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Abstract. We present an analysis of possible blocking 
phenomena, deadlock, in Discrete Event Systems (DES) having 
corrective and/or Preventive Maintenance Schedules (PMS). 
Although deadlock avoidance analysis for several classes of DES 
systems has been widely published, and although different 
approaches for PMS exist, it is not obvious how to mix deadlock 
avoidance and maintenance theories to improve throughput. In 
this paper we show that for some DES structures having reentrant 
flow lines, it is not necessary to stop activities in the DES, for the 
case one or more machines in production lines are in PMS. 
However, PMS may cause deadlock to occur if activities continue 
in some machines. We propose deadlock-free dispatching rules 
derived by performing circular wait analysis for possible deadlock 
situations in systems with PMS. This is accomplished by 
integrating the PMS structure and failure dynamics into a 
separate DES system that acts as a disturbance in the primary 
Reentrant Flow-line DES system. We propose a matrix 
formulation and a Finite State Machine to synchronize both 
subsystems. 
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1  Introduction 
In this paper we address the problem of avoiding possible 

deadlock situations on Flexible Manufacturing Systems or 
Discrete Event Systems (DES) having shared resources in 
Reentrant Flow-lines [Kumar 93], with scheduled 
maintenance jobs. It is no doubt Preventive Maintenance 
(PM) is a vital activity for improving machines availability in 
DES. This improving of availability is due to the decreased 
number of corrective maintenance jobs in machines, which 
lead to a much more costly production times. PM methods, 
like the Reliability-Centered Maintenance method has been 
used for years, and is still a recommended approach [Smith 
1992]. Recent studies have proven advantages of using PM 
techniques. For example, [Hicks 1990] has shown 
improvements in cost-reduction in different Army sites in the 
state of Texas. In Hicks’ work, recommendations are given to 
keep improving PM schedules. One important 
recommendation is the search for automated expert systems 
for optimal use of machines in systems with PM schedules. 

In this paper, we present one expert system with PM 
schedules based on matrices that avoids blocking 
phenomena in reentrant flow-lines. If DES contain Multipart 
Reentrant flow-lines (MRF), i.e. shared resources perform 
more than one job for same product, in a system producing 
several products, and if it is possible not to stop processes, 
even if one or more machines are in PM, then blocking 
phenomena can occur if jobs are not correctly sequenced in 
the remaining non-in-maintenance resources. This blocking 
phenomena is known as system deadlock [Banaszak et al. 
90, Hsieh et al. 94, Ezpeleta et al. 95, Fanti et al. 97, Lewis 
et al. 98]. Therefore, it is very important that the Discrete 
Event (DE) controller, after knowing which resources are in 
PM or corrective maintenance, properly sequences jobs and 
assigns available resources. 

In this paper we restrict our analysis to systems lacking 
key resources [Gurel et al. 00]. These key resources are 
critical structured resources that might lead to possible 
Second Level Deadlock (SLD) [Fanti et al. 00]. Systems 
lacking SLD are called regular. In [Mireles et al. 02], we 
provide a matrix tests for system regularity. Based on the 
decision-making matrix formulation introduced in [Lewis 
92-93], this paper presents the development of a deadlock-
free augmented discrete event controller for regular MRF 
systems with failures and PMS. This augmented controller 
contains a framework capable of handling failures and 
maintenance-capabilities in the DES structure. We describe 
the DE controller (DEC) formulation, and show how to 
analyze and compute in matrix notation the structures 
needed for deadlock-free dispatching algorithms. Based on 
these matrix constructions, we integrate PM systems’ 
information for deadlock-free dispatching rules in our 
augmented DEC matrix formulation by limiting the work-
in-progress (WIP) in some critical subsystems, which we 
define later. This is accomplished by integrating a Finite 
State Automata system composed of the primary Reentrant 
Flow-line DES system, and the disturbance-acting PMS 
structure containing failure dynamics. 
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2  Matrix-Based Discrete Event Controller 
A novel Discrete Event Controller (DEC) for 

manufacturing workcells was described in [Lewis et al. 93, 
Mireles et al. 01a-b]. This DEC is based on matrices, and it 
was shown to have important advantages in design, flexibility 
and computer simulation. The definition of the variables of 
the Discrete Event Controller is as follows. Let v be the set of 
tasks or jobs used in the system, r the set of resources that 
implement/perform the tasks, u the set of inputs or parts 
entering the DES. The DEC Model State Equation is 
described as 

 Cucurv uFuFrFvFx ⊗⊕⊗⊕⊗⊕⊗=     (1) 

where: x is the task or state logical vector, vF is the job 

sequencing matrix, rF is the resource requirements matrix, 

uF is the input matrix, ucF is the conflict resolution matrix, 
and   uc is a conflict resolution vector. 

This DEC equation is performed in the AND/OR algebra. 
That is, multiplication ⊗  represents logical “AND,” 
addition ⊕  represents logical “OR,” and the over-bar means 
logical negation. From the model state equation, the 
following four interpretations are obtained. The job 
sequencing matrix Fv reflects the states to be launched based 
on the current finished jobs. It is the matrix used by [Steward 
81] and others and can be written down from the 
manufacturing Bill of Materials. The resource requirement 
matrix Fr represents the set of resources needed to fire 
possible job states this is the matrix used by [Kusiak et al. 
92]. The input matrix Fu determines initial states fired from 
the input parts. The conflict resolution matrix Fuc prioritizes 
states launched from the external dispatching input Cu , 
which has to be derived via some decision making algorithm 
[Graves 81]. The importance of this equation is that it 
incorporates matrices Fv and Fr, previously used in heuristic 
manufacturing systems analysis, into a rigorous mathematical 
framework for DE system computation. 

For a complete DEC formulation, one must introduce 
additional matrices, Sr and Sv, as described next. The state 
logic obtained from the state equation is used to calculate the 
jobs to be fired (or task commands), to release resources, and 
to inform about the final products produced by the system. 
These three important features are obtained by using the three 
equations: 

Start Equation (task commands)  xSv VS ⊗=             (2) 
Resource Release Equation xSr rS ⊗=        (3) 
Product Output Equation xSy y ⊗=        (4) 
 

3  Matrix Analysis of MRF systems 
In these sections we present a technique for deadlock-free 

dispatching for MRF systems with maintenance schedules, 
and show how to implement some notions from other papers 
using matrices. First, we integrate PM systems in MRF 
structures using our matrix approach, then, we determine the 
deadlock constructions needed for free dispatching. This 
yields computationally efficient algorithms for analyzing the 
structure of MRF and deadlock-free dispatching.  

Consider the following definition of Multiple Reentrant 
Flow-lines, which basically define the sort of discrete-part 
manufacturing systems that can be described by a Petri net. 
The characteristics of MRF systems are: 

• No preemption. A resource cannot be removed from 
a job until this job is completed. 

• Mutual exclusion. A single resource can be used for 
only one job at a time. 

• Hold while waiting. A process holds the resources 
already allocated to it until it has all resources required to 
perform a job. 

For the DE systems we consider in our analysis, the 
following are their particularities: 

• Each job uses only one resource. 
• After each resource executes one job, it is released 

immediately for its availability. 
• In this paper we also consider handling scheduled 

preventive maintenance, as well as machine failures. 
An example of a class of MRF system is given next. 

Consider the Multipart Reentrant Flow-line problem shown 
in Figure 1. This system uses two types of machining 
resources and three types of robotic resources, machine 
types A and B, and robots type 1, 2 and 3. Any of the (two) 
robotic resources type 1 move incoming parts P1 and P2 to 
conveyors C1 and C2 respectively. Any of the (two) robotic 
resources type 2 can accomplish two jobs, jobs R2a and 
R2b. Job type R2a moves part type P2 from conveyor C2 to 
buffer of (any of the two) machines type B. Job type R2b 
moves machined part type P2 from (any of the two) 
machines type B to conveyor C3. Any of the (two) robotic 
resources type 3 can accomplish three jobs, jobs R3a, R3b, 
and R3c. Job type R3a moves part type P1 from conveyor 
C1 to buffer of (any of the two) machines type A. Job type 
R3b moves machined part type P1 from (any of the two) 
machines type A to parts out P1. Job type R3c moves 
machined part type P2 from conveyor C3 to parts out P2. 

In this example, for simplicity, we are assuming buffer 
sizes on conveyors and machines equal to one. This 
assumption will help us emphasize possible deadlock 
situations when resources are been in failure or scheduled 
for maintenance. Also, if we consider larger buffers, we will 
reach a practical point where the buffer might be full and so 
our same deadlock situation will appear.  

 

3.1  Failure/Maintenance DES structure. 
In this section we present an extension of the matrix 
framework presented in section 2 to incorporate DES 
systems with Failure and/or PMS. When human operators 
proceed to fix failures in machines/resources or proceed to 
perform a preventive maintenance, their jobs can be seen as 
specific jobs holding such machines/resources. The problem 
is that holding such resources being in Failure or PMS can 
lead to system deadlock. Therefore, in order to be able to 
control a DES with failures and/or maintenance schedules, 
one has to consider that each of such machine/robotic 
resources is in one of three possible states: In-Service state, 
Failure state, or in PM state. Then, for each resource in a PN 
representation, has to illustrate the Failure and PM states, as 
in the PN addition system in Figure 2. We call this PN 
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system the Failure-Maintenance (FM) system. In this figure, 
the places and transitions highlighted as “Ins Service Status” 
belong to the FMR system, where tx and ty represent 
transitions  •Jobij and Jobij•, for the j number of jobs from 
resource Ri. Notice that transition tfij fires when a failure 
occurs in resource Ri (for i=1,2…n=number of resources) 
while performing operation Jobij, after finishing this repair 
job, tfrij should be fired (in the PN from figure 2, this can be 
easily ensured by adding a virtual place between each tfij and 
tfrij transition pairs). Transition tmi will fire when a preventive 
maintenance Mpi for resource Ri is requested. When a 
transition tfij fires, a failure repair job, Frepi, is requested for 
execution. Maintenance times for jobs type Mpi are 
deterministic times. However, repair time jobs, type Frepi, are 
stochastic and not deterministic, and usually Frepi job times 
are larger than Mpi job times. Note that in order to improve 
throughput, transitions tfij have preference over all others. 
However, transition tmi is not always an ‘urgent’ transition to 
fire due to a scheduled PM, by presence of a new token in 
place Manti. This is, the supervisor can decide whether it is 
more important to finish pending jobs, or proceed to 
maintenance of corresponding resource Ri. 

The definition of the Failure-Maintenance system 
structure follows. Since the structure discussed in section 2 is 
now augmented by the addition of corrective and PMS, the 
FM structures, we need to re-define the formulation from 
section 2. For this, we need to include jobs type Frepi and 
Mprevi (the repair and the maintenance jobs, respectively), and 
the control transitions that activate these jobs for every type 
of resources Ri. We include these sets in our now augmented 
matrix form. We integrate these FM structures by 
incorporating in matrices F and S the transitions and places 
shown in figure 3.  This figure shows black and gray dots, 
representing ones and zeros in the rows & columns shown. 
To properly maintain FM structures, we supervise the 
maintenance integrated system, and keep track of job 
markings that belongs to this system. That is, the number of 
tokens in the FM addition system for each resource plus the 
number of tokens in the job set of same resource is always 
constant and equal to the initial marking in that resource 
(assuming no maintenance is in schedule at the time the 
initial marking is calculated.) 

 

Resource places are the only places shared between PM 
structures and the original PN (with no PMs). Notice also that 
for any of these two options, the ‘travel’ of tokens between 
one system to the other is through resource places R. Unless, 
of course, if a failure happens at the moment a machine is 
performing a job, a token passes from that job to failure 
status job place Frepi (by firing corresponding tfij). For this 
case, we consider the part was not finished, and stays in 
standby as a damaged part or for to be re-machined. Then, 
when failure happens, tfij is fired with high priority and start 
maintenance failure job type Frepi. 

This separation of systems MRF and FM is practical for 
the following reasons: 
1) Since FM system does not have resource loops and 

does not generate extra resource loops if exist any in the 
general existing system, this facilitates deadlock 

analysis on the MRF system without worrying about 
dynamics on FM systems. 

2) It is possible to maintain and control an independent 
FM subsystem with its appropriate PMS, and the 
existing general system by properly handling the 
marking vectors from both systems. It is clear that at 
any given time, the total number of tokens in a job set 
from a specific resource set, plus the available set of 
resources from that set is maintained equal to the 
initial marking of that resource set. This total number 
of tokens is diminished by one, for every job been in 
maintenance, i.e. been in its corresponding FM 
system’s job set. Then, by maintaining for each 
resource this number of tokens equal always to the 
sum of tokens from both systems, it is possible to 
maintain control of the MRF and FM systems. 

 

Figure 2 shows the FM Petri net system structure that 
has to be added for each resource in the FMR system to 
supervise preventive and corrective jobs. Figure 3 shows the 
matrix representation section representing only the FM 
system of resource R1. For the class of MRF systems we are 
considering including FM, deadlock can occur only if there 
is a circular wait relation among resources [Deitel 84, 
Gurel et.al 00]. Circular wait relations are ubiquitous in 
reentrant flow-lines and in themselves do not present a 
problem. However, if a circular wait relation develops into 
circular blocking, then one has deadlock. But, as long as 
dispatching is carefully performed, the existence of circular 
wait relations presents no problem for regular systems 
[Gurel et.al 00]. In this paper we restrict our analysis to 
regular systems. This systems lack key resources. These key 
resources are critical structured resources that might lead to 
possible Second Level Deadlock (SLD) [Fanti et al. 00] 
situations in MRF systems. In [Mireles et al. 02a-b], we 
provide a matrix tests for system regularity. 

 

3.2  Circular Waits: Simple Circular Waits and 
their Unions. 

In this section we present a matrix procedure to identify all 
circular waits (CW) in MRF systems. CWs are special wait 
relationships among resources described as follows. Given a 
set of resources R, for any two resources ri, rj ⊂R, ri is said 
to wait for rj, denoted ri→rj, if the availability of ri is an 
immediate requirement to release rj, or equivalently, if there 
exists at least one transition x∈•ri∩ri•. Circular waits 
among resources are a set of resources ra, rb,…rw, which 
wait relationships among them are ra→ rb→…→rw, and 
rw→ ra. The simple Circular Waits (sCW), are primitive 
CWs which do not contain other CWs. If sCW are present in 
the PN system structure, these are identified by constructing 
a digraph of resources. [Hyenbo 95] demonstrated a 
technique to identify such sCW. We used his approach to 
contruct digraphs in matrix form. The entire set of CWs are 
the sCW plus the circular waits composed of unions of non-
disjoint sCW (unions through shared resources among 
sCW.)   

In [Mireles et al. 01], we obtained two matrices, Cout 
and G, using digraph theory and string algegra. Cout provides 
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the set of resources which compose every CW (in rows), that 
is, an entry of ‘one’ on every (i,j) position means that 
resource j is included in the ith CW. G provides the set of 
composed CWs (rows) from unions of sCW (columns), that 
is, an entry of ‘one’ on every (i,j) position means that jth sCW 
is included in the ith composed CW. 

 
3.3  Deadlock Analysis:  Identifying Critical 
Siphons and Critical Subsystems. 
Three important sets associated with the CWs C are the 

siphon-job sets Js(C), the critical siphons, Sc(C), and critical 
subsystems, Jo(C). The critical siphon of a CW is the smallest 
siphon containing the CW. Note that if the critical siphon 
ever becomes empty, the CW can never again receive any 
tokens. This is, the CW has become a circular blocking. The 
siphon-job set, Js(C), is the set of jobs which, when added to 
the set of resources contained in CW C, yields the critical 
siphon. The critical siphons of that CW C are the conjunction 
of sets Js(C) and C. The critical subsystems of the CW C, are 
the job sets J(C) from that C not contained in the siphon-job 
set Js(C) of C. That is Jo(C)= J(C)\ Js(C). The job sets of CW 
C are defined by J(C) = ∪r∈C J(r), for J(r)=r••∩J, where J is 
the set of all jobs. 

In order to implement efficient real-time control of the 
DES, we need to compute these sets in matrix form. We need 
intermediate quantities •• CC and , input and output 
transitions from C, and which in matrix form for each CW 
are denoted dC and Cd respectively, computed as, 

dC = Cout Sr, and     (5) 
Cd = Cout Fr

T .     (6) 
In terms of these constructions, matrix form sets are 

described next, indicating ‘one’ on every entry (i,j) for places 
that belong to that set existing in every ith CW. The job sets 
described earlier for each CW C, J(C), in matrix form (for all 
CWs arranged in rows) are described by 

JC = dC Fv = Cd 
T

vS .            (7) 
The siphon-job sets are defined for each ith CW Ci as Js(Ci):= 
J(Ci)∩( •• CC \ ). In matrix notation, we can obtain them for 
all CWs by 

Js = JC ∧ )( d vFC .              (8) 
The critical subsystems, Jo(Ci) = J(Ci)\ Js(Ci), in 

matrix form for all CWs Ci are obtained by 
Jo = JC ∧ )( d FvC .     (9) 

4  Deadlock Avoidance 
In terms of the constructions just given, we now present 

a minimally restrictive resource dispatching policy that 
guaranties absence of deadlock for multi-part reentrant flow 
lines. To efficiently implement in real time a DE controller 
with this dispatching policy we use matrices for all 
computations. We consider the case where the system is 
regular, that is, it cannot contain the Critical Resources (CR) 
(so-called structured bottleneck resources or ‘key resources’ 
[Gurel et al. 00] existing in Second Level Deadlock (SLD) 
structures [Fanti et al. 97, 00].)  For this case, we described 
in [Mireles et al. 02], a mathematical test to verify that MRF 

systems are regular. If that is not the case, we can still use 
this matrix formulation, but with a different dispatching 
policy designed for systems containing second level 
deadlock structures. We will present such dispatching policy 
for FMRF systems having CR in a forthcoming work. 
 

4.1  Dispatching Policy 
In this section we consider dispatching for regular 

systems. In [Lewis et al. 98] was given a minimally 
restrictive dispatching policy for regular systems that avoids 
deadlock for the class of MRF systems considered in this 
paper, but without the failures or PMS. To understand this 
policy, note that, for this class of systems, a deadlock is 
equivalent to a circular blocking (CB). There is a CB if and 
only if there is an empty circular wait (CW). However, CB 
is possible (for regular systems) iff the corresponding 
critical siphon from any CW is empty. This is, there is a 
deadlock iff all tokens of the CW are in the Critical 
Subsystem. 

Therefore, the key to deadlock avoidance is to ensure 
that the WIP in the Critical Subsystems is limited to one less 
job than the total number of initial tokens in the CW (i.e. the 
total number of resources available in the CW). Preliminary 
off-line computations using matrices are used to compute 
the Critical Systems. A supervisor is assigned to each 
Critical Subsystem (CS) who is responsible for dynamic 
dispatching by counting the jobs in that CS and ensuring 
that they do not violate the following condition, for each 
CW Ci,            m(Jo(Ci))  < mo(Ci).      (10) 
That is, the number of enabled places contained in the CS 
for each Ci must not reach the total number of resources 
contained in that Ci. In (10), mo(Ci), is the initial marking of 
Ci,. However, having failures and PM jobs, the total number 
of available resources will be diminished. So that mo(Ci) 
does not represent anymore the actual available resources 
contained for that Ci. To be able to keep track of such 
available resources, we need to define the total number of 
job places from systems FM corresponding to resources 
contained in a CW Ci, by JMF(Ci). Then, if we diminish 
mo(Ci) by jobs currently in failure and/or PM in JMF(Ci), our 
CB supervision test (10), we will be able to ensure actual 
available resources which will ensure deadlock-free 
dispatching. This is, our new CB supervision test is 

m(Jo(Ci))  < {mo(Ci) - JMF(Ci)}     (11) 
A graphical example of using (11) is pictured in Figure 

4. This system has two circular waits, C1={M1, R3}, and 
C2={M2, R2}. This system contains five FM systems split 
as separate subsystems. Notice that initial mo(Ci)=4 for 
i=1,2. The current status shown in Figure 4, is that CW C1 
has two jobs pending in m(Jo(C1))=2, jobs R3a and m1. 
Then, since JMF(C1)=0 (no jobs in places Fm1, Mmp1, Fr3, 
and Mp3), and mo(C1)=4, we are able to fire transition t3 to 
have a total of three tokens allowed by (11). However, since 
a new attempt to start a PM job at place Mpm1 is in place, 
and if we fire transition tmm1, JMF(C1) will become one, then 
we should not fire t3 since C1 would be in deadlock, due to 
(11). For CW C2, the allowable number of resources should 
be <{mo(C2) - JMF(C2)}. This is, should be smaller that 3. 
Then, we can not fire transition t9, since C2 will get into CB 
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until failure maintenance Frep2 is finished. Therefore, it is 
better not to get into blocking and wait till one of the jobs m2 
is finished to diminish m(Jo(C2)) by firing t11. 

The appropriate way to keep the markings of resources 
equal in both systems is to use Finite State Automata 
techniques to supervise both subsystems alternatively. This 
is, run one (several) discrete event(s) in any one of these 
subsystems, then hold its markings and pass the new marking 
of resources R, m(R),  before one run event(s) in the other 
subsystem. This Finite Element Machine interaction between 
subsystems is shown in Figure 5. 

For implementation of the DEC, in every DE iteration, 
we can use any desired dispatching policy. For example, 
FBFS, which maximizes WIP and machine percent 
utilization. However, it is known that FBFS often results in 
deadlock. Therefore, we combine FBFS with our new 
deadlock avoidance test (11). Thus, before we dispatch the 
FBFS resolution, we must examine the marking outcome 
with our deadlock policy. If this resulting outcome does not 
satisfy (11), then the algorithm denies or pre-filters in real 
time the firing and we apply again the FBFS conflict 
resolution strategy for the next possible allowable firing 
sequence. Then, using FBFS while permitted, we will try to 
satisfy in most of the current status of the cell the case 
m(Jo(Ci)) = {mo(Ci) - JMF(Ci)}-1. The later condition is an 
extended policy from that called MAXWIP policy, defined in 
[Huang et al. 96]. 
 

6. Conclusions. 
We show an analysis of blocking phenomena in Discrete 

Event Systems (DES) having corrective and/or Preventive 
Maintenance Schedules (PMS). We show that for some DES 
structures having reentrant flow-lines, it is not necessary to 
stop all activities in the DES, for the case one or more 
machines are in PMS. We proposed deadlock-free 
dispatching rules derived by performing circular wait 
analysis for possible deadlock situations. We analyze the so-
called critical siphons, certain critical subsystems and 
resources to develop a DE controller that guarantees 
deadlock-free dispatching with PMS by limiting the work-in-
progress in the critical subsystems associated with each CW. 
This is accomplished by integrating a Finite State Automata 
supervision between two subsystems. One system is the 
Reentrant Flow-line system structure controlled by the DES 
matrix formulation, and an extra DES system contains the 
failure and preventive maintenance dynamics, called FM 
system structure. Deadlock-free dispatching is possible by 
passing the markings of available resources between these 
two subsystems. The extra FM DES system acts as a 
disturbance in the primary Reentrant Flow-line DES system. 
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Figure 4. Complete Petri Net and FM5 system structures.  
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Figure 1.  Multipart Reentrant Flow Line Problem. 
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Figure 2. Corrective, In-Service and Preventive status of FM.  
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Figure 5. Finite State Automata interactions between the FM
subsystem and DES controller structure. 
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