ∆0x̃

and | < w + Ξ, x̃ > | < 1} ,

showing that R(γ) ∩ {x ∈ Rn : Hx = 0} approaches R as
|γ| goes to infinity. By summarizing our results, we can say
that, if γ > 0 and γ is sufficiently large:

• the role of the manifold Kx = 0 is taken by the manifold
(K + [∆0 | 0])x = 0, with ∆0 infinitesimal w.r.t. 1

γ ;
• the characteristic polynomial of the closed loop system
approaches that of the ideal relay case;
• R(γ) ∩ {x ∈ Rn : Hx = 0} approaches R.

V. A numerical example

Let us consider a 3-dimensional system, with a0 =
1, a1 = 3.1, a2 = 2.1. Choosing K = [−2 − 2 − 1] leads to
the stable characteristic polynomial λ2 + 2λ+ 2 associated
with the dynamics of x̃ = [x1 x2]T on the manifold Kx = 0,
i.e. x3 = −2x1 − 2x2. Evaluation of ∆ corresponding to
γ = 10 gives ∆ = [−0.1 −0.1], which leads to the following
regions
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R = {x ∈ R3 : x3 = −2x1 − 2x2 and |0.8x1 + 0.9x2| < 1}

R(10) ∩ {x ∈ Rn : Hx = 0} =

{x ∈ R3 : x3 = −2.1x1 − 2.1x2 and |x1 + x2| < 1},

which are clearly sufficiently “near”, despite the fact that
γ = 10 is not very large. Moreover, the characteristic poly-
nomial associated with the dynamics of x̃ on the manifold
Hx = 0 is the stable polynomial λ2 + 2.1λ + 2.1, which is
“very close” to λ2 + 2λ+ 2.

VI. Conclusions

The comparison between the ideal relay case and the real
relay one presented in this note shows that all the proper-
ties of the corresponding closed loop systems are preserved
if the feedback gain γ is sufficiently high. The characteristic
polynomial of the linear mode, the linear mode manifold,
and the invariant regions of the linear mode in the real
case can be seen as “perturbed” versions of the equivalent
entities of the ideal case.
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