
Sliding Mode Control with Decreased Chattering
for Nonminimum Phase Plants

Ryszard Gessing
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Abstract— The idea of the system with sliding mode control
and adaptation of the switchedβ+ and β− amplitudes of the
relay output [1] for nonminimum phase plants is applied in the
paper. This is possible owing to proposal of original parallel
compensator which from the point of view of control removes
the nonminimum phase property of the plant. The adaptation
causes that the difference(β+ − β−) is decreased and both the
values tend to be placed symmetrically with respect to the needed
value of the control. Owing to this the chattering effect appearing
in the sliding control is decreased, significantly and the system
remains robust. The proposed idea is illustrated in simulations.

Index Terms— Sliding mode control; chattering decrease; non-
minimum phase plants; parallel compensator; relay control.

I. I NTRODUCTION

The control systems which uses sliding mode technique
have now good theoretical elaborations (e.g [4, 5]) as well as
successful practical applications (e.g. commonly used voltage
stabilization of car alternators). This kind of systems works
well both with linear and non-linear plants. Sliding mode tech-
nique can be also used for decoupling multivariable systems
both with linear and non-linear [3] multivariable plants.

It is well known, that the systems with sliding mode control
are very robust so they work well even in the case of large and
rapid parameter changes. However with the switching action
of the relay there is connected the so called chattering effect
which sometimes is not accepted by users and/or by actuators.
Therefore chattering decrease is interesting from application
point of view.

It is known that nonminimum phase plants are difficult for
control. One can notice that usual sliding mode control can
not be applied to the nonminimum phase plants successfully.
This is caused by the fact that the step response of these plants
is non monotonic i.e. at the beginning it is negative and later
on –positive. Therefore the usual sliding mode control applied
to these plants gives non stable waveforms.

In the present paper the idea of the sliding mode control
with decreased chattering elaborated first in [1] is used to
nonminimum phase plants. The independent adaptation of
both the switched amplitudesβ+ andβ− of the relay output
causes that the difference(β+ − β−) is decreased and both
the amplitudes are symmetrically placed with respect to the
demanded value of the plant input signal. Owing to this the
chattering effect is decreased, significantly. The successive
application of this sliding mode control to nonminimum

phase plants is possible owing to the original proposal of the
parallel compensator similar to the Smith predictor. Owing
to this proposal the control may be designed similarly as for
minimum phase plants.

The contribution of the paper is in proposal of the parallel
compensator owing to which the sliding mode control with
decreased chattering may work well also for nonminimum
phase plants.

II. A PARALLEL COMPENSATOR

Let a nonminimum phase plant is described by the following
transfer function

G(s) =
b0s

m + b1s
m−1 + ... + bm

sn + a1sn−1 + ... + an
(1)

wherem < n andai, i = 1, 2, ..., n, bj , j = 1, 2, ...,m are real
coefficients. Lets1, s2, ...sn andz1, z2, ..., zm be the poles and
zeros of the plant, respectively. Assume that the plant is stable,
i.e. Resi < 0, i = 1, 2, ..., n while Rezj > 0, j = 1, 2, ..., k <
m, andRezj < 0, j = k + 1, k + 2, ...,m

Let
L̄(s)) = (s− z1)(s− z2)...(s− zk) (2)

be the polynomial composed of nonminimum phase zeros.
Denote also by

M̄(s) = (s− s1)(s− s2)...(s− sk) (3)

Assume that the polynomial̄M(s) has real coefficients i.e. it
contains or real poles or conjugate pair of complex poles.

Let

r∗ = Mini|Resi|, i = k + 1, k + 2, ..., n (4)

and assume that

| Resi |≥ fr∗, i = 1, 2, ..., k, (5)

and that the nonminimum phase zeros are not to close to the
imaginary axis (e.g.|Rezi| > r∗, i = 1, 2, ...k). Here f is
an integer equal to at least several. The assumption (4) means
that the modes corresponding to the polespi, i = 1, 2, ..., k
decay several times faster than the slowest mode among those
corresponding toi = k + 1, k + 2, ..., n.
We may write:

b0s
m + bm−1

1 + ...+ bm = L̄(s)(b̃0s
p + b̃1s

p−1 + ...+ b̃p) (6)



sn + a1s
n−1 + ... + an = M̄(s)(sq + ā1s

q−1 + ... + āq) (7)

wherep = m− k, q = n− k and b̃0 = b0.
Let us notice that the transfer function

Ḡ(s) =
b̃0s

p + b̃1s
p−1 + ... + b̃p

sq + ā1sq−1 + ... + āq

bm

b̃p

āq

an
(8)

(which results from (1) by neglecting in the numeratork
modes corresponding to nonminimum phase zeros and in the
denominator –k modes corresponding to the fastk poles
s1, s2, ..., sk) has the same relative degree asG(s), i.e. n −
m = q−p and additionally it has the same gain sinceḠ(0) =
G(0) = bm/an. Therefore the models (1) and (8) for relatively
small (working) frequencies have approximately the same
frequency responses, though the model (1) is nonminimum
phase while (8) is minimum phase one. This also means that
after same time (shorter iff is bigger) the step responses of
both the models (1) and (8) are approximately the same.

Therefore we create the compensator with transfer function

C(s) = Ḡ(s)−G(s) (9)

and apply it, in parallel, to the plantG(s) as on Fig. 1. Then
the resulting replacement plant

Gr(s) = G(s) + Ḡ(s)−G(s) = Ḡ(s) (10)

is minimum phase and stable and for it the sliding mode
control with decreased chattering [1, 2] may be used. Note
that in this approach the design of the control may be made
using the plant model̄G(s).

Fig. 1. Sliding mode control with adaptation.

III. SLIDING MODE CONTROL

In the system shown on Fig. 1 the replacement plant is
described by

Ḡ(s) =
b̄0s

p + b̄1s
p + ... + b̄p

sq + ā1sq−1 + ... + āq
(11)

where

b̄i = b̃i ·
bm

b̃q

āq

an
, i = 0, 1, ..., p. (12)

Let y, yc and y denote the outputs of the models
G(s), C(s) andḠ(s), respectively, excited by the same input
u. Then from Fig. 1 it results

ȳ = y + yc = y + y − y = y (13)

Let w be the set point of the closed Loop (CL) sys-
tem and e = w − ȳ = w − y be the control error. Let
c0, c1, ..., cd−1, d = q−p−1 = n−m−1 be the coefficients
chosen so that the equation

e∗ = c0e
(d) + c1e

(d−1) + ... + cd−1e
(1) + e = 0 (14)

has stable transients of a good quality. The equation (14)
describes the sliding surface. The numberd has been chosen
so thatė∗ has stepwise changes for stepwise changes ofu.

By means of the proper choice of the valuesβ+ and β−

the following bang-bang relay control law can be created

u = β+ if e∗ > 0
u = β− if e∗ < 0 (15)

The valuesβ+ andβ− should be chosen so that

ė∗ = ẇ∗ − ẏ∗ < 0 if e∗ > 0
ė∗ = ẇ∗ − ẏ∗ > 0 if e∗ < 0 (16)

From (15), (16) it results that the law (15) realizes the bang-
bang relay control of the variablee∗ on the level zero. When
the initial value ofe∗ is non zero then it is moved by means
of the control (15) to zero and then it is held in zero by means
of successive switchings.

The CL system described by the plant equations (11) sliding
surface equation (14) and the control law (15) implements the
sliding mode control. From above considerations it results that
if the initial statese, e(1), ..., e(d−1) of the system does not
lay on the sliding surface (14) then the control (15) move
them to the surface (14) and then by means of successive
switchings slide them along the surface. Thus, if the sliding
control is realized the equation (14) is approximately fulfilled
and the transients of the errore are determined by the solutions
of this equation. From assumption concerning the coefficients
ci, i = 0, 1, ..., d− 1 it results that then, the system is stable
and has good transients.

It is worthwhile to stress that the system may work correctly
even in the case when the parameters of the plant are not
known accurately. Really, in the intervals of constantw, when
the sliding mode control is realized it ise(t) ≈ 0 andyc(t) ≈
0. Sincee(t) = w(t)−ȳ(t) = w(t)−y(t)−yc(t) ≈ w(t)−y(t),
theny(t) ≈ w. Similar relations are valid for relatively slowly
varying w(t) (and eventually slowly varying disturbances and
parameters).

IV. T HE CHOICE OF THEVALUES β+, β−

For any bounded set of the statese, e(1), ..., e(d−1) it is easy
to choose some appropriate values ofβ+ and β− such that
the inequalities (16) are fulfilled. But in the process of design
this set is not given but rather some expected variations of
the excitations (set point and/or disturbance) can be assumed.
Using this one can determine the valuesβ+, β−. Of course,
the choice of the valuesβ+, β−, assuring the sliding control,
is possible for sufficiently smooth variations of the excitations.

One from the possible choices isβ+ = β̄ and β− = −β̄
where β̄ is sufficiently large value. Larger valuēβ faster
variations of the outputy are possible and bigger variations of
the disturbance may be compensated. However with switching
appearing in the sliding mode control the effect of chattering



is related which is stronger when̄β is larger. Some times
users or actuators do not accept to strong chattering effects,
especially if they are lasting to long time. Therefore, there
arises the idea of adaptation of the values ofβ+ and β−

to the actual system work conditions (expressed by needed
output variations, parameter changes or appearing actually
disturbances). This idea makes it possible to adapt the values
β+, β− so that the difference(β+ − β−) is sufficiently small
and it is increased when this is needed. In this system the
chattering effect is reduced significantly. On the other hand
the sliding mode control appearing in the system causes that
the latter tolerates parameter changes even in the case of
nonminimum phase plants.

V. A DAPTATION OF β+ AND β−

In section 3 it was noted that the considered system with
sliding mode control works as bang-bang relay control of the
variable e∗ on the level zero. The successive switchings of
the relay causes characteristic oscillations of the variablee∗

shown in Fig. 2. These oscillations contain information about
actual values ofβ+ and β−. Namely, there is dependence
between maximum positive slopėe∗mx of the curve in the
interval (t1, t2) and the value ofβ− as well as the minimum
(negative) slopėe∗min of the curve in the interval(t2, t3) and
the value ofβ+. Smaller values ofβ− causes greater values
of the maximum slopėe∗mx and greater value ofβ+ causes
smaller value of the minimum slopėe∗min.

Fig. 2. Oscillation of the variablee∗.

This dependence can be used to control the maximum
positive and minimum negative slope of the curve on the
prescribed level by means of changing the values ofβ− and
β+, respectively. Choosing for instance the prescribed levels
(set points) forė∗mx = ė∗s and ė∗min = −ė∗s (where ė∗s is a
small positive value chosen from trails) we can cause that the
values ofβ+ and β− are mutually close and symmetrically
placed with respect to the needed value of the controlu.

The block diagram of the system which implements this
idea is shown in Fig. 1. The system implements sliding mode
control and contains additionally two channels for independent
adaptation of the values ofβ+ andβ−, as well as the proposed
compensator. A more detailed description of these channels
will be given in the Example further on. Now, it is worthwhile
to add that the sliding mode control in the main channel
is realized in the continuous-time, relay system, while the

channels for adaptation ofβ+ andβ− works in the discrete-
time.

In implementation of the sliding mode control the signale∗

is related to the errore by means of the formula (14). Then
the successive differentiation ofe must be performed. The
differentiation gains the noises. Therefore, it is better to use in
the place of the ideal differentiation described by the transfer
function (TF) s the approximate differentiation described by
the TF

Gd(s) =
kds

s + kd
(17)

wherekd is sufficiently large gain (e.g.kd = 100). Owing to
the inertia appearing in (17) the high frequency noise is not
gained.

It is worthwhile to realize that implementation of the sliding
mode control is possible in the case of not to highd (e.g d
= 1, 2). For higherd some difficulties connected with higher
order differentiation may appear.

VI. EXAMPLE

Consider the nonminimum phase plant described by the
transfer function

G(s) =
−2s + 3

s3 + 4s2 + 4s + 3
(18)

The poles of the plant are:p1 = −3, p2 = −0, 5 +
j0, 8660, p3 = −0, 5−j0, 8660. The denominator of the model
(11) in accordance with (6) results from division

(s3 + 4s2 + 4s + 3) : (s + 3) = s2 + s + 1

i.e. the faster mode (s+3) is deleted. Similarly for numerator
we use the formula (7), (11) and (12) obtaining finally

Ḡ(s) =
1

s2 + s + 1
(19)

Thus the compensator takes the form

C(s) =
1

s2 + s + 1
− −2s + 3

s3 + 4s2 + 4s + 3
(20)

The design will be made for the minimum phase plant (19).
It is easy to check that for the plant (19) we obtaind = 1. Let
c0 = T , then the dependence (14) takes the form

e∗ = T ė + e (21)

whereT is the time constant of the transients appearing when
the sliding mode control is realized.

The SIMULINK block diagram of the system with sliding
mode relay control together with adaptation of the values
β+ and β− is shown in Fig. 3. The derivativėe is obtained
by means of element (17) withkd = 100. The relay with
hysteresisH is realized by means of two elements: ”Backlash”
and ”Sign”. Some small hysteresis makes it possible to obtain
more expressive oscillations bringing the information about
values ofβ+ andβ−.

The adaptation of the valuesβ+ andβ− realizes the block
”adaptation” which works in the discrete-time with sampling
period h. The periodh should be several times smaller than
the minimal switching period of the relay. The main part of
this block is the MATLAB functionslidad22 described by



Fig. 3. SIMULINK block diagram of the system with sliding mode control and adaptation ofβ+ andβ−.

the program shown in Fig. 4. In this program the notation of
some variables or parameters is different from that used in
the paper. Namelyep = ė, dep = ė∗s, bp1 = β+, bm1 =
β−, p1(t) = sign(e∗(t − h)), ep1p = ė∗mx, ep1m = ė∗min,
ep1(t) = ė(t − h), p = H(e∗) where H(e∗) denotes the
characteristic of the relay with hysteresis;t1 – instant of the
last switching;dt – time interval assuring that the correction
of β+, β− is made when the sliding control appears;bmx –
maximum value ofβ+ (−bmx is the minimum value ofβ−);
e = e∗ de – the threshold of the errore: for |e| < de the
adaptation ofβ+, β− is realized; for|e| > de it is set up
β+ = bmx andβ− = −bmx; the same notation with indexes
1 or 2 e.g.bp1 and bp2 means thatbp1(t) = bp2(t − h); c –
denotes a positive coefficient in the dependencies establishing
new value ofβ+ (β−) in accordance with

β+
2 = β+

1 + c(ė∗min + ė∗s) (22)

β−2 = β−1 + c(ė∗mx − ė∗s) (23)

The formulas (22) and (23) are used in the conditions
determined by the program.

VII. R ESULTS OF SIMULATIONS

The results of simulations for sinusoidal change of the gain
from kmin = 0, 8 to kmax = 1, 2 and stepwise change of the
set point fromwmin = −2 to wmax = 2 are shown in Fig. 5.
The parameters of the algorithm, chosen experimentally, were
dt = 0, 5, dep = 0, 05, c = 2, 5, bmx = 12, de = 0, 05, T =
0, 1, h = 0, 005,H = 2× 0, 005.

Thus the gaink(t) is varied continuously in the interval
(0.8,1.2) i.e.kmx/kmin = 1.5 while in the compensator it is
assumed thatk = 1. It is seen that there exists adaptation
of the valuesβ+ and β− to the current needs. The large

difference(β+−β−) appears only when some fast change of
the output is needed (after stepwise change of the set pointw).
Since the plant is non minimum phase then after appearance
of the stepwise change ofw an undershot appears i.e. at the
beginning there is the change of the output in the opposite
to the needed direction. Note, that after stepwise change ofw
there is inevitable undershot, however at the vicinity oft = 30
there is no overshot (because of small gain) and fort = 64
the overshot is very small.

The results of simulations shown in Fig. 6 were performed
for stepwise change of the gain fromkmin = 0.8 to
kmx = 1.2 and sinusoidal change of he set pointw(t). It
is seen that the difference(β+ − β−) increases only after
stepwise change of the gaink(t). After that the adaptation
decreases the difference(β+ − β−) fast and closes both the
valuesβ+ andβ− to the needed value of the control. At the
vicinity of t = 22 and t = 44 the stepwise change ofk(t)
influences the outputy(t). But at the vicinity oft = 64 there
is negligible influence of stepwise changew(t) on the output
y(t). There is one exception in increase of the difference
(β+ − β−). Really at the vicinity oft = 57 the difference
increases without stepwise change ofk(t). This is caused by
the relatively fast variation ofw(t) when the small difference
is not sufficient for tracking.

VIII. C ONCLUSIONS

Usual sliding mode control can not work with the nonmini-
mum phase plants because the system then either becomes non
stable or has some non acceptable oscillations of the output
variable.

In the present paper it is shown that it is possible to
implement sliding mode control, with adaptation of the relay
amplitudes, for some nonminimum phase plants, using the pro-
posed parallel compensator. The condition is that in the plant



Fig. 4. Algorithm of adaptation of the relay output.

there is at least so many poles corresponding to relatively faster
modes as the nonminimum phase zeros and the nonminimum
phase zeros are not to close to the imaginary axis. In this
case it is possible to design the parallel compensator in which
an important role plays the minimum phase model having for
small (working) frequencies the same frequency response as
the plant. The idea of the compensator is similar to that of
the Smith predictor. Owing to the compensator the considered
system works as with minimum phase plant.

The system works well also when the gains of the plant
and compensator are different, especially for slow variations
of parameters or variables. Owing to the adaptive action, the
switched outputsβ+ and β− of the relay are then suited

Fig. 5. Results of simulations for sinusoidal gain and stepwise set point.

Fig. 6. Results of simulations for stepwise gain and sinusoidal set
point

to the needed value of the controlu, so that the chattering
effect connected with the sliding mode control is decreased,
significantly.
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