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Abstract—It is known that the separation principle was Wherex(t) € R" is a state vectoru(t) € R! is an input,
deduced in the linear systems theory from both the optimal 4(¢) ¢ R! is an output andf[x(t), u(t)] € C>® : R® x R* —
and asymptotic points of view. But, it has not sufficiently been R", hz(t)] € C* : R" — R! are non-linear mappings.

solved in non-linear case yet. The method proposed in this paper : :
represents a new approach to the solution of the separation The state vector(t) is supposed not to be accessible for

principle problem for a certain class of non-linear systems. As measurement.
the theoretical basis of the approach the well known dissipative ~ Assume that the representati®i.S) (1), (2) is controllable
systems theory has been chosen. The Lyapunov’s stability theory gnd observable.

is the other basic point of the method. Our aim is to propose a controller

. INTRODUCTION u(t) = Liz(t)] 3)
This paper deals with a new approach to the solution of
a separation principle problem for a certain class of noAnd an observer
linear systems. It is based on so called digsipation normal . az(t) ;.
form and consists in combining two methods. In both the P = fla(),ult) y(0)] (4)

methods the dissipation normal form is used. One of the-w such a way that the closed loop systéi containing the

L . |
solves the stabilization problem of non-linear systems. T%‘?iginal systems (1), (2), the controller (3) and the observer

dissipation normal form is used here in such a way that tzg).
structure of the representation of a closed loop system is only’

chosen in this form. An appropriate controller is proposed so da(t) O Lla(t 5
that the demands required of the behaviour of a closed loop (Sat) dt Ha(®), LEOL ©)
system are implemented. The other method solves the state dz(t) —  FLa). LIa(O]. hlx(t 6
reconstruction problem of non-linear systems. The dissipation dt Ha @), L@, ple ()]} ©)
normal form is used here in such a way that the structure y(t) = hlz(t)] (7)

of the representation of an error system is only chosen .in

this form. By means of integrating the stabilization and statd asymptotically stable. It means that

reconstruction methods mentioned above the solution of the Viz(t),2(t)] > 0 for x(t) #x., &(t) #i. (8)
separation principle problem for a certain class of non-linear Viet),#(8)] = 0 for a(t) = 2o, #(t) =40 (9)
systems is found. It is in general embodied in the proposal dV[;z:(t)%(t)] “ ¢

of a compensation functiothat guarantees the asymptotical ——~""—~> < 0 for z(t) # z., 2(t) # . (10)
stability of a resulting closed loop system after applying the v (‘g ()

separation principle if it is put to a proposed controller as an &Y EVLTWL g gor z(t) = xe, T(t) = Ze, (11)
addition. This method is similar to the method described in
[1]. The problem is solved there with the help of a dampinghere V[x(t), #(t)] : R* x R* — R is a Lyapunov function
function added to a proposed controller as well. Then, thelated to the representatid®(S.;) of a closed loop system
damping function guarantees the asymptotical stability of %, (5), (6), (7) andz., Z. is its equilibrium state for which
closed loop system where the separation principle was usicolds that

Other approaches to the solution of the separation principle dx. -0, di. —0. (12)
problem for non-linear systems present for example methods dt dt
described in [2], [3], [4], [5]. Some comparisons with the [1l. DISSIPATIONNORMAL FORM

method mentioned in [4], [5] are performed in this paper. It

is shown that a certain similarity can be also found there. Definition 1 Consider the representatigf(s5) of a system

S and assume that there exists an accumulation function

Il. PROBLEM FORMULATION Wz(t)] defined on a domaif? C R". The representation

R(S) will be called thedissipation normal fornif the accu-
mulation functionW[z(t)] fulfills the following conditions:

dx(t)

o = fle),u)] 1) Wizt)] = |z@)|? (13)
y(t) = hlz@)], ) L{Wlz®)]} = Bly@®)]<o0. (14)

Consider the representati@(.S) of a systemS in the form:




Remark 1:The accumulation functiod [x(¢)] represents  Remark 2:The relation (20) implies that
measure of the signal energy stored in a sysfemt a time
instantt. There is an obvious connection with a Lyapunov prlz(t)] <0 for z.(t) #0 (22)
function V[z(#)]. The accumulation functiof’[z(#)] is also js 5 necessary and sufficient condition for the structural
related to the available storage [5] and th_e non-linear f“nCt'%'%ymptotical stability of a systers.

Ply(t)] corresponds to the Rayleigh function [7]. Remark 3:If the accumulation functiodV [z(t)] is defined

A. Structural Asymptotical Stability on the whole state spad®® and the relations (18), (19), (20),

1) hold, then a systerf is globally asymptotically stable.
Remark 4:The structure of the dissipation normal form
is related to the Schwarz matrix [9] and can be seen as the
generalization of a corresponding linear system representation.

The following theorem will be used later for guaranteings2
the asymptotical stability of the closed loop systém (5),
(6), (7).

Theorem 1:Let ko,....k, € R; ko,...,k, # 0 are con-
stants andp; [z ()], afz:1()] are non-linear functions which g structural Observability
satisfy the following conditionsp; [x1(t)] < 0 for z1(¢) # 0,

3 a~1[y(t)] and ale, (£)] = 0 < a1 (1) = 0. It holds that
If a representatior?(S) has the structure [8]: alzi(t)]

pi[ri(t)] k2 0 ) 0 det Hyz(t) = det 0 Lf{a[ffl(t)}} _
dz(t) ~ky 0 ks (1) :
e Ly Halna )}
(15) 3
y(t) = afz(t)], (16)

o ' _ where H,[z(t)] is a generalized observability matrix.
then the only equilibrium state. = 0 is asymptotically |t follows from the relation (23) that the conditions
stable and the corresponding accumulation functibfu(t)] g, ... k, 0,3 o '[y(t)] andafz; (t)] = 0 < z1(t) =0
fulfills the conditions (13), (14) for any:[z1(t)], afz1(f)] are necessary and sufficient conditions for structural observ-

andka, ..., kn. ability of the dissipation normal form.
Proof: Assume that a representatidi(.S) has the form
(15), (16) and consider the accumulation functidfz(t)] = IV. NON-LINEAR OBSERVER DESIGN BASED ON
llz(t)]2. DISSIPATION NORMAL FORM
1) The relation (15) implies that A. Problem Formulation
dx(t) —0 & () =0. (17) Consider the representatidi(.S) of a systemS in the form
dt 1), (2). )
Hence,z(t) = z. = 0 is the only equilibrium state of ~Our aim is to design an observei(s):
the representatiof®(S). . di(t)
2) It holds that R(S) : — = = fla(t), u(?), y(1)] (24)
Wilz(t)] > 0 for z(t) #0 (18)  which will generate the asymptotic estimaité) of the state
Wiz(t)] = 0 for z(t)=0 (19) vectorz(t) using the inputu(t) and the outpuy(t) in such a
LWz)]} = 222(t)p1[o1(t)] = way tha_t the foII_owmg two demgnds _WlII be satl_sfled.
_1 9 1 The first one is thestate error invariance conditian
= 2o @O er{a O]} = 23 () )
= Bly®)] <0 for z(t) #0 (20) R(S): — = = fla),2(t),2(t),u(t), y(t)] =
L{Wz@®)]} = 2zi(t)pa[zi(t)] = = fl@@)] (25)

= 2o O e {a )]} =
= PBlyt)] =0 for z(t)=0. (21)
It follows from the relations (18), (19), (20), (21) that the () = 2(t) — £(t). (26)

accumulation functioV[z(?)] is a Lyapunov function. The second one is thstate error convergence conditicio
Thus, the equilibrium state, = 0 is asymptotically ;g0

wherez(t) is a state error defined as

stable. It is also obvious that the accumulation func- lim () = lim [2(t) — #(£)] = 0 27)
tion Wz(t)] fulfills the conditions (13), (14) for any t—00 t—00
p1[z1(t)], afza(t)] and ks, ..., kn. corresponding to the asymptotical stability of the state error

m systemR(S) (25).



B. Problem Solution More information about this method can be found in [11],

This method consists in the prior choice of the structufd?], [13], [14], [15], [16].
of a state error system representation selected in order to
fulfill structurally the two demands mentioned above. TheV. STABILIZATION OF NON-LINEAR SYSTEMS BASED ON

structure of the state error system representation is chosen in METRIC EQUIVALENCE
the dissipation normal form ]
A. Problem Formulation
LA at Consider the representatidt(.S) of a systemS in the form
SflEzw)] 65 0 . 0 1), ().
— 63 0 & ) ) Our aim is to propose a controller
= wp 0 —03 0 | z*(),
. . u(t) = Lix(t)] (30)
0 .0 =65 0 ,
(28) in such a way that a closed loop systeéin:
whered;[Z5(t)], wo, 03, ...,d; are design parameters. R(Sa) : da(t) = f{z(t),Llz(t)]} (31)
It holds that dt

i 2 y(t) = hlz(t)] (32)
LAV [z 0]} = Ly A7 017} = 202 ()57 [77 ()],
(29) is asymptotically stable.

whereV*[*(t)] = ||z*(t)||* is the Lyapunov function related
to the representatioR*(S) (28). The relations (28), (29) im- g problem Solution
ply that both thestate error invariance conditioand thestate
error convergence conditioto zero are satisfiedtructurally ~ We would like to use the Lyapunov's stability theory for
if the design parameters are properly chosenvlf> 0 and solving the stabilization problem mentioned above. However,
§:[#x(t)] < 0 for all #1(t), then the state error system ighe application of the theory for stabilization problem solving
globally asymptotically stable. &, > 0 and 67[#:(t)] < 0 is quite complicated because a Lyapunov functicfu(t)]
only for #:(¢) € (@', 57), |#%° —&%'| = o # 0, then the state related to the given original representatifiS) of a system
error system is semi-globally asymptotically stable over a finite (1), (2) is not explicitly known in general. Therefore, the
area of the state spade®. The constanty, represents a time dissipation normal form will be used for the synthesis of a
scale transformation and therefore it affects the convergerf@trol law because its Lyapunov function is explicitly known.
rate. The non-linear functioti [} (¢)] describes in what way ~ Choose the representatidit (S.;) of a closed loop system
the system energy dissipates and therefore it specifies fhe in the dissipation normal form:
convergence mode. It is clear from the relation (29) that the

constantsy;, ..., 4, # 0 do not have any effect on either rate p*(s,) da”(t) =
or mode of convergence. From this point of view, they can in dt
principle be chosen in an arbitrary way. fi m*(t)] f3 0* -0
Remark 5:In fact, §;,...,6) can be non-linear functions f2 O* 3 y
in general:0y = 5[ (1), & (1), 2 (t), u(t), y(£), 1], . .., 6% = = A )
Or[z*(t), z*(t), x*(t), u(t), y(t), t]. Nevertheless, this compli- : oo I
cation is not necessary. It has already been said that they have 0 -0 fn 0
no effect on either rate or mode of convergence. Because of (33)
this, they are chosen without loss of generality as constants. y = zi(t), (34)
Remark 6:1f wy — oo (wi0 — 0), then an appropriate
observer corresponds to the high-gain observer [10], [4], [B)vhere f{ [z} (t)], v, f5,..., [, are design parameters. They

Further, the original representatidi(S) of a systemS (1), have the same influence on closed loop system behaviour as
(2) is supposed to be transformed into a proper state equival@gntioned in the section IV-B.
canonical form. Then, substituting to the relation for the state Remark 7:(metric equivalence vs. state equivalence) The
error (26) we get an observer structure. structure of the representatidif (S.;) of a closed loop system

The parametrization of the observer is performed via the,; (33), (34) is only one of possible structures which conform
generalized observability normal form and consists in genetal the conditions (13), (14). We will obtain another one if
in solving a system of differential equations, which is thee use an orthonormal transformation applied to the relations
consequence of the validity of a certain structural conditiqi33), (34). We chose this one, but we could still choose another
unwinding from an equivalence relation. one. The reason we selected this form is that it has a structural

Finally, the proposed observer is transformed into originasymptotical stability property and therefore certain measure
coordinates. of robustness is held.



Further, suppose that the original representafjly) of a where

systemS (1), (2) can be transformed to the following form: n—1 T '[z(t)] ., 1 .
(1) ot C”(”x(m:iAam@)l“WAM+ﬁ”“@“ﬁi
_ d : :
RS):g| - ol 2.0 G5 for z(t) = T[z* ()] andi(t) = T[#*(1)].
g_(lt) [9‘c(tn) w(t)] The representatioi®*(S,;) of a closed loop syster,; is
" yt) - jl(l:), ’ (36) the dissipation normal form if and only if

S O e ()

where u[Z(t), u(t)) |s a non-linear fgnction. . Clx*(t),2*(t)] = Z 950 L[z ()] +
Remark 8:Conditions for the existence of an appropriate i=1 Ti

transformationz(t) = T[x(t),u(t)] are controllability and L A e

observability of the representatid®(S) (1), (2). w0, 20] = —fazna(t) (44)

Then, the controllew(t) = L[z (t)] is proposed with using

: - o - for Z(t) = T[z*(t)] andZ(t) = T[&*(t)].
an equivalence relation and specified by the following term. Unfortunately, the condition (44) can not be fulfilled in any

)= a0 = e OalaO)), @) way .
wheren(a(1)] = L. 21 (1) for o (t) = T-[a (o). eans thablzy (O] & O -

Finally, the proposed controller is transformed into original Then
coordinates. nel g
More information about this method can be found in [13], Cla* (), 3 ()] T, [z@t)] .,
[17],[18], [19], [16]. ’

i=1
VI. SEPARATION PRINCIPLE— COMPENSATION FUNCTION b 0]+ el@] @)
Consider for now that Fi R Fi
. . for z(t) = T[z*(t)] and&(t) = T[2* (¢)].
ut) = LE®)]law=s¢ = L21)] = The representatio®* (S.;) of a closed loop syster,,; is
pHE (), n[z(t)]}. (38) the dissipation normal form if and only if
Hpa n—1 _1r=
ha‘gklﬁre\, ftgremr:epresentatldﬁl(Scl) of a closed loop systerfi,; (). 4% = wﬂ @] +
i=1 ¢
Ty (1) T (t) .
o . g N + 0]+ el 0] = —fiw 1 0)
( cl) : % jnil(t) = ;En(t) ( ) (46)
Zn(t) 12 (t), 2(1)] for 2(t) = Tlz* ()] and&(t) = T2 (1)].
y(t) = (1), (40)  The condition (46) holds if and only if
wherey[z(t), £(t)] = p{z(t), u= {E (), n[E()]}). 1) the original representatioR(.S) of a systemS (1), (2)

If the methods for non-linear observer design mentioned can be transformed to the dissipation normal form:

in the chapter IV and stabilization of non-linear systems wron Az (t) . .o
mentioned in the chapter V are combined, then the represen- (8): dt = @[ ()] + b%[2"()]u(t)
tation R(S.;) of a closed loop systeny,; (39), (40) can be 47
transformed back to the dissipation normal form: y(t) = (), (48)
zi(t) where
z3(t) aflzi(t)] a5 O ) 0
R* Sc . Bl . — *CL; 0 ll§
xnfl(t) ) a*
() 0 0 —a& 0
FElas @)zt () + f323(0) 2) fy=as e St =l
—faai(t ) + fya3(t) 3) a certain function
— : (41) . 1.
' olz(t)] = ——a[z(1)], (49)
, 1xn Z(t) f;l’;(t) ap
C[x*(t%@*(t)] where

y(t) = a1(h), (42) Ylrt)] = m(r®)] - L} [27(1)] (50)



for 2*(t) = T [z(t)] andz(t) = Z(¢). It can be shown that it is possible to transform the given
The function o[Z(t)] is the compensation function added téepresentation?(s) of the systemS into the dissipation

the proposed controller: normal form:
- - . dx*(t) ajlzi(t)] ab | . 0
u(t) = L[z (t)] + o[2(t)]. (51) R'(S):—p— = { 1_;; EAORS b u(t)
Finally, if the condition (46) holds, then the asymptotical (58)
stability of a closed loop syste$,; (5), (6), (7) is guaranteed. y(t) = c[a5(t)) (59)

Remark 9:The formula for the functiow[|(y2[-]) doesnot
depend on observer equations. It means that it can be ug‘éﬁ‘ al[ml(f)] :1
another method for non-linear observer design proposing &n(t) andb; = 5.

asymptotic observer, not necessarily the mentioned one.  NOW we compute a compensation function and add it to
the proposed controller. The compensation function is the

VII. | LLUSTRATIVE EXAMPLE following:

1> *3 * * * *
Tﬁxl (t) — eaxi(t), a3 = 2, c*[x](t)] =

Consider the second order non-linear syste(wan der Poll ol(t)] = —(0.3 +eB)23(t)da(t) + (e — 2)da(t).  (60)

equation): )
In the consequence ofy = a3 the controller is changed to

dxq(t :
da(t) 10— (D) u(t) = —(0.3 + f)27(t)Ea(t) + (et — 2)d2(t).  (B1)
= - — px x2(t) —
dt ' The response of the resulting closed loop systejris shown
= Ko (t) +u(t) (53)  on the fig. 6. The compensation function stabilized the closed
y(t) = x(t), (54) loop systemS,; when the separation principle was used.
Remark 10:lt can be seen that the compensation function
wheree = -2, ¢ =4, § =2, K = 4 are the system e same form as the controller.
parameters. The response of the syst€no certain initial
conditions foru(t) = 0 is shown on the fig. 1. VIIl. A CKNOWLEDGMENTS

At first we propose a controller using the method mentione(_:i This work was supported by the Ministry of Education of

in the section V so that the closed loop system is asymptafis czech Republic under Project No. LNOOBO9S.
cally stable. Then, the controller is the following:

u(t) = —(0.34+e8)2? () o (t) + (K —1)xy (t) + (e — 2)z2(t).

(55)

The response of the closed loop systéfn to the initial
conditions is shown on the fig. 2.

At second we propose an observer using the method méf

tioned in the section IV so that its state error system

asymptotically stable. Then, the observer is the following:

IX. CONCLUSIONS

The separation principle for a certain class of non-linear sys-
tems has been successfully deduced. It consists in guaranteing
the asymptotical stability of the closed loop system where the
paration technique was used. The method mentioned in the
per is exact and does not require any system linearization
In the sense that the system to be stabilized is replaced by a
linear one. In comparison with the method described in [4], [5]

A diy(t) . B .o N it is analytical. It means that no numerical approach is used.
: = t) —e|lzx7(t) — t . Lo .
R(S) dt Z2(t) 6[3:51( )~ vl () + However, a certain similarity can be found (see the section
el 3 . IV-B). The problem is that the dissipation normal form is not
—y-(t) —evy(t 0.5woly(t) — z1(t . . .
+ 37 (8) —evy(t) + oly(®) 1®)] general enough. The extension of the method mentioned in the
(56) paper could consist in generalizing this form.
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