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Stability Analysis of the Freeway Ramp Metering
Control Strategy ALINEA
Elias B. Kosmatopoulos & Markos Papageorgiou

Abstract| Local, traÆc-responsive ramp metering is a
well-known control measure aiming at ameliorating traÆc
conditions on interurban or metropolitan freeways and mo-
torways. A particular control strategy (ALINEA) has been
successfully implemented in a number of freeways where it
was shown to improve dramatically the traÆc conditions
and to be superior to other competing approaches. Stabil-
ity analysis based on linearized traÆc-ow dynamics and the
assumption that the ow and occupancy are related through
a static \fundamental diagram" has shown that the actual
occupancy converges to the desired one as long as the actual
occupancy does not exceed a critical value.
This paper investigates the global stability properties of

the ALINEA ramp-metering control strategy and estab-
lishes its convergence properties. More precisely, Lyapunov
stability theory is used to show that, under realistic as-
sumptions regarding traÆc conditions and for any realistic
- but otherwise time-varying or dynamic - ow-occupancy
relationship and no matter if the actual occupancy at cer-
tain time-instants exceeds the critical occupancy: (i) for
all choices of controller parameters the ALINEA ramp me-
tering strategy preserves closed-loop stability and more-
over forces the actual occupancy to reach the desired one,
(ii) under appropriate choice of controller parameters the
ALINEA ramp metering strategy guarantees convergence
of the tracking error (de�ned as the di�erence between the
actual occupancy and the desired one) to small bounded
sets.

I. Introduction

Freeways and motroways had been originally conceived

so as to provide the possibility of fast travel without delays,

both in metropolitan and in interurban areas. However, in

the last decades, the number and extent of freeway conges-

tions have been steadily increasing, leading to considerable

delays, increasing fuel consumption and environmental pol-

lution, and decreasing road safety. Congestions are caused

either by high demand that exceeds the freeway capacity

(daily recurrent congestions) or by capacity-reducing in-

cidents (nonrcurrent congestions). In presence of conges-

tion, the freeway throughput becomes lower than capacity,

thus rendering the utilization of the expensive infrastruc-

ture non-optimal [1]. One proposed way of ameliorating

this situation is ramp metering by use of traÆc lights at
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the freeway on-ramps. This control measure aims at limit-

ing access to the freeway mainstream so as to achieve and

maintain capacity ow.

Ramp metering control strategies have been proposed at

several levels of sophistication (open-loop/closed-loop, lo-

cal/centralized, linear/nonlinear, etc.; the interested reader

is referred to [2] for an overview of the proposed ap-

proaches) but the high majority of implemented and oper-

ating systems are of the local, traÆc-responsive type. Hun-

dreds of ramp metering installations, mainly in U.S.A. but

increasingly also in Europe and elsewhere, have provided

valueable experience on the bene�ts of this kind of control

measure.

From a control engineering point of view, the control

laws implemented in the vast majority of existing ramp me-

tering systems may be characterized as naive or heuristic.

More precisely, these control laws attempt a sort of feedfor-

ward disturbance rejecton that renders them particularly

sensitive to a variety of changing conditions. The �rst lo-

cal ramp metering control strategy that has been based

on straightforward application of classical feedback control

theory is ALINEA [3], [4]. ALINEA has been successfully

implemented to a number of freeways (motorways) where

it was shown to improve dramatically the traÆc conditions

and to be superior to other competing approaches [5]. Sta-

bility analysis based on linearized traÆc-ow dynamics and

the assumption that the traÆc ow and occupancy are re-

lated through a static \fundamental diagram" have shown

that the actual occupancy converges to the desired one as

long as the actucal occupancy does not exceed a \critical"

value, beyond which the linearized traÆc dynamics become

unstable. Surprisingly, simulations using realistic traÆc

ow models as well as �eld implementations of ALINEA

have shown that the actual occupancy converges to the de-

sired one even when the critical value is exceeded. It is

worth noticing that in real-life the ow and occupancy are

related through a more complex, dynamic, time-varying

relationship rather than the static \fundamental diagram"

assumed in the linearization-based analysis of [3], [4].

The purpose of this paper is to investigate further the

stability properties of the ALINEA ramp-metering control

strategy and to establish its global convergence properties.

More precisely, in this paper we take advantage of Lya-

punov stability theory to show that, under realistic assump-

tions regarding traÆc conditions and for any realistic - but

otherwise time-varying or dynamic - ow-occupancy rela-

tionship and no matter if the actual occupancy at certain

time-instants exceeds the critical value: (i) for all choices

of controller parameters the ALINEA ramp metering strat-

egy preserves closed-loop stability and moreover forces the
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actual occupancy to reach the desired one, (ii) under appro-

priate choice of controller parameters the ALINEA ramp

metering strategy guarantees convergence of the tracking

error (de�ned as the di�erence between the actual occu-

pancy and the desired one) to small bounded sets.

II. Ramp Metering and the ALINEA Control

Strategy

A. TraÆc Flow Dynamics

Let

� qout and qin are the mainstream traÆc volumes or ows

(veh=h) downstream and upstream of the ramp, respec-

tively.

� o denotes the mainstream occupancy rate downstream of

the ramp; an occupancy rate measures the time occupancy

(in %) of a detector placed below the highway pavement.

� r is the on-ramp traÆc volume or ow that may be con-

trolled using ordinary traÆc lights; to this end one may em-

ploy an one-car-per-green policy, or on a n-cars-per-green

policy (with n = 2; 3 or more), or a �xed traÆc cycle subdi-

vided into a green and a red phase of controllable duration.

The conservation of vehicles gives

_� =
1

Æ
(qin + r � qout) (2.1)

where � is the traÆc density (veh/km) de�ned as the num-

ber of vehicles included in the stretch, divided by the lenght

Æ of the stretch. Because traÆc density is not readily mea-

surable (it requires video detectors), it is convenient to re-

place � in (2.1) by o, using the approximate relationship

� = �o where � = �=(100�), � being the number of lanes

of the mainstream and � being the mean e�ective vehicle

length (as \seen" by the underground electromagnetic loop

detector; see [6] for more details); this leads to the following

model

_o =
1

�Æ
(qin + r � qout) (2.2)

Obviously, qout depends on the occupancy o. The most

popular model in the traÆc dynamics literature to describe

the relationship between qout and o (or �) is a static func-

tion qout = Q(o). The function Q(�) (which is known as

the \fundamental diagram" of traÆc dynamics) obtains

its maximum ow (capacity) qcap at ocr, the critical oc-

cupancy. Assuming a static ow-occupancy relationship,

it is easy to check that the linearized dynamics of (2.2) are

stable for o < ocr while they are unstable for o > ocr, which

practically means that once the actual occupancy becomes

larger than the critical one, the traÆc ow dynamics tend

to increase the occupancy leading to congested traÆc con-

ditions.

B. Ramp Metering

Ramp metering refers to techniques for calculating suit-

able ramp volumes r so as to keep the downstream traÆc

conditions at - or close to - a desired level. In the case

of traÆc cycle realization, r is converted to a green phase

duration g by use of

g =
r

rsat
C

where C is the �xed traÆc cycle duration and rsat is the

ramp capacity ow (or saturation ow) that may be �xed or

estimated in real time, based on ramp ow measurements

�ltered over some past cycles. g is usually constrained by

g 2 [gmin; gmax], with gmax � C and gmin � 0 denoting

the maximum and minimum, respectively, allowable green

time. Typically gmin > 0 to avoid ramp closure.

In the case of n-cars-per-green realization, one typically

has a constant-duration green time that permits exactly

n-vehicles to pass. The ramp volume r is controlled in this

case by varying the red phase duration between a minimum

and a maximum value.

C. ALINEA

Assuming that the control input r is updated every �t

time-units (typically �t = C = 20 : : : 60 seconds), we

obtain, after some algebraic manipulations, the linearized

(around a nominal point) and discretized (with sampling

interval equal to �t) version of (2.2) (see [3])

�o(k + 1) = ��o(k) +
1� �

rQ̂
[�qin(k) + �r(k)] (2.3)

� is used to denote the di�erence between the actual value

and the nominal one (e.g., �r = r � rnom, where rnom

denotes the nominal value of r); rQ̂ = @Q

@o
(ô) whereby

the nominal occupancy onom is taken equal to the desired

occupancy ô; �nally � = exp(�rQ̂
�Æ

T ) results from the dis-

cretization. Notice that � may be neglected in (2.3), if the

ratio Æ=�t is suÆciently small.

In its simplest form, the ALINEA ramp metering strat-

egy uses a simple I-type regulator [3], [4] given as follows

r(k) = r(k � 1) +K [ô� o(k)] (2.4)

where K denotes the positive regulator gain. Applying

(2.4) to (2.3) and assuming that � is negligible, we obtain

the closed-loop transfer function

H(z) =
o(z)

ô
=

K

rQ̂

z � 1 + K

rQ̂

Note that the above transfer function is stable for all pos-

itive K, provided that rQ̂ is positive; moreover, if this

is the case, an optimal dead-beat regulator is obtained by

setting K = rQ̂. rQ̂ is positive only in the LHS of the

fundamental diagram (that is, for ô < ocr). It is easy

to check that the linearization on the RHS of the funda-

mental diagram results in an unstable closed-loop transfer

function. In other words, the stability analysis based on

a linearized version of the traÆc ow dynamics results in

a stable closed-loop transfer function as long as the occu-

pancy o and its desired value ô are less than the critical

occupancy, while, if this is not the case, the closed-loop



102

transfer function becomes unstable. Similar results hold in

the case where � is not negligible and/or a PI-type regula-

tor is used instead of the I-type regulator (2.4) (see [3], [4]

for more details).

It is well-established in the control engineering literature

that stability analysis based on linearized versions of the

plant dynamics can only deliver local stability results, i.e.,

the results obtained are valid only as long as the plant

states remain very close to their nominal values. More-

over, the stability analysis of [3], [4] that was briey pre-

sented above, is based on the assumption of a static ow-

occupancy relationship. However, actual �eld data indi-

cate that ow and occupancy are actually related through

a more complex, time-varying, dynamic relationship. Fig-

ure 4 shows a speed-ow plot attempting to reect and

classify real freeway measurements.

In our analysis, we will make no assumption about the

speci�c relationship between ow and occupancy (other

than that it is a bounded function that is zero at zero).

The key idea behind our analysis is to consider Q(�) as a

bounded disturbance. In order to illustrate the approach,

assume a continuous-time version of ALINEA that uses

only proportional feedback, that is

r = K(ô� o) (2.5)

Substituting the above equation into (2.2) we obtain

d

dt
(ô� o) = �cK(ô� o)� c (qin �Q) (2.6)

where c = 1
�Æ

> 0. It is not diÆcult to see that if qin; Q

are bounded (but otherwise time-varying and dynamic),

then the solutions ô�o(t) of the above di�erential equation

converge to a bounded subset around zero whose radius is

proportional to 1=K. In other words, the control law (2.5)

forces the solutions of (2.2) to converge to values arbitrarily

close to the desired occupancy. Based on the above simple

idea, we present in the next section the stability analy-

sis for the ALINEA ramp metering control algorithm, by

incorporating the control constraints imposed on the con-

trol input r as well as the hybrid (continuous-time plant

dynamics, discrete-time controller dynamics) nature of the

closed-loop system.

III. Lyapunov Stability Analysis

Our �rst step is to introduce a more realistic model for

the traÆc ow dynamics than the model used in (2.2).

Since in real life the occupancy cannot become negative

and, moreover, cannot exceed a maximum level, we use

the following traÆc ow model instead of (2.2)

_o = P
o

[0;omax]

�
1

�Æ
(qin + r �Q)

�
(3.1)

The above equation for the traÆc ow dynamics is the same

as the model in (2.2) derived from the ow-conservation

law, with the di�erence that in (3.1) the projection opera-

tor P[0;omax] is used to guarantee that the solutions o(t) of

(3.1) remain always in the set [0; omax], where omax is the

maximum occupancy (100%). The projection operator is

de�ned as follows

P
x

[xmin;xmax]
(y)

8>>>><
>>>>:

y if x 2 (xmin; xmax)

y if x = xmin and y > 0

y if x = xmax and y < 0

0 if x = xmin and y � 0

0 if x = xmax and y � 0

(3.2)

Obviously the projection operator in (3.1) guarantees that

o(t) 2 [0; omax] for all t. For the real system this could be

interpreted as follows: (i) if o = omax then qin is suÆciently

reduced if necessary; (ii) if o = 0 then Q is suÆciently

reduced if necessary; both for obvious physical reasons.

The ALINEA ramp metering algorithm is a discrete-time

feedback control method, that updates the control signal

r every �t time-units, where �t denotes the controller

sampling time (i.e., r(t) remains constant in the intervals

[(i�1)�t; i�t) for all positive integers i). Before we present

the ALINEA algorithm we de�ne for each time-instant t,

the integer �(t) satisfying

t = �(t)�t+mod(t;�t)

where mod(�) is the modulus function. Moreover, we de�ne

[t]
4

= �(t)�t

i.e., for each t, [t] denotes the most recent time-instant at

which r(t) has been updated.

Using the above de�nitions, the ALINEA ramp metering

strategy becomes

r(t) =

8>>>>>><
>>>>>>:

rminif r([t ��t]) +K(ô� o([t])) < rmin

or o([t]) > �omax

r([t ��t]) +K(ô� o([t]))if r([t��t])

+K(ô� o([t])) 2 [rmin; rmax] and o([t]) � �omax

rmaxif r([t��t]) +K(ô� o([t])) > rmax

and o([t]) � �omax

(3.3)

where, ô denotes the desired occupancy, K > 0 denotes the

controller gain, rmin; rmax denote the minimum and max-

imum allowable on-ramp ow, respectively, and �omax <

omax is a positive design constant that is set close to max-

imum occupancy omax.

Remark 1: In the stability analysis that follows, we make

no assumption that K is a constant. All the results of these

paper are applicable to either constant or time-varying con-

troller gains K. �

Remark 2: The form of ALINEA as originally proposed

in [3], [4] does not include the condition where r(t) = rmin

if o([t]) > �omax. The reason why this extra condition is in-

cluded in (3.3) is to avoid situations where the motorway is

saturated at its maximum (i.e., o(t) > �omax) and ALINEA

produces large r(t). This may happen in cases where the

controller gain K is small, in which case the reaction of

ALINEA is slow (notice that the larger the controller gain

K, the more aggressive ALINEA's control behavior). The

extra condition r(t) = rmin if o([t]) > �omax simpli�es the

stability analysis signi�cantly, as it permits to omit the
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analysis of cases where o(t) � omax and r(t) > rmin in

(3.1), that is, cases where, although the traÆc is saturated

at its maximum, ALINEA allows signi�cant amounts of

vehicles to enter through the ramp. �

We will make the following assumptions:
(A1) qin; Q are bounded, satisfying Q � Qmax; qin �

qmax, where Qmax; qmax are positive reals.

(A2) Q � 0 with o = 0) Q = 0.

(A3) qin + rmin � 0.

(A4) rmax�Q(t)+ qin(t) � c1 > 0, rmin�Q(t)+ qin(t) �

�c2 < 0 for all t, where c1; c2 are positive constants.
Note that we make no assumption regarding the speci�c

form of Q. In our analysis, Q can be any function of o and

t as long as it is bounded and it is zero when the occupancy

is zero. Almost all the ow-occupancy models (fundamen-

tal diagrams) proposed in the literature (either through

mathematical analysis or experimentation with real data)

satisfy assumptions (A1), (A2) and thus are covered by our

analysis.

Assumptions (A3), (A4) are \controllability" assump-

tions. If these assumptions do not hold, then no ramp me-

tering policy can stabilize the system around the desired

occupany ô.

The stability analysis of ALINEA will be made possible

through the Lyapunov function V , de�ned as follows

V =
1

2
(ô� o)2 =

1

2
~o2

where ~o
4

= ô� o denotes the tracking error. Using (3.1) we

obtain

_V = � _o~o

= �P
o

[0;omax]

�
1

�Æ
(qin + r �Q)

�
~o

Let ts denote a time-instant at which ~o(t) changes sign,

that is

sgn(~o(t�
s
)) = �sgn(~o(t+

s
))

and consider a time-interval (ts; T ) at which the sign of ~o

remains constant, i.e.,

sgn(~o(t)) = sgn(~o(t+
s
)); 8t 2 (ts; T )

We have for all t 2 [ts; T )

_V = �sgn(~o(t))Po

[0;omax]

�
1

�Æ
(qin + r(t) �Q)

�
j~o(t)j

Consider any t 2 (ts; T ). We have two cases:
Case 1:

sgn(~o(t)) = sgn(~o(t+
s
)) = +1

i.e., the occupancy o(t) is smaller than the desired occu-

pancy ô. Since K(ô(t) � o(t)) = K~o(t) > 0, we have from

(3.3)

r(t) = min

8<
:rmax; r([ts]) +K

�(t)X
i=�(ts)

j~o([ts] + (i� �(ts))�t)j

9=
;

(3.4)

Using the above equation, the fact that o(t) < ô < omax,

assumptions (A2), (A3) and the de�nition of the projector

operator (3.2) it can be seen that _V is negative de�nite if

min

8<
:rmax; r([ts]) +K

�(t)X
i=�(ts)

j~o([ts] + (i� �(ts))�t)j

9=
; >

Q(t)� qin(t)

But, since ~o(t) > 0; 8t 2 (ts; T ), we have that

K
P

�(t)

i=�(ts)
j~o([ts] + (i � �(ts))�t)j is an increasing func-

tion1 on (ts; T ), and therefore (by taking into account the

fact that qin; Q are bounded), there exists a tp 2 (ts; T )

such that, 8t 2 [tp; T )

K

�(t)X
i=�(ts)

j~o([ts] + (i� �(ts))�t)j > Q(t)� qin(t)� r([ts])

Combining the above inequality with (A1), (A3), (A4) and

(3.4), we obtain _V (t) < 0 for all t � tp; t < T and there-

fore, using standard Lyapunov stability arguments, ~o(t) is

strictly decreasing on (tp; T ), which implies that ~o(t) will

eventually cross zero.

(C1) In the case o(t) < ô, the control law (3.3) forces o(t)

to reach ô. In other words, assuming that ~o at ts crosses

zero and becomes positive after ts, then ~o(t) may stay pos-

itive for some period of time, but will eventually start de-

creasing until it reaches 0 again.

The question in hand is, while ~o(t) stays positive, what

is the largest value it can take. To answer this question,

consider again that t 2 (ts; T ). In this case one of the

following two conditions is satis�ed:

(a)[ r(t) < rmax ]: In this case, we have

~o(t) = ~o([t])

�
1�

K

�Æ
(t� [t])

�
+ �q(t; [t])

where

�q(t; [t]) = �

1

�Æ

 Z
t

[t]

qin(�)d� + r([t])(t � [t])�

Z
t

[t]

Q(�)d�

!

Note that, since qin; r; Q are nonnegative and bounded

quantities, there exists a positive constant c+, independent

of K; t; ts, such that

�q(t; [t]) � c+(t� [t]) (3.5)

Therefore

j~o(t)j � j~o([t])j

����1� K

�Æ
(t� [t])

����+ c+(t� [t]) (3.6)

1Note that, although the term K
P

�(t)

i=�(ts)
j~o([ts] + (i� �(ts))�t)j

remains constant at the time-intervals ([ts]+�(t)�t; (�(t)+1)�t), it
strictly increases at the time-instants [ts] + �(t)�t; 8t 2 (ts; T ). In
what follows, we will say that a function of time is strictly decreasing
(increasing) wrt �t on the time-interval (t1; t2) if it is non-increasing
(resp. non-decreasing) for t 2 ((i�1)�t; i�t) but it is stirctly decreas-
ing (resp. increasing) at t = i�t for all i that are positive integers
and satisfy ((i� 1)�t; i�t) � (t1; t2).
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Assume that K satis�es the following inequality

(1� ")�Æ

�t
� K �

(1 + ")�Æ

�t
=)

����1� K

�Æ
�t

���� � " (3.7)

where " 2 [0; 1) is a nonnegative constant. Then, it can be

seen that we obtain

j~o([t] + �t)j � j~o([t])j"+ c+�t (3.8)

Using the fact that " 2 (0; 1) we obtain

j~o([t])j <
1

1� "
c+�t (3.9)

Moreover, using the above inequality, (3.7) and (3.6) we

obtain

j~o(t)j <

�
1 +

1

1� "

�
c+�t (3.10)

Finally, from the de�nition of V and (3.8) we have

V ([t+�t]) =
1

2
(j~o([t] + �t)j)

2

�

1

2
(j~o([t])j"+ c+�t)

2

�

1

2

�
j~o([t])j2"2c2+�t

2
�

� "
2
V ([t]) +

1

2
c
2
+�t

2 (3.11)

(b) [r(t) = rmax ]: From (A4) we have that _V is negative

de�nite, that is

_V = �

1

�Æ
(qin(t) + rmax �Q(t)) j~o(t)j

� �

c1

�Æ
j~o(t)j � �

c1

�Æomax

j~o(t)j
2

= �

2c1

�Æomax

V (t) (3.12)

and thus j~o(t)j is strictly decreasing after r(t) becomes

equal to rmax (in the last inequality of (3.12) we made

use of j~o(t)j � omax; 8t which results from (3.1)).

Combining the analysis of (a) and (b), we conclude:

(C2) Suppose that at t = ts, ~o(t) crosses zero and becomes

positive for t 2 (ts; T ). Then, if K satis�es (3.7), j~o(t)j

satis�es

j~o(t)j <

�
1 +

1

1� "

�
c+�t;8t 2 (ts; T )

Case 2:

sgn(~o(t)) = sgn(~o(t+
s
)) = �1

i.e., the occupancy o(t) is larger than the desired occupancy

ô. Since K(ô(t)� o(t)) = K~o(t) < 0, we have from (3.3)

r(t) = Isat([t])rmin + (1� Isat([t]))max frmin; r([ts])

�K

�(t)X
i=�(ts)

j~o([ts] + (i� �(ts))�t)jg (3.13)

where Isat(t) is an indicator function satisfying Isat(t) = 1

if o(t) > �omax and Isat(t) = 0, otherwise. At this point,

we will add an extra assumption.

(A5) omax � �omax > c+�t� ô.

This assumption will be utilized in our analysis as follows:

�rst, notice that ~o(t) satis�es (3.5). Using (3.5), (3.5) and

(A5) it can be seen that o(t) < omax for all t 2 (ts; T ) for

all positive K. Using (3.13), the facts that o(t) > ô and

r([t]) = rmin if o([t]) > �omax, the de�nition of the projector

operator (3.2) and o(t) < omax resulting from assumption

(A5), it can be seen that _V is negative de�nite if either

r([t]) = rmin or

max

8<
:rmin; r([ts])�K

�(t)X
i=�(ts)

j~o([ts] + (i� �(ts))�t)j

9=
; >

Q(t)� qin(t)

But, since j~o(t)j > 0; 8t 2 (ts; T ), we have that

K
P

�(t)

i=�(ts)
j~o([ts] + (i � �(ts))�t)j is a strictly increasing

function wrt �t on (ts; T ), and therefore (taking into ac-

count the boundedness of qin; Q), there exists a tn 2 (ts; T )

such that, 8t 2 [tn; T )

K

�(t)X
i=�(ts)

j~o([ts] + (i� �(ts))�t)j > Q(t)� qin(t)� r([ts])

Combining the above inequality with (A1), (A3), (A4) and

(3.13), we obtain _V (t) < 0 for all t � tn; t < T and there-

fore, using standard Lyapunov stability arguments, ~o(t) is

strictly decreasing on (tn; T ), which implies that ~o(t) will

eventually cross zero.

(C3) In the case o(t) > ô, the control law (3.3) forces o(t)

to reach ô. In other words, assuming that ~o crosses zero

at ts and becomes negative after ts, then ~o(t) may stay

negative for some period of time, but will eventually start

increasing until it reaches 0 again.

Similarly to the analysis performed in Case 1, we can see

that,

� In the case r(t) > rmin, ~o(t) satis�es (3.5), and, there-

fore, using the same analysis as in Case 1, if K satis�es

(3.7) then j~oj and V satisfy (3.9), (3.10) and (3.11).

� In the case r(t) = rmin, it follows form (??) that _V (t) is

negative de�nite and therefore j~o(t)j is a strictly decreasing

function of time.

In summary:

(C4) Suppose that at t = ts, ~o(t) crosses zero and becomes

negative for t 2 (ts; T ). Then, if K satis�es (3.7), j~o(t)j

satis�es

j~o(t)j <

�
1 +

1

1� "

�
c+�t; 8t 2 (ts; T )

The next Theorem summarizes the results of our analy-

sis:

Theorem 1: Consider the traÆc ow dynamics (3.1), the

control law (3.3) and assume that (A1)-(A5) hold. Then,
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(a) For all positive controller gainsK, the control law (3.3)

guarantees that, if ~o(t) 6= 0 at some time-instant t, ~o will

be forced to cross zero.

(b) If K satis�es (3.7), then, after ~o(t) crosses zero for the

�rst time, it remains bounded in the subset C de�ned as

follows

C =

�
j~o(t)j 2 <+ : j~o(t)j <

�
1 +

1

1� "

�
c+�t

�

where "; c+;�t have been de�ned in the stability analysis.

(c) If K satis�es (3.7) the convergence of ~o(t) to the subset

C is exponential.
Remark 3: Control law (3.3) corresponds to the I-type

regulator version of the ALINEA ramp metering strategy

proposed in [3], [4]. The results of this paper can be easily

extended to the case where a PI-type regulator is used. �

Remark 4: Relation (3.7) de�nes the \optimal" choices

for the controller gain K, in the sense that for K satisfying

(3.7) we obtain the smaller worst-case bounds (as de�ned

in the subset C) for the tracking error. Any other choice

that does not satisfy (3.7) may lead to tracking errors that

are larger than the ones de�ned in the subset C as it can

be easily seen by using inequality (3.6). Notice also that

among all choices for K that satisfy (3.7), the one that cor-

responds to the smallest worst-case bound for the tracking

error is the one for " = 0.

For a typical freeway example, the length of the stretch

Æ = 0:2 km, the number of lanes � = 3 and the sampling

interval �t = 60 seconds = 1=60 hours.Assuming a mean

e�ective vehicle length � = 6 meters = 0:006 km, we obtain

from (3.7) for " = 0 the regulator gain value K = 60, which

is very close to the values (K � 70) chosen in actual �eld

implementations of ALINEA [2]-[5].

�
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