
 

  
Abstract—We consider the use of nonlinear approximating 

networks to obtain nearly optimal solutions to constrained 
control problems. The method is based on least-squares 
successive approximation solution of the Generalized Hamilton-
Jacobi-Bellman (GHJB) equation which appears in optimization 
problems. Successive approximation using the GHJB has not yet 
been rigorously applied for saturated controls. The proposed 
method successively solves the GHJB equation on a well-defined 
region of attraction making use of a suitable nonquadratic 
functional that allows working with smooth saturated controls. A 
neural network is used to approximate the GHJB solution. It is 
shown that the result is a closed-loop control based on a neural 
net that has been tuned a priori off-line. As the order of the 
network is increased, and as the algorithm is run on more points 
in the well-defined region of attraction, the network converges to 
the exact solution of the inherently nonlinear HJB equation 
associated with the saturating control inputs. 
 

Index Terms—Constrained control, nonquadratic performance 
functionals, optimal control, saturation. 
 

I. INTRODUCTION 
he control of systems with saturating actuators has been 
the focus of many researchers for many years. Several 

methods for deriving control laws considering the saturation 
phenomena are found in [21], [23], [5]. However, most of 
these methods do not consider finding optimal control laws 
for general nonlinear systems. In this paper, we study this 
problem through the framework of the Hamilton-Jacobi-
Bellman (HJB) equation resulting from optimal control theory 
[11]. The solution of the HJB equation is a challenging 
problem due to its inherently nonlinear nature. For linear 
systems, this equation results in the well-known Riccati 
equation used to derive a linear state feedback control. But 
even when the system is linear, the saturated control 
requirement makes the required control nonlinear, and makes 
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the solution of the HJB equation more challenging. 
In the nonlinear case, the HJB equation generally cannot be 

solved. There has been a great deal of effort to attack this 
problem. Approximate HJB solution has been confronted 
using many techniques by  Saridis [22], Beard [2], [3], [4], 
Lendaris [20], Bertsekas and Tsitsiklis, [6], Munos [19], 
Lewis and Kim [9], Balakrishnan, [13], Lyshevski [14], [15], 
[16], [17], [18], Huang [8] and others.  

Here, we focus on HJB solution using the so-called 
generalized HJB equation (GHJB) [4], [22]. In [22], Saridis et 
al. developed a successive approximation method that 
improves a given initial stabilizing control. This method 
reduces to the well-known Kleinman iterative method for 
solving the Riccati equation for linear systems [10]. However, 
for nonlinear systems, it is unclear how to solve the GHJB 
equation. Therefore, successful application of the GHJB was 
limited until the novel work of Beard [2], [3], [4]. He uses a 
Galerkin spectral approximation method to find approximate 
but close solutions to the GHJB at each iteration. The 
framework in which the algorithm is presented in Beard’s 
work requires the computation of a large number of integrals 
and is also not suitable to handle explicit constraints on the 
controls, which is what we are interested in. In [15], [16], 
Lyshevski proposed a generalized nonquadratic functional to 
derive a smooth saturated control structure based on the HJB 
equation. But it remains difficult to solve the final nonlinear 
HJB equation.  

We employ the method of weighted residuals and use it 
along with the successive approximation technique to get a 
least-squares solution to the HJB employing a nonquadratic 
functional for the control input. Thus the nearly optimal 
saturated control input is found. A neural network, [12], is 
used to approximate the GHJB solution at each successive 
iteration. It is shown that the result is a closed-loop control 
based on a neural net that has been tuned a priori off-line. A 
preliminary report of this work appears in [1].  

 

II. BACKGROUND IN OPTIMAL CONTROL AND CONSTRAINED 
INPUT SYSTEMS 

Consider an affine in the control nonlinear dynamical 
system of the form 

( )x f(x) g(x)u x= +         (1) 
where nx ℜ∈ , mnu ℜ→ℜ: , nnf ℜ→ℜ:  and 
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mnng ℜ×ℜ→ℜ: . Assume that guf +  is Lipschitz 
continuous on a set Ω  in nℜ  containing the origin, and that 
the system (1) is controllable in the sense that there exists a 
continuous control on Ω  that asymptotically stabilizes the 
system. 

 It is desired to find a control function mnu ℜ→ℜ: , 
which minimizes a generalized nonquadratic functional 

[ ]
0

( ) ( )V Q x W u dt
∞

= +∫        (2) 

where )(xQ  is positive definite monotonically increasing 
function on Ω , and thus satisfies the observability condition. 

)(uW  is a positive definite integrand function. For unbounded 
control inputs, a common choice for )(uW  is 

( ) TW u u Ru=           (3) 
where mmR ℜ×ℜ∈ . Note that the control u  must not only 
stabilize the system on Ω , but also make the integral finite. 
Such controls are defined to be admissible [3]. 
 

 Definition 2.1:  Admissible Controls   
Let )(ΩΨ  denote the set of admissible controls. A control 

mnu ℜ→ℜ:  is defined to be admissible with respect to the 
state penalty function )(xQ  on  Ω , denoted )(ΩΨ∈u , if: 

1. u is continuous on Ω , 
2. 0)0( =u , 
3. u  stabilizes (1) on Ω , 

4. [ ]∫
∞

∞<+
0

)()( dtuWxQ , Ω∈∀x .                      

g 
Differentiating V , the value function, along the system 

trajectories, we obtain what is known as the GHJB equation, 

( )( , ) 0,

(0) 0.

T
TVGHJB V u f gu Q u Ru

x
V

∆ ∂
= + + + =

∂
=

  (4) 

 Note that the GHJB equation becomes the well-known 
HJB equation on substitution of the optimal control  

*
* 11 ( )( ) ( )

2
T V xu x R g x

x
− ∂

= −
∂

       (5) 

where )(* xV  is the unique optimal solution to the Hamilton-
Jacobi-Bellman (HJB) equation 

* * *
* 1

*

1( ) 0,
4

(0) 0.

T T
TV V VHJB V f Q gR g

x x x
V

∆
−∂ ∂ ∂

= + − =
∂ ∂ ∂

=

  (6) 

 It is shown in [15] that the value function obtained from 
(6) serves as a Lyapunov function on Ω . It is important to 
note that the GHJB is linear in the value function derivative, 
while the HJB is nonlinear in the value function derivative. 
Solving the GHJB requires solving linear partial differential 
equations, while the HJB equation solution involves nonlinear 
partial differential equations, which may be impossible to 
solve. This is the reason for introducing the successive 
approximation technique using GHJB, which was based on a 
sound proof in [22]. In the successive approximation method, 
one solves (4) for )(xV  given a stabilizing control )(xu , then 

finds an improved control based on )(xV  using 
11

2
T Vu R g

x
− ∂

= −
∂

.        (7) 

Saridis [22] shows that if the initial control )()0( ΩΨ∈u , 
then repetitive application of (4), (7) is a contraction map, and 
that the sequence of solutions )(iV  converges to the optimal 
HJB solution )(* xV .  This assumes one can find an exact 
solution to (4) at each step. 

Although the GHJB equation is in theory easier to solve 
than the HJB equation, there is no general closed-form 
solution available to this equation. In [2], [3], Beard used 
Galerkin’s spectral method to get an approximate solution 

)(xV  in (4) at each iteration. He proves convergence in the 
overall run. This technique does not set the GHJB equation to 
zero at each iteration, but to a residual error instead.  

The Galerkin approximation requires the evaluation of 
numerous integrals. Moreover, in its current format, the 
successive approximation algorithm is unable to deal with 
saturated controls.  

To confront bounded controls, Lyshevski [15], [16] 
introduced a generalized nonquadratic functional 

( )1( ) 2 ( )
T

W u u Rduφ −= ∫       (8) 

where mc ℜ→ℜ⋅ :)(φ  is a continuous one-to-one, bounded, 
real-analytic integrable function of class pC  )1( ≥p  with 

( ) 00 =φ , e.g. )tanh()( ⋅→⋅φ . R  is positive definite and 
assumed to be symmetric for simplicity of analysis. This does 
not restrict the design criteria on the control input vector, 
because the number of coefficients that we can choose 
independently in the symmetric design matrix R  is equal to 
the number of quadratic terms possible from the control input 
vector. These two numbers are equal, that is 

2

22
mm m m m

 −
+ = +  

 
. Note that )(uW  is positive definite if 

)(1 u−φ  has the same sign as u  and R  is positive definite. 
  For saturated controls, GHJB design equations (4), (7) 

are replaced with  

( ) ( )12 ( ) 0,

(0) 0.

T
TV f g u Q u Rdu

x
V

φ −∂
+ ⋅ + + =

∂
=

∫      (9) 

11 ( )( ) ( )
2

T V xu x R g x
x

φ − ∂ = −  ∂ 
.       (10) 

Note that equation (10) guarantees that ( )u x  is bounded. 
If we substitute (10) into (9) we obtain the HJB equation for 

bounded controls. The positive definite solution of this 
equation is the stabilizing value function and its corresponding 
optimal control. Existence and uniqueness of the value 
function has been shown in [18]. This HJB equation cannot 
generally be solved. There is no current method for rigorously 
confronting this type of equation to find the value function for 
the system. Moreover, current solutions are not well defined 
over a specific region in the state space. 

 



 

III. SUCCESSIVE APPROXIMATION OF HJB FOR SATURATED 
CONTROLS 

Successive approximation using the GHJB has not yet been 
rigorously applied for bounded controls. In this section, we 
will show that the successive approximation technique can be 
used for constrained controls when certain restrictions on the 
control input are met. Then, having the successive 
approximation theory well set, in the next section we will 
introduce a neural network approximation of the value 
function, and employ the successive solutions method in a 
least-squares sense over a mesh with certain size on Ω . This 
is far simpler than the Galerkin approximation appearing in 
[2], [3]. 

The successive approximation technique is now applied to 
the new set of equations (9), (10). The following Lemma 
shows how equation (10) can be used to improve the control 
law. It will be required that the control bound ( )φ ⋅  is 
monotonically non-decreasing. 

 
Lemma 3.1: Improved Saturated Control Law 

 If ( ) ( )iu ∈ Ψ Ω , and ( )iV  satisfies the equation 
( ) ( )( , ) 0i iGHJB V u =  with the boundary condition ( ) (0) 0iV = , 

then the new control derived as 

 
( )

( 1) 11 ( )( ) ( )
2

i
i T V xu x R g x

x
φ+ − ∂

= −  ∂ 
    (11) 

is an admissible control for the system on Ω . Moreover, if the 
control bound ( )φ ⋅  is monotonically non-decreasing and ( 1)iV +  
is the unique positive definite function satisfying the equation 

( 1) ( 1)( , ) 0i iGHJB V u+ + = , with the boundary condition 
( 1) (0) 0iV + = , then ( 1) ( )( ) ( )i iV x V x+ ≤  Ω∈∀x . 
Proof:  
 Admissibility: Since ( )iV  is continuously differentiable, 

the continuity assumption on g  implies that ( 1)iu +  is 
continuous. Since ( )iV  is positive definite it attains a minimum 
at the origin, and thus, ( ) ( )iV x x∂ ∂  must vanish. This implies 
that ( 1) (0) 0iu + = . 

 Taking the derivative of ( )iV  along the system 
( 1)( , , )if g u +  trajectory we have, 

( ) ( )
( ) ( 1) ( 1)

T Ti i
i i iV (x) V (x)V (x,u ) f g u

x x
+ +∂ ∂

= +
∂ ∂

 (12) 

But 

( )
( )

( ) ( )
( )

1

0

( ) ( )

( ) 2 ( ) .
i

T Ti i
i

u
T

V x V xf g u
x x

Q x u Rduφ −

∂ ∂
= − −

∂ ∂

− ∫

   (13) 

This becomes 

( )
( )

( ) ( )
( ) ( 1) ( ) ( 1)

1

0

( )

( ) 2 ( ) .
i

T Ti i
i i i i

u
T

V x V (x)V (x,u ) g u g u
x x

Q x u R duφ

+ +

−

∂ ∂
= − + −

∂ ∂

− ∫

 (14) 

Making use of the fact that ( )
( )

1 ( 1)( ) ( ) 2
Ti TiV x g x u R

x
φ − +∂

= −
∂

, 

we get 

( ) ( )
( )

( ) ( 1)

1 ( 1) ( ) ( 1) 1

0

( )

2 ( ) ( ) .
i

i i

u
T Ti i i

V (x,u ) Q x

u R u u u Rduφ φ

+

− + + −

= − +

  − − 
  

∫
  (15) 

The second term in the previous equation is negative when 
1−φ  and thus φ  is monotonically non-decreasing. To see this, 

note that the design matrix R  is symmetric positive definite, 
this means we can rewrite it as 

R = ΛΣΛ           (16) 
where Σ  is a triangular matrix with its values being the 
singular values of R  and Λ  is an orthogonal symmetric 
matrix. Substituting (16) in (15) we get, 

( ) ( )
( )

( ) ( 1)

1 ( 1) ( ) ( 1) 1

0

( )

2 ( ) ( )
i

i i

u
T Ti i i

V (x,u ) Q x

u u u u duφ φ

+

− + + −

= − +

 
ΛΣΛ − − ΛΣΛ 

  
∫

. (17) 

Applying the coordinate change 1u z−= Λ , equation (17) 
then becomes  

( )

( )

( )

( )

( )

( )

( )

( ) ( 1)

1 1 ( 1) 1 ( ) 1 ( 1)

1 1 1

0

1 1 ( 1) ( ) ( 1)

1 1

0

( 1) ( ) ( 1)

( )

( )
2

( )

( )
( ) 2

( )

( ) 2 ( )

i

i

i i

Ti i i

z
T

Ti i i

z
T

T i i i

V (x,u ) Q x

z z z

z dz

z z z
Q x

z dz

Q x z z z

φ

φ

φ

φ

π π

+

− − + − − +

− − −

− − + +

− −

+ +

= − +

 Λ ΛΣΛ Λ − Λ −  
 
 Λ ΛΣΛΛ
  

 Λ ΛΣ − −  = − +  
 Λ ΛΣ
  

= − + Σ − −

∫

∫

( )
( )

0

.
iz

T z dz
  Σ 
  

∫

  (18) 

where ( ) ( )( ) 1 1 ( ) TT i iz zπ φ − −= Λ Λ . 

Since Σ  is a triangular matrix, we can now decouple the 
transformed input vector such that 

( ) ( )

( )

( )

( )

( )

( ) ( 1)

( 1) ( ) ( 1)

0

( 1) ( ) ( 1)

1

0

( )

2 ( )

( )

( ) 2 .

i
k

i
k

i i

z
T i i i T

T i i i
k k k

m
z

kk
Tk

k k

V (x,u ) Q x

z z z z dz

z z z

Q x
z dz

π π

π

π

+

+ +

+ +

=

= − +

  Σ − − Σ 
  

 − −
  = − + Σ  
 
  

∫

∑
∫

   (19) 

Since the matrix R  is positive definite, then we have the 
singular values kkΣ  being all positive. Also, from the 

geometrical meaning of ( ) ( )
( )

( 1) ( ) ( 1)

0

( )
i

kz
T i i i T

k k k k kz z z z dzπ π+ +− − ∫ , 

this term is always negative if ( )T
kzπ  is monotonically non-

decreasing. But since ( ) ( )( ) 1 1 ( ) TT i iz zπ φ − −= Λ Λ , it is easy to 

show that 1φ −  should be monotonically non-decreasing, and 
thus φ  itself should be monotonically non-decreasing. This 
implies that ( ) ( 1) 0i iV (x,u )+ ≤  and that ( )iV (x)  is a Lyapunov 
function for ( 1)iu +  on Ω . Following Definition 2.1, ( 1)iu +  is 



 

admissible on Ω . 
 To show the second part of Lemma 3.1, note that for 

performance along trajectories ( 1)( , , )if g u +  
0x∀ , we can write, 

{ }
{ }

2( 1) ( ) ( 1) ( 1) ( 1)
0 0

0

2( 1) ( ) ( 1)
0 0

0

( 1) ( )
( 1)

0

( ( , , )) ( , , )

( ( , , )) ( , , )

( ) .

i i i i i

R

i i i

R

i i T
i

V V Q x x u u x u d

Q x x u u x u d

d V V f g u d
dx

τ τ τ

τ τ τ

τ

∞
+ + + +

∞
+ +

∞ +
+

− = + −

+

 −  = − +  
 

∫

∫

∫

 (20) 

 From ( 1) ( 1)( , ) 0i iGHJB V u+ + = , ( ) ( )( , ) 0i iGHJB V u = , we 
have 

( )
( )( ) ( )

( ) 1

0

( ) ( ) ( ) 2 ( )
iT T ui i TiV x V xf gu l x u Rdu

x x
φ −∂ ∂

= − − −
∂ ∂ ∫  (21) 

( )
( 1)

( 1) ( 1)
( 1)

1

0

( ) ( ) ( )

2 ( ) .
i

T Ti i
i

u
T

V x V xf gu l x
x x

u Rduφ
+

+ +
+

−

∂ ∂
= − − −

∂ ∂

∫

   (22) 

Substituting (21), (22) in (20) we get 

( )

( )
( 1)

( )

1 ( 1) ( 1) ( )

( 1) ( )
0 0

1
0

( ) ( )
( ) ( ) 2 .

( )
i

i

Ti i i

i i
u

T

u

u R u u
V x V x d

u R du

φ
τ

φ
+

− + +
∞

+

−

 − −  − = −  
 
  

∫
∫

 (23) 

By decoupling the equation (24) using R = ΛΣΛ , it can be 
shown that  

( 1) ( )
0 0( ) ( ) 0i iV x V x+ − ≤        (25) 

when ( )φ ⋅  is monotonically non-decreasing.                           

■ 
  

IV. NEURAL NETWORK LEAST-SQUARES APPROXIMATE HJB 
SOLUTION 

Although equation (9) is linear in the value function when 
substituting  (10) into (9) to improve the saturated control law, 
it is still difficult to solve for the cost function )()( xV i . 
Therefore, neural nets are now used to approximate the 
solution for the cost function )()( xV i  at each successive 
iteration i .  

It is well known that neural networks can be used to 
approximate smooth functions on prescribed compact sets 
[12]. Since our analysis is restricted to a stability region, 
which is a compact set, neural networks are natural for our 
application. Therefore, to successively solve (9), (10) for 
bounded controls, we approximate )()( xV i  with a neural net  

 ( ) ( ) ( )

1
( ) ( ) ( )

L
i i T i

L j j L L
j

V x w x W xσ σ
=

= =∑     (26) 

where the activation functions ℜ→Ω:)(xjσ , are continuous, 

0)0( =jσ , span { } )(21
Ω⊆∞ Ljσ . The neural network weights 

are 
jw  and L  is the number of hidden-layer neurons. Vectors 

[ ]TLL xxxx )()()()( 21 σσσσ ≡ , [ ]TLL wwwW 21≡  are the 

vector activation function and the vector weight respectively. 
The neural network weights will be tuned to minimize the 
residual error in a least-squares sense over a set of points 
within the stability region Ω  of the initial stabilizing control. 
Least-squares solution n attains the lowest possible residual 
error with respect to the neural network weights. 

For the ( , ) 0GHJB V u = , the solution V  is replaced with LV  
having a residual error 

 ( )

1

( ) ( ), ( )
L

i
L j j L

j

GHJB V x w x u e xσ
=

 
= = 

 
∑ .  (27) 

To find the least–squares solution, the method of weighted 
residuals is used [7]. The weights 

jw  are determined by 

projecting the residual error onto ( )L Ld e x d W  and setting the 
result to zero x∀ ∈Ω , i.e. 

( ) , ( ) 0L L Ld e x dW e x =        (28) 

When expanded, equation (28) becomes, 
( ) ( )

( ) ( )1

,

2 ( ) , 0

L L L

T

L

f gu f gu W

Q u Rdu f gu

σ σ

φ σ−

∇ + ∇ + +

+ ∇ + =∫
    (29) 

Expanding the derivative of the residual,  

( ) ( )

( ) ( )1

,

2 ( ) , 0, 1, , .

j
L j

T j

d
f gu f gu w

dx

d
Q u Rdu f gu j L

dx

σ
σ

σ
φ−

∇ + + +

+ + = =∫

  (30) 

 
 The following technical results are needed. 
 
Lemma 4.1: if the set { }

1

L

jσ  is linearly independent and 

)(ΩΨ∈u , then the set 

 ( )
1

L
jd

f gu
dx
σ 

+ 
 

        (31) 

is also linearly independent. 
Proof: 
 See [3]. 

■ 
From Lemma 4.1, equation (30) can be rewritten, after 

defining  ( )L f guσ θ∇ +  as, 

( )

( )1

,

2 ( ) , 0, 1, , .

L j j

T

j

f gu w

Q u Rdu j L

σ θ

φ θ−

∇ + +

+ = =∫
    (32) 

Because of Lemma 4.1, the term ,θ θ  is of full rank, and 

thus is invertible. Therefore a unique solution for 
LW  exists. 

We can solve equation (32) for 
LW  as follows, 

( )1 1, 2 ( ) , .
T

LW Q u Rduθ θ φ θ
− −= − + ∫    (33) 

 
Introducing a mesh on Ω , with mesh size equal to x∆ , we 

can rewrite some terms of (33) as follows: 



 

1 p

T

x x
X θ θ =   

               (34) 

( ) ( )1 1

1
2 ( ) 2 ( )

p

T
T T

x x
Y Q u Rdu Q u Rduφ φ− − 

= + + 
 

∫ ∫ (35) 

where p  in 
px  represents the number of points of the mesh.  

Finally, we can calculate 
LW  as 

( ) ( )1T T
LW X X X Y

−
= −         (36) 

An interesting observation is that equation (36) is the 
standard least-squares method of estimation for a mesh on Ω . 
Note that the mesh size ∆  should be such that the number of 
points p  is greater than or equal to the order of 
approximation L . This guarantees a full rank for ( )TX X . 

 

V. ILLUSTRATIVE EXAMPLE 
We start by applying the algorithm obtained above for the 

linear system 
1 1 2 3

2 1 2 2

3 3 1

2 ,
,

.

x x x x
x x x u
x x u

= + +
= − +
= +

 

 
It is desired to control the system with a control bounds 

1 23, 20u u≤ ≤ . This system when uncontrolled has 

eigenvalues with positive real parts. This systems is not 
asymptotically null controllable, therefore global asymptotic 
stabilization cannot be achieved, [23].  

The following smooth function is used to approximate the 
value function of the system, 

 
2 2 2

21 1 2 3 1 1 2 2 3 3 4 1 2 5 1 3
4 4 4 2 2 2 2

6 2 3 7 1 8 2 9 3 10 1 2 11 1 3
2 2 2 2 2

12 2 3 13 1 2 3 14 1 2 3 15 1 2 3
3 3 3 3 3

16 1 2 17 1 3 18 1 2 19 1 3 20 2 3
3

21 2 3

( , , )V x x x w x w x w x w x x w x x

w x x w x w x w x w x x w x x

w x x w x x x w x x x w x x x

w x x w x x w x x w x x w x x

w x x

= + + + + +

+ + + + + +

+ + + +

+ + + + +

 
The number of neurons required is chosen to guarantee the 

uniform convergence of the algorithm. To initialize the 
algorithm, a stabilizing control is needed. It is very easy to 
find this using LQR for unconstrained controls. A stabilizing 
unconstrained state feedback control is found 

1 1 2 3

2 1 2 3

8.31 2.28 4.66 ,
8.57 2.27 2.28 ,

u x x x
u x x x

= − − −
= − − −

 

However, when this controller is applied through saturated 
actuators, the stability region shrinks, and the control law is 
not optimal anymore. 

Fig. 1 shows the performance of this controller assuming 
working with unsaturated actuators. Fig. 2 shows the 
performance when this control signal is bounded by 

1 23, 20u u≤ ≤ . Note how the bounds destroy the 

performance. 
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The nonquadratic cost performance is 

( )
( )( )

( ) ( )

1

1

1 2 2 2

( ) 2 ( )

2 tanh

2 A R u tanh +A R ln 1

T

T

W u u Rdu

A u A Rdu

u A u A

φ −

−

−

=

=

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −

∫
∫

 

where A , is the saturation limit. 
This nonquadratic cost performance is then used in the 

algorithm to calculate the optimal bounded control.  
The neural net based nearly optimal saturated optimal 

control law is found to be,  
3

1 2 3 1
2 2
1 2 1 2 3 1 2

1 2 2 3
1 3 1 3 2
2 2 3
2 3 2 3 3

7.70 2.44 4.75 2.45

2.27 3.73 0.7081( ) 3 tanh
3 5.78 4.78 0.08

0.57 1.56 1.39

x x x x

x x x x x x x
u x

x x x x x

x x x x x

  + + + +
  

+ + +  = −   
+ + +  

  + +  

1 2 3
3 2
1 1 2 1 2 3

2 2 2 2
1 2 1 3 1 3
3 2 2 3
2 2 3 2 3 3

9.78 2.94 2.44

0.21 0.02 1.421( ) 20 tanh
20 0.12 2.27 1.87

0.02 0.23 0.57 0.52

x x x

x x x x x x
u x

x x x x x x
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− + +  = −   
+ + +  

  + + +  

 

 
This result is obtained after 20 successive iterations. The 

algorithm is run over the region 11.2 1.2,x− ≤ ≤  

21.2 1.2,x− ≤ ≤  31.2 1.2x− ≤ ≤   with the design parameters  

2 2 3 3,x xR I Q I= = .  The performance is shown in fig 3. 

REFERENCES 
 
[1] M. Abu-Khalaf , F. L. Lewis, “Nearly Optimal HJB Solution for 

Constrained Input Systems Using a Neural Networks Least-Squares 
Approach,” Proc. IEEE Conference on Decision and Control, , pp 943-
948, December 2002. 

[2] R. Beard, G. Saridis, J. Wen, "Approximate Solutions to the Time-
Invariant Hamilton-Jacobi-Bellman Equation," Journal of Optimization 
Theory and Application, Vol 96, No. 3, March 1998, pp. 589-626. 

[3] R. Beard, G. Saridis, J. Wen, "Galerkin Approximations of the 
Generalized Hamilton-Jacobi-Bellman Equation," Automatica 33:12, 
December, pp. 2159-2177, 1997. 

[4] R. Beard, "Improving the Closed-Loop Performance of Nonlinear 
Systems,” PhD thesis, Rensselaer Polytechnic Institute, Troy, NY 12180, 
1995. 

[5] D. S. Bernstein, "Optimal nonlinear, but continuous, feedback control of 
systems with saturating actuators,” International Journal of Control, Vol 
62, NO. 5, pp. 1209-1216. 

[6] D. P. Bertsekas, J. N. Tsitsiklis, "Neuro-Dynamic Programming,” 
Athena Scientific, Belmont, MA, 1996. 

[7] B. A. Finlayson, "The Method of Weighted Residuals and Variational 
Principles,” Academic Press, New York, NY, 1972. 

[8] J. Huang, C. F. Lin, “Numerical Approach to Computing Nonlinear 
H∞

Control Laws,” Journal of Guidance, Control, and Dynamics, vol. 
18, no. 5, September-October 1995. 

[9] Y. H. Kim, F. L. Lewis, D. Dawson, “Intelligent optimal control of 
robotic manipulators using neural networks,” Automatic 36, 2000, pp. 
1355 – 1364. 

[10] D. Kleinman, “On an iterative Technique for Riccati Equation 
Computations,” IEEE Trans. Automatic Control, pp. 114-115, February 
1968. 

[11] F. L. Lewis, V. L. Syrmos, “Optimal Control,” John Wiley & Sons, Inc. 
New York, NY, 1995. 

[12] F. L. Lewis, S. Jagannathan, A. Yesildirek, "Neural Network Control of 
Robot Manipulators and Nonlinear Systems,” Taylor & Francis, 1999. 

[13] X. Liu, S. N. Balakrishnan, "Convergence Analysis of Adaptive Critic 
Based Optimal Control,” Proc. American Control Conference, June. 
2000, pp.1929 – 1933. 

[14] S. E. Lyshevski, "Control Systems Theory with Engineering 
Applications,” Birkhauser, Boston, MA,2001. 

[15] S. E. Lyshevski, A. U. Meyer, "Control System Analysis and Design 
Upon the Lyapunov Method,” Proc. American Control Conference, 
June. 1995, pp. 3219 - 3223. 

[16] S. E. Lyshevski, "Optimal Control of Nonlinear Continuous-Time 
Systems: Design of Bounded Controllers Via Generalized Nonquadratic 
Functionals,” Proc. American Control Conference, June. 1998, pp.205 – 
209. 

[17] S. E. Lyshevski, "Role of Performance Functionals in Control Laws 
Design,” Proc. American Control Conference,  June. 2001, pp. 2400 - 
2405. 

[18] S. E. Lyshevski, "Constrained Optimization and Control of Nonlinear 
Systems: New Results in Optimal Control,” Proc. IEEE Conference on 
Decision and Control, December. 1996, pp. 541 - 546. 

[19] R. Munos, L. C. Baird, A. Moore, "Gradient Descent Approaches to 
Neural-Net-Based Solutions of the Hamilton-Jacobi-Bellman Equation,” 
International Joint Conference on Neural Networks IJCNN, 1999, Vol 3,  
pp. 2152 -- 2157. 

[20] J. Murray, C. Cox, R. Saeks and G. Lendaris,  “Globally Convergent 
Approximate Dynamic Programming Applied to an   Autolander," Proc. 
American Control Conference, June. 2001, pp.2901 – 2906. 

[21] A. Saberi, Z. Lin, A. Teel, "Control of Linear Systems with Saturating 
Actuators,” IEEE Transactions on Automatic Control, Vol 41, NO. 3, 
March 1996, pp. 368 -378. 

[22] G. Saridis, C. S. Lee, "An Approximation Theory of optimal Control for 
Trainable Manipulators,” IEEE Trans. Systems, Man, Cybernetics, Vol. 
9, No. 3, pp. 152-159, March 1979.  

[23] H. Sussmann, E. D. Sontag, Y. Yang, "A General Result on the 
Stabilization of Linear Systems Using Bounded Controls,” IEEE Trans. 
Automatic Control, Vol. 39, No. 12, pp. 2411-2425, December 1994. 

0 1 2 3 4 5 6 7 8 9 10
-6

-5

-4

-3

-2

-1

0

1

2

3

Time(s)

S
ys

te
m

s 
S

ta
te

s

State Trajectory for the Nearly Optimal Control Law
x1
x2
x3

  

0 1 2 3 4 5 6 7 8 9 10
-20

-15

-10

-5

0

5

Time(s)

C
on

tro
l I

np
ut

 u
(x

)

Nearly Optimal Control Signal with Input Constraints
u1
u2

Fig. 3. Nearly optimal nonlinear neural control law 
considering actuator saturation 


	Conference Program
	Author Index
	Main Menu

