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Abstract -- The set F of Fuzzy Interval Numbers (FINs) is 
studied analytically in this work. A FIN is a set of “pulse-
shaped” functions, namely generalized intervals. A FIN can be 
interpreted as a conventional convex fuzzy set; nevertheless a 
FIN can have either a positive or a negative membership 
function. The set of generalized intervals of height h is shown 
to be a lattice-ordered, normed linear space. It is shown that F 
is a metric lattice. In conclusion, the normed linear space T of 
FINs with triangular membership functions is introduced. 
Mathematical tools presented here are employed for 
improving prediction of sugar production for Hellenic Sugar 
Industry (HSI), Greece from populations of measurements. 
 
Index terms -- Convex fuzzy sets, Fuzzy Interval Numbers 
(FINs), generalized intervals, normed linear spaces. 
 

I. INTRODUCTION 
While the use of fuzzy sets keeps spreading due to good 
results in practical problems, the lack of analytic design 
tools has encouraged the proliferation of heuristics; the 
analytical study of fuzzy logic is still trailing its 
implementation [11]. This work introduces novel 
mathematical tools with the potential to use them for an 
analytic design of fuzzy systems. Furthermore this work 
demonstrates an application of tools presented here for 
improving prediction of sugar production based on 
populations of measurements. 
 
More specifically, this work introduces a real linear space 
involving fuzzy sets. Note that various authors treat fuzzy 
sets as (fuzzy) numbers, furthermore they adhere to the 
extension principle and they introduce both an addition and 
a multiplication operation involving fuzzy sets. 
Nevertheless the definition of the multiplication operation 
has been cumbersome [9]. 
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This work introduces a real linear space involving fuzzy 
sets on algebraic grounds. The extension principle is 
abandoned. A Fuzzy Interval Number (FIN) is introduced, 
as described in this work, such that a FIN can have either a 
positive or a negative membership function. A fuzzy set is 
an interpretation of a FIN. The goal is to develop linear 
Fuzzy Inference System (FIS) design techniques, which 
effect non-linear mappings f: RN→RM. The “vehicle” for 
rigorous mathematical analysis in this work is the theory of 
partially ordered vector spaces [13], [16]. 
 
This paper is organized as follows. Section II introduces 
normed linear spaces of generalized intervals. Section III 
introduces the metric lattice F of Fuzzy Interval Numbers 
(FINs). Section IV introduces a normed linear space of 
FINs with triangular membership functions. Section V 
shows an application of novel tools presented here to an 
industrial yield prediction problem. Finally, section VI 
summarizes the contribution of this work; it also delineates 
future work. 
 

II. NORMED LINEAR SPACES MH
 OF GENERALIZED 

INTERVALS 
This section introduces lattice-ordered, normed linear 
spaces Mh of generalized intervals, h∈(0,1]. Spaces Mh, 
h∈(0,1] will be employed in the following section for 
further mathematical analysis. Consider the following 
definition. 
 
Definition 1:  A generalized interval (of height h) is a real 

function given either by , or 

by µ , where h∈(0,1]. 
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A generalized interval will simply be denoted by [  

(positive generalized interval) or by  (negative 
generalized interval). The set of generalized intervals of 
height h is denoted by P

h
21 ], +xx

h
21 ],[ −xx

h. The following partial ordering 
relation has been introduced in Ph. 
 



(R1)  ≤ [  ⇔ c ≤ a ≤ b ≤ d, h],[ +ba h], +dc

(R2)  ≤ [  ⇔ [  ≤ [ , and h],[ −ba h], −dc h], +dc h], +ba

(R3)  ≤  ⇔ [a,b]∩[c,d]≠∅, where [a,b] and 
[c,d] denote conventional intervals (sets) of real 
numbers. 

h],[ −ba h],[ +dc

 
It has been shown that the partially ordered set Ph is a 
mathematical lattice. Furthermore, a pseudo-metric distance 
has been introduced in lattice Ph by real function 
d(x,y)=v(x∨y)-v(x∧y), x,y∈Ph, where function v(.) maps a 
generalized interval to the positive/negative area 
underneath it [6], [7], [12]. An equivalence relation ∼ in 
lattice Ph, given by x ∼ y ⇔ d(x,y) = 0, x,y∈Ph, has implied 
the quotient (set) Mh, that is Mh=Ph/∼. Furthermore, it was 
shown that Mh is a lattice. To avoid redundant terminology, 
an element of Mh is called generalized interval, as well, and 
it is denoted by [a,b]h. The set of positive (negative) 
generalized intervals is denoted by M  (M ), whereas the 
set of trivial generalized intervals [a,b] with a=b is denoted 
by M

+ −

0. It is defined M 0 = M M+ + U 0; likewise M = M M−
0

− U 0. 
 
It follows that real function v(.) defined above as the area 
underneath a generalized interval, is a positive valuation 
function in lattice Mh, hence the distance function 
d(x,y)=v(x∨y)-v(x∧y) is a metric distance in Mh. Note that 
even though the set Mh of generalized intervals is a metric 
lattice for h > 0, interest is focused in this work in metric 
lattices Mh with h∈(0,1] because the latter lattices arise 
from a-cuts of conventional convex fuzzy sets. Recall that 
an a-cut has been defined as the interval Γa= {x|µ(x) ≥ a}, 
where µ(x) is a fuzzy set’s membership function. 
Convenient geometric interpretations of all previous 
notions are shown in [6], [12]. Function support(.), defined 
in the following, will be useful below. 
 
Definition 2:  Function support([a,b]h), h∈(0,1] maps a 
generalized interval [a,b]h to its interval support (set); in 
particular support([a,b]h)=[a,b] if a≤b, whereas 
support([a,b]h)=[b,a] if a≥b. 
 
An element [a,b]h of metric lattice Mh, h∈(0,1] is 
represented by a pair of real numbers in the Cartesian 
product space R×R. Since space R2 is a real linear space, it 
follows that space Mh is, likewise, a real linear space. More 
specifically, 
 
• addition in Mh is defined as [a,b]h+[c,d]h=[a+c,b+d]h, 
• multiplication (by a real number k) is defined as 

k[a,b]h=[ka,kb]h. 
 
A generalized interval in Mh is called vector of linear space 
Mh. The zero vector Oh in Mh equals Oh= [0,0]h. 
 

 
A lattice-ordered linear space, such as space Mh in this 
work, is called in the literature vector lattice or Riesz space 
([5], section 310B). Note that a theory of vector lattices was 
initially introduced in [13] and it was further developed by 
several authors [16]. Selected properties in vector lattice Mh 
are shown in the following for x,y,z∈Mh and λ∈R [5]. 
 
(P1) (x+z)∨(y+z)=(x∨y)+z,   (x+z)∧(y+z)=(x∧y)+z, 
(P2) λx∨λy= λ(x∨y),   λx∧λy= λ(x∧y),   λ ≥ 0, 
(P2) λx∨λy= λ(x∧y),   λx∧λy= λ(x∨y),   λ ≤ 0, and 
 
The vectors x∨Oh, (-x)∨Oh, and x∨(-x) are called, 
respectively, positive part, negative part, and absolute 
value of vector (generalized interval) x, and they are 
denoted, respectively, by x+, x−, and |x|. The following 
identities hold: 
 
(I1) x=x+-x−   (Jordan decomposition) 
(I2) |x|= x+ + x−, 
(I3) x∨y + x∧y = x+y, and 
(I4) |x-y| = x∨y - x∧y 
 
Metric lattice Mh is a normed linear space as shown in the 
following. 
 
Proposition 3:  Real function ||.||: Mh→R given by ||x||=v(|x|) 
defines a norm in real vector lattice Mh, h∈(0,1], where |x| is 
the absolute value (vector) of vector x∈Mh and 
v([a,b]h)=h(b-a), a,b∈R. 
 
The proof of proposition 3 will be shown elsewhere. It is 
well-known that a normed linear space S with norm ||.|| 
implies the following metric d(x,y)= ||x-y||, x,y∈S. Hence, 
following proposition 3, the norm-induced metric for two 
vectors x=[a,b]h and y=[c,d]h in Mh is given by d(x,y)=||x-
y||= ||[a-b,b-d]h||= h(|a-c|+|b-d|). 
 
The dimension of linear space Mh equals 2. A convenient 
basis is selected in Mh in the following. More specifically 
since [a,b]h= [a,0]h+[0,b]h= a[1,0]h+b[0,1]h= ae 1 +be , 

basis (e 1 ,e )=([1,0]

h h
2

h h
2

h, [0,1]h) has been selected in linear 
space Mh in the context of this work. 
 
Note that for all equations above there exist convenient 
geometric interpretations on the plane [6], [12]. 
 

III. THE METRIC LATTICE F OF FUZZY INTERVAL NUMBERS 
(FINS) 

The previous section introduced normed linear spaces Mh, 
h∈(0,1] of generalized intervals. Spaces Mh will be 
employed in this section to introduce analytically useful 
tools. Consider the following definition. 
 



Definition 4:  A Fuzzy Interval Number, or FIN for short, is 
a function either F: (0,1]→ M +

0  or F: (0,1]→ M  such that 
h

−
0

1 ≤ h2 ⇒ support(F(h1)) ⊇ support(F(h2)),where 0 < h1 ≤ 
h2 ≤ 1. 
 
The set of FINs will be denoted by F. In particular, F  

(F ) denotes the set of positive (negative) FINs which 
includes positive (negative) generalized intervals, 
furthermore F

+

−

+
0

0 denotes the set of trivial FINs. It follows 
F = F + FU 0; likewise F = F − F−

0 U 0. Fig.1 shows 
examples of one negative FIN (Fn), one trivial FIN (Ft), and 
two positive FINs (Fq, Fp). Note that a FIN is not a fuzzy 
set; rather a FIN is an abstract mathematical notion. 
However, a FIN can be interpreted as a fuzzy set as 
explained below. The advantage of negative FINs is that 
convenient algebraic operations can be defined as explained 
below. An ordering relation has been introduced in the set F 
of FINs as follows. 
 
Definition 5:  Let F1, F2 be FINs, then F1 ≤ F2 ⇔ F1(h) ≤ 
F2(h), h∈(0,1]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Positive FINs Fp, Fq include positive generalized intervals 

Fp(h), Fq(h), h∈(0,1], whereas negative FIN Fn includes 
negative generalized intervals Fn(h), h∈(0,1]. 
Furthermore, trivial FIN Ft includes trivial generalized 
intervals [a,a]h, h∈(0,1]. 

 
 
It can be shown that the space F of FINs is a (mathematical) 
lattice. A metric distance function has been introduced in F 
as follows [6]. 
 
Proposition 6:  Let F1 and F2 be FINs in F. A metric 
distance function dK: F×F→R is defined in F by integral 

dK(F1,F2)= , where c(h)>0 and d(.,.) 

is the norm-induced metric distance in vector lattice M

∫
1

0

21 ))(,)(()( dhhFhFdhc

h of 
generalized intervals. 

 
A convenient value for function c(h)>0 above might be 
c(h)=h which, for two trivial generalized intervals [a,a]1 
and [b,b]1 implies d([a,a]1,[b,b]1)=|b-a|. The calculation of a 
metric distance between two fuzzy sets with arbitrary-
shaped membership functions has already been proposed in 
the literature. In particular metric dp has been introduced in 
[4] based on the Hausdorf metric dH; moreover a similar 
formula as in proposition 6 has been proposed in a digital 
image processing application [2]. Nevertheless, in both the 
aforementioned publications [2] and [4] a metric has been 
proposed based on a-cuts of convex, bounded, compact and 
upper semicontinuous fuzzy sets. There are at least two 
advantages for the employment of generalized intervals 
instead of a-cuts. First, an “a-cuts based definition” of a 
metric distance dp in [4] implies ℵ0 different metric 
distance functions, whereas a “generalized intervals based 
definition” of a metric distance dK implies ℵ1= >ℵ02ℵ

0 
different metric distance functions as it will be shown 
elsewhere, where ℵ1 is the cardinality of the set R of real 
numbers. Second, on the one hand, generalized intervals 
imply a real linear space involving fuzzy sets, on the other 
hand, a-cuts only imply a cone. In conclusion, the well-
developed linear system theory can be employed to design a 
Fuzzy Inference System (FIS) for approximating a non-
linear mapping f: RN→RM from the inputs to the outputs of 
a FIS. 
 
The employment of FINs with negative membership 
functions should not alienate practitioners. For instance 
note that the expert system MYCIN, with strong influence 
in the design of commercial expert systems, has used 
negative certainty factors for medical diagnosis of certain 
blood infections [1]. Most important note that the 
employment of fuzzy sets with negative spreads has 
implied improvements in fuzzy linear regression problems 
[3]. 
 

IV. THE NORMED LINEAR SPACE T OF TRIANGULAR FINS 
The obvious next step is an extension of both the addition 
and multiplication operations from linear spaces Mh, 
h∈(0,1] to metric lattice F. 
 
Definition 7:  The product kF1, where k∈R and F1∈F, is 
defined as FIN Fp: Fp(h)=kF1(h), h∈(0,1]. 
 
Note that the product kF1 is always a FIN. More 
specifically for F1∈F , if k>0 then kF+

0 1∈F , whereas if 

k<0 then kF

+
0
−
01∈F ; and vice-versa for F−

0 1∈F , if k>0 then 

kF1∈F −
0 , whereas if k<0 then kF1∈F . For example F+

0 q=-Fn 

(Fig.1), where Fq∈F , F+
0 n∈F . −

0

 
Definition 8:  The sum F1+F2, where F1,F2∈F, is defined as 
FIN Fs: Fs(h)=(F1+F2)(h)= F1(h)+F2(h), h∈(0,1]. 

Fq 

Fn
-1 

1Ft 

a 

Fp 



 
We remark that if both F1 and F2 are in F  (F ) then sum 

F

+
0

−
0

1+F2 is in F  (F ). Of particular practical interest might 
be the linear convex combination kF

+
0

]1

−
0

1+(1-k)F2, k∈(0,1]. It 
follows that space F  (F ) is convex. Moreover note that 

FIN O= [0,0]

+
0

−
0

,0(h∈
U h is the zero element for addition in F. 

However, a problem might arise in calculating the sum 
F1+F2 when one of FINs F1, F2 is in F  whereas the other 

is in F . More specifically, the aforementioned problem 
occurs when generalized interval F

+

−

1(h)+F2(h) is both 
positive, for some values of h∈(0,1], and negative, for other 
values of h∈(0,1]. In the aforementioned case, the sum 
F1+F2 is not a FIN. The latter problem was mended as 
described in the following. 
 
Let L(.) be a real non-negative real function which maps a 
conventional interval (set) [a,b] to its length b-a, that is 
L([a,b])=b-a ≥ 0. Given a FIN, function L(support(F(h))) 
is, apparently, a non-increasing function of h. The sum 
F1+F2 of one positive FIN and one negative FIN implies, in 
essence, subtraction of the corresponding generalized 
interval supports. For example, Fig.2(a) displays length 
functions L(support(F1(h))) and L(support(F2(h))) for two 
FINs F1 and F2. Since functions L(support(F1(h))) and 
L(support(F2(h))) in Fig.2(a) intersect each other, there 
follows that F1+F2 is not a FIN. 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 

(b) 
 
Fig. 2 (a) The difference of functions L(suppo

L(support(F2(h))) can be both 
negative, hence sum F1+F2 is not a F

 (b) For linear functions L(support(Fi(h
difference L(support(F1(h))) - L(sup
also linear, hence addition of trian
guaranteed to be a triangular FIN. 

However, it can be guaranteed that sum F1+F2 is a FIN if 
both functions L(support(F1(h))) and L(support(F2(h))) 
decrease according to the same law, for instance they 
decrease linearly as shown in Fig.2(b). In the latter case, the 
sum F1+F2 of two triangular FINs F1 and F2 is guaranteed 
to be a triangular FIN. In conclusion, if T denotes the space 
of FINs with triangular membership functions it follows 
that T is a linear space. Furthermore, in line with the 
analysis in the previous section, linear space T is lattice-
ordered. A norm can be introduced in vector lattice T as 
follows. 
 
Proposition 9  Let F be a FIN in T. Then integral ||F||= 

∫
1

0

F dh(h)  defines a norm in T. 

 

V. APPLICATION FOR PREDICTING INDUSTRIAL SUGAR 
PRODUCTION 

A FIS (Fuzzy Inference System) has been developed using 
tools presented in the previous sections for improving 
prediction of the annual sugar production for Hellenic 
Sugar Industry (HSI), Greece based on populations of 
measurements. More specifically, populations of both 
meteorological and production variables, namely input 
variables, were available in this study during a time period 
spanning eleven years [8]. 
 
A FIN was constructed from a population of measurements 
using algorithm CALFIN [12]. For instance Fig.3 shows 
two FINs which correspond to two populations of Roots 
Weights (RW) production variable measurements from a 
number of pilot fields in the Larisa agricultural district. 
 
 

interval 
support 
length 

L(support(F1(h)))

L(support(F2(h))) 

0 1 

interval 
support 
length 

L(support(F1(h))) 

L(support(F2(h))) 

0 1 
h

h

rt(F1(h))) and 
positive and 
IN. 
))), i=1,2 the 
port(F2(h))) is 
gular FINs is 

 
Fig. 3 FINs RW90 and RW96 have been computed from 

two populations of Roots Weight (RW) production 
variable measurements in years 1990 and 1996, 
respectively, from pilot fields in the Larisa 
agricultural district, Greece. 

 



For each production year a number of FINs, corresponding 
to selected input variables, was mapped to a sugar 
production level using the metric dK. In conclusion, an 
improved average prediction error around 2% was resulted 
compared to 1) an average prediction error of 5% resulted 
by intelligent clustering techniques, and 2) an average 
prediction error of 6% resulted by alternative prediction 
techniques including interpolation, polynomial, linear 
autoregression, and neural models [8]. 
 

VI. DISCUSSION AND CONCLUSION 
Analytical tools have been introduced here based on 
generalized intervals, with either positive or negative 
characteristic functions. The set Mh of generalized intervals 
of height h∈(0,1] was shown to be a lattice-ordered, 
normed linear space. Furthermore, Fuzzy Interval Numbers 
(FINs) have been described as sets of generalized intervals 
[ah,bh]h, h∈(0,1]. The integral of norm-induced metrics in 
linear spaces Mh for h∈(0,1] implied a metric distance dK in 
lattice-ordered space F of FINs. Finally, a normed linear 
space T of FINs with triangular membership functions was 
introduced. It was delineated comparatively an application 
of tools introduced in this work to an industrial yield 
prediction problem. More specifically, improved estimates 
of annual sugar production have been obtained. 
 
An approach for dealing with fuzzy sets was suggested in 
this work based on algebra rather than based on (fuzzy) 
logic. More specifically, both fuzzy logic and the extension 
principle were abandoned here in favor of an algebraic 
treatment of fuzzy sets. 
 
There is a broad range of applications where the novel tools 
presented in this work could potentially be advantageous 
for dealing with ambiguity. For instance algorithms could 
be developed for data clustering and classification based on 
convex combinations kF1+(1-k)F2, k∈(0,1], F1,F2∈F. 
Furthermore, a linear space of FINs might be useful in 
fuzzy regression techniques [15] as well as in system 
modelling in the sense of Mamdani [10]. Moreover a linear 
space of FINs might unify fuzzy system modelling in the 
sense of Mamdani [10] with fuzzy system modelling in the 
sense of Tagaki-Sugeno [14]. For instance, based on a 
linear space of FINs, it is feasible to design systems of 
linguistic fuzzy if-then rules based on rigorous 
eigenstructure analysis. 
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